expmed.c (struct init_expmed_rtl): Change all fields but pow2 and cint from struct...
[gcc.git] / gcc / tree-if-conv.c
1 /* If-conversion for vectorizer.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Devang Patel <dpatel@apple.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This pass implements a tree level if-conversion of loops. Its
22 initial goal is to help the vectorizer to vectorize loops with
23 conditions.
24
25 A short description of if-conversion:
26
27 o Decide if a loop is if-convertible or not.
28 o Walk all loop basic blocks in breadth first order (BFS order).
29 o Remove conditional statements (at the end of basic block)
30 and propagate condition into destination basic blocks'
31 predicate list.
32 o Replace modify expression with conditional modify expression
33 using current basic block's condition.
34 o Merge all basic blocks
35 o Replace phi nodes with conditional modify expr
36 o Merge all basic blocks into header
37
38 Sample transformation:
39
40 INPUT
41 -----
42
43 # i_23 = PHI <0(0), i_18(10)>;
44 <L0>:;
45 j_15 = A[i_23];
46 if (j_15 > 41) goto <L1>; else goto <L17>;
47
48 <L17>:;
49 goto <bb 3> (<L3>);
50
51 <L1>:;
52
53 # iftmp.2_4 = PHI <0(8), 42(2)>;
54 <L3>:;
55 A[i_23] = iftmp.2_4;
56 i_18 = i_23 + 1;
57 if (i_18 <= 15) goto <L19>; else goto <L18>;
58
59 <L19>:;
60 goto <bb 1> (<L0>);
61
62 <L18>:;
63
64 OUTPUT
65 ------
66
67 # i_23 = PHI <0(0), i_18(10)>;
68 <L0>:;
69 j_15 = A[i_23];
70
71 <L3>:;
72 iftmp.2_4 = j_15 > 41 ? 42 : 0;
73 A[i_23] = iftmp.2_4;
74 i_18 = i_23 + 1;
75 if (i_18 <= 15) goto <L19>; else goto <L18>;
76
77 <L19>:;
78 goto <bb 1> (<L0>);
79
80 <L18>:;
81 */
82
83 #include "config.h"
84 #include "system.h"
85 #include "coretypes.h"
86 #include "tm.h"
87 #include "tree.h"
88 #include "stor-layout.h"
89 #include "flags.h"
90 #include "basic-block.h"
91 #include "gimple-pretty-print.h"
92 #include "tree-ssa-alias.h"
93 #include "internal-fn.h"
94 #include "gimple-fold.h"
95 #include "gimple-expr.h"
96 #include "is-a.h"
97 #include "gimple.h"
98 #include "gimplify.h"
99 #include "gimple-iterator.h"
100 #include "gimplify-me.h"
101 #include "gimple-ssa.h"
102 #include "tree-cfg.h"
103 #include "tree-phinodes.h"
104 #include "ssa-iterators.h"
105 #include "stringpool.h"
106 #include "tree-ssanames.h"
107 #include "tree-into-ssa.h"
108 #include "tree-ssa.h"
109 #include "cfgloop.h"
110 #include "tree-chrec.h"
111 #include "tree-data-ref.h"
112 #include "tree-scalar-evolution.h"
113 #include "tree-ssa-loop-ivopts.h"
114 #include "tree-ssa-address.h"
115 #include "tree-pass.h"
116 #include "dbgcnt.h"
117 #include "expr.h"
118 #include "optabs.h"
119
120 /* List of basic blocks in if-conversion-suitable order. */
121 static basic_block *ifc_bbs;
122
123 /* Structure used to predicate basic blocks. This is attached to the
124 ->aux field of the BBs in the loop to be if-converted. */
125 typedef struct bb_predicate_s {
126
127 /* The condition under which this basic block is executed. */
128 tree predicate;
129
130 /* PREDICATE is gimplified, and the sequence of statements is
131 recorded here, in order to avoid the duplication of computations
132 that occur in previous conditions. See PR44483. */
133 gimple_seq predicate_gimplified_stmts;
134 } *bb_predicate_p;
135
136 /* Returns true when the basic block BB has a predicate. */
137
138 static inline bool
139 bb_has_predicate (basic_block bb)
140 {
141 return bb->aux != NULL;
142 }
143
144 /* Returns the gimplified predicate for basic block BB. */
145
146 static inline tree
147 bb_predicate (basic_block bb)
148 {
149 return ((bb_predicate_p) bb->aux)->predicate;
150 }
151
152 /* Sets the gimplified predicate COND for basic block BB. */
153
154 static inline void
155 set_bb_predicate (basic_block bb, tree cond)
156 {
157 gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
158 && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
159 || is_gimple_condexpr (cond));
160 ((bb_predicate_p) bb->aux)->predicate = cond;
161 }
162
163 /* Returns the sequence of statements of the gimplification of the
164 predicate for basic block BB. */
165
166 static inline gimple_seq
167 bb_predicate_gimplified_stmts (basic_block bb)
168 {
169 return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
170 }
171
172 /* Sets the sequence of statements STMTS of the gimplification of the
173 predicate for basic block BB. */
174
175 static inline void
176 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
177 {
178 ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
179 }
180
181 /* Adds the sequence of statements STMTS to the sequence of statements
182 of the predicate for basic block BB. */
183
184 static inline void
185 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
186 {
187 gimple_seq_add_seq
188 (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
189 }
190
191 /* Initializes to TRUE the predicate of basic block BB. */
192
193 static inline void
194 init_bb_predicate (basic_block bb)
195 {
196 bb->aux = XNEW (struct bb_predicate_s);
197 set_bb_predicate_gimplified_stmts (bb, NULL);
198 set_bb_predicate (bb, boolean_true_node);
199 }
200
201 /* Release the SSA_NAMEs associated with the predicate of basic block BB,
202 but don't actually free it. */
203
204 static inline void
205 release_bb_predicate (basic_block bb)
206 {
207 gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
208 if (stmts)
209 {
210 gimple_stmt_iterator i;
211
212 for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
213 free_stmt_operands (cfun, gsi_stmt (i));
214 set_bb_predicate_gimplified_stmts (bb, NULL);
215 }
216 }
217
218 /* Free the predicate of basic block BB. */
219
220 static inline void
221 free_bb_predicate (basic_block bb)
222 {
223 if (!bb_has_predicate (bb))
224 return;
225
226 release_bb_predicate (bb);
227 free (bb->aux);
228 bb->aux = NULL;
229 }
230
231 /* Reinitialize predicate of BB with the true predicate. */
232
233 static inline void
234 reset_bb_predicate (basic_block bb)
235 {
236 if (!bb_has_predicate (bb))
237 init_bb_predicate (bb);
238 else
239 {
240 release_bb_predicate (bb);
241 set_bb_predicate (bb, boolean_true_node);
242 }
243 }
244
245 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
246 the expression EXPR. Inserts the statement created for this
247 computation before GSI and leaves the iterator GSI at the same
248 statement. */
249
250 static tree
251 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
252 {
253 tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
254 gimple stmt = gimple_build_assign (new_name, expr);
255 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
256 return new_name;
257 }
258
259 /* Return true when COND is a true predicate. */
260
261 static inline bool
262 is_true_predicate (tree cond)
263 {
264 return (cond == NULL_TREE
265 || cond == boolean_true_node
266 || integer_onep (cond));
267 }
268
269 /* Returns true when BB has a predicate that is not trivial: true or
270 NULL_TREE. */
271
272 static inline bool
273 is_predicated (basic_block bb)
274 {
275 return !is_true_predicate (bb_predicate (bb));
276 }
277
278 /* Parses the predicate COND and returns its comparison code and
279 operands OP0 and OP1. */
280
281 static enum tree_code
282 parse_predicate (tree cond, tree *op0, tree *op1)
283 {
284 gimple s;
285
286 if (TREE_CODE (cond) == SSA_NAME
287 && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
288 {
289 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
290 {
291 *op0 = gimple_assign_rhs1 (s);
292 *op1 = gimple_assign_rhs2 (s);
293 return gimple_assign_rhs_code (s);
294 }
295
296 else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
297 {
298 tree op = gimple_assign_rhs1 (s);
299 tree type = TREE_TYPE (op);
300 enum tree_code code = parse_predicate (op, op0, op1);
301
302 return code == ERROR_MARK ? ERROR_MARK
303 : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
304 }
305
306 return ERROR_MARK;
307 }
308
309 if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
310 {
311 *op0 = TREE_OPERAND (cond, 0);
312 *op1 = TREE_OPERAND (cond, 1);
313 return TREE_CODE (cond);
314 }
315
316 return ERROR_MARK;
317 }
318
319 /* Returns the fold of predicate C1 OR C2 at location LOC. */
320
321 static tree
322 fold_or_predicates (location_t loc, tree c1, tree c2)
323 {
324 tree op1a, op1b, op2a, op2b;
325 enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
326 enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
327
328 if (code1 != ERROR_MARK && code2 != ERROR_MARK)
329 {
330 tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
331 code2, op2a, op2b);
332 if (t)
333 return t;
334 }
335
336 return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
337 }
338
339 /* Returns true if N is either a constant or a SSA_NAME. */
340
341 static bool
342 constant_or_ssa_name (tree n)
343 {
344 switch (TREE_CODE (n))
345 {
346 case SSA_NAME:
347 case INTEGER_CST:
348 case REAL_CST:
349 case COMPLEX_CST:
350 case VECTOR_CST:
351 return true;
352 default:
353 return false;
354 }
355 }
356
357 /* Returns either a COND_EXPR or the folded expression if the folded
358 expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
359 a constant or a SSA_NAME. */
360
361 static tree
362 fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
363 {
364 tree rhs1, lhs1, cond_expr;
365 cond_expr = fold_ternary (COND_EXPR, type, cond,
366 rhs, lhs);
367
368 if (cond_expr == NULL_TREE)
369 return build3 (COND_EXPR, type, cond, rhs, lhs);
370
371 STRIP_USELESS_TYPE_CONVERSION (cond_expr);
372
373 if (constant_or_ssa_name (cond_expr))
374 return cond_expr;
375
376 if (TREE_CODE (cond_expr) == ABS_EXPR)
377 {
378 rhs1 = TREE_OPERAND (cond_expr, 1);
379 STRIP_USELESS_TYPE_CONVERSION (rhs1);
380 if (constant_or_ssa_name (rhs1))
381 return build1 (ABS_EXPR, type, rhs1);
382 }
383
384 if (TREE_CODE (cond_expr) == MIN_EXPR
385 || TREE_CODE (cond_expr) == MAX_EXPR)
386 {
387 lhs1 = TREE_OPERAND (cond_expr, 0);
388 STRIP_USELESS_TYPE_CONVERSION (lhs1);
389 rhs1 = TREE_OPERAND (cond_expr, 1);
390 STRIP_USELESS_TYPE_CONVERSION (rhs1);
391 if (constant_or_ssa_name (rhs1)
392 && constant_or_ssa_name (lhs1))
393 return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
394 }
395 return build3 (COND_EXPR, type, cond, rhs, lhs);
396 }
397
398 /* Add condition NC to the predicate list of basic block BB. LOOP is
399 the loop to be if-converted. */
400
401 static inline void
402 add_to_predicate_list (struct loop *loop, basic_block bb, tree nc)
403 {
404 tree bc, *tp;
405
406 if (is_true_predicate (nc))
407 return;
408
409 if (!is_predicated (bb))
410 {
411 /* If dominance tells us this basic block is always executed, don't
412 record any predicates for it. */
413 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
414 return;
415
416 bc = nc;
417 }
418 else
419 {
420 bc = bb_predicate (bb);
421 bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
422 if (is_true_predicate (bc))
423 {
424 reset_bb_predicate (bb);
425 return;
426 }
427 }
428
429 /* Allow a TRUTH_NOT_EXPR around the main predicate. */
430 if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
431 tp = &TREE_OPERAND (bc, 0);
432 else
433 tp = &bc;
434 if (!is_gimple_condexpr (*tp))
435 {
436 gimple_seq stmts;
437 *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
438 add_bb_predicate_gimplified_stmts (bb, stmts);
439 }
440 set_bb_predicate (bb, bc);
441 }
442
443 /* Add the condition COND to the previous condition PREV_COND, and add
444 this to the predicate list of the destination of edge E. LOOP is
445 the loop to be if-converted. */
446
447 static void
448 add_to_dst_predicate_list (struct loop *loop, edge e,
449 tree prev_cond, tree cond)
450 {
451 if (!flow_bb_inside_loop_p (loop, e->dest))
452 return;
453
454 if (!is_true_predicate (prev_cond))
455 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
456 prev_cond, cond);
457
458 add_to_predicate_list (loop, e->dest, cond);
459 }
460
461 /* Return true if one of the successor edges of BB exits LOOP. */
462
463 static bool
464 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
465 {
466 edge e;
467 edge_iterator ei;
468
469 FOR_EACH_EDGE (e, ei, bb->succs)
470 if (loop_exit_edge_p (loop, e))
471 return true;
472
473 return false;
474 }
475
476 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
477 and it belongs to basic block BB.
478
479 PHI is not if-convertible if:
480 - it has more than 2 arguments.
481
482 When the flag_tree_loop_if_convert_stores is not set, PHI is not
483 if-convertible if:
484 - a virtual PHI is immediately used in another PHI node,
485 - there is a virtual PHI in a BB other than the loop->header. */
486
487 static bool
488 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi,
489 bool any_mask_load_store)
490 {
491 if (dump_file && (dump_flags & TDF_DETAILS))
492 {
493 fprintf (dump_file, "-------------------------\n");
494 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
495 }
496
497 if (bb != loop->header && gimple_phi_num_args (phi) != 2)
498 {
499 if (dump_file && (dump_flags & TDF_DETAILS))
500 fprintf (dump_file, "More than two phi node args.\n");
501 return false;
502 }
503
504 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
505 return true;
506
507 /* When the flag_tree_loop_if_convert_stores is not set, check
508 that there are no memory writes in the branches of the loop to be
509 if-converted. */
510 if (virtual_operand_p (gimple_phi_result (phi)))
511 {
512 imm_use_iterator imm_iter;
513 use_operand_p use_p;
514
515 if (bb != loop->header)
516 {
517 if (dump_file && (dump_flags & TDF_DETAILS))
518 fprintf (dump_file, "Virtual phi not on loop->header.\n");
519 return false;
520 }
521
522 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
523 {
524 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
525 {
526 if (dump_file && (dump_flags & TDF_DETAILS))
527 fprintf (dump_file, "Difficult to handle this virtual phi.\n");
528 return false;
529 }
530 }
531 }
532
533 return true;
534 }
535
536 /* Records the status of a data reference. This struct is attached to
537 each DR->aux field. */
538
539 struct ifc_dr {
540 /* -1 when not initialized, 0 when false, 1 when true. */
541 int written_at_least_once;
542
543 /* -1 when not initialized, 0 when false, 1 when true. */
544 int rw_unconditionally;
545 };
546
547 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
548 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
549 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
550
551 /* Returns true when the memory references of STMT are read or written
552 unconditionally. In other words, this function returns true when
553 for every data reference A in STMT there exist other accesses to
554 a data reference with the same base with predicates that add up (OR-up) to
555 the true predicate: this ensures that the data reference A is touched
556 (read or written) on every iteration of the if-converted loop. */
557
558 static bool
559 memrefs_read_or_written_unconditionally (gimple stmt,
560 vec<data_reference_p> drs)
561 {
562 int i, j;
563 data_reference_p a, b;
564 tree ca = bb_predicate (gimple_bb (stmt));
565
566 for (i = 0; drs.iterate (i, &a); i++)
567 if (DR_STMT (a) == stmt)
568 {
569 bool found = false;
570 int x = DR_RW_UNCONDITIONALLY (a);
571
572 if (x == 0)
573 return false;
574
575 if (x == 1)
576 continue;
577
578 for (j = 0; drs.iterate (j, &b); j++)
579 {
580 tree ref_base_a = DR_REF (a);
581 tree ref_base_b = DR_REF (b);
582
583 if (DR_STMT (b) == stmt)
584 continue;
585
586 while (TREE_CODE (ref_base_a) == COMPONENT_REF
587 || TREE_CODE (ref_base_a) == IMAGPART_EXPR
588 || TREE_CODE (ref_base_a) == REALPART_EXPR)
589 ref_base_a = TREE_OPERAND (ref_base_a, 0);
590
591 while (TREE_CODE (ref_base_b) == COMPONENT_REF
592 || TREE_CODE (ref_base_b) == IMAGPART_EXPR
593 || TREE_CODE (ref_base_b) == REALPART_EXPR)
594 ref_base_b = TREE_OPERAND (ref_base_b, 0);
595
596 if (!operand_equal_p (ref_base_a, ref_base_b, 0))
597 {
598 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
599
600 if (DR_RW_UNCONDITIONALLY (b) == 1
601 || is_true_predicate (cb)
602 || is_true_predicate (ca
603 = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
604 {
605 DR_RW_UNCONDITIONALLY (a) = 1;
606 DR_RW_UNCONDITIONALLY (b) = 1;
607 found = true;
608 break;
609 }
610 }
611 }
612
613 if (!found)
614 {
615 DR_RW_UNCONDITIONALLY (a) = 0;
616 return false;
617 }
618 }
619
620 return true;
621 }
622
623 /* Returns true when the memory references of STMT are unconditionally
624 written. In other words, this function returns true when for every
625 data reference A written in STMT, there exist other writes to the
626 same data reference with predicates that add up (OR-up) to the true
627 predicate: this ensures that the data reference A is written on
628 every iteration of the if-converted loop. */
629
630 static bool
631 write_memrefs_written_at_least_once (gimple stmt,
632 vec<data_reference_p> drs)
633 {
634 int i, j;
635 data_reference_p a, b;
636 tree ca = bb_predicate (gimple_bb (stmt));
637
638 for (i = 0; drs.iterate (i, &a); i++)
639 if (DR_STMT (a) == stmt
640 && DR_IS_WRITE (a))
641 {
642 bool found = false;
643 int x = DR_WRITTEN_AT_LEAST_ONCE (a);
644
645 if (x == 0)
646 return false;
647
648 if (x == 1)
649 continue;
650
651 for (j = 0; drs.iterate (j, &b); j++)
652 if (DR_STMT (b) != stmt
653 && DR_IS_WRITE (b)
654 && same_data_refs_base_objects (a, b))
655 {
656 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
657
658 if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
659 || is_true_predicate (cb)
660 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
661 ca, cb)))
662 {
663 DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
664 DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
665 found = true;
666 break;
667 }
668 }
669
670 if (!found)
671 {
672 DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
673 return false;
674 }
675 }
676
677 return true;
678 }
679
680 /* Return true when the memory references of STMT won't trap in the
681 if-converted code. There are two things that we have to check for:
682
683 - writes to memory occur to writable memory: if-conversion of
684 memory writes transforms the conditional memory writes into
685 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
686 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
687 be executed at all in the original code, it may be a readonly
688 memory. To check that A is not const-qualified, we check that
689 there exists at least an unconditional write to A in the current
690 function.
691
692 - reads or writes to memory are valid memory accesses for every
693 iteration. To check that the memory accesses are correctly formed
694 and that we are allowed to read and write in these locations, we
695 check that the memory accesses to be if-converted occur at every
696 iteration unconditionally. */
697
698 static bool
699 ifcvt_memrefs_wont_trap (gimple stmt, vec<data_reference_p> refs)
700 {
701 return write_memrefs_written_at_least_once (stmt, refs)
702 && memrefs_read_or_written_unconditionally (stmt, refs);
703 }
704
705 /* Wrapper around gimple_could_trap_p refined for the needs of the
706 if-conversion. Try to prove that the memory accesses of STMT could
707 not trap in the innermost loop containing STMT. */
708
709 static bool
710 ifcvt_could_trap_p (gimple stmt, vec<data_reference_p> refs)
711 {
712 if (gimple_vuse (stmt)
713 && !gimple_could_trap_p_1 (stmt, false, false)
714 && ifcvt_memrefs_wont_trap (stmt, refs))
715 return false;
716
717 return gimple_could_trap_p (stmt);
718 }
719
720 /* Return true if STMT could be converted into a masked load or store
721 (conditional load or store based on a mask computed from bb predicate). */
722
723 static bool
724 ifcvt_can_use_mask_load_store (gimple stmt)
725 {
726 tree lhs, ref;
727 enum machine_mode mode;
728 basic_block bb = gimple_bb (stmt);
729 bool is_load;
730
731 if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
732 || bb->loop_father->dont_vectorize
733 || !gimple_assign_single_p (stmt)
734 || gimple_has_volatile_ops (stmt))
735 return false;
736
737 /* Check whether this is a load or store. */
738 lhs = gimple_assign_lhs (stmt);
739 if (gimple_store_p (stmt))
740 {
741 if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
742 return false;
743 is_load = false;
744 ref = lhs;
745 }
746 else if (gimple_assign_load_p (stmt))
747 {
748 is_load = true;
749 ref = gimple_assign_rhs1 (stmt);
750 }
751 else
752 return false;
753
754 if (may_be_nonaddressable_p (ref))
755 return false;
756
757 /* Mask should be integer mode of the same size as the load/store
758 mode. */
759 mode = TYPE_MODE (TREE_TYPE (lhs));
760 if (int_mode_for_mode (mode) == BLKmode
761 || VECTOR_MODE_P (mode))
762 return false;
763
764 if (can_vec_mask_load_store_p (mode, is_load))
765 return true;
766
767 return false;
768 }
769
770 /* Return true when STMT is if-convertible.
771
772 GIMPLE_ASSIGN statement is not if-convertible if,
773 - it is not movable,
774 - it could trap,
775 - LHS is not var decl. */
776
777 static bool
778 if_convertible_gimple_assign_stmt_p (gimple stmt,
779 vec<data_reference_p> refs,
780 bool *any_mask_load_store)
781 {
782 tree lhs = gimple_assign_lhs (stmt);
783 basic_block bb;
784
785 if (dump_file && (dump_flags & TDF_DETAILS))
786 {
787 fprintf (dump_file, "-------------------------\n");
788 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
789 }
790
791 if (!is_gimple_reg_type (TREE_TYPE (lhs)))
792 return false;
793
794 /* Some of these constrains might be too conservative. */
795 if (stmt_ends_bb_p (stmt)
796 || gimple_has_volatile_ops (stmt)
797 || (TREE_CODE (lhs) == SSA_NAME
798 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
799 || gimple_has_side_effects (stmt))
800 {
801 if (dump_file && (dump_flags & TDF_DETAILS))
802 fprintf (dump_file, "stmt not suitable for ifcvt\n");
803 return false;
804 }
805
806 /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
807 in between if_convertible_loop_p and combine_blocks
808 we can perform loop versioning. */
809 gimple_set_plf (stmt, GF_PLF_2, false);
810
811 if (flag_tree_loop_if_convert_stores)
812 {
813 if (ifcvt_could_trap_p (stmt, refs))
814 {
815 if (ifcvt_can_use_mask_load_store (stmt))
816 {
817 gimple_set_plf (stmt, GF_PLF_2, true);
818 *any_mask_load_store = true;
819 return true;
820 }
821 if (dump_file && (dump_flags & TDF_DETAILS))
822 fprintf (dump_file, "tree could trap...\n");
823 return false;
824 }
825 return true;
826 }
827
828 if (gimple_assign_rhs_could_trap_p (stmt))
829 {
830 if (ifcvt_can_use_mask_load_store (stmt))
831 {
832 gimple_set_plf (stmt, GF_PLF_2, true);
833 *any_mask_load_store = true;
834 return true;
835 }
836 if (dump_file && (dump_flags & TDF_DETAILS))
837 fprintf (dump_file, "tree could trap...\n");
838 return false;
839 }
840
841 bb = gimple_bb (stmt);
842
843 if (TREE_CODE (lhs) != SSA_NAME
844 && bb != bb->loop_father->header
845 && !bb_with_exit_edge_p (bb->loop_father, bb))
846 {
847 if (ifcvt_can_use_mask_load_store (stmt))
848 {
849 gimple_set_plf (stmt, GF_PLF_2, true);
850 *any_mask_load_store = true;
851 return true;
852 }
853 if (dump_file && (dump_flags & TDF_DETAILS))
854 {
855 fprintf (dump_file, "LHS is not var\n");
856 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
857 }
858 return false;
859 }
860
861 return true;
862 }
863
864 /* Return true when STMT is if-convertible.
865
866 A statement is if-convertible if:
867 - it is an if-convertible GIMPLE_ASSIGN,
868 - it is a GIMPLE_LABEL or a GIMPLE_COND. */
869
870 static bool
871 if_convertible_stmt_p (gimple stmt, vec<data_reference_p> refs,
872 bool *any_mask_load_store)
873 {
874 switch (gimple_code (stmt))
875 {
876 case GIMPLE_LABEL:
877 case GIMPLE_DEBUG:
878 case GIMPLE_COND:
879 return true;
880
881 case GIMPLE_ASSIGN:
882 return if_convertible_gimple_assign_stmt_p (stmt, refs,
883 any_mask_load_store);
884
885 case GIMPLE_CALL:
886 {
887 tree fndecl = gimple_call_fndecl (stmt);
888 if (fndecl)
889 {
890 int flags = gimple_call_flags (stmt);
891 if ((flags & ECF_CONST)
892 && !(flags & ECF_LOOPING_CONST_OR_PURE)
893 /* We can only vectorize some builtins at the moment,
894 so restrict if-conversion to those. */
895 && DECL_BUILT_IN (fndecl))
896 return true;
897 }
898 return false;
899 }
900
901 default:
902 /* Don't know what to do with 'em so don't do anything. */
903 if (dump_file && (dump_flags & TDF_DETAILS))
904 {
905 fprintf (dump_file, "don't know what to do\n");
906 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
907 }
908 return false;
909 break;
910 }
911
912 return true;
913 }
914
915 /* Return true when BB is if-convertible. This routine does not check
916 basic block's statements and phis.
917
918 A basic block is not if-convertible if:
919 - it is non-empty and it is after the exit block (in BFS order),
920 - it is after the exit block but before the latch,
921 - its edges are not normal.
922
923 EXIT_BB is the basic block containing the exit of the LOOP. BB is
924 inside LOOP. */
925
926 static bool
927 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
928 {
929 edge e;
930 edge_iterator ei;
931
932 if (dump_file && (dump_flags & TDF_DETAILS))
933 fprintf (dump_file, "----------[%d]-------------\n", bb->index);
934
935 if (EDGE_COUNT (bb->preds) > 2
936 || EDGE_COUNT (bb->succs) > 2)
937 return false;
938
939 if (exit_bb)
940 {
941 if (bb != loop->latch)
942 {
943 if (dump_file && (dump_flags & TDF_DETAILS))
944 fprintf (dump_file, "basic block after exit bb but before latch\n");
945 return false;
946 }
947 else if (!empty_block_p (bb))
948 {
949 if (dump_file && (dump_flags & TDF_DETAILS))
950 fprintf (dump_file, "non empty basic block after exit bb\n");
951 return false;
952 }
953 else if (bb == loop->latch
954 && bb != exit_bb
955 && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
956 {
957 if (dump_file && (dump_flags & TDF_DETAILS))
958 fprintf (dump_file, "latch is not dominated by exit_block\n");
959 return false;
960 }
961 }
962
963 /* Be less adventurous and handle only normal edges. */
964 FOR_EACH_EDGE (e, ei, bb->succs)
965 if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
966 {
967 if (dump_file && (dump_flags & TDF_DETAILS))
968 fprintf (dump_file, "Difficult to handle edges\n");
969 return false;
970 }
971
972 /* At least one incoming edge has to be non-critical as otherwise edge
973 predicates are not equal to basic-block predicates of the edge
974 source. */
975 if (EDGE_COUNT (bb->preds) > 1
976 && bb != loop->header)
977 {
978 bool found = false;
979 FOR_EACH_EDGE (e, ei, bb->preds)
980 if (EDGE_COUNT (e->src->succs) == 1)
981 found = true;
982 if (!found)
983 {
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 fprintf (dump_file, "only critical predecessors\n");
986 return false;
987 }
988 }
989
990 return true;
991 }
992
993 /* Return true when all predecessor blocks of BB are visited. The
994 VISITED bitmap keeps track of the visited blocks. */
995
996 static bool
997 pred_blocks_visited_p (basic_block bb, bitmap *visited)
998 {
999 edge e;
1000 edge_iterator ei;
1001 FOR_EACH_EDGE (e, ei, bb->preds)
1002 if (!bitmap_bit_p (*visited, e->src->index))
1003 return false;
1004
1005 return true;
1006 }
1007
1008 /* Get body of a LOOP in suitable order for if-conversion. It is
1009 caller's responsibility to deallocate basic block list.
1010 If-conversion suitable order is, breadth first sort (BFS) order
1011 with an additional constraint: select a block only if all its
1012 predecessors are already selected. */
1013
1014 static basic_block *
1015 get_loop_body_in_if_conv_order (const struct loop *loop)
1016 {
1017 basic_block *blocks, *blocks_in_bfs_order;
1018 basic_block bb;
1019 bitmap visited;
1020 unsigned int index = 0;
1021 unsigned int visited_count = 0;
1022
1023 gcc_assert (loop->num_nodes);
1024 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1025
1026 blocks = XCNEWVEC (basic_block, loop->num_nodes);
1027 visited = BITMAP_ALLOC (NULL);
1028
1029 blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
1030
1031 index = 0;
1032 while (index < loop->num_nodes)
1033 {
1034 bb = blocks_in_bfs_order [index];
1035
1036 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1037 {
1038 free (blocks_in_bfs_order);
1039 BITMAP_FREE (visited);
1040 free (blocks);
1041 return NULL;
1042 }
1043
1044 if (!bitmap_bit_p (visited, bb->index))
1045 {
1046 if (pred_blocks_visited_p (bb, &visited)
1047 || bb == loop->header)
1048 {
1049 /* This block is now visited. */
1050 bitmap_set_bit (visited, bb->index);
1051 blocks[visited_count++] = bb;
1052 }
1053 }
1054
1055 index++;
1056
1057 if (index == loop->num_nodes
1058 && visited_count != loop->num_nodes)
1059 /* Not done yet. */
1060 index = 0;
1061 }
1062 free (blocks_in_bfs_order);
1063 BITMAP_FREE (visited);
1064 return blocks;
1065 }
1066
1067 /* Returns true when the analysis of the predicates for all the basic
1068 blocks in LOOP succeeded.
1069
1070 predicate_bbs first allocates the predicates of the basic blocks.
1071 These fields are then initialized with the tree expressions
1072 representing the predicates under which a basic block is executed
1073 in the LOOP. As the loop->header is executed at each iteration, it
1074 has the "true" predicate. Other statements executed under a
1075 condition are predicated with that condition, for example
1076
1077 | if (x)
1078 | S1;
1079 | else
1080 | S2;
1081
1082 S1 will be predicated with "x", and
1083 S2 will be predicated with "!x". */
1084
1085 static void
1086 predicate_bbs (loop_p loop)
1087 {
1088 unsigned int i;
1089
1090 for (i = 0; i < loop->num_nodes; i++)
1091 init_bb_predicate (ifc_bbs[i]);
1092
1093 for (i = 0; i < loop->num_nodes; i++)
1094 {
1095 basic_block bb = ifc_bbs[i];
1096 tree cond;
1097 gimple stmt;
1098
1099 /* The loop latch is always executed and has no extra conditions
1100 to be processed: skip it. */
1101 if (bb == loop->latch)
1102 {
1103 reset_bb_predicate (loop->latch);
1104 continue;
1105 }
1106
1107 cond = bb_predicate (bb);
1108 stmt = last_stmt (bb);
1109 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1110 {
1111 tree c2;
1112 edge true_edge, false_edge;
1113 location_t loc = gimple_location (stmt);
1114 tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
1115 boolean_type_node,
1116 gimple_cond_lhs (stmt),
1117 gimple_cond_rhs (stmt));
1118
1119 /* Add new condition into destination's predicate list. */
1120 extract_true_false_edges_from_block (gimple_bb (stmt),
1121 &true_edge, &false_edge);
1122
1123 /* If C is true, then TRUE_EDGE is taken. */
1124 add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
1125 unshare_expr (c));
1126
1127 /* If C is false, then FALSE_EDGE is taken. */
1128 c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
1129 unshare_expr (c));
1130 add_to_dst_predicate_list (loop, false_edge,
1131 unshare_expr (cond), c2);
1132
1133 cond = NULL_TREE;
1134 }
1135
1136 /* If current bb has only one successor, then consider it as an
1137 unconditional goto. */
1138 if (single_succ_p (bb))
1139 {
1140 basic_block bb_n = single_succ (bb);
1141
1142 /* The successor bb inherits the predicate of its
1143 predecessor. If there is no predicate in the predecessor
1144 bb, then consider the successor bb as always executed. */
1145 if (cond == NULL_TREE)
1146 cond = boolean_true_node;
1147
1148 add_to_predicate_list (loop, bb_n, cond);
1149 }
1150 }
1151
1152 /* The loop header is always executed. */
1153 reset_bb_predicate (loop->header);
1154 gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
1155 && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1156 }
1157
1158 /* Return true when LOOP is if-convertible. This is a helper function
1159 for if_convertible_loop_p. REFS and DDRS are initialized and freed
1160 in if_convertible_loop_p. */
1161
1162 static bool
1163 if_convertible_loop_p_1 (struct loop *loop,
1164 vec<loop_p> *loop_nest,
1165 vec<data_reference_p> *refs,
1166 vec<ddr_p> *ddrs, bool *any_mask_load_store)
1167 {
1168 bool res;
1169 unsigned int i;
1170 basic_block exit_bb = NULL;
1171
1172 /* Don't if-convert the loop when the data dependences cannot be
1173 computed: the loop won't be vectorized in that case. */
1174 res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
1175 if (!res)
1176 return false;
1177
1178 calculate_dominance_info (CDI_DOMINATORS);
1179
1180 /* Allow statements that can be handled during if-conversion. */
1181 ifc_bbs = get_loop_body_in_if_conv_order (loop);
1182 if (!ifc_bbs)
1183 {
1184 if (dump_file && (dump_flags & TDF_DETAILS))
1185 fprintf (dump_file, "Irreducible loop\n");
1186 return false;
1187 }
1188
1189 for (i = 0; i < loop->num_nodes; i++)
1190 {
1191 basic_block bb = ifc_bbs[i];
1192
1193 if (!if_convertible_bb_p (loop, bb, exit_bb))
1194 return false;
1195
1196 if (bb_with_exit_edge_p (loop, bb))
1197 exit_bb = bb;
1198 }
1199
1200 for (i = 0; i < loop->num_nodes; i++)
1201 {
1202 basic_block bb = ifc_bbs[i];
1203 gimple_stmt_iterator gsi;
1204
1205 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1206 switch (gimple_code (gsi_stmt (gsi)))
1207 {
1208 case GIMPLE_LABEL:
1209 case GIMPLE_ASSIGN:
1210 case GIMPLE_CALL:
1211 case GIMPLE_DEBUG:
1212 case GIMPLE_COND:
1213 break;
1214 default:
1215 return false;
1216 }
1217 }
1218
1219 if (flag_tree_loop_if_convert_stores)
1220 {
1221 data_reference_p dr;
1222
1223 for (i = 0; refs->iterate (i, &dr); i++)
1224 {
1225 dr->aux = XNEW (struct ifc_dr);
1226 DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1227 DR_RW_UNCONDITIONALLY (dr) = -1;
1228 }
1229 predicate_bbs (loop);
1230 }
1231
1232 for (i = 0; i < loop->num_nodes; i++)
1233 {
1234 basic_block bb = ifc_bbs[i];
1235 gimple_stmt_iterator itr;
1236
1237 /* Check the if-convertibility of statements in predicated BBs. */
1238 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1239 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1240 if (!if_convertible_stmt_p (gsi_stmt (itr), *refs,
1241 any_mask_load_store))
1242 return false;
1243 }
1244
1245 if (flag_tree_loop_if_convert_stores)
1246 for (i = 0; i < loop->num_nodes; i++)
1247 free_bb_predicate (ifc_bbs[i]);
1248
1249 /* Checking PHIs needs to be done after stmts, as the fact whether there
1250 are any masked loads or stores affects the tests. */
1251 for (i = 0; i < loop->num_nodes; i++)
1252 {
1253 basic_block bb = ifc_bbs[i];
1254 gimple_stmt_iterator itr;
1255
1256 for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1257 if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr),
1258 *any_mask_load_store))
1259 return false;
1260 }
1261
1262 if (dump_file)
1263 fprintf (dump_file, "Applying if-conversion\n");
1264
1265 return true;
1266 }
1267
1268 /* Return true when LOOP is if-convertible.
1269 LOOP is if-convertible if:
1270 - it is innermost,
1271 - it has two or more basic blocks,
1272 - it has only one exit,
1273 - loop header is not the exit edge,
1274 - if its basic blocks and phi nodes are if convertible. */
1275
1276 static bool
1277 if_convertible_loop_p (struct loop *loop, bool *any_mask_load_store)
1278 {
1279 edge e;
1280 edge_iterator ei;
1281 bool res = false;
1282 vec<data_reference_p> refs;
1283 vec<ddr_p> ddrs;
1284
1285 /* Handle only innermost loop. */
1286 if (!loop || loop->inner)
1287 {
1288 if (dump_file && (dump_flags & TDF_DETAILS))
1289 fprintf (dump_file, "not innermost loop\n");
1290 return false;
1291 }
1292
1293 /* If only one block, no need for if-conversion. */
1294 if (loop->num_nodes <= 2)
1295 {
1296 if (dump_file && (dump_flags & TDF_DETAILS))
1297 fprintf (dump_file, "less than 2 basic blocks\n");
1298 return false;
1299 }
1300
1301 /* More than one loop exit is too much to handle. */
1302 if (!single_exit (loop))
1303 {
1304 if (dump_file && (dump_flags & TDF_DETAILS))
1305 fprintf (dump_file, "multiple exits\n");
1306 return false;
1307 }
1308
1309 /* If one of the loop header's edge is an exit edge then do not
1310 apply if-conversion. */
1311 FOR_EACH_EDGE (e, ei, loop->header->succs)
1312 if (loop_exit_edge_p (loop, e))
1313 return false;
1314
1315 refs.create (5);
1316 ddrs.create (25);
1317 auto_vec<loop_p, 3> loop_nest;
1318 res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs,
1319 any_mask_load_store);
1320
1321 if (flag_tree_loop_if_convert_stores)
1322 {
1323 data_reference_p dr;
1324 unsigned int i;
1325
1326 for (i = 0; refs.iterate (i, &dr); i++)
1327 free (dr->aux);
1328 }
1329
1330 free_data_refs (refs);
1331 free_dependence_relations (ddrs);
1332 return res;
1333 }
1334
1335 /* Basic block BB has two predecessors. Using predecessor's bb
1336 predicate, set an appropriate condition COND for the PHI node
1337 replacement. Return the true block whose phi arguments are
1338 selected when cond is true. LOOP is the loop containing the
1339 if-converted region, GSI is the place to insert the code for the
1340 if-conversion. */
1341
1342 static basic_block
1343 find_phi_replacement_condition (basic_block bb, tree *cond,
1344 gimple_stmt_iterator *gsi)
1345 {
1346 edge first_edge, second_edge;
1347 tree tmp_cond;
1348
1349 gcc_assert (EDGE_COUNT (bb->preds) == 2);
1350 first_edge = EDGE_PRED (bb, 0);
1351 second_edge = EDGE_PRED (bb, 1);
1352
1353 /* Prefer an edge with a not negated predicate.
1354 ??? That's a very weak cost model. */
1355 tmp_cond = bb_predicate (first_edge->src);
1356 gcc_assert (tmp_cond);
1357 if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1358 {
1359 edge tmp_edge;
1360
1361 tmp_edge = first_edge;
1362 first_edge = second_edge;
1363 second_edge = tmp_edge;
1364 }
1365
1366 /* Check if the edge we take the condition from is not critical.
1367 We know that at least one non-critical edge exists. */
1368 if (EDGE_COUNT (first_edge->src->succs) > 1)
1369 {
1370 *cond = bb_predicate (second_edge->src);
1371
1372 if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1373 *cond = TREE_OPERAND (*cond, 0);
1374 else
1375 /* Select non loop header bb. */
1376 first_edge = second_edge;
1377 }
1378 else
1379 *cond = bb_predicate (first_edge->src);
1380
1381 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1382 *cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (*cond),
1383 is_gimple_condexpr, NULL_TREE,
1384 true, GSI_SAME_STMT);
1385
1386 return first_edge->src;
1387 }
1388
1389 /* Returns true if def-stmt for phi argument ARG is simple increment/decrement
1390 which is in predicated basic block.
1391 In fact, the following PHI pattern is searching:
1392 loop-header:
1393 reduc_1 = PHI <..., reduc_2>
1394 ...
1395 if (...)
1396 reduc_3 = ...
1397 reduc_2 = PHI <reduc_1, reduc_3>
1398
1399 REDUC, OP0 and OP1 contain reduction stmt and its operands. */
1400
1401 static bool
1402 is_cond_scalar_reduction (gimple phi, gimple *reduc,
1403 tree *op0, tree *op1)
1404 {
1405 tree lhs, r_op1, r_op2;
1406 tree arg_0, arg_1;
1407 gimple stmt;
1408 gimple header_phi = NULL;
1409 enum tree_code reduction_op;
1410 struct loop *loop = gimple_bb (phi)->loop_father;
1411 edge latch_e = loop_latch_edge (loop);
1412 imm_use_iterator imm_iter;
1413 use_operand_p use_p;
1414
1415 arg_0 = PHI_ARG_DEF (phi, 0);
1416 arg_1 = PHI_ARG_DEF (phi, 1);
1417 if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
1418 return false;
1419
1420 if (gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
1421 {
1422 lhs = arg_1;
1423 header_phi = SSA_NAME_DEF_STMT (arg_0);
1424 stmt = SSA_NAME_DEF_STMT (arg_1);
1425 }
1426 else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
1427 {
1428 lhs = arg_0;
1429 header_phi = SSA_NAME_DEF_STMT (arg_1);
1430 stmt = SSA_NAME_DEF_STMT (arg_0);
1431 }
1432 else
1433 return false;
1434 if (gimple_bb (header_phi) != loop->header)
1435 return false;
1436
1437 if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
1438 return false;
1439
1440 if (gimple_code (stmt) != GIMPLE_ASSIGN
1441 || gimple_has_volatile_ops (stmt))
1442 return false;
1443
1444 if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1445 return false;
1446
1447 if (!is_predicated (gimple_bb (stmt)))
1448 return false;
1449
1450 if (!has_single_use (lhs))
1451 return false;
1452
1453 reduction_op = gimple_assign_rhs_code (stmt);
1454 if (reduction_op != PLUS_EXPR && reduction_op != MINUS_EXPR)
1455 return false;
1456 r_op1 = gimple_assign_rhs1 (stmt);
1457 r_op2 = gimple_assign_rhs2 (stmt);
1458
1459 /* Make R_OP1 to hold reduction variable. */
1460 if (r_op2 == PHI_RESULT (header_phi)
1461 && reduction_op == PLUS_EXPR)
1462 {
1463 tree tmp = r_op1;
1464 r_op1 = r_op2;
1465 r_op2 = tmp;
1466 }
1467 else if (r_op1 != PHI_RESULT (header_phi))
1468 return false;
1469
1470 /* Check that R_OP1 is used in reduction stmt or in PHI only. */
1471 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1)
1472 {
1473 gimple use_stmt = USE_STMT (use_p);
1474 if (is_gimple_debug (use_stmt))
1475 continue;
1476 if (use_stmt == stmt)
1477 continue;
1478 if (gimple_code (use_stmt) != GIMPLE_PHI)
1479 return false;
1480 }
1481
1482 *op0 = r_op1; *op1 = r_op2;
1483 *reduc = stmt;
1484 return true;
1485 }
1486
1487 /* Converts conditional scalar reduction into unconditional form, e.g.
1488 bb_4
1489 if (_5 != 0) goto bb_5 else goto bb_6
1490 end_bb_4
1491 bb_5
1492 res_6 = res_13 + 1;
1493 end_bb_5
1494 bb_6
1495 # res_2 = PHI <res_13(4), res_6(5)>
1496 end_bb_6
1497
1498 will be converted into sequence
1499 _ifc__1 = _5 != 0 ? 1 : 0;
1500 res_2 = res_13 + _ifc__1;
1501 Argument SWAP tells that arguments of conditional expression should be
1502 swapped.
1503 Returns rhs of resulting PHI assignment. */
1504
1505 static tree
1506 convert_scalar_cond_reduction (gimple reduc, gimple_stmt_iterator *gsi,
1507 tree cond, tree op0, tree op1, bool swap)
1508 {
1509 gimple_stmt_iterator stmt_it;
1510 gimple new_assign;
1511 tree rhs;
1512 tree rhs1 = gimple_assign_rhs1 (reduc);
1513 tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
1514 tree c;
1515 tree zero = build_zero_cst (TREE_TYPE (rhs1));
1516
1517 if (dump_file && (dump_flags & TDF_DETAILS))
1518 {
1519 fprintf (dump_file, "Found cond scalar reduction.\n");
1520 print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
1521 }
1522
1523 /* Build cond expression using COND and constant operand
1524 of reduction rhs. */
1525 c = fold_build_cond_expr (TREE_TYPE (rhs1),
1526 unshare_expr (cond),
1527 swap ? zero : op1,
1528 swap ? op1 : zero);
1529
1530 /* Create assignment stmt and insert it at GSI. */
1531 new_assign = gimple_build_assign (tmp, c);
1532 gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
1533 /* Build rhs for unconditional increment/decrement. */
1534 rhs = fold_build2 (gimple_assign_rhs_code (reduc),
1535 TREE_TYPE (rhs1), op0, tmp);
1536
1537 /* Delete original reduction stmt. */
1538 stmt_it = gsi_for_stmt (reduc);
1539 gsi_remove (&stmt_it, true);
1540 release_defs (reduc);
1541 return rhs;
1542 }
1543
1544 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1545 This routine does not handle PHI nodes with more than two
1546 arguments.
1547
1548 For example,
1549 S1: A = PHI <x1(1), x2(5)>
1550 is converted into,
1551 S2: A = cond ? x1 : x2;
1552
1553 The generated code is inserted at GSI that points to the top of
1554 basic block's statement list. When COND is true, phi arg from
1555 TRUE_BB is selected. */
1556
1557 static void
1558 predicate_scalar_phi (gimple phi, tree cond,
1559 basic_block true_bb,
1560 gimple_stmt_iterator *gsi)
1561 {
1562 gimple new_stmt;
1563 basic_block bb;
1564 tree rhs, res, arg, scev;
1565
1566 gcc_assert (gimple_code (phi) == GIMPLE_PHI
1567 && gimple_phi_num_args (phi) == 2);
1568
1569 res = gimple_phi_result (phi);
1570 /* Do not handle virtual phi nodes. */
1571 if (virtual_operand_p (res))
1572 return;
1573
1574 bb = gimple_bb (phi);
1575
1576 if ((arg = degenerate_phi_result (phi))
1577 || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1578 res))
1579 && !chrec_contains_undetermined (scev)
1580 && scev != res
1581 && (arg = gimple_phi_arg_def (phi, 0))))
1582 rhs = arg;
1583 else
1584 {
1585 tree arg_0, arg_1;
1586 tree op0, op1;
1587 gimple reduc;
1588
1589 /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
1590 if (EDGE_PRED (bb, 1)->src == true_bb)
1591 {
1592 arg_0 = gimple_phi_arg_def (phi, 1);
1593 arg_1 = gimple_phi_arg_def (phi, 0);
1594 }
1595 else
1596 {
1597 arg_0 = gimple_phi_arg_def (phi, 0);
1598 arg_1 = gimple_phi_arg_def (phi, 1);
1599 }
1600 if (is_cond_scalar_reduction (phi, &reduc, &op0, &op1))
1601 /* Convert reduction stmt into vectorizable form. */
1602 rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
1603 true_bb != gimple_bb (reduc));
1604 else
1605 /* Build new RHS using selected condition and arguments. */
1606 rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
1607 arg_0, arg_1);
1608 }
1609
1610 new_stmt = gimple_build_assign (res, rhs);
1611 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1612 update_stmt (new_stmt);
1613
1614 if (dump_file && (dump_flags & TDF_DETAILS))
1615 {
1616 fprintf (dump_file, "new phi replacement stmt\n");
1617 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1618 }
1619 }
1620
1621 /* Replaces in LOOP all the scalar phi nodes other than those in the
1622 LOOP->header block with conditional modify expressions. */
1623
1624 static void
1625 predicate_all_scalar_phis (struct loop *loop)
1626 {
1627 basic_block bb;
1628 unsigned int orig_loop_num_nodes = loop->num_nodes;
1629 unsigned int i;
1630
1631 for (i = 1; i < orig_loop_num_nodes; i++)
1632 {
1633 gimple phi;
1634 tree cond = NULL_TREE;
1635 gimple_stmt_iterator gsi, phi_gsi;
1636 basic_block true_bb = NULL;
1637 bb = ifc_bbs[i];
1638
1639 if (bb == loop->header)
1640 continue;
1641
1642 phi_gsi = gsi_start_phis (bb);
1643 if (gsi_end_p (phi_gsi))
1644 continue;
1645
1646 /* BB has two predecessors. Using predecessor's aux field, set
1647 appropriate condition for the PHI node replacement. */
1648 gsi = gsi_after_labels (bb);
1649 true_bb = find_phi_replacement_condition (bb, &cond, &gsi);
1650
1651 while (!gsi_end_p (phi_gsi))
1652 {
1653 phi = gsi_stmt (phi_gsi);
1654 predicate_scalar_phi (phi, cond, true_bb, &gsi);
1655 release_phi_node (phi);
1656 gsi_next (&phi_gsi);
1657 }
1658
1659 set_phi_nodes (bb, NULL);
1660 }
1661 }
1662
1663 /* Insert in each basic block of LOOP the statements produced by the
1664 gimplification of the predicates. */
1665
1666 static void
1667 insert_gimplified_predicates (loop_p loop, bool any_mask_load_store)
1668 {
1669 unsigned int i;
1670
1671 for (i = 0; i < loop->num_nodes; i++)
1672 {
1673 basic_block bb = ifc_bbs[i];
1674 gimple_seq stmts;
1675
1676 if (!is_predicated (bb))
1677 {
1678 /* Do not insert statements for a basic block that is not
1679 predicated. Also make sure that the predicate of the
1680 basic block is set to true. */
1681 reset_bb_predicate (bb);
1682 continue;
1683 }
1684
1685 stmts = bb_predicate_gimplified_stmts (bb);
1686 if (stmts)
1687 {
1688 if (flag_tree_loop_if_convert_stores
1689 || any_mask_load_store)
1690 {
1691 /* Insert the predicate of the BB just after the label,
1692 as the if-conversion of memory writes will use this
1693 predicate. */
1694 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1695 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1696 }
1697 else
1698 {
1699 /* Insert the predicate of the BB at the end of the BB
1700 as this would reduce the register pressure: the only
1701 use of this predicate will be in successor BBs. */
1702 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1703
1704 if (gsi_end_p (gsi)
1705 || stmt_ends_bb_p (gsi_stmt (gsi)))
1706 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1707 else
1708 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1709 }
1710
1711 /* Once the sequence is code generated, set it to NULL. */
1712 set_bb_predicate_gimplified_stmts (bb, NULL);
1713 }
1714 }
1715 }
1716
1717 /* Predicate each write to memory in LOOP.
1718
1719 This function transforms control flow constructs containing memory
1720 writes of the form:
1721
1722 | for (i = 0; i < N; i++)
1723 | if (cond)
1724 | A[i] = expr;
1725
1726 into the following form that does not contain control flow:
1727
1728 | for (i = 0; i < N; i++)
1729 | A[i] = cond ? expr : A[i];
1730
1731 The original CFG looks like this:
1732
1733 | bb_0
1734 | i = 0
1735 | end_bb_0
1736 |
1737 | bb_1
1738 | if (i < N) goto bb_5 else goto bb_2
1739 | end_bb_1
1740 |
1741 | bb_2
1742 | cond = some_computation;
1743 | if (cond) goto bb_3 else goto bb_4
1744 | end_bb_2
1745 |
1746 | bb_3
1747 | A[i] = expr;
1748 | goto bb_4
1749 | end_bb_3
1750 |
1751 | bb_4
1752 | goto bb_1
1753 | end_bb_4
1754
1755 insert_gimplified_predicates inserts the computation of the COND
1756 expression at the beginning of the destination basic block:
1757
1758 | bb_0
1759 | i = 0
1760 | end_bb_0
1761 |
1762 | bb_1
1763 | if (i < N) goto bb_5 else goto bb_2
1764 | end_bb_1
1765 |
1766 | bb_2
1767 | cond = some_computation;
1768 | if (cond) goto bb_3 else goto bb_4
1769 | end_bb_2
1770 |
1771 | bb_3
1772 | cond = some_computation;
1773 | A[i] = expr;
1774 | goto bb_4
1775 | end_bb_3
1776 |
1777 | bb_4
1778 | goto bb_1
1779 | end_bb_4
1780
1781 predicate_mem_writes is then predicating the memory write as follows:
1782
1783 | bb_0
1784 | i = 0
1785 | end_bb_0
1786 |
1787 | bb_1
1788 | if (i < N) goto bb_5 else goto bb_2
1789 | end_bb_1
1790 |
1791 | bb_2
1792 | if (cond) goto bb_3 else goto bb_4
1793 | end_bb_2
1794 |
1795 | bb_3
1796 | cond = some_computation;
1797 | A[i] = cond ? expr : A[i];
1798 | goto bb_4
1799 | end_bb_3
1800 |
1801 | bb_4
1802 | goto bb_1
1803 | end_bb_4
1804
1805 and finally combine_blocks removes the basic block boundaries making
1806 the loop vectorizable:
1807
1808 | bb_0
1809 | i = 0
1810 | if (i < N) goto bb_5 else goto bb_1
1811 | end_bb_0
1812 |
1813 | bb_1
1814 | cond = some_computation;
1815 | A[i] = cond ? expr : A[i];
1816 | if (i < N) goto bb_5 else goto bb_4
1817 | end_bb_1
1818 |
1819 | bb_4
1820 | goto bb_1
1821 | end_bb_4
1822 */
1823
1824 static void
1825 predicate_mem_writes (loop_p loop)
1826 {
1827 unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1828
1829 for (i = 1; i < orig_loop_num_nodes; i++)
1830 {
1831 gimple_stmt_iterator gsi;
1832 basic_block bb = ifc_bbs[i];
1833 tree cond = bb_predicate (bb);
1834 bool swap;
1835 gimple stmt;
1836
1837 if (is_true_predicate (cond))
1838 continue;
1839
1840 swap = false;
1841 if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1842 {
1843 swap = true;
1844 cond = TREE_OPERAND (cond, 0);
1845 }
1846
1847 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1848 if (!gimple_assign_single_p (stmt = gsi_stmt (gsi)))
1849 continue;
1850 else if (gimple_plf (stmt, GF_PLF_2))
1851 {
1852 tree lhs = gimple_assign_lhs (stmt);
1853 tree rhs = gimple_assign_rhs1 (stmt);
1854 tree ref, addr, ptr, masktype, mask_op0, mask_op1, mask;
1855 gimple new_stmt;
1856 int bitsize = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (lhs)));
1857
1858 masktype = build_nonstandard_integer_type (bitsize, 1);
1859 mask_op0 = build_int_cst (masktype, swap ? 0 : -1);
1860 mask_op1 = build_int_cst (masktype, swap ? -1 : 0);
1861 ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
1862 mark_addressable (ref);
1863 addr = force_gimple_operand_gsi (&gsi, build_fold_addr_expr (ref),
1864 true, NULL_TREE, true,
1865 GSI_SAME_STMT);
1866 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1867 is_gimple_condexpr, NULL_TREE,
1868 true, GSI_SAME_STMT);
1869 mask = fold_build_cond_expr (masktype, unshare_expr (cond),
1870 mask_op0, mask_op1);
1871 mask = ifc_temp_var (masktype, mask, &gsi);
1872 ptr = build_int_cst (reference_alias_ptr_type (ref), 0);
1873 /* Copy points-to info if possible. */
1874 if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
1875 copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
1876 ref);
1877 if (TREE_CODE (lhs) == SSA_NAME)
1878 {
1879 new_stmt
1880 = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
1881 ptr, mask);
1882 gimple_call_set_lhs (new_stmt, lhs);
1883 }
1884 else
1885 new_stmt
1886 = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
1887 mask, rhs);
1888 gsi_replace (&gsi, new_stmt, true);
1889 }
1890 else if (gimple_vdef (stmt))
1891 {
1892 tree lhs = gimple_assign_lhs (stmt);
1893 tree rhs = gimple_assign_rhs1 (stmt);
1894 tree type = TREE_TYPE (lhs);
1895
1896 lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1897 rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1898 if (swap)
1899 {
1900 tree tem = lhs;
1901 lhs = rhs;
1902 rhs = tem;
1903 }
1904 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1905 is_gimple_condexpr, NULL_TREE,
1906 true, GSI_SAME_STMT);
1907 rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
1908 gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1909 update_stmt (stmt);
1910 }
1911 }
1912 }
1913
1914 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1915 other than the exit and latch of the LOOP. Also resets the
1916 GIMPLE_DEBUG information. */
1917
1918 static void
1919 remove_conditions_and_labels (loop_p loop)
1920 {
1921 gimple_stmt_iterator gsi;
1922 unsigned int i;
1923
1924 for (i = 0; i < loop->num_nodes; i++)
1925 {
1926 basic_block bb = ifc_bbs[i];
1927
1928 if (bb_with_exit_edge_p (loop, bb)
1929 || bb == loop->latch)
1930 continue;
1931
1932 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1933 switch (gimple_code (gsi_stmt (gsi)))
1934 {
1935 case GIMPLE_COND:
1936 case GIMPLE_LABEL:
1937 gsi_remove (&gsi, true);
1938 break;
1939
1940 case GIMPLE_DEBUG:
1941 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
1942 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1943 {
1944 gimple_debug_bind_reset_value (gsi_stmt (gsi));
1945 update_stmt (gsi_stmt (gsi));
1946 }
1947 gsi_next (&gsi);
1948 break;
1949
1950 default:
1951 gsi_next (&gsi);
1952 }
1953 }
1954 }
1955
1956 /* Combine all the basic blocks from LOOP into one or two super basic
1957 blocks. Replace PHI nodes with conditional modify expressions. */
1958
1959 static void
1960 combine_blocks (struct loop *loop, bool any_mask_load_store)
1961 {
1962 basic_block bb, exit_bb, merge_target_bb;
1963 unsigned int orig_loop_num_nodes = loop->num_nodes;
1964 unsigned int i;
1965 edge e;
1966 edge_iterator ei;
1967
1968 predicate_bbs (loop);
1969 remove_conditions_and_labels (loop);
1970 insert_gimplified_predicates (loop, any_mask_load_store);
1971 predicate_all_scalar_phis (loop);
1972
1973 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
1974 predicate_mem_writes (loop);
1975
1976 /* Merge basic blocks: first remove all the edges in the loop,
1977 except for those from the exit block. */
1978 exit_bb = NULL;
1979 for (i = 0; i < orig_loop_num_nodes; i++)
1980 {
1981 bb = ifc_bbs[i];
1982 free_bb_predicate (bb);
1983 if (bb_with_exit_edge_p (loop, bb))
1984 {
1985 gcc_assert (exit_bb == NULL);
1986 exit_bb = bb;
1987 }
1988 }
1989 gcc_assert (exit_bb != loop->latch);
1990
1991 for (i = 1; i < orig_loop_num_nodes; i++)
1992 {
1993 bb = ifc_bbs[i];
1994
1995 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1996 {
1997 if (e->src == exit_bb)
1998 ei_next (&ei);
1999 else
2000 remove_edge (e);
2001 }
2002 }
2003
2004 if (exit_bb != NULL)
2005 {
2006 if (exit_bb != loop->header)
2007 {
2008 /* Connect this node to loop header. */
2009 make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
2010 set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
2011 }
2012
2013 /* Redirect non-exit edges to loop->latch. */
2014 FOR_EACH_EDGE (e, ei, exit_bb->succs)
2015 {
2016 if (!loop_exit_edge_p (loop, e))
2017 redirect_edge_and_branch (e, loop->latch);
2018 }
2019 set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
2020 }
2021 else
2022 {
2023 /* If the loop does not have an exit, reconnect header and latch. */
2024 make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
2025 set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
2026 }
2027
2028 merge_target_bb = loop->header;
2029 for (i = 1; i < orig_loop_num_nodes; i++)
2030 {
2031 gimple_stmt_iterator gsi;
2032 gimple_stmt_iterator last;
2033
2034 bb = ifc_bbs[i];
2035
2036 if (bb == exit_bb || bb == loop->latch)
2037 continue;
2038
2039 /* Make stmts member of loop->header. */
2040 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2041 gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
2042
2043 /* Update stmt list. */
2044 last = gsi_last_bb (merge_target_bb);
2045 gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
2046 set_bb_seq (bb, NULL);
2047
2048 delete_basic_block (bb);
2049 }
2050
2051 /* If possible, merge loop header to the block with the exit edge.
2052 This reduces the number of basic blocks to two, to please the
2053 vectorizer that handles only loops with two nodes. */
2054 if (exit_bb
2055 && exit_bb != loop->header
2056 && can_merge_blocks_p (loop->header, exit_bb))
2057 merge_blocks (loop->header, exit_bb);
2058
2059 free (ifc_bbs);
2060 ifc_bbs = NULL;
2061 }
2062
2063 /* Version LOOP before if-converting it, the original loop
2064 will be then if-converted, the new copy of the loop will not,
2065 and the LOOP_VECTORIZED internal call will be guarding which
2066 loop to execute. The vectorizer pass will fold this
2067 internal call into either true or false. */
2068
2069 static bool
2070 version_loop_for_if_conversion (struct loop *loop)
2071 {
2072 basic_block cond_bb;
2073 tree cond = make_ssa_name (boolean_type_node, NULL);
2074 struct loop *new_loop;
2075 gimple g;
2076 gimple_stmt_iterator gsi;
2077
2078 g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
2079 build_int_cst (integer_type_node, loop->num),
2080 integer_zero_node);
2081 gimple_call_set_lhs (g, cond);
2082
2083 initialize_original_copy_tables ();
2084 new_loop = loop_version (loop, cond, &cond_bb,
2085 REG_BR_PROB_BASE, REG_BR_PROB_BASE,
2086 REG_BR_PROB_BASE, true);
2087 free_original_copy_tables ();
2088 if (new_loop == NULL)
2089 return false;
2090 new_loop->dont_vectorize = true;
2091 new_loop->force_vectorize = false;
2092 gsi = gsi_last_bb (cond_bb);
2093 gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
2094 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2095 update_ssa (TODO_update_ssa);
2096 return true;
2097 }
2098
2099 /* If-convert LOOP when it is legal. For the moment this pass has no
2100 profitability analysis. Returns non-zero todo flags when something
2101 changed. */
2102
2103 static unsigned int
2104 tree_if_conversion (struct loop *loop)
2105 {
2106 unsigned int todo = 0;
2107 ifc_bbs = NULL;
2108 bool any_mask_load_store = false;
2109
2110 if (!if_convertible_loop_p (loop, &any_mask_load_store)
2111 || !dbg_cnt (if_conversion_tree))
2112 goto cleanup;
2113
2114 if (any_mask_load_store
2115 && ((!flag_tree_loop_vectorize && !loop->force_vectorize)
2116 || loop->dont_vectorize))
2117 goto cleanup;
2118
2119 if (any_mask_load_store && !version_loop_for_if_conversion (loop))
2120 goto cleanup;
2121
2122 /* Now all statements are if-convertible. Combine all the basic
2123 blocks into one huge basic block doing the if-conversion
2124 on-the-fly. */
2125 combine_blocks (loop, any_mask_load_store);
2126
2127 todo |= TODO_cleanup_cfg;
2128 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
2129 {
2130 mark_virtual_operands_for_renaming (cfun);
2131 todo |= TODO_update_ssa_only_virtuals;
2132 }
2133
2134 cleanup:
2135 if (ifc_bbs)
2136 {
2137 unsigned int i;
2138
2139 for (i = 0; i < loop->num_nodes; i++)
2140 free_bb_predicate (ifc_bbs[i]);
2141
2142 free (ifc_bbs);
2143 ifc_bbs = NULL;
2144 }
2145
2146 return todo;
2147 }
2148
2149 /* Tree if-conversion pass management. */
2150
2151 namespace {
2152
2153 const pass_data pass_data_if_conversion =
2154 {
2155 GIMPLE_PASS, /* type */
2156 "ifcvt", /* name */
2157 OPTGROUP_NONE, /* optinfo_flags */
2158 true, /* has_execute */
2159 TV_NONE, /* tv_id */
2160 ( PROP_cfg | PROP_ssa ), /* properties_required */
2161 0, /* properties_provided */
2162 0, /* properties_destroyed */
2163 0, /* todo_flags_start */
2164 0, /* todo_flags_finish */
2165 };
2166
2167 class pass_if_conversion : public gimple_opt_pass
2168 {
2169 public:
2170 pass_if_conversion (gcc::context *ctxt)
2171 : gimple_opt_pass (pass_data_if_conversion, ctxt)
2172 {}
2173
2174 /* opt_pass methods: */
2175 virtual bool gate (function *);
2176 virtual unsigned int execute (function *);
2177
2178 }; // class pass_if_conversion
2179
2180 bool
2181 pass_if_conversion::gate (function *fun)
2182 {
2183 return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
2184 && flag_tree_loop_if_convert != 0)
2185 || flag_tree_loop_if_convert == 1
2186 || flag_tree_loop_if_convert_stores == 1);
2187 }
2188
2189 unsigned int
2190 pass_if_conversion::execute (function *fun)
2191 {
2192 struct loop *loop;
2193 unsigned todo = 0;
2194
2195 if (number_of_loops (fun) <= 1)
2196 return 0;
2197
2198 FOR_EACH_LOOP (loop, 0)
2199 if (flag_tree_loop_if_convert == 1
2200 || flag_tree_loop_if_convert_stores == 1
2201 || ((flag_tree_loop_vectorize || loop->force_vectorize)
2202 && !loop->dont_vectorize))
2203 todo |= tree_if_conversion (loop);
2204
2205 #ifdef ENABLE_CHECKING
2206 {
2207 basic_block bb;
2208 FOR_EACH_BB_FN (bb, fun)
2209 gcc_assert (!bb->aux);
2210 }
2211 #endif
2212
2213 return todo;
2214 }
2215
2216 } // anon namespace
2217
2218 gimple_opt_pass *
2219 make_pass_if_conversion (gcc::context *ctxt)
2220 {
2221 return new pass_if_conversion (ctxt);
2222 }