inclhack.def (hpux_imaginary_i): Remove spaces.
[gcc.git] / gcc / tree-flow-inline.h
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008 Free Software
3 Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
24
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
27
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
31 at first place. */
32 static inline bool
33 gimple_in_ssa_p (const struct function *fun)
34 {
35 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
36 }
37
38 /* Array of all variables referenced in the function. */
39 static inline htab_t
40 gimple_referenced_vars (const struct function *fun)
41 {
42 if (!fun->gimple_df)
43 return NULL;
44 return fun->gimple_df->referenced_vars;
45 }
46
47 /* Artificial variable used to model the effects of nonlocal
48 variables. */
49 static inline tree
50 gimple_nonlocal_all (const struct function *fun)
51 {
52 gcc_assert (fun && fun->gimple_df);
53 return fun->gimple_df->nonlocal_all;
54 }
55
56 /* Artificial variable used for the virtual operand FUD chain. */
57 static inline tree
58 gimple_vop (const struct function *fun)
59 {
60 gcc_assert (fun && fun->gimple_df);
61 return fun->gimple_df->vop;
62 }
63
64 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
65
66 static inline void *
67 first_htab_element (htab_iterator *hti, htab_t table)
68 {
69 hti->htab = table;
70 hti->slot = table->entries;
71 hti->limit = hti->slot + htab_size (table);
72 do
73 {
74 PTR x = *(hti->slot);
75 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
76 break;
77 } while (++(hti->slot) < hti->limit);
78
79 if (hti->slot < hti->limit)
80 return *(hti->slot);
81 return NULL;
82 }
83
84 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
85 or NULL if we have reached the end. */
86
87 static inline bool
88 end_htab_p (const htab_iterator *hti)
89 {
90 if (hti->slot >= hti->limit)
91 return true;
92 return false;
93 }
94
95 /* Advance the hashtable iterator pointed to by HTI to the next element of the
96 hashtable. */
97
98 static inline void *
99 next_htab_element (htab_iterator *hti)
100 {
101 while (++(hti->slot) < hti->limit)
102 {
103 PTR x = *(hti->slot);
104 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
105 return x;
106 };
107 return NULL;
108 }
109
110 /* Initialize ITER to point to the first referenced variable in the
111 referenced_vars hashtable, and return that variable. */
112
113 static inline tree
114 first_referenced_var (referenced_var_iterator *iter)
115 {
116 return (tree) first_htab_element (&iter->hti,
117 gimple_referenced_vars (cfun));
118 }
119
120 /* Return true if we have hit the end of the referenced variables ITER is
121 iterating through. */
122
123 static inline bool
124 end_referenced_vars_p (const referenced_var_iterator *iter)
125 {
126 return end_htab_p (&iter->hti);
127 }
128
129 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
130 and return that variable. */
131
132 static inline tree
133 next_referenced_var (referenced_var_iterator *iter)
134 {
135 return (tree) next_htab_element (&iter->hti);
136 }
137
138 /* Fill up VEC with the variables in the referenced vars hashtable. */
139
140 static inline void
141 fill_referenced_var_vec (VEC (tree, heap) **vec)
142 {
143 referenced_var_iterator rvi;
144 tree var;
145 *vec = NULL;
146 FOR_EACH_REFERENCED_VAR (var, rvi)
147 VEC_safe_push (tree, heap, *vec, var);
148 }
149
150 /* Return the variable annotation for T, which must be a _DECL node.
151 Return NULL if the variable annotation doesn't already exist. */
152 static inline var_ann_t
153 var_ann (const_tree t)
154 {
155 var_ann_t ann;
156
157 if (!t->base.ann)
158 return NULL;
159 ann = (var_ann_t) t->base.ann;
160
161 gcc_assert (ann->common.type == VAR_ANN);
162
163 return ann;
164 }
165
166 /* Return the variable annotation for T, which must be a _DECL node.
167 Create the variable annotation if it doesn't exist. */
168 static inline var_ann_t
169 get_var_ann (tree var)
170 {
171 var_ann_t ann = var_ann (var);
172 return (ann) ? ann : create_var_ann (var);
173 }
174
175 /* Get the number of the next statement uid to be allocated. */
176 static inline unsigned int
177 gimple_stmt_max_uid (struct function *fn)
178 {
179 return fn->last_stmt_uid;
180 }
181
182 /* Set the number of the next statement uid to be allocated. */
183 static inline void
184 set_gimple_stmt_max_uid (struct function *fn, unsigned int maxid)
185 {
186 fn->last_stmt_uid = maxid;
187 }
188
189 /* Set the number of the next statement uid to be allocated. */
190 static inline unsigned int
191 inc_gimple_stmt_max_uid (struct function *fn)
192 {
193 return fn->last_stmt_uid++;
194 }
195
196 /* Return the annotation type for annotation ANN. */
197 static inline enum tree_ann_type
198 ann_type (tree_ann_t ann)
199 {
200 return ann->common.type;
201 }
202
203 /* Return the line number for EXPR, or return -1 if we have no line
204 number information for it. */
205 static inline int
206 get_lineno (const_gimple stmt)
207 {
208 location_t loc;
209
210 if (!stmt)
211 return -1;
212
213 loc = gimple_location (stmt);
214 if (loc == UNKNOWN_LOCATION)
215 return -1;
216
217 return LOCATION_LINE (loc);
218 }
219
220 /* Delink an immediate_uses node from its chain. */
221 static inline void
222 delink_imm_use (ssa_use_operand_t *linknode)
223 {
224 /* Return if this node is not in a list. */
225 if (linknode->prev == NULL)
226 return;
227
228 linknode->prev->next = linknode->next;
229 linknode->next->prev = linknode->prev;
230 linknode->prev = NULL;
231 linknode->next = NULL;
232 }
233
234 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
235 static inline void
236 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
237 {
238 /* Link the new node at the head of the list. If we are in the process of
239 traversing the list, we won't visit any new nodes added to it. */
240 linknode->prev = list;
241 linknode->next = list->next;
242 list->next->prev = linknode;
243 list->next = linknode;
244 }
245
246 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
247 static inline void
248 link_imm_use (ssa_use_operand_t *linknode, tree def)
249 {
250 ssa_use_operand_t *root;
251
252 if (!def || TREE_CODE (def) != SSA_NAME)
253 linknode->prev = NULL;
254 else
255 {
256 root = &(SSA_NAME_IMM_USE_NODE (def));
257 #ifdef ENABLE_CHECKING
258 if (linknode->use)
259 gcc_assert (*(linknode->use) == def);
260 #endif
261 link_imm_use_to_list (linknode, root);
262 }
263 }
264
265 /* Set the value of a use pointed to by USE to VAL. */
266 static inline void
267 set_ssa_use_from_ptr (use_operand_p use, tree val)
268 {
269 delink_imm_use (use);
270 *(use->use) = val;
271 link_imm_use (use, val);
272 }
273
274 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
275 in STMT. */
276 static inline void
277 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, gimple stmt)
278 {
279 if (stmt)
280 link_imm_use (linknode, def);
281 else
282 link_imm_use (linknode, NULL);
283 linknode->loc.stmt = stmt;
284 }
285
286 /* Relink a new node in place of an old node in the list. */
287 static inline void
288 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
289 {
290 /* The node one had better be in the same list. */
291 gcc_assert (*(old->use) == *(node->use));
292 node->prev = old->prev;
293 node->next = old->next;
294 if (old->prev)
295 {
296 old->prev->next = node;
297 old->next->prev = node;
298 /* Remove the old node from the list. */
299 old->prev = NULL;
300 }
301 }
302
303 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
304 in STMT. */
305 static inline void
306 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old,
307 gimple stmt)
308 {
309 if (stmt)
310 relink_imm_use (linknode, old);
311 else
312 link_imm_use (linknode, NULL);
313 linknode->loc.stmt = stmt;
314 }
315
316
317 /* Return true is IMM has reached the end of the immediate use list. */
318 static inline bool
319 end_readonly_imm_use_p (const imm_use_iterator *imm)
320 {
321 return (imm->imm_use == imm->end_p);
322 }
323
324 /* Initialize iterator IMM to process the list for VAR. */
325 static inline use_operand_p
326 first_readonly_imm_use (imm_use_iterator *imm, tree var)
327 {
328 gcc_assert (TREE_CODE (var) == SSA_NAME);
329
330 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
331 imm->imm_use = imm->end_p->next;
332 #ifdef ENABLE_CHECKING
333 imm->iter_node.next = imm->imm_use->next;
334 #endif
335 if (end_readonly_imm_use_p (imm))
336 return NULL_USE_OPERAND_P;
337 return imm->imm_use;
338 }
339
340 /* Bump IMM to the next use in the list. */
341 static inline use_operand_p
342 next_readonly_imm_use (imm_use_iterator *imm)
343 {
344 use_operand_p old = imm->imm_use;
345
346 #ifdef ENABLE_CHECKING
347 /* If this assertion fails, it indicates the 'next' pointer has changed
348 since the last bump. This indicates that the list is being modified
349 via stmt changes, or SET_USE, or somesuch thing, and you need to be
350 using the SAFE version of the iterator. */
351 gcc_assert (imm->iter_node.next == old->next);
352 imm->iter_node.next = old->next->next;
353 #endif
354
355 imm->imm_use = old->next;
356 if (end_readonly_imm_use_p (imm))
357 return NULL_USE_OPERAND_P;
358 return imm->imm_use;
359 }
360
361 /* Return true if VAR has no uses. */
362 static inline bool
363 has_zero_uses (const_tree var)
364 {
365 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
366 /* A single use means there is no items in the list. */
367 return (ptr == ptr->next);
368 }
369
370 /* Return true if VAR has a single use. */
371 static inline bool
372 has_single_use (const_tree var)
373 {
374 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
375 /* A single use means there is one item in the list. */
376 return (ptr != ptr->next && ptr == ptr->next->next);
377 }
378
379
380 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
381 to the use pointer and stmt of occurrence. */
382 static inline bool
383 single_imm_use (const_tree var, use_operand_p *use_p, gimple *stmt)
384 {
385 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
386 if (ptr != ptr->next && ptr == ptr->next->next)
387 {
388 *use_p = ptr->next;
389 *stmt = ptr->next->loc.stmt;
390 return true;
391 }
392 *use_p = NULL_USE_OPERAND_P;
393 *stmt = NULL;
394 return false;
395 }
396
397 /* Return the number of immediate uses of VAR. */
398 static inline unsigned int
399 num_imm_uses (const_tree var)
400 {
401 const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
402 const ssa_use_operand_t *ptr;
403 unsigned int num = 0;
404
405 for (ptr = start->next; ptr != start; ptr = ptr->next)
406 num++;
407
408 return num;
409 }
410
411 /* Return the tree pointed-to by USE. */
412 static inline tree
413 get_use_from_ptr (use_operand_p use)
414 {
415 return *(use->use);
416 }
417
418 /* Return the tree pointed-to by DEF. */
419 static inline tree
420 get_def_from_ptr (def_operand_p def)
421 {
422 return *def;
423 }
424
425 /* Return a use_operand_p pointer for argument I of PHI node GS. */
426
427 static inline use_operand_p
428 gimple_phi_arg_imm_use_ptr (gimple gs, int i)
429 {
430 return &gimple_phi_arg (gs, i)->imm_use;
431 }
432
433 /* Return the tree operand for argument I of PHI node GS. */
434
435 static inline tree
436 gimple_phi_arg_def (gimple gs, size_t index)
437 {
438 struct phi_arg_d *pd = gimple_phi_arg (gs, index);
439 return get_use_from_ptr (&pd->imm_use);
440 }
441
442 /* Return a pointer to the tree operand for argument I of PHI node GS. */
443
444 static inline tree *
445 gimple_phi_arg_def_ptr (gimple gs, size_t index)
446 {
447 return &gimple_phi_arg (gs, index)->def;
448 }
449
450 /* Return the edge associated with argument I of phi node GS. */
451
452 static inline edge
453 gimple_phi_arg_edge (gimple gs, size_t i)
454 {
455 return EDGE_PRED (gimple_bb (gs), i);
456 }
457
458 /* Return the source location of gimple argument I of phi node GS. */
459
460 static inline source_location
461 gimple_phi_arg_location (gimple gs, size_t i)
462 {
463 return gimple_phi_arg (gs, i)->locus;
464 }
465
466 /* Return the source location of the argument on edge E of phi node GS. */
467
468 static inline source_location
469 gimple_phi_arg_location_from_edge (gimple gs, edge e)
470 {
471 return gimple_phi_arg (gs, e->dest_idx)->locus;
472 }
473
474 /* Set the source location of gimple argument I of phi node GS to LOC. */
475
476 static inline void
477 gimple_phi_arg_set_location (gimple gs, size_t i, source_location loc)
478 {
479 gimple_phi_arg (gs, i)->locus = loc;
480 }
481
482 /* Return TRUE if argument I of phi node GS has a location record. */
483
484 static inline bool
485 gimple_phi_arg_has_location (gimple gs, size_t i)
486 {
487 return gimple_phi_arg_location (gs, i) != UNKNOWN_LOCATION;
488 }
489
490
491 /* Return the PHI nodes for basic block BB, or NULL if there are no
492 PHI nodes. */
493 static inline gimple_seq
494 phi_nodes (const_basic_block bb)
495 {
496 gcc_assert (!(bb->flags & BB_RTL));
497 if (!bb->il.gimple)
498 return NULL;
499 return bb->il.gimple->phi_nodes;
500 }
501
502 /* Set PHI nodes of a basic block BB to SEQ. */
503
504 static inline void
505 set_phi_nodes (basic_block bb, gimple_seq seq)
506 {
507 gimple_stmt_iterator i;
508
509 gcc_assert (!(bb->flags & BB_RTL));
510 bb->il.gimple->phi_nodes = seq;
511 if (seq)
512 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
513 gimple_set_bb (gsi_stmt (i), bb);
514 }
515
516 /* Return the phi argument which contains the specified use. */
517
518 static inline int
519 phi_arg_index_from_use (use_operand_p use)
520 {
521 struct phi_arg_d *element, *root;
522 size_t index;
523 gimple phi;
524
525 /* Since the use is the first thing in a PHI argument element, we can
526 calculate its index based on casting it to an argument, and performing
527 pointer arithmetic. */
528
529 phi = USE_STMT (use);
530 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
531
532 element = (struct phi_arg_d *)use;
533 root = gimple_phi_arg (phi, 0);
534 index = element - root;
535
536 #ifdef ENABLE_CHECKING
537 /* Make sure the calculation doesn't have any leftover bytes. If it does,
538 then imm_use is likely not the first element in phi_arg_d. */
539 gcc_assert (
540 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
541 gcc_assert (index < gimple_phi_capacity (phi));
542 #endif
543
544 return index;
545 }
546
547 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
548
549 static inline void
550 set_is_used (tree var)
551 {
552 var_ann_t ann = get_var_ann (var);
553 ann->used = 1;
554 }
555
556
557 /* Return true if T (assumed to be a DECL) is a global variable.
558 A variable is considered global if its storage is not automatic. */
559
560 static inline bool
561 is_global_var (const_tree t)
562 {
563 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
564 }
565
566
567 /* Return true if VAR may be aliased. A variable is considered as
568 maybe aliased if it has its address taken by the local TU
569 or possibly by another TU. */
570
571 static inline bool
572 may_be_aliased (const_tree var)
573 {
574 return (TREE_PUBLIC (var) || DECL_EXTERNAL (var) || TREE_ADDRESSABLE (var));
575 }
576
577
578 /* PHI nodes should contain only ssa_names and invariants. A test
579 for ssa_name is definitely simpler; don't let invalid contents
580 slip in in the meantime. */
581
582 static inline bool
583 phi_ssa_name_p (const_tree t)
584 {
585 if (TREE_CODE (t) == SSA_NAME)
586 return true;
587 #ifdef ENABLE_CHECKING
588 gcc_assert (is_gimple_min_invariant (t));
589 #endif
590 return false;
591 }
592
593
594 /* Returns the loop of the statement STMT. */
595
596 static inline struct loop *
597 loop_containing_stmt (gimple stmt)
598 {
599 basic_block bb = gimple_bb (stmt);
600 if (!bb)
601 return NULL;
602
603 return bb->loop_father;
604 }
605
606
607 /* Return true if VAR is clobbered by function calls. */
608 static inline bool
609 is_call_clobbered (const_tree var)
610 {
611 return (is_global_var (var)
612 || (may_be_aliased (var)
613 && pt_solution_includes (&cfun->gimple_df->escaped, var)));
614 }
615
616 /* Return true if VAR is used by function calls. */
617 static inline bool
618 is_call_used (const_tree var)
619 {
620 return (is_call_clobbered (var)
621 || (may_be_aliased (var)
622 && pt_solution_includes (&cfun->gimple_df->callused, var)));
623 }
624
625 /* Return the common annotation for T. Return NULL if the annotation
626 doesn't already exist. */
627 static inline tree_ann_common_t
628 tree_common_ann (const_tree t)
629 {
630 /* Watch out static variables with unshared annotations. */
631 if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
632 return &var_ann (t)->common;
633 return &t->base.ann->common;
634 }
635
636 /* Return a common annotation for T. Create the constant annotation if it
637 doesn't exist. */
638 static inline tree_ann_common_t
639 get_tree_common_ann (tree t)
640 {
641 tree_ann_common_t ann = tree_common_ann (t);
642 return (ann) ? ann : create_tree_common_ann (t);
643 }
644
645 /* ----------------------------------------------------------------------- */
646
647 /* The following set of routines are used to iterator over various type of
648 SSA operands. */
649
650 /* Return true if PTR is finished iterating. */
651 static inline bool
652 op_iter_done (const ssa_op_iter *ptr)
653 {
654 return ptr->done;
655 }
656
657 /* Get the next iterator use value for PTR. */
658 static inline use_operand_p
659 op_iter_next_use (ssa_op_iter *ptr)
660 {
661 use_operand_p use_p;
662 #ifdef ENABLE_CHECKING
663 gcc_assert (ptr->iter_type == ssa_op_iter_use);
664 #endif
665 if (ptr->uses)
666 {
667 use_p = USE_OP_PTR (ptr->uses);
668 ptr->uses = ptr->uses->next;
669 return use_p;
670 }
671 if (ptr->phi_i < ptr->num_phi)
672 {
673 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
674 }
675 ptr->done = true;
676 return NULL_USE_OPERAND_P;
677 }
678
679 /* Get the next iterator def value for PTR. */
680 static inline def_operand_p
681 op_iter_next_def (ssa_op_iter *ptr)
682 {
683 def_operand_p def_p;
684 #ifdef ENABLE_CHECKING
685 gcc_assert (ptr->iter_type == ssa_op_iter_def);
686 #endif
687 if (ptr->defs)
688 {
689 def_p = DEF_OP_PTR (ptr->defs);
690 ptr->defs = ptr->defs->next;
691 return def_p;
692 }
693 ptr->done = true;
694 return NULL_DEF_OPERAND_P;
695 }
696
697 /* Get the next iterator tree value for PTR. */
698 static inline tree
699 op_iter_next_tree (ssa_op_iter *ptr)
700 {
701 tree val;
702 #ifdef ENABLE_CHECKING
703 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
704 #endif
705 if (ptr->uses)
706 {
707 val = USE_OP (ptr->uses);
708 ptr->uses = ptr->uses->next;
709 return val;
710 }
711 if (ptr->defs)
712 {
713 val = DEF_OP (ptr->defs);
714 ptr->defs = ptr->defs->next;
715 return val;
716 }
717
718 ptr->done = true;
719 return NULL_TREE;
720
721 }
722
723
724 /* This functions clears the iterator PTR, and marks it done. This is normally
725 used to prevent warnings in the compile about might be uninitialized
726 components. */
727
728 static inline void
729 clear_and_done_ssa_iter (ssa_op_iter *ptr)
730 {
731 ptr->defs = NULL;
732 ptr->uses = NULL;
733 ptr->iter_type = ssa_op_iter_none;
734 ptr->phi_i = 0;
735 ptr->num_phi = 0;
736 ptr->phi_stmt = NULL;
737 ptr->done = true;
738 }
739
740 /* Initialize the iterator PTR to the virtual defs in STMT. */
741 static inline void
742 op_iter_init (ssa_op_iter *ptr, gimple stmt, int flags)
743 {
744 /* We do not support iterating over virtual defs or uses without
745 iterating over defs or uses at the same time. */
746 gcc_assert ((!(flags & SSA_OP_VDEF) || (flags & SSA_OP_DEF))
747 && (!(flags & SSA_OP_VUSE) || (flags & SSA_OP_USE)));
748 ptr->defs = (flags & (SSA_OP_DEF|SSA_OP_VDEF)) ? gimple_def_ops (stmt) : NULL;
749 if (!(flags & SSA_OP_VDEF)
750 && ptr->defs
751 && gimple_vdef (stmt) != NULL_TREE)
752 ptr->defs = ptr->defs->next;
753 ptr->uses = (flags & (SSA_OP_USE|SSA_OP_VUSE)) ? gimple_use_ops (stmt) : NULL;
754 if (!(flags & SSA_OP_VUSE)
755 && ptr->uses
756 && gimple_vuse (stmt) != NULL_TREE)
757 ptr->uses = ptr->uses->next;
758 ptr->done = false;
759
760 ptr->phi_i = 0;
761 ptr->num_phi = 0;
762 ptr->phi_stmt = NULL;
763 }
764
765 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
766 the first use. */
767 static inline use_operand_p
768 op_iter_init_use (ssa_op_iter *ptr, gimple stmt, int flags)
769 {
770 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0
771 && (flags & SSA_OP_USE));
772 op_iter_init (ptr, stmt, flags);
773 ptr->iter_type = ssa_op_iter_use;
774 return op_iter_next_use (ptr);
775 }
776
777 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
778 the first def. */
779 static inline def_operand_p
780 op_iter_init_def (ssa_op_iter *ptr, gimple stmt, int flags)
781 {
782 gcc_assert ((flags & SSA_OP_ALL_USES) == 0
783 && (flags & SSA_OP_DEF));
784 op_iter_init (ptr, stmt, flags);
785 ptr->iter_type = ssa_op_iter_def;
786 return op_iter_next_def (ptr);
787 }
788
789 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
790 the first operand as a tree. */
791 static inline tree
792 op_iter_init_tree (ssa_op_iter *ptr, gimple stmt, int flags)
793 {
794 op_iter_init (ptr, stmt, flags);
795 ptr->iter_type = ssa_op_iter_tree;
796 return op_iter_next_tree (ptr);
797 }
798
799
800 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
801 return NULL. */
802 static inline tree
803 single_ssa_tree_operand (gimple stmt, int flags)
804 {
805 tree var;
806 ssa_op_iter iter;
807
808 var = op_iter_init_tree (&iter, stmt, flags);
809 if (op_iter_done (&iter))
810 return NULL_TREE;
811 op_iter_next_tree (&iter);
812 if (op_iter_done (&iter))
813 return var;
814 return NULL_TREE;
815 }
816
817
818 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
819 return NULL. */
820 static inline use_operand_p
821 single_ssa_use_operand (gimple stmt, int flags)
822 {
823 use_operand_p var;
824 ssa_op_iter iter;
825
826 var = op_iter_init_use (&iter, stmt, flags);
827 if (op_iter_done (&iter))
828 return NULL_USE_OPERAND_P;
829 op_iter_next_use (&iter);
830 if (op_iter_done (&iter))
831 return var;
832 return NULL_USE_OPERAND_P;
833 }
834
835
836
837 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
838 return NULL. */
839 static inline def_operand_p
840 single_ssa_def_operand (gimple stmt, int flags)
841 {
842 def_operand_p var;
843 ssa_op_iter iter;
844
845 var = op_iter_init_def (&iter, stmt, flags);
846 if (op_iter_done (&iter))
847 return NULL_DEF_OPERAND_P;
848 op_iter_next_def (&iter);
849 if (op_iter_done (&iter))
850 return var;
851 return NULL_DEF_OPERAND_P;
852 }
853
854
855 /* Return true if there are zero operands in STMT matching the type
856 given in FLAGS. */
857 static inline bool
858 zero_ssa_operands (gimple stmt, int flags)
859 {
860 ssa_op_iter iter;
861
862 op_iter_init_tree (&iter, stmt, flags);
863 return op_iter_done (&iter);
864 }
865
866
867 /* Return the number of operands matching FLAGS in STMT. */
868 static inline int
869 num_ssa_operands (gimple stmt, int flags)
870 {
871 ssa_op_iter iter;
872 tree t;
873 int num = 0;
874
875 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
876 num++;
877 return num;
878 }
879
880
881 /* Delink all immediate_use information for STMT. */
882 static inline void
883 delink_stmt_imm_use (gimple stmt)
884 {
885 ssa_op_iter iter;
886 use_operand_p use_p;
887
888 if (ssa_operands_active ())
889 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
890 delink_imm_use (use_p);
891 }
892
893
894 /* If there is a single DEF in the PHI node which matches FLAG, return it.
895 Otherwise return NULL_DEF_OPERAND_P. */
896 static inline tree
897 single_phi_def (gimple stmt, int flags)
898 {
899 tree def = PHI_RESULT (stmt);
900 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
901 return def;
902 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
903 return def;
904 return NULL_TREE;
905 }
906
907 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
908 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
909 static inline use_operand_p
910 op_iter_init_phiuse (ssa_op_iter *ptr, gimple phi, int flags)
911 {
912 tree phi_def = gimple_phi_result (phi);
913 int comp;
914
915 clear_and_done_ssa_iter (ptr);
916 ptr->done = false;
917
918 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
919
920 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
921
922 /* If the PHI node doesn't the operand type we care about, we're done. */
923 if ((flags & comp) == 0)
924 {
925 ptr->done = true;
926 return NULL_USE_OPERAND_P;
927 }
928
929 ptr->phi_stmt = phi;
930 ptr->num_phi = gimple_phi_num_args (phi);
931 ptr->iter_type = ssa_op_iter_use;
932 return op_iter_next_use (ptr);
933 }
934
935
936 /* Start an iterator for a PHI definition. */
937
938 static inline def_operand_p
939 op_iter_init_phidef (ssa_op_iter *ptr, gimple phi, int flags)
940 {
941 tree phi_def = PHI_RESULT (phi);
942 int comp;
943
944 clear_and_done_ssa_iter (ptr);
945 ptr->done = false;
946
947 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
948
949 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
950
951 /* If the PHI node doesn't have the operand type we care about,
952 we're done. */
953 if ((flags & comp) == 0)
954 {
955 ptr->done = true;
956 return NULL_DEF_OPERAND_P;
957 }
958
959 ptr->iter_type = ssa_op_iter_def;
960 /* The first call to op_iter_next_def will terminate the iterator since
961 all the fields are NULL. Simply return the result here as the first and
962 therefore only result. */
963 return PHI_RESULT_PTR (phi);
964 }
965
966 /* Return true is IMM has reached the end of the immediate use stmt list. */
967
968 static inline bool
969 end_imm_use_stmt_p (const imm_use_iterator *imm)
970 {
971 return (imm->imm_use == imm->end_p);
972 }
973
974 /* Finished the traverse of an immediate use stmt list IMM by removing the
975 placeholder node from the list. */
976
977 static inline void
978 end_imm_use_stmt_traverse (imm_use_iterator *imm)
979 {
980 delink_imm_use (&(imm->iter_node));
981 }
982
983 /* Immediate use traversal of uses within a stmt require that all the
984 uses on a stmt be sequentially listed. This routine is used to build up
985 this sequential list by adding USE_P to the end of the current list
986 currently delimited by HEAD and LAST_P. The new LAST_P value is
987 returned. */
988
989 static inline use_operand_p
990 move_use_after_head (use_operand_p use_p, use_operand_p head,
991 use_operand_p last_p)
992 {
993 gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
994 /* Skip head when we find it. */
995 if (use_p != head)
996 {
997 /* If use_p is already linked in after last_p, continue. */
998 if (last_p->next == use_p)
999 last_p = use_p;
1000 else
1001 {
1002 /* Delink from current location, and link in at last_p. */
1003 delink_imm_use (use_p);
1004 link_imm_use_to_list (use_p, last_p);
1005 last_p = use_p;
1006 }
1007 }
1008 return last_p;
1009 }
1010
1011
1012 /* This routine will relink all uses with the same stmt as HEAD into the list
1013 immediately following HEAD for iterator IMM. */
1014
1015 static inline void
1016 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1017 {
1018 use_operand_p use_p;
1019 use_operand_p last_p = head;
1020 gimple head_stmt = USE_STMT (head);
1021 tree use = USE_FROM_PTR (head);
1022 ssa_op_iter op_iter;
1023 int flag;
1024
1025 /* Only look at virtual or real uses, depending on the type of HEAD. */
1026 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1027
1028 if (gimple_code (head_stmt) == GIMPLE_PHI)
1029 {
1030 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1031 if (USE_FROM_PTR (use_p) == use)
1032 last_p = move_use_after_head (use_p, head, last_p);
1033 }
1034 else
1035 {
1036 if (flag == SSA_OP_USE)
1037 {
1038 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1039 if (USE_FROM_PTR (use_p) == use)
1040 last_p = move_use_after_head (use_p, head, last_p);
1041 }
1042 else if ((use_p = gimple_vuse_op (head_stmt)) != NULL_USE_OPERAND_P)
1043 {
1044 if (USE_FROM_PTR (use_p) == use)
1045 last_p = move_use_after_head (use_p, head, last_p);
1046 }
1047 }
1048 /* Link iter node in after last_p. */
1049 if (imm->iter_node.prev != NULL)
1050 delink_imm_use (&imm->iter_node);
1051 link_imm_use_to_list (&(imm->iter_node), last_p);
1052 }
1053
1054 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1055 static inline gimple
1056 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1057 {
1058 gcc_assert (TREE_CODE (var) == SSA_NAME);
1059
1060 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1061 imm->imm_use = imm->end_p->next;
1062 imm->next_imm_name = NULL_USE_OPERAND_P;
1063
1064 /* iter_node is used as a marker within the immediate use list to indicate
1065 where the end of the current stmt's uses are. Initialize it to NULL
1066 stmt and use, which indicates a marker node. */
1067 imm->iter_node.prev = NULL_USE_OPERAND_P;
1068 imm->iter_node.next = NULL_USE_OPERAND_P;
1069 imm->iter_node.loc.stmt = NULL;
1070 imm->iter_node.use = NULL;
1071
1072 if (end_imm_use_stmt_p (imm))
1073 return NULL;
1074
1075 link_use_stmts_after (imm->imm_use, imm);
1076
1077 return USE_STMT (imm->imm_use);
1078 }
1079
1080 /* Bump IMM to the next stmt which has a use of var. */
1081
1082 static inline gimple
1083 next_imm_use_stmt (imm_use_iterator *imm)
1084 {
1085 imm->imm_use = imm->iter_node.next;
1086 if (end_imm_use_stmt_p (imm))
1087 {
1088 if (imm->iter_node.prev != NULL)
1089 delink_imm_use (&imm->iter_node);
1090 return NULL;
1091 }
1092
1093 link_use_stmts_after (imm->imm_use, imm);
1094 return USE_STMT (imm->imm_use);
1095 }
1096
1097 /* This routine will return the first use on the stmt IMM currently refers
1098 to. */
1099
1100 static inline use_operand_p
1101 first_imm_use_on_stmt (imm_use_iterator *imm)
1102 {
1103 imm->next_imm_name = imm->imm_use->next;
1104 return imm->imm_use;
1105 }
1106
1107 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1108
1109 static inline bool
1110 end_imm_use_on_stmt_p (const imm_use_iterator *imm)
1111 {
1112 return (imm->imm_use == &(imm->iter_node));
1113 }
1114
1115 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1116
1117 static inline use_operand_p
1118 next_imm_use_on_stmt (imm_use_iterator *imm)
1119 {
1120 imm->imm_use = imm->next_imm_name;
1121 if (end_imm_use_on_stmt_p (imm))
1122 return NULL_USE_OPERAND_P;
1123 else
1124 {
1125 imm->next_imm_name = imm->imm_use->next;
1126 return imm->imm_use;
1127 }
1128 }
1129
1130 /* Return true if VAR cannot be modified by the program. */
1131
1132 static inline bool
1133 unmodifiable_var_p (const_tree var)
1134 {
1135 if (TREE_CODE (var) == SSA_NAME)
1136 var = SSA_NAME_VAR (var);
1137
1138 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1139 }
1140
1141 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1142
1143 static inline bool
1144 array_ref_contains_indirect_ref (const_tree ref)
1145 {
1146 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1147
1148 do {
1149 ref = TREE_OPERAND (ref, 0);
1150 } while (handled_component_p (ref));
1151
1152 return TREE_CODE (ref) == INDIRECT_REF;
1153 }
1154
1155 /* Return true if REF, a handled component reference, has an ARRAY_REF
1156 somewhere in it. */
1157
1158 static inline bool
1159 ref_contains_array_ref (const_tree ref)
1160 {
1161 gcc_assert (handled_component_p (ref));
1162
1163 do {
1164 if (TREE_CODE (ref) == ARRAY_REF)
1165 return true;
1166 ref = TREE_OPERAND (ref, 0);
1167 } while (handled_component_p (ref));
1168
1169 return false;
1170 }
1171
1172 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1173
1174 static inline bool
1175 contains_view_convert_expr_p (const_tree ref)
1176 {
1177 while (handled_component_p (ref))
1178 {
1179 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1180 return true;
1181 ref = TREE_OPERAND (ref, 0);
1182 }
1183
1184 return false;
1185 }
1186
1187 /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
1188 overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
1189 range is open-ended. Otherwise return false. */
1190
1191 static inline bool
1192 ranges_overlap_p (unsigned HOST_WIDE_INT pos1,
1193 unsigned HOST_WIDE_INT size1,
1194 unsigned HOST_WIDE_INT pos2,
1195 unsigned HOST_WIDE_INT size2)
1196 {
1197 if (pos1 >= pos2
1198 && (size2 == (unsigned HOST_WIDE_INT)-1
1199 || pos1 < (pos2 + size2)))
1200 return true;
1201 if (pos2 >= pos1
1202 && (size1 == (unsigned HOST_WIDE_INT)-1
1203 || pos2 < (pos1 + size1)))
1204 return true;
1205
1206 return false;
1207 }
1208
1209 /* Accessor to tree-ssa-operands.c caches. */
1210 static inline struct ssa_operands *
1211 gimple_ssa_operands (const struct function *fun)
1212 {
1213 return &fun->gimple_df->ssa_operands;
1214 }
1215
1216 /* Given an edge_var_map V, return the PHI arg definition. */
1217
1218 static inline tree
1219 redirect_edge_var_map_def (edge_var_map *v)
1220 {
1221 return v->def;
1222 }
1223
1224 /* Given an edge_var_map V, return the PHI result. */
1225
1226 static inline tree
1227 redirect_edge_var_map_result (edge_var_map *v)
1228 {
1229 return v->result;
1230 }
1231
1232 /* Given an edge_var_map V, return the PHI arg location. */
1233
1234 static inline source_location
1235 redirect_edge_var_map_location (edge_var_map *v)
1236 {
1237 return v->locus;
1238 }
1239
1240
1241 /* Return an SSA_NAME node for variable VAR defined in statement STMT
1242 in function cfun. */
1243
1244 static inline tree
1245 make_ssa_name (tree var, gimple stmt)
1246 {
1247 return make_ssa_name_fn (cfun, var, stmt);
1248 }
1249
1250 #endif /* _TREE_FLOW_INLINE_H */