Daily bump.
[gcc.git] / gcc / tree-flow-inline.h
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
24
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
27
28 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
29
30 static inline void *
31 first_htab_element (htab_iterator *hti, htab_t table)
32 {
33 hti->htab = table;
34 hti->slot = table->entries;
35 hti->limit = hti->slot + htab_size (table);
36 do
37 {
38 PTR x = *(hti->slot);
39 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
40 break;
41 } while (++(hti->slot) < hti->limit);
42
43 if (hti->slot < hti->limit)
44 return *(hti->slot);
45 return NULL;
46 }
47
48 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
49 or NULL if we have reached the end. */
50
51 static inline bool
52 end_htab_p (htab_iterator *hti)
53 {
54 if (hti->slot >= hti->limit)
55 return true;
56 return false;
57 }
58
59 /* Advance the hashtable iterator pointed to by HTI to the next element of the
60 hashtable. */
61
62 static inline void *
63 next_htab_element (htab_iterator *hti)
64 {
65 while (++(hti->slot) < hti->limit)
66 {
67 PTR x = *(hti->slot);
68 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
69 return x;
70 };
71 return NULL;
72 }
73
74 /* Initialize ITER to point to the first referenced variable in the
75 referenced_vars hashtable, and return that variable. */
76
77 static inline tree
78 first_referenced_var (referenced_var_iterator *iter)
79 {
80 struct int_tree_map *itm;
81 itm = (struct int_tree_map *) first_htab_element (&iter->hti,
82 referenced_vars);
83 if (!itm)
84 return NULL;
85 return itm->to;
86 }
87
88 /* Return true if we have hit the end of the referenced variables ITER is
89 iterating through. */
90
91 static inline bool
92 end_referenced_vars_p (referenced_var_iterator *iter)
93 {
94 return end_htab_p (&iter->hti);
95 }
96
97 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
98 and return that variable. */
99
100 static inline tree
101 next_referenced_var (referenced_var_iterator *iter)
102 {
103 struct int_tree_map *itm;
104 itm = (struct int_tree_map *) next_htab_element (&iter->hti);
105 if (!itm)
106 return NULL;
107 return itm->to;
108 }
109
110 /* Fill up VEC with the variables in the referenced vars hashtable. */
111
112 static inline void
113 fill_referenced_var_vec (VEC (tree, heap) **vec)
114 {
115 referenced_var_iterator rvi;
116 tree var;
117 *vec = NULL;
118 FOR_EACH_REFERENCED_VAR (var, rvi)
119 VEC_safe_push (tree, heap, *vec, var);
120 }
121
122 /* Return the variable annotation for T, which must be a _DECL node.
123 Return NULL if the variable annotation doesn't already exist. */
124 static inline var_ann_t
125 var_ann (tree t)
126 {
127 gcc_assert (t);
128 gcc_assert (DECL_P (t));
129 gcc_assert (TREE_CODE (t) != FUNCTION_DECL);
130 gcc_assert (!t->common.ann || t->common.ann->common.type == VAR_ANN);
131
132 return (var_ann_t) t->common.ann;
133 }
134
135 /* Return the variable annotation for T, which must be a _DECL node.
136 Create the variable annotation if it doesn't exist. */
137 static inline var_ann_t
138 get_var_ann (tree var)
139 {
140 var_ann_t ann = var_ann (var);
141 return (ann) ? ann : create_var_ann (var);
142 }
143
144 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
145 Return NULL if the function annotation doesn't already exist. */
146 static inline function_ann_t
147 function_ann (tree t)
148 {
149 gcc_assert (t);
150 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
151 gcc_assert (!t->common.ann || t->common.ann->common.type == FUNCTION_ANN);
152
153 return (function_ann_t) t->common.ann;
154 }
155
156 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
157 Create the function annotation if it doesn't exist. */
158 static inline function_ann_t
159 get_function_ann (tree var)
160 {
161 function_ann_t ann = function_ann (var);
162 return (ann) ? ann : create_function_ann (var);
163 }
164
165 /* Return the statement annotation for T, which must be a statement
166 node. Return NULL if the statement annotation doesn't exist. */
167 static inline stmt_ann_t
168 stmt_ann (tree t)
169 {
170 #ifdef ENABLE_CHECKING
171 gcc_assert (is_gimple_stmt (t));
172 #endif
173 return (stmt_ann_t) t->common.ann;
174 }
175
176 /* Return the statement annotation for T, which must be a statement
177 node. Create the statement annotation if it doesn't exist. */
178 static inline stmt_ann_t
179 get_stmt_ann (tree stmt)
180 {
181 stmt_ann_t ann = stmt_ann (stmt);
182 return (ann) ? ann : create_stmt_ann (stmt);
183 }
184
185 /* Return the annotation type for annotation ANN. */
186 static inline enum tree_ann_type
187 ann_type (tree_ann_t ann)
188 {
189 return ann->common.type;
190 }
191
192 /* Return the basic block for statement T. */
193 static inline basic_block
194 bb_for_stmt (tree t)
195 {
196 stmt_ann_t ann;
197
198 if (TREE_CODE (t) == PHI_NODE)
199 return PHI_BB (t);
200
201 ann = stmt_ann (t);
202 return ann ? ann->bb : NULL;
203 }
204
205 /* Return the may_aliases varray for variable VAR, or NULL if it has
206 no may aliases. */
207 static inline VEC(tree, gc) *
208 may_aliases (tree var)
209 {
210 var_ann_t ann = var_ann (var);
211 return ann ? ann->may_aliases : NULL;
212 }
213
214 /* Return the line number for EXPR, or return -1 if we have no line
215 number information for it. */
216 static inline int
217 get_lineno (tree expr)
218 {
219 if (expr == NULL_TREE)
220 return -1;
221
222 if (TREE_CODE (expr) == COMPOUND_EXPR)
223 expr = TREE_OPERAND (expr, 0);
224
225 if (! EXPR_HAS_LOCATION (expr))
226 return -1;
227
228 return EXPR_LINENO (expr);
229 }
230
231 /* Return the file name for EXPR, or return "???" if we have no
232 filename information. */
233 static inline const char *
234 get_filename (tree expr)
235 {
236 const char *filename;
237 if (expr == NULL_TREE)
238 return "???";
239
240 if (TREE_CODE (expr) == COMPOUND_EXPR)
241 expr = TREE_OPERAND (expr, 0);
242
243 if (EXPR_HAS_LOCATION (expr) && (filename = EXPR_FILENAME (expr)))
244 return filename;
245 else
246 return "???";
247 }
248
249 /* Return true if T is a noreturn call. */
250 static inline bool
251 noreturn_call_p (tree t)
252 {
253 tree call = get_call_expr_in (t);
254 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
255 }
256
257 /* Mark statement T as modified. */
258 static inline void
259 mark_stmt_modified (tree t)
260 {
261 stmt_ann_t ann;
262 if (TREE_CODE (t) == PHI_NODE)
263 return;
264
265 ann = stmt_ann (t);
266 if (ann == NULL)
267 ann = create_stmt_ann (t);
268 else if (noreturn_call_p (t))
269 VEC_safe_push (tree, gc, modified_noreturn_calls, t);
270 ann->modified = 1;
271 }
272
273 /* Mark statement T as modified, and update it. */
274 static inline void
275 update_stmt (tree t)
276 {
277 if (TREE_CODE (t) == PHI_NODE)
278 return;
279 mark_stmt_modified (t);
280 update_stmt_operands (t);
281 }
282
283 static inline void
284 update_stmt_if_modified (tree t)
285 {
286 if (stmt_modified_p (t))
287 update_stmt_operands (t);
288 }
289
290 /* Return true if T is marked as modified, false otherwise. */
291 static inline bool
292 stmt_modified_p (tree t)
293 {
294 stmt_ann_t ann = stmt_ann (t);
295
296 /* Note that if the statement doesn't yet have an annotation, we consider it
297 modified. This will force the next call to update_stmt_operands to scan
298 the statement. */
299 return ann ? ann->modified : true;
300 }
301
302 /* Delink an immediate_uses node from its chain. */
303 static inline void
304 delink_imm_use (ssa_use_operand_t *linknode)
305 {
306 /* Return if this node is not in a list. */
307 if (linknode->prev == NULL)
308 return;
309
310 linknode->prev->next = linknode->next;
311 linknode->next->prev = linknode->prev;
312 linknode->prev = NULL;
313 linknode->next = NULL;
314 }
315
316 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
317 static inline void
318 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
319 {
320 /* Link the new node at the head of the list. If we are in the process of
321 traversing the list, we won't visit any new nodes added to it. */
322 linknode->prev = list;
323 linknode->next = list->next;
324 list->next->prev = linknode;
325 list->next = linknode;
326 }
327
328 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
329 static inline void
330 link_imm_use (ssa_use_operand_t *linknode, tree def)
331 {
332 ssa_use_operand_t *root;
333
334 if (!def || TREE_CODE (def) != SSA_NAME)
335 linknode->prev = NULL;
336 else
337 {
338 root = &(SSA_NAME_IMM_USE_NODE (def));
339 #ifdef ENABLE_CHECKING
340 if (linknode->use)
341 gcc_assert (*(linknode->use) == def);
342 #endif
343 link_imm_use_to_list (linknode, root);
344 }
345 }
346
347 /* Set the value of a use pointed to by USE to VAL. */
348 static inline void
349 set_ssa_use_from_ptr (use_operand_p use, tree val)
350 {
351 delink_imm_use (use);
352 *(use->use) = val;
353 link_imm_use (use, val);
354 }
355
356 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
357 in STMT. */
358 static inline void
359 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
360 {
361 if (stmt)
362 link_imm_use (linknode, def);
363 else
364 link_imm_use (linknode, NULL);
365 linknode->stmt = stmt;
366 }
367
368 /* Relink a new node in place of an old node in the list. */
369 static inline void
370 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
371 {
372 /* The node one had better be in the same list. */
373 gcc_assert (*(old->use) == *(node->use));
374 node->prev = old->prev;
375 node->next = old->next;
376 if (old->prev)
377 {
378 old->prev->next = node;
379 old->next->prev = node;
380 /* Remove the old node from the list. */
381 old->prev = NULL;
382 }
383 }
384
385 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
386 in STMT. */
387 static inline void
388 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
389 {
390 if (stmt)
391 relink_imm_use (linknode, old);
392 else
393 link_imm_use (linknode, NULL);
394 linknode->stmt = stmt;
395 }
396
397 /* Finished the traverse of an immediate use list IMM by removing it from
398 the list. */
399 static inline void
400 end_safe_imm_use_traverse (imm_use_iterator *imm)
401 {
402 delink_imm_use (&(imm->iter_node));
403 }
404
405 /* Return true if IMM is at the end of the list. */
406 static inline bool
407 end_safe_imm_use_p (imm_use_iterator *imm)
408 {
409 return (imm->imm_use == imm->end_p);
410 }
411
412 /* Initialize iterator IMM to process the list for VAR. */
413 static inline use_operand_p
414 first_safe_imm_use (imm_use_iterator *imm, tree var)
415 {
416 /* Set up and link the iterator node into the linked list for VAR. */
417 imm->iter_node.use = NULL;
418 imm->iter_node.stmt = NULL_TREE;
419 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
420 /* Check if there are 0 elements. */
421 if (imm->end_p->next == imm->end_p)
422 {
423 imm->imm_use = imm->end_p;
424 return NULL_USE_OPERAND_P;
425 }
426
427 link_imm_use (&(imm->iter_node), var);
428 imm->imm_use = imm->iter_node.next;
429 return imm->imm_use;
430 }
431
432 /* Bump IMM to the next use in the list. */
433 static inline use_operand_p
434 next_safe_imm_use (imm_use_iterator *imm)
435 {
436 ssa_use_operand_t *ptr;
437 use_operand_p old;
438
439 old = imm->imm_use;
440 /* If the next node following the iter_node is still the one referred to by
441 imm_use, then the list hasn't changed, go to the next node. */
442 if (imm->iter_node.next == imm->imm_use)
443 {
444 ptr = &(imm->iter_node);
445 /* Remove iternode from the list. */
446 delink_imm_use (ptr);
447 imm->imm_use = imm->imm_use->next;
448 if (! end_safe_imm_use_p (imm))
449 {
450 /* This isn't the end, link iternode before the next use. */
451 ptr->prev = imm->imm_use->prev;
452 ptr->next = imm->imm_use;
453 imm->imm_use->prev->next = ptr;
454 imm->imm_use->prev = ptr;
455 }
456 else
457 return old;
458 }
459 else
460 {
461 /* If the 'next' value after the iterator isn't the same as it was, then
462 a node has been deleted, so we simply proceed to the node following
463 where the iterator is in the list. */
464 imm->imm_use = imm->iter_node.next;
465 if (end_safe_imm_use_p (imm))
466 {
467 end_safe_imm_use_traverse (imm);
468 return old;
469 }
470 }
471
472 return imm->imm_use;
473 }
474
475 /* Return true is IMM has reached the end of the immediate use list. */
476 static inline bool
477 end_readonly_imm_use_p (imm_use_iterator *imm)
478 {
479 return (imm->imm_use == imm->end_p);
480 }
481
482 /* Initialize iterator IMM to process the list for VAR. */
483 static inline use_operand_p
484 first_readonly_imm_use (imm_use_iterator *imm, tree var)
485 {
486 gcc_assert (TREE_CODE (var) == SSA_NAME);
487
488 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
489 imm->imm_use = imm->end_p->next;
490 #ifdef ENABLE_CHECKING
491 imm->iter_node.next = imm->imm_use->next;
492 #endif
493 if (end_readonly_imm_use_p (imm))
494 return NULL_USE_OPERAND_P;
495 return imm->imm_use;
496 }
497
498 /* Bump IMM to the next use in the list. */
499 static inline use_operand_p
500 next_readonly_imm_use (imm_use_iterator *imm)
501 {
502 use_operand_p old = imm->imm_use;
503
504 #ifdef ENABLE_CHECKING
505 /* If this assertion fails, it indicates the 'next' pointer has changed
506 since we the last bump. This indicates that the list is being modified
507 via stmt changes, or SET_USE, or somesuch thing, and you need to be
508 using the SAFE version of the iterator. */
509 gcc_assert (imm->iter_node.next == old->next);
510 imm->iter_node.next = old->next->next;
511 #endif
512
513 imm->imm_use = old->next;
514 if (end_readonly_imm_use_p (imm))
515 return old;
516 return imm->imm_use;
517 }
518
519 /* Return true if VAR has no uses. */
520 static inline bool
521 has_zero_uses (tree var)
522 {
523 ssa_use_operand_t *ptr;
524 ptr = &(SSA_NAME_IMM_USE_NODE (var));
525 /* A single use means there is no items in the list. */
526 return (ptr == ptr->next);
527 }
528
529 /* Return true if VAR has a single use. */
530 static inline bool
531 has_single_use (tree var)
532 {
533 ssa_use_operand_t *ptr;
534 ptr = &(SSA_NAME_IMM_USE_NODE (var));
535 /* A single use means there is one item in the list. */
536 return (ptr != ptr->next && ptr == ptr->next->next);
537 }
538
539 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
540 to the use pointer and stmt of occurrence. */
541 static inline bool
542 single_imm_use (tree var, use_operand_p *use_p, tree *stmt)
543 {
544 ssa_use_operand_t *ptr;
545
546 ptr = &(SSA_NAME_IMM_USE_NODE (var));
547 if (ptr != ptr->next && ptr == ptr->next->next)
548 {
549 *use_p = ptr->next;
550 *stmt = ptr->next->stmt;
551 return true;
552 }
553 *use_p = NULL_USE_OPERAND_P;
554 *stmt = NULL_TREE;
555 return false;
556 }
557
558 /* Return the number of immediate uses of VAR. */
559 static inline unsigned int
560 num_imm_uses (tree var)
561 {
562 ssa_use_operand_t *ptr, *start;
563 unsigned int num;
564
565 start = &(SSA_NAME_IMM_USE_NODE (var));
566 num = 0;
567 for (ptr = start->next; ptr != start; ptr = ptr->next)
568 num++;
569
570 return num;
571 }
572
573
574 /* Return the tree pointer to by USE. */
575 static inline tree
576 get_use_from_ptr (use_operand_p use)
577 {
578 return *(use->use);
579 }
580
581 /* Return the tree pointer to by DEF. */
582 static inline tree
583 get_def_from_ptr (def_operand_p def)
584 {
585 return *def;
586 }
587
588 /* Return a def_operand_p pointer for the result of PHI. */
589 static inline def_operand_p
590 get_phi_result_ptr (tree phi)
591 {
592 return &(PHI_RESULT_TREE (phi));
593 }
594
595 /* Return a use_operand_p pointer for argument I of phinode PHI. */
596 static inline use_operand_p
597 get_phi_arg_def_ptr (tree phi, int i)
598 {
599 return &(PHI_ARG_IMM_USE_NODE (phi,i));
600 }
601
602
603 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
604 no addresses. */
605 static inline bitmap
606 addresses_taken (tree stmt)
607 {
608 stmt_ann_t ann = stmt_ann (stmt);
609 return ann ? ann->addresses_taken : NULL;
610 }
611
612 /* Return the PHI nodes for basic block BB, or NULL if there are no
613 PHI nodes. */
614 static inline tree
615 phi_nodes (basic_block bb)
616 {
617 return bb->phi_nodes;
618 }
619
620 /* Set list of phi nodes of a basic block BB to L. */
621
622 static inline void
623 set_phi_nodes (basic_block bb, tree l)
624 {
625 tree phi;
626
627 bb->phi_nodes = l;
628 for (phi = l; phi; phi = PHI_CHAIN (phi))
629 set_bb_for_stmt (phi, bb);
630 }
631
632 /* Return the phi argument which contains the specified use. */
633
634 static inline int
635 phi_arg_index_from_use (use_operand_p use)
636 {
637 struct phi_arg_d *element, *root;
638 int index;
639 tree phi;
640
641 /* Since the use is the first thing in a PHI argument element, we can
642 calculate its index based on casting it to an argument, and performing
643 pointer arithmetic. */
644
645 phi = USE_STMT (use);
646 gcc_assert (TREE_CODE (phi) == PHI_NODE);
647
648 element = (struct phi_arg_d *)use;
649 root = &(PHI_ARG_ELT (phi, 0));
650 index = element - root;
651
652 #ifdef ENABLE_CHECKING
653 /* Make sure the calculation doesn't have any leftover bytes. If it does,
654 then imm_use is likely not the first element in phi_arg_d. */
655 gcc_assert (
656 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
657 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
658 #endif
659
660 return index;
661 }
662
663 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
664
665 static inline void
666 set_is_used (tree var)
667 {
668 var_ann_t ann = get_var_ann (var);
669 ann->used = 1;
670 }
671
672
673 /* ----------------------------------------------------------------------- */
674
675 /* Return true if T is an executable statement. */
676 static inline bool
677 is_exec_stmt (tree t)
678 {
679 return (t && !IS_EMPTY_STMT (t) && t != error_mark_node);
680 }
681
682
683 /* Return true if this stmt can be the target of a control transfer stmt such
684 as a goto. */
685 static inline bool
686 is_label_stmt (tree t)
687 {
688 if (t)
689 switch (TREE_CODE (t))
690 {
691 case LABEL_DECL:
692 case LABEL_EXPR:
693 case CASE_LABEL_EXPR:
694 return true;
695 default:
696 return false;
697 }
698 return false;
699 }
700
701 /* PHI nodes should contain only ssa_names and invariants. A test
702 for ssa_name is definitely simpler; don't let invalid contents
703 slip in in the meantime. */
704
705 static inline bool
706 phi_ssa_name_p (tree t)
707 {
708 if (TREE_CODE (t) == SSA_NAME)
709 return true;
710 #ifdef ENABLE_CHECKING
711 gcc_assert (is_gimple_min_invariant (t));
712 #endif
713 return false;
714 }
715
716 /* ----------------------------------------------------------------------- */
717
718 /* Return a block_stmt_iterator that points to beginning of basic
719 block BB. */
720 static inline block_stmt_iterator
721 bsi_start (basic_block bb)
722 {
723 block_stmt_iterator bsi;
724 if (bb->stmt_list)
725 bsi.tsi = tsi_start (bb->stmt_list);
726 else
727 {
728 gcc_assert (bb->index < NUM_FIXED_BLOCKS);
729 bsi.tsi.ptr = NULL;
730 bsi.tsi.container = NULL;
731 }
732 bsi.bb = bb;
733 return bsi;
734 }
735
736 /* Return a block statement iterator that points to the first non-label
737 statement in block BB. */
738
739 static inline block_stmt_iterator
740 bsi_after_labels (basic_block bb)
741 {
742 block_stmt_iterator bsi = bsi_start (bb);
743
744 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
745 bsi_next (&bsi);
746
747 return bsi;
748 }
749
750 /* Return a block statement iterator that points to the end of basic
751 block BB. */
752 static inline block_stmt_iterator
753 bsi_last (basic_block bb)
754 {
755 block_stmt_iterator bsi;
756 if (bb->stmt_list)
757 bsi.tsi = tsi_last (bb->stmt_list);
758 else
759 {
760 gcc_assert (bb->index < NUM_FIXED_BLOCKS);
761 bsi.tsi.ptr = NULL;
762 bsi.tsi.container = NULL;
763 }
764 bsi.bb = bb;
765 return bsi;
766 }
767
768 /* Return true if block statement iterator I has reached the end of
769 the basic block. */
770 static inline bool
771 bsi_end_p (block_stmt_iterator i)
772 {
773 return tsi_end_p (i.tsi);
774 }
775
776 /* Modify block statement iterator I so that it is at the next
777 statement in the basic block. */
778 static inline void
779 bsi_next (block_stmt_iterator *i)
780 {
781 tsi_next (&i->tsi);
782 }
783
784 /* Modify block statement iterator I so that it is at the previous
785 statement in the basic block. */
786 static inline void
787 bsi_prev (block_stmt_iterator *i)
788 {
789 tsi_prev (&i->tsi);
790 }
791
792 /* Return the statement that block statement iterator I is currently
793 at. */
794 static inline tree
795 bsi_stmt (block_stmt_iterator i)
796 {
797 return tsi_stmt (i.tsi);
798 }
799
800 /* Return a pointer to the statement that block statement iterator I
801 is currently at. */
802 static inline tree *
803 bsi_stmt_ptr (block_stmt_iterator i)
804 {
805 return tsi_stmt_ptr (i.tsi);
806 }
807
808 /* Returns the loop of the statement STMT. */
809
810 static inline struct loop *
811 loop_containing_stmt (tree stmt)
812 {
813 basic_block bb = bb_for_stmt (stmt);
814 if (!bb)
815 return NULL;
816
817 return bb->loop_father;
818 }
819
820 /* Return true if VAR is a clobbered by function calls. */
821 static inline bool
822 is_call_clobbered (tree var)
823 {
824 if (!MTAG_P (var))
825 return DECL_CALL_CLOBBERED (var);
826 else
827 return bitmap_bit_p (call_clobbered_vars, DECL_UID (var));
828 }
829
830 /* Mark variable VAR as being clobbered by function calls. */
831 static inline void
832 mark_call_clobbered (tree var, unsigned int escape_type)
833 {
834 var_ann (var)->escape_mask |= escape_type;
835 if (!MTAG_P (var))
836 DECL_CALL_CLOBBERED (var) = true;
837 bitmap_set_bit (call_clobbered_vars, DECL_UID (var));
838 }
839
840 /* Clear the call-clobbered attribute from variable VAR. */
841 static inline void
842 clear_call_clobbered (tree var)
843 {
844 var_ann_t ann = var_ann (var);
845 ann->escape_mask = 0;
846 if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
847 MTAG_GLOBAL (var) = 0;
848 if (!MTAG_P (var))
849 DECL_CALL_CLOBBERED (var) = false;
850 bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
851 }
852
853 /* Mark variable VAR as being non-addressable. */
854 static inline void
855 mark_non_addressable (tree var)
856 {
857 if (!MTAG_P (var))
858 DECL_CALL_CLOBBERED (var) = false;
859 bitmap_clear_bit (call_clobbered_vars, DECL_UID (var));
860 TREE_ADDRESSABLE (var) = 0;
861 }
862
863 /* Return the common annotation for T. Return NULL if the annotation
864 doesn't already exist. */
865 static inline tree_ann_t
866 tree_ann (tree t)
867 {
868 return t->common.ann;
869 }
870
871 /* Return a common annotation for T. Create the constant annotation if it
872 doesn't exist. */
873 static inline tree_ann_t
874 get_tree_ann (tree t)
875 {
876 tree_ann_t ann = tree_ann (t);
877 return (ann) ? ann : create_tree_ann (t);
878 }
879
880 /* ----------------------------------------------------------------------- */
881
882 /* The following set of routines are used to iterator over various type of
883 SSA operands. */
884
885 /* Return true if PTR is finished iterating. */
886 static inline bool
887 op_iter_done (ssa_op_iter *ptr)
888 {
889 return ptr->done;
890 }
891
892 /* Get the next iterator use value for PTR. */
893 static inline use_operand_p
894 op_iter_next_use (ssa_op_iter *ptr)
895 {
896 use_operand_p use_p;
897 #ifdef ENABLE_CHECKING
898 gcc_assert (ptr->iter_type == ssa_op_iter_use);
899 #endif
900 if (ptr->uses)
901 {
902 use_p = USE_OP_PTR (ptr->uses);
903 ptr->uses = ptr->uses->next;
904 return use_p;
905 }
906 if (ptr->vuses)
907 {
908 use_p = VUSE_OP_PTR (ptr->vuses);
909 ptr->vuses = ptr->vuses->next;
910 return use_p;
911 }
912 if (ptr->mayuses)
913 {
914 use_p = MAYDEF_OP_PTR (ptr->mayuses);
915 ptr->mayuses = ptr->mayuses->next;
916 return use_p;
917 }
918 if (ptr->mustkills)
919 {
920 use_p = MUSTDEF_KILL_PTR (ptr->mustkills);
921 ptr->mustkills = ptr->mustkills->next;
922 return use_p;
923 }
924 if (ptr->phi_i < ptr->num_phi)
925 {
926 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
927 }
928 ptr->done = true;
929 return NULL_USE_OPERAND_P;
930 }
931
932 /* Get the next iterator def value for PTR. */
933 static inline def_operand_p
934 op_iter_next_def (ssa_op_iter *ptr)
935 {
936 def_operand_p def_p;
937 #ifdef ENABLE_CHECKING
938 gcc_assert (ptr->iter_type == ssa_op_iter_def);
939 #endif
940 if (ptr->defs)
941 {
942 def_p = DEF_OP_PTR (ptr->defs);
943 ptr->defs = ptr->defs->next;
944 return def_p;
945 }
946 if (ptr->mustdefs)
947 {
948 def_p = MUSTDEF_RESULT_PTR (ptr->mustdefs);
949 ptr->mustdefs = ptr->mustdefs->next;
950 return def_p;
951 }
952 if (ptr->maydefs)
953 {
954 def_p = MAYDEF_RESULT_PTR (ptr->maydefs);
955 ptr->maydefs = ptr->maydefs->next;
956 return def_p;
957 }
958 ptr->done = true;
959 return NULL_DEF_OPERAND_P;
960 }
961
962 /* Get the next iterator tree value for PTR. */
963 static inline tree
964 op_iter_next_tree (ssa_op_iter *ptr)
965 {
966 tree val;
967 #ifdef ENABLE_CHECKING
968 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
969 #endif
970 if (ptr->uses)
971 {
972 val = USE_OP (ptr->uses);
973 ptr->uses = ptr->uses->next;
974 return val;
975 }
976 if (ptr->vuses)
977 {
978 val = VUSE_OP (ptr->vuses);
979 ptr->vuses = ptr->vuses->next;
980 return val;
981 }
982 if (ptr->mayuses)
983 {
984 val = MAYDEF_OP (ptr->mayuses);
985 ptr->mayuses = ptr->mayuses->next;
986 return val;
987 }
988 if (ptr->mustkills)
989 {
990 val = MUSTDEF_KILL (ptr->mustkills);
991 ptr->mustkills = ptr->mustkills->next;
992 return val;
993 }
994 if (ptr->defs)
995 {
996 val = DEF_OP (ptr->defs);
997 ptr->defs = ptr->defs->next;
998 return val;
999 }
1000 if (ptr->mustdefs)
1001 {
1002 val = MUSTDEF_RESULT (ptr->mustdefs);
1003 ptr->mustdefs = ptr->mustdefs->next;
1004 return val;
1005 }
1006 if (ptr->maydefs)
1007 {
1008 val = MAYDEF_RESULT (ptr->maydefs);
1009 ptr->maydefs = ptr->maydefs->next;
1010 return val;
1011 }
1012
1013 ptr->done = true;
1014 return NULL_TREE;
1015
1016 }
1017
1018
1019 /* This functions clears the iterator PTR, and marks it done. This is normally
1020 used to prevent warnings in the compile about might be uninitialized
1021 components. */
1022
1023 static inline void
1024 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1025 {
1026 ptr->defs = NULL;
1027 ptr->uses = NULL;
1028 ptr->vuses = NULL;
1029 ptr->maydefs = NULL;
1030 ptr->mayuses = NULL;
1031 ptr->mustdefs = NULL;
1032 ptr->mustkills = NULL;
1033 ptr->iter_type = ssa_op_iter_none;
1034 ptr->phi_i = 0;
1035 ptr->num_phi = 0;
1036 ptr->phi_stmt = NULL_TREE;
1037 ptr->done = true;
1038 }
1039
1040 /* Initialize the iterator PTR to the virtual defs in STMT. */
1041 static inline void
1042 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1043 {
1044 #ifdef ENABLE_CHECKING
1045 gcc_assert (stmt_ann (stmt));
1046 #endif
1047
1048 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1049 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1050 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1051 ptr->maydefs = (flags & SSA_OP_VMAYDEF) ? MAYDEF_OPS (stmt) : NULL;
1052 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? MAYDEF_OPS (stmt) : NULL;
1053 ptr->mustdefs = (flags & SSA_OP_VMUSTDEF) ? MUSTDEF_OPS (stmt) : NULL;
1054 ptr->mustkills = (flags & SSA_OP_VMUSTKILL) ? MUSTDEF_OPS (stmt) : NULL;
1055 ptr->done = false;
1056
1057 ptr->phi_i = 0;
1058 ptr->num_phi = 0;
1059 ptr->phi_stmt = NULL_TREE;
1060 }
1061
1062 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1063 the first use. */
1064 static inline use_operand_p
1065 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1066 {
1067 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1068 op_iter_init (ptr, stmt, flags);
1069 ptr->iter_type = ssa_op_iter_use;
1070 return op_iter_next_use (ptr);
1071 }
1072
1073 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1074 the first def. */
1075 static inline def_operand_p
1076 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1077 {
1078 gcc_assert ((flags & (SSA_OP_ALL_USES | SSA_OP_VIRTUAL_KILLS)) == 0);
1079 op_iter_init (ptr, stmt, flags);
1080 ptr->iter_type = ssa_op_iter_def;
1081 return op_iter_next_def (ptr);
1082 }
1083
1084 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1085 the first operand as a tree. */
1086 static inline tree
1087 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1088 {
1089 op_iter_init (ptr, stmt, flags);
1090 ptr->iter_type = ssa_op_iter_tree;
1091 return op_iter_next_tree (ptr);
1092 }
1093
1094 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1095 KILL and DEF. */
1096 static inline void
1097 op_iter_next_maymustdef (use_operand_p *use, def_operand_p *def,
1098 ssa_op_iter *ptr)
1099 {
1100 #ifdef ENABLE_CHECKING
1101 gcc_assert (ptr->iter_type == ssa_op_iter_maymustdef);
1102 #endif
1103 if (ptr->mayuses)
1104 {
1105 *def = MAYDEF_RESULT_PTR (ptr->mayuses);
1106 *use = MAYDEF_OP_PTR (ptr->mayuses);
1107 ptr->mayuses = ptr->mayuses->next;
1108 return;
1109 }
1110
1111 if (ptr->mustkills)
1112 {
1113 *def = MUSTDEF_RESULT_PTR (ptr->mustkills);
1114 *use = MUSTDEF_KILL_PTR (ptr->mustkills);
1115 ptr->mustkills = ptr->mustkills->next;
1116 return;
1117 }
1118
1119 *def = NULL_DEF_OPERAND_P;
1120 *use = NULL_USE_OPERAND_P;
1121 ptr->done = true;
1122 return;
1123 }
1124
1125
1126 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1127 in USE and DEF. */
1128 static inline void
1129 op_iter_init_maydef (ssa_op_iter *ptr, tree stmt, use_operand_p *use,
1130 def_operand_p *def)
1131 {
1132 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1133
1134 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1135 ptr->iter_type = ssa_op_iter_maymustdef;
1136 op_iter_next_maymustdef (use, def, ptr);
1137 }
1138
1139
1140 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1141 in KILL and DEF. */
1142 static inline void
1143 op_iter_init_mustdef (ssa_op_iter *ptr, tree stmt, use_operand_p *kill,
1144 def_operand_p *def)
1145 {
1146 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1147
1148 op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL);
1149 ptr->iter_type = ssa_op_iter_maymustdef;
1150 op_iter_next_maymustdef (kill, def, ptr);
1151 }
1152
1153 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1154 in KILL and DEF. */
1155 static inline void
1156 op_iter_init_must_and_may_def (ssa_op_iter *ptr, tree stmt,
1157 use_operand_p *kill, def_operand_p *def)
1158 {
1159 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1160
1161 op_iter_init (ptr, stmt, SSA_OP_VMUSTKILL|SSA_OP_VMAYUSE);
1162 ptr->iter_type = ssa_op_iter_maymustdef;
1163 op_iter_next_maymustdef (kill, def, ptr);
1164 }
1165
1166
1167 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1168 return NULL. */
1169 static inline tree
1170 single_ssa_tree_operand (tree stmt, int flags)
1171 {
1172 tree var;
1173 ssa_op_iter iter;
1174
1175 var = op_iter_init_tree (&iter, stmt, flags);
1176 if (op_iter_done (&iter))
1177 return NULL_TREE;
1178 op_iter_next_tree (&iter);
1179 if (op_iter_done (&iter))
1180 return var;
1181 return NULL_TREE;
1182 }
1183
1184
1185 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1186 return NULL. */
1187 static inline use_operand_p
1188 single_ssa_use_operand (tree stmt, int flags)
1189 {
1190 use_operand_p var;
1191 ssa_op_iter iter;
1192
1193 var = op_iter_init_use (&iter, stmt, flags);
1194 if (op_iter_done (&iter))
1195 return NULL_USE_OPERAND_P;
1196 op_iter_next_use (&iter);
1197 if (op_iter_done (&iter))
1198 return var;
1199 return NULL_USE_OPERAND_P;
1200 }
1201
1202
1203
1204 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1205 return NULL. */
1206 static inline def_operand_p
1207 single_ssa_def_operand (tree stmt, int flags)
1208 {
1209 def_operand_p var;
1210 ssa_op_iter iter;
1211
1212 var = op_iter_init_def (&iter, stmt, flags);
1213 if (op_iter_done (&iter))
1214 return NULL_DEF_OPERAND_P;
1215 op_iter_next_def (&iter);
1216 if (op_iter_done (&iter))
1217 return var;
1218 return NULL_DEF_OPERAND_P;
1219 }
1220
1221
1222 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1223 return NULL. */
1224 static inline bool
1225 zero_ssa_operands (tree stmt, int flags)
1226 {
1227 ssa_op_iter iter;
1228
1229 op_iter_init_tree (&iter, stmt, flags);
1230 return op_iter_done (&iter);
1231 }
1232
1233
1234 /* Return the number of operands matching FLAGS in STMT. */
1235 static inline int
1236 num_ssa_operands (tree stmt, int flags)
1237 {
1238 ssa_op_iter iter;
1239 tree t;
1240 int num = 0;
1241
1242 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1243 num++;
1244 return num;
1245 }
1246
1247
1248 /* Delink all immediate_use information for STMT. */
1249 static inline void
1250 delink_stmt_imm_use (tree stmt)
1251 {
1252 ssa_op_iter iter;
1253 use_operand_p use_p;
1254
1255 if (ssa_operands_active ())
1256 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1257 (SSA_OP_ALL_USES | SSA_OP_ALL_KILLS))
1258 delink_imm_use (use_p);
1259 }
1260
1261
1262 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1263 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1264 static inline bool
1265 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1266 {
1267 ssa_op_iter iter1, iter2;
1268 tree op1 = NULL_TREE;
1269 tree op2 = NULL_TREE;
1270 bool look1, look2;
1271
1272 if (stmt1 == stmt2)
1273 return true;
1274
1275 look1 = stmt1 && stmt_ann (stmt1);
1276 look2 = stmt2 && stmt_ann (stmt2);
1277
1278 if (look1)
1279 {
1280 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1281 if (!look2)
1282 return op_iter_done (&iter1);
1283 }
1284 else
1285 clear_and_done_ssa_iter (&iter1);
1286
1287 if (look2)
1288 {
1289 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1290 if (!look1)
1291 return op_iter_done (&iter2);
1292 }
1293 else
1294 clear_and_done_ssa_iter (&iter2);
1295
1296 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1297 {
1298 if (op1 != op2)
1299 return false;
1300 op1 = op_iter_next_tree (&iter1);
1301 op2 = op_iter_next_tree (&iter2);
1302 }
1303
1304 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1305 }
1306
1307
1308 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1309 Otherwise return NULL_DEF_OPERAND_P. */
1310 static inline tree
1311 single_phi_def (tree stmt, int flags)
1312 {
1313 tree def = PHI_RESULT (stmt);
1314 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1315 return def;
1316 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1317 return def;
1318 return NULL_TREE;
1319 }
1320
1321 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1322 be either SSA_OP_USES or SAS_OP_VIRTUAL_USES. */
1323 static inline use_operand_p
1324 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1325 {
1326 tree phi_def = PHI_RESULT (phi);
1327 int comp;
1328
1329 clear_and_done_ssa_iter (ptr);
1330 ptr->done = false;
1331
1332 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1333
1334 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1335
1336 /* If the PHI node doesn't the operand type we care about, we're done. */
1337 if ((flags & comp) == 0)
1338 {
1339 ptr->done = true;
1340 return NULL_USE_OPERAND_P;
1341 }
1342
1343 ptr->phi_stmt = phi;
1344 ptr->num_phi = PHI_NUM_ARGS (phi);
1345 ptr->iter_type = ssa_op_iter_use;
1346 return op_iter_next_use (ptr);
1347 }
1348
1349
1350 /* Start an iterator for a PHI definition. */
1351
1352 static inline def_operand_p
1353 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1354 {
1355 tree phi_def = PHI_RESULT (phi);
1356 int comp;
1357
1358 clear_and_done_ssa_iter (ptr);
1359 ptr->done = false;
1360
1361 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1362
1363 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1364
1365 /* If the PHI node doesn't the operand type we care about, we're done. */
1366 if ((flags & comp) == 0)
1367 {
1368 ptr->done = true;
1369 return NULL_USE_OPERAND_P;
1370 }
1371
1372 ptr->iter_type = ssa_op_iter_def;
1373 /* The first call to op_iter_next_def will terminate the iterator since
1374 all the fields are NULL. Simply return the result here as the first and
1375 therefore only result. */
1376 return PHI_RESULT_PTR (phi);
1377 }
1378
1379
1380
1381 /* Return true if VAR cannot be modified by the program. */
1382
1383 static inline bool
1384 unmodifiable_var_p (tree var)
1385 {
1386 if (TREE_CODE (var) == SSA_NAME)
1387 var = SSA_NAME_VAR (var);
1388
1389 if (MTAG_P (var))
1390 return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
1391
1392 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1393 }
1394
1395 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1396
1397 static inline bool
1398 array_ref_contains_indirect_ref (tree ref)
1399 {
1400 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1401
1402 do {
1403 ref = TREE_OPERAND (ref, 0);
1404 } while (handled_component_p (ref));
1405
1406 return TREE_CODE (ref) == INDIRECT_REF;
1407 }
1408
1409 /* Return true if REF, a handled component reference, has an ARRAY_REF
1410 somewhere in it. */
1411
1412 static inline bool
1413 ref_contains_array_ref (tree ref)
1414 {
1415 gcc_assert (handled_component_p (ref));
1416
1417 do {
1418 if (TREE_CODE (ref) == ARRAY_REF)
1419 return true;
1420 ref = TREE_OPERAND (ref, 0);
1421 } while (handled_component_p (ref));
1422
1423 return false;
1424 }
1425
1426 /* Given a variable VAR, lookup and return a pointer to the list of
1427 subvariables for it. */
1428
1429 static inline subvar_t *
1430 lookup_subvars_for_var (tree var)
1431 {
1432 var_ann_t ann = var_ann (var);
1433 gcc_assert (ann);
1434 return &ann->subvars;
1435 }
1436
1437 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1438 NULL, if there are no subvariables. */
1439
1440 static inline subvar_t
1441 get_subvars_for_var (tree var)
1442 {
1443 subvar_t subvars;
1444
1445 gcc_assert (SSA_VAR_P (var));
1446
1447 if (TREE_CODE (var) == SSA_NAME)
1448 subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1449 else
1450 subvars = *(lookup_subvars_for_var (var));
1451 return subvars;
1452 }
1453
1454 /* Return the subvariable of VAR at offset OFFSET. */
1455
1456 static inline tree
1457 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1458 {
1459 subvar_t sv;
1460
1461 for (sv = get_subvars_for_var (var); sv; sv = sv->next)
1462 if (SFT_OFFSET (sv->var) == offset)
1463 return sv->var;
1464
1465 return NULL_TREE;
1466 }
1467
1468 /* Return true if V is a tree that we can have subvars for.
1469 Normally, this is any aggregate type. Also complex
1470 types which are not gimple registers can have subvars. */
1471
1472 static inline bool
1473 var_can_have_subvars (tree v)
1474 {
1475 /* Volatile variables should never have subvars. */
1476 if (TREE_THIS_VOLATILE (v))
1477 return false;
1478
1479 /* Non decls or memory tags can never have subvars. */
1480 if (!DECL_P (v) || MTAG_P (v))
1481 return false;
1482
1483 /* Aggregates can have subvars. */
1484 if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
1485 return true;
1486
1487 /* Complex types variables which are not also a gimple register can
1488 have subvars. */
1489 if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
1490 && !DECL_COMPLEX_GIMPLE_REG_P (v))
1491 return true;
1492
1493 return false;
1494 }
1495
1496
1497 /* Return true if OFFSET and SIZE define a range that overlaps with some
1498 portion of the range of SV, a subvar. If there was an exact overlap,
1499 *EXACT will be set to true upon return. */
1500
1501 static inline bool
1502 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1503 tree sv, bool *exact)
1504 {
1505 /* There are three possible cases of overlap.
1506 1. We can have an exact overlap, like so:
1507 |offset, offset + size |
1508 |sv->offset, sv->offset + sv->size |
1509
1510 2. We can have offset starting after sv->offset, like so:
1511
1512 |offset, offset + size |
1513 |sv->offset, sv->offset + sv->size |
1514
1515 3. We can have offset starting before sv->offset, like so:
1516
1517 |offset, offset + size |
1518 |sv->offset, sv->offset + sv->size|
1519 */
1520
1521 if (exact)
1522 *exact = false;
1523 if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
1524 {
1525 if (exact)
1526 *exact = true;
1527 return true;
1528 }
1529 else if (offset >= SFT_OFFSET (sv)
1530 && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
1531 {
1532 return true;
1533 }
1534 else if (offset < SFT_OFFSET (sv)
1535 && (size > SFT_OFFSET (sv) - offset))
1536 {
1537 return true;
1538 }
1539 return false;
1540
1541 }
1542
1543 #endif /* _TREE_FLOW_INLINE_H */