re PR bootstrap/45700 (--enable-checking=fold bootstrap failures)
[gcc.git] / gcc / tree-if-conv.c
1 /* If-conversion for vectorizer.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Devang Patel <dpatel@apple.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass implements a tree level if-conversion of loops. Its
23 initial goal is to help the vectorizer to vectorize loops with
24 conditions.
25
26 A short description of if-conversion:
27
28 o Decide if a loop is if-convertible or not.
29 o Walk all loop basic blocks in breadth first order (BFS order).
30 o Remove conditional statements (at the end of basic block)
31 and propagate condition into destination basic blocks'
32 predicate list.
33 o Replace modify expression with conditional modify expression
34 using current basic block's condition.
35 o Merge all basic blocks
36 o Replace phi nodes with conditional modify expr
37 o Merge all basic blocks into header
38
39 Sample transformation:
40
41 INPUT
42 -----
43
44 # i_23 = PHI <0(0), i_18(10)>;
45 <L0>:;
46 j_15 = A[i_23];
47 if (j_15 > 41) goto <L1>; else goto <L17>;
48
49 <L17>:;
50 goto <bb 3> (<L3>);
51
52 <L1>:;
53
54 # iftmp.2_4 = PHI <0(8), 42(2)>;
55 <L3>:;
56 A[i_23] = iftmp.2_4;
57 i_18 = i_23 + 1;
58 if (i_18 <= 15) goto <L19>; else goto <L18>;
59
60 <L19>:;
61 goto <bb 1> (<L0>);
62
63 <L18>:;
64
65 OUTPUT
66 ------
67
68 # i_23 = PHI <0(0), i_18(10)>;
69 <L0>:;
70 j_15 = A[i_23];
71
72 <L3>:;
73 iftmp.2_4 = j_15 > 41 ? 42 : 0;
74 A[i_23] = iftmp.2_4;
75 i_18 = i_23 + 1;
76 if (i_18 <= 15) goto <L19>; else goto <L18>;
77
78 <L19>:;
79 goto <bb 1> (<L0>);
80
81 <L18>:;
82 */
83
84 #include "config.h"
85 #include "system.h"
86 #include "coretypes.h"
87 #include "tm.h"
88 #include "tree.h"
89 #include "flags.h"
90 #include "timevar.h"
91 #include "basic-block.h"
92 #include "tree-pretty-print.h"
93 #include "gimple-pretty-print.h"
94 #include "tree-flow.h"
95 #include "tree-dump.h"
96 #include "cfgloop.h"
97 #include "tree-chrec.h"
98 #include "tree-data-ref.h"
99 #include "tree-scalar-evolution.h"
100 #include "tree-pass.h"
101 #include "dbgcnt.h"
102
103 /* List of basic blocks in if-conversion-suitable order. */
104 static basic_block *ifc_bbs;
105
106 /* Structure used to predicate basic blocks. This is attached to the
107 ->aux field of the BBs in the loop to be if-converted. */
108 typedef struct bb_predicate_s {
109
110 /* The condition under which this basic block is executed. */
111 tree predicate;
112
113 /* PREDICATE is gimplified, and the sequence of statements is
114 recorded here, in order to avoid the duplication of computations
115 that occur in previous conditions. See PR44483. */
116 gimple_seq predicate_gimplified_stmts;
117 } *bb_predicate_p;
118
119 /* Returns true when the basic block BB has a predicate. */
120
121 static inline bool
122 bb_has_predicate (basic_block bb)
123 {
124 return bb->aux != NULL;
125 }
126
127 /* Returns the gimplified predicate for basic block BB. */
128
129 static inline tree
130 bb_predicate (basic_block bb)
131 {
132 return ((bb_predicate_p) bb->aux)->predicate;
133 }
134
135 /* Sets the gimplified predicate COND for basic block BB. */
136
137 static inline void
138 set_bb_predicate (basic_block bb, tree cond)
139 {
140 ((bb_predicate_p) bb->aux)->predicate = cond;
141 }
142
143 /* Returns the sequence of statements of the gimplification of the
144 predicate for basic block BB. */
145
146 static inline gimple_seq
147 bb_predicate_gimplified_stmts (basic_block bb)
148 {
149 return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
150 }
151
152 /* Sets the sequence of statements STMTS of the gimplification of the
153 predicate for basic block BB. */
154
155 static inline void
156 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
157 {
158 ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
159 }
160
161 /* Adds the sequence of statements STMTS to the sequence of statements
162 of the predicate for basic block BB. */
163
164 static inline void
165 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
166 {
167 gimple_seq_add_seq
168 (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
169 }
170
171 /* Initializes to TRUE the predicate of basic block BB. */
172
173 static inline void
174 init_bb_predicate (basic_block bb)
175 {
176 bb->aux = XNEW (struct bb_predicate_s);
177 set_bb_predicate_gimplified_stmts (bb, NULL);
178 set_bb_predicate (bb, boolean_true_node);
179 }
180
181 /* Free the predicate of basic block BB. */
182
183 static inline void
184 free_bb_predicate (basic_block bb)
185 {
186 gimple_seq stmts;
187
188 if (!bb_has_predicate (bb))
189 return;
190
191 /* Release the SSA_NAMEs created for the gimplification of the
192 predicate. */
193 stmts = bb_predicate_gimplified_stmts (bb);
194 if (stmts)
195 {
196 gimple_stmt_iterator i;
197
198 for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
199 free_stmt_operands (gsi_stmt (i));
200 }
201
202 free (bb->aux);
203 bb->aux = NULL;
204 }
205
206 /* Free the predicate of BB and reinitialize it with the true
207 predicate. */
208
209 static inline void
210 reset_bb_predicate (basic_block bb)
211 {
212 free_bb_predicate (bb);
213 init_bb_predicate (bb);
214 }
215
216 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
217 the expression EXPR. Inserts the statement created for this
218 computation before GSI and leaves the iterator GSI at the same
219 statement. */
220
221 static tree
222 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
223 {
224 const char *name = "_ifc_";
225 tree var, new_name;
226 gimple stmt;
227
228 /* Create new temporary variable. */
229 var = create_tmp_var (type, name);
230 add_referenced_var (var);
231
232 /* Build new statement to assign EXPR to new variable. */
233 stmt = gimple_build_assign (var, expr);
234
235 /* Get SSA name for the new variable and set make new statement
236 its definition statement. */
237 new_name = make_ssa_name (var, stmt);
238 gimple_assign_set_lhs (stmt, new_name);
239 SSA_NAME_DEF_STMT (new_name) = stmt;
240 update_stmt (stmt);
241
242 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
243 return gimple_assign_lhs (stmt);
244 }
245
246 /* Return true when COND is a true predicate. */
247
248 static inline bool
249 is_true_predicate (tree cond)
250 {
251 return (cond == NULL_TREE
252 || cond == boolean_true_node
253 || integer_onep (cond));
254 }
255
256 /* Returns true when BB has a predicate that is not trivial: true or
257 NULL_TREE. */
258
259 static inline bool
260 is_predicated (basic_block bb)
261 {
262 return !is_true_predicate (bb_predicate (bb));
263 }
264
265 /* Parses the predicate COND and returns its comparison code and
266 operands OP0 and OP1. */
267
268 static enum tree_code
269 parse_predicate (tree cond, tree *op0, tree *op1)
270 {
271 gimple s;
272
273 if (TREE_CODE (cond) == SSA_NAME
274 && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
275 {
276 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
277 {
278 *op0 = gimple_assign_rhs1 (s);
279 *op1 = gimple_assign_rhs2 (s);
280 return gimple_assign_rhs_code (s);
281 }
282
283 else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
284 {
285 tree op = gimple_assign_rhs1 (s);
286 tree type = TREE_TYPE (op);
287 enum tree_code code = parse_predicate (op, op0, op1);
288
289 return code == ERROR_MARK ? ERROR_MARK
290 : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
291 }
292
293 return ERROR_MARK;
294 }
295
296 if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
297 {
298 *op0 = TREE_OPERAND (cond, 0);
299 *op1 = TREE_OPERAND (cond, 1);
300 return TREE_CODE (cond);
301 }
302
303 return ERROR_MARK;
304 }
305
306 /* Returns the fold of predicate C1 OR C2 at location LOC. */
307
308 static tree
309 fold_or_predicates (location_t loc, tree c1, tree c2)
310 {
311 tree op1a, op1b, op2a, op2b;
312 enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
313 enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
314
315 if (code1 != ERROR_MARK && code2 != ERROR_MARK)
316 {
317 tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
318 code2, op2a, op2b);
319 if (t)
320 return t;
321 }
322
323 return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
324 }
325
326 /* Add condition NC to the predicate list of basic block BB. */
327
328 static inline void
329 add_to_predicate_list (basic_block bb, tree nc)
330 {
331 tree bc;
332
333 if (is_true_predicate (nc))
334 return;
335
336 if (!is_predicated (bb))
337 bc = nc;
338 else
339 {
340 bc = bb_predicate (bb);
341 bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
342 }
343
344 if (!is_gimple_condexpr (bc))
345 {
346 gimple_seq stmts;
347 bc = force_gimple_operand (bc, &stmts, true, NULL_TREE);
348 add_bb_predicate_gimplified_stmts (bb, stmts);
349 }
350
351 if (is_true_predicate (bc))
352 reset_bb_predicate (bb);
353 else
354 set_bb_predicate (bb, bc);
355 }
356
357 /* Add the condition COND to the previous condition PREV_COND, and add
358 this to the predicate list of the destination of edge E. LOOP is
359 the loop to be if-converted. */
360
361 static void
362 add_to_dst_predicate_list (struct loop *loop, edge e,
363 tree prev_cond, tree cond)
364 {
365 if (!flow_bb_inside_loop_p (loop, e->dest))
366 return;
367
368 if (!is_true_predicate (prev_cond))
369 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
370 prev_cond, cond);
371
372 add_to_predicate_list (e->dest, cond);
373 }
374
375 /* Return true if one of the successor edges of BB exits LOOP. */
376
377 static bool
378 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
379 {
380 edge e;
381 edge_iterator ei;
382
383 FOR_EACH_EDGE (e, ei, bb->succs)
384 if (loop_exit_edge_p (loop, e))
385 return true;
386
387 return false;
388 }
389
390 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
391 and it belongs to basic block BB.
392
393 PHI is not if-convertible if:
394 - it has more than 2 arguments.
395
396 When the flag_tree_loop_if_convert_stores is not set, PHI is not
397 if-convertible if:
398 - a virtual PHI is immediately used in another PHI node,
399 - there is a virtual PHI in a BB other than the loop->header. */
400
401 static bool
402 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi)
403 {
404 if (dump_file && (dump_flags & TDF_DETAILS))
405 {
406 fprintf (dump_file, "-------------------------\n");
407 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
408 }
409
410 if (bb != loop->header && gimple_phi_num_args (phi) != 2)
411 {
412 if (dump_file && (dump_flags & TDF_DETAILS))
413 fprintf (dump_file, "More than two phi node args.\n");
414 return false;
415 }
416
417 if (flag_tree_loop_if_convert_stores)
418 return true;
419
420 /* When the flag_tree_loop_if_convert_stores is not set, check
421 that there are no memory writes in the branches of the loop to be
422 if-converted. */
423 if (!is_gimple_reg (SSA_NAME_VAR (gimple_phi_result (phi))))
424 {
425 imm_use_iterator imm_iter;
426 use_operand_p use_p;
427
428 if (bb != loop->header)
429 {
430 if (dump_file && (dump_flags & TDF_DETAILS))
431 fprintf (dump_file, "Virtual phi not on loop->header.\n");
432 return false;
433 }
434
435 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
436 {
437 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
438 {
439 if (dump_file && (dump_flags & TDF_DETAILS))
440 fprintf (dump_file, "Difficult to handle this virtual phi.\n");
441 return false;
442 }
443 }
444 }
445
446 return true;
447 }
448
449 /* Records the status of a data reference. This struct is attached to
450 each DR->aux field. */
451
452 struct ifc_dr {
453 /* -1 when not initialized, 0 when false, 1 when true. */
454 int written_at_least_once;
455
456 /* -1 when not initialized, 0 when false, 1 when true. */
457 int rw_unconditionally;
458 };
459
460 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
461 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
462 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
463
464 /* Returns true when the memory references of STMT are read or written
465 unconditionally. In other words, this function returns true when
466 for every data reference A in STMT there exist other accesses to
467 the same data reference with predicates that add up (OR-up) to the
468 true predicate: this ensures that the data reference A is touched
469 (read or written) on every iteration of the if-converted loop. */
470
471 static bool
472 memrefs_read_or_written_unconditionally (gimple stmt,
473 VEC (data_reference_p, heap) *drs)
474 {
475 int i, j;
476 data_reference_p a, b;
477 tree ca = bb_predicate (gimple_bb (stmt));
478
479 for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
480 if (DR_STMT (a) == stmt)
481 {
482 bool found = false;
483 int x = DR_RW_UNCONDITIONALLY (a);
484
485 if (x == 0)
486 return false;
487
488 if (x == 1)
489 continue;
490
491 for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
492 if (DR_STMT (b) != stmt
493 && same_data_refs (a, b))
494 {
495 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
496
497 if (DR_RW_UNCONDITIONALLY (b) == 1
498 || is_true_predicate (cb)
499 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
500 ca, cb)))
501 {
502 DR_RW_UNCONDITIONALLY (a) = 1;
503 DR_RW_UNCONDITIONALLY (b) = 1;
504 found = true;
505 break;
506 }
507 }
508
509 if (!found)
510 {
511 DR_RW_UNCONDITIONALLY (a) = 0;
512 return false;
513 }
514 }
515
516 return true;
517 }
518
519 /* Returns true when the memory references of STMT are unconditionally
520 written. In other words, this function returns true when for every
521 data reference A written in STMT, there exist other writes to the
522 same data reference with predicates that add up (OR-up) to the true
523 predicate: this ensures that the data reference A is written on
524 every iteration of the if-converted loop. */
525
526 static bool
527 write_memrefs_written_at_least_once (gimple stmt,
528 VEC (data_reference_p, heap) *drs)
529 {
530 int i, j;
531 data_reference_p a, b;
532 tree ca = bb_predicate (gimple_bb (stmt));
533
534 for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
535 if (DR_STMT (a) == stmt
536 && DR_IS_WRITE (a))
537 {
538 bool found = false;
539 int x = DR_WRITTEN_AT_LEAST_ONCE (a);
540
541 if (x == 0)
542 return false;
543
544 if (x == 1)
545 continue;
546
547 for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
548 if (DR_STMT (b) != stmt
549 && DR_IS_WRITE (b)
550 && same_data_refs_base_objects (a, b))
551 {
552 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
553
554 if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
555 || is_true_predicate (cb)
556 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
557 ca, cb)))
558 {
559 DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
560 DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
561 found = true;
562 break;
563 }
564 }
565
566 if (!found)
567 {
568 DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
569 return false;
570 }
571 }
572
573 return true;
574 }
575
576 /* Return true when the memory references of STMT won't trap in the
577 if-converted code. There are two things that we have to check for:
578
579 - writes to memory occur to writable memory: if-conversion of
580 memory writes transforms the conditional memory writes into
581 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
582 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
583 be executed at all in the original code, it may be a readonly
584 memory. To check that A is not const-qualified, we check that
585 there exists at least an unconditional write to A in the current
586 function.
587
588 - reads or writes to memory are valid memory accesses for every
589 iteration. To check that the memory accesses are correctly formed
590 and that we are allowed to read and write in these locations, we
591 check that the memory accesses to be if-converted occur at every
592 iteration unconditionally. */
593
594 static bool
595 ifcvt_memrefs_wont_trap (gimple stmt, VEC (data_reference_p, heap) *refs)
596 {
597 return write_memrefs_written_at_least_once (stmt, refs)
598 && memrefs_read_or_written_unconditionally (stmt, refs);
599 }
600
601 /* Wrapper around gimple_could_trap_p refined for the needs of the
602 if-conversion. Try to prove that the memory accesses of STMT could
603 not trap in the innermost loop containing STMT. */
604
605 static bool
606 ifcvt_could_trap_p (gimple stmt, VEC (data_reference_p, heap) *refs)
607 {
608 if (gimple_vuse (stmt)
609 && !gimple_could_trap_p_1 (stmt, false, false)
610 && ifcvt_memrefs_wont_trap (stmt, refs))
611 return false;
612
613 return gimple_could_trap_p (stmt);
614 }
615
616 /* Return true when STMT is if-convertible.
617
618 GIMPLE_ASSIGN statement is not if-convertible if,
619 - it is not movable,
620 - it could trap,
621 - LHS is not var decl. */
622
623 static bool
624 if_convertible_gimple_assign_stmt_p (gimple stmt,
625 VEC (data_reference_p, heap) *refs)
626 {
627 tree lhs = gimple_assign_lhs (stmt);
628 basic_block bb;
629
630 if (dump_file && (dump_flags & TDF_DETAILS))
631 {
632 fprintf (dump_file, "-------------------------\n");
633 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
634 }
635
636 if (!is_gimple_reg_type (TREE_TYPE (lhs)))
637 return false;
638
639 /* Some of these constrains might be too conservative. */
640 if (stmt_ends_bb_p (stmt)
641 || gimple_has_volatile_ops (stmt)
642 || (TREE_CODE (lhs) == SSA_NAME
643 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
644 || gimple_has_side_effects (stmt))
645 {
646 if (dump_file && (dump_flags & TDF_DETAILS))
647 fprintf (dump_file, "stmt not suitable for ifcvt\n");
648 return false;
649 }
650
651 if (flag_tree_loop_if_convert_stores)
652 {
653 if (ifcvt_could_trap_p (stmt, refs))
654 {
655 if (dump_file && (dump_flags & TDF_DETAILS))
656 fprintf (dump_file, "tree could trap...\n");
657 return false;
658 }
659 return true;
660 }
661
662 if (gimple_assign_rhs_could_trap_p (stmt))
663 {
664 if (dump_file && (dump_flags & TDF_DETAILS))
665 fprintf (dump_file, "tree could trap...\n");
666 return false;
667 }
668
669 bb = gimple_bb (stmt);
670
671 if (TREE_CODE (lhs) != SSA_NAME
672 && bb != bb->loop_father->header
673 && !bb_with_exit_edge_p (bb->loop_father, bb))
674 {
675 if (dump_file && (dump_flags & TDF_DETAILS))
676 {
677 fprintf (dump_file, "LHS is not var\n");
678 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
679 }
680 return false;
681 }
682
683 return true;
684 }
685
686 /* Return true when STMT is if-convertible.
687
688 A statement is if-convertible if:
689 - it is an if-convertible GIMPLE_ASSGIN,
690 - it is a GIMPLE_LABEL or a GIMPLE_COND. */
691
692 static bool
693 if_convertible_stmt_p (gimple stmt, VEC (data_reference_p, heap) *refs)
694 {
695 switch (gimple_code (stmt))
696 {
697 case GIMPLE_LABEL:
698 case GIMPLE_DEBUG:
699 case GIMPLE_COND:
700 return true;
701
702 case GIMPLE_ASSIGN:
703 return if_convertible_gimple_assign_stmt_p (stmt, refs);
704
705 default:
706 /* Don't know what to do with 'em so don't do anything. */
707 if (dump_file && (dump_flags & TDF_DETAILS))
708 {
709 fprintf (dump_file, "don't know what to do\n");
710 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
711 }
712 return false;
713 break;
714 }
715
716 return true;
717 }
718
719 /* Return true when BB is if-convertible. This routine does not check
720 basic block's statements and phis.
721
722 A basic block is not if-convertible if:
723 - it is non-empty and it is after the exit block (in BFS order),
724 - it is after the exit block but before the latch,
725 - its edges are not normal.
726
727 EXIT_BB is the basic block containing the exit of the LOOP. BB is
728 inside LOOP. */
729
730 static bool
731 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
732 {
733 edge e;
734 edge_iterator ei;
735
736 if (dump_file && (dump_flags & TDF_DETAILS))
737 fprintf (dump_file, "----------[%d]-------------\n", bb->index);
738
739 if (EDGE_COUNT (bb->preds) > 2
740 || EDGE_COUNT (bb->succs) > 2)
741 return false;
742
743 if (exit_bb)
744 {
745 if (bb != loop->latch)
746 {
747 if (dump_file && (dump_flags & TDF_DETAILS))
748 fprintf (dump_file, "basic block after exit bb but before latch\n");
749 return false;
750 }
751 else if (!empty_block_p (bb))
752 {
753 if (dump_file && (dump_flags & TDF_DETAILS))
754 fprintf (dump_file, "non empty basic block after exit bb\n");
755 return false;
756 }
757 else if (bb == loop->latch
758 && bb != exit_bb
759 && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
760 {
761 if (dump_file && (dump_flags & TDF_DETAILS))
762 fprintf (dump_file, "latch is not dominated by exit_block\n");
763 return false;
764 }
765 }
766
767 /* Be less adventurous and handle only normal edges. */
768 FOR_EACH_EDGE (e, ei, bb->succs)
769 if (e->flags &
770 (EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
771 {
772 if (dump_file && (dump_flags & TDF_DETAILS))
773 fprintf (dump_file, "Difficult to handle edges\n");
774 return false;
775 }
776
777 return true;
778 }
779
780 /* Return true when all predecessor blocks of BB are visited. The
781 VISITED bitmap keeps track of the visited blocks. */
782
783 static bool
784 pred_blocks_visited_p (basic_block bb, bitmap *visited)
785 {
786 edge e;
787 edge_iterator ei;
788 FOR_EACH_EDGE (e, ei, bb->preds)
789 if (!bitmap_bit_p (*visited, e->src->index))
790 return false;
791
792 return true;
793 }
794
795 /* Get body of a LOOP in suitable order for if-conversion. It is
796 caller's responsibility to deallocate basic block list.
797 If-conversion suitable order is, breadth first sort (BFS) order
798 with an additional constraint: select a block only if all its
799 predecessors are already selected. */
800
801 static basic_block *
802 get_loop_body_in_if_conv_order (const struct loop *loop)
803 {
804 basic_block *blocks, *blocks_in_bfs_order;
805 basic_block bb;
806 bitmap visited;
807 unsigned int index = 0;
808 unsigned int visited_count = 0;
809
810 gcc_assert (loop->num_nodes);
811 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
812
813 blocks = XCNEWVEC (basic_block, loop->num_nodes);
814 visited = BITMAP_ALLOC (NULL);
815
816 blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
817
818 index = 0;
819 while (index < loop->num_nodes)
820 {
821 bb = blocks_in_bfs_order [index];
822
823 if (bb->flags & BB_IRREDUCIBLE_LOOP)
824 {
825 free (blocks_in_bfs_order);
826 BITMAP_FREE (visited);
827 free (blocks);
828 return NULL;
829 }
830
831 if (!bitmap_bit_p (visited, bb->index))
832 {
833 if (pred_blocks_visited_p (bb, &visited)
834 || bb == loop->header)
835 {
836 /* This block is now visited. */
837 bitmap_set_bit (visited, bb->index);
838 blocks[visited_count++] = bb;
839 }
840 }
841
842 index++;
843
844 if (index == loop->num_nodes
845 && visited_count != loop->num_nodes)
846 /* Not done yet. */
847 index = 0;
848 }
849 free (blocks_in_bfs_order);
850 BITMAP_FREE (visited);
851 return blocks;
852 }
853
854 /* Returns true when the analysis of the predicates for all the basic
855 blocks in LOOP succeeded.
856
857 predicate_bbs first allocates the predicates of the basic blocks.
858 These fields are then initialized with the tree expressions
859 representing the predicates under which a basic block is executed
860 in the LOOP. As the loop->header is executed at each iteration, it
861 has the "true" predicate. Other statements executed under a
862 condition are predicated with that condition, for example
863
864 | if (x)
865 | S1;
866 | else
867 | S2;
868
869 S1 will be predicated with "x", and
870 S2 will be predicated with "!x". */
871
872 static bool
873 predicate_bbs (loop_p loop)
874 {
875 unsigned int i;
876
877 for (i = 0; i < loop->num_nodes; i++)
878 init_bb_predicate (ifc_bbs[i]);
879
880 for (i = 0; i < loop->num_nodes; i++)
881 {
882 basic_block bb = ifc_bbs[i];
883 tree cond;
884 gimple_stmt_iterator itr;
885
886 /* The loop latch is always executed and has no extra conditions
887 to be processed: skip it. */
888 if (bb == loop->latch)
889 {
890 reset_bb_predicate (loop->latch);
891 continue;
892 }
893
894 cond = bb_predicate (bb);
895 if (cond
896 && bb != loop->header)
897 {
898 gimple_seq stmts;
899
900 cond = force_gimple_operand (cond, &stmts, true, NULL_TREE);
901 add_bb_predicate_gimplified_stmts (bb, stmts);
902 }
903
904 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
905 {
906 gimple stmt = gsi_stmt (itr);
907
908 switch (gimple_code (stmt))
909 {
910 case GIMPLE_LABEL:
911 case GIMPLE_ASSIGN:
912 case GIMPLE_CALL:
913 case GIMPLE_DEBUG:
914 break;
915
916 case GIMPLE_COND:
917 {
918 tree c2, tem;
919 edge true_edge, false_edge;
920 location_t loc = gimple_location (stmt);
921 tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
922 boolean_type_node,
923 gimple_cond_lhs (stmt),
924 gimple_cond_rhs (stmt));
925
926 /* Add new condition into destination's predicate list. */
927 extract_true_false_edges_from_block (gimple_bb (stmt),
928 &true_edge, &false_edge);
929
930 /* If C is true, then TRUE_EDGE is taken. */
931 add_to_dst_predicate_list (loop, true_edge, cond, unshare_expr (c));
932
933 /* If C is false, then FALSE_EDGE is taken. */
934 c2 = invert_truthvalue_loc (loc, unshare_expr (c));
935 tem = canonicalize_cond_expr_cond (c2);
936 if (tem)
937 c2 = tem;
938 add_to_dst_predicate_list (loop, false_edge, cond, c2);
939
940 cond = NULL_TREE;
941 break;
942 }
943
944 default:
945 /* Not handled yet in if-conversion. */
946 return false;
947 }
948 }
949
950 /* If current bb has only one successor, then consider it as an
951 unconditional goto. */
952 if (single_succ_p (bb))
953 {
954 basic_block bb_n = single_succ (bb);
955
956 /* The successor bb inherits the predicate of its
957 predecessor. If there is no predicate in the predecessor
958 bb, then consider the successor bb as always executed. */
959 if (cond == NULL_TREE)
960 cond = boolean_true_node;
961
962 add_to_predicate_list (bb_n, cond);
963 }
964 }
965
966 /* The loop header is always executed. */
967 reset_bb_predicate (loop->header);
968 gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
969 && bb_predicate_gimplified_stmts (loop->latch) == NULL);
970
971 return true;
972 }
973
974 /* Return true when LOOP is if-convertible. This is a helper function
975 for if_convertible_loop_p. REFS and DDRS are initialized and freed
976 in if_convertible_loop_p. */
977
978 static bool
979 if_convertible_loop_p_1 (struct loop *loop,
980 VEC (data_reference_p, heap) **refs,
981 VEC (ddr_p, heap) **ddrs)
982 {
983 bool res;
984 unsigned int i;
985 basic_block exit_bb = NULL;
986
987 /* Don't if-convert the loop when the data dependences cannot be
988 computed: the loop won't be vectorized in that case. */
989 res = compute_data_dependences_for_loop (loop, true, refs, ddrs);
990 if (!res)
991 return false;
992
993 calculate_dominance_info (CDI_DOMINATORS);
994
995 /* Allow statements that can be handled during if-conversion. */
996 ifc_bbs = get_loop_body_in_if_conv_order (loop);
997 if (!ifc_bbs)
998 {
999 if (dump_file && (dump_flags & TDF_DETAILS))
1000 fprintf (dump_file, "Irreducible loop\n");
1001 return false;
1002 }
1003
1004 for (i = 0; i < loop->num_nodes; i++)
1005 {
1006 basic_block bb = ifc_bbs[i];
1007
1008 if (!if_convertible_bb_p (loop, bb, exit_bb))
1009 return false;
1010
1011 if (bb_with_exit_edge_p (loop, bb))
1012 exit_bb = bb;
1013 }
1014
1015 res = predicate_bbs (loop);
1016 if (!res)
1017 return false;
1018
1019 if (flag_tree_loop_if_convert_stores)
1020 {
1021 data_reference_p dr;
1022
1023 for (i = 0; VEC_iterate (data_reference_p, *refs, i, dr); i++)
1024 {
1025 dr->aux = XNEW (struct ifc_dr);
1026 DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1027 DR_RW_UNCONDITIONALLY (dr) = -1;
1028 }
1029 }
1030
1031 for (i = 0; i < loop->num_nodes; i++)
1032 {
1033 basic_block bb = ifc_bbs[i];
1034 gimple_stmt_iterator itr;
1035
1036 for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1037 if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr)))
1038 return false;
1039
1040 /* Check the if-convertibility of statements in predicated BBs. */
1041 if (is_predicated (bb))
1042 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1043 if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
1044 return false;
1045 }
1046
1047 if (dump_file)
1048 fprintf (dump_file, "Applying if-conversion\n");
1049
1050 return true;
1051 }
1052
1053 /* Return true when LOOP is if-convertible.
1054 LOOP is if-convertible if:
1055 - it is innermost,
1056 - it has two or more basic blocks,
1057 - it has only one exit,
1058 - loop header is not the exit edge,
1059 - if its basic blocks and phi nodes are if convertible. */
1060
1061 static bool
1062 if_convertible_loop_p (struct loop *loop)
1063 {
1064 edge e;
1065 edge_iterator ei;
1066 bool res = false;
1067 VEC (data_reference_p, heap) *refs;
1068 VEC (ddr_p, heap) *ddrs;
1069
1070 /* Handle only innermost loop. */
1071 if (!loop || loop->inner)
1072 {
1073 if (dump_file && (dump_flags & TDF_DETAILS))
1074 fprintf (dump_file, "not innermost loop\n");
1075 return false;
1076 }
1077
1078 /* If only one block, no need for if-conversion. */
1079 if (loop->num_nodes <= 2)
1080 {
1081 if (dump_file && (dump_flags & TDF_DETAILS))
1082 fprintf (dump_file, "less than 2 basic blocks\n");
1083 return false;
1084 }
1085
1086 /* More than one loop exit is too much to handle. */
1087 if (!single_exit (loop))
1088 {
1089 if (dump_file && (dump_flags & TDF_DETAILS))
1090 fprintf (dump_file, "multiple exits\n");
1091 return false;
1092 }
1093
1094 /* If one of the loop header's edge is an exit edge then do not
1095 apply if-conversion. */
1096 FOR_EACH_EDGE (e, ei, loop->header->succs)
1097 if (loop_exit_edge_p (loop, e))
1098 return false;
1099
1100 refs = VEC_alloc (data_reference_p, heap, 5);
1101 ddrs = VEC_alloc (ddr_p, heap, 25);
1102 res = if_convertible_loop_p_1 (loop, &refs, &ddrs);
1103
1104 if (flag_tree_loop_if_convert_stores)
1105 {
1106 data_reference_p dr;
1107 unsigned int i;
1108
1109 for (i = 0; VEC_iterate (data_reference_p, refs, i, dr); i++)
1110 free (dr->aux);
1111 }
1112
1113 free_data_refs (refs);
1114 free_dependence_relations (ddrs);
1115 return res;
1116 }
1117
1118 /* Basic block BB has two predecessors. Using predecessor's bb
1119 predicate, set an appropriate condition COND for the PHI node
1120 replacement. Return the true block whose phi arguments are
1121 selected when cond is true. LOOP is the loop containing the
1122 if-converted region, GSI is the place to insert the code for the
1123 if-conversion. */
1124
1125 static basic_block
1126 find_phi_replacement_condition (struct loop *loop,
1127 basic_block bb, tree *cond,
1128 gimple_stmt_iterator *gsi)
1129 {
1130 edge first_edge, second_edge;
1131 tree tmp_cond;
1132
1133 gcc_assert (EDGE_COUNT (bb->preds) == 2);
1134 first_edge = EDGE_PRED (bb, 0);
1135 second_edge = EDGE_PRED (bb, 1);
1136
1137 /* Use condition based on following criteria:
1138 1)
1139 S1: x = !c ? a : b;
1140
1141 S2: x = c ? b : a;
1142
1143 S2 is preferred over S1. Make 'b' first_bb and use its condition.
1144
1145 2) Do not make loop header first_bb.
1146
1147 3)
1148 S1: x = !(c == d)? a : b;
1149
1150 S21: t1 = c == d;
1151 S22: x = t1 ? b : a;
1152
1153 S3: x = (c == d) ? b : a;
1154
1155 S3 is preferred over S1 and S2*, Make 'b' first_bb and use
1156 its condition.
1157
1158 4) If pred B is dominated by pred A then use pred B's condition.
1159 See PR23115. */
1160
1161 /* Select condition that is not TRUTH_NOT_EXPR. */
1162 tmp_cond = bb_predicate (first_edge->src);
1163 gcc_assert (tmp_cond);
1164
1165 if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1166 {
1167 edge tmp_edge;
1168
1169 tmp_edge = first_edge;
1170 first_edge = second_edge;
1171 second_edge = tmp_edge;
1172 }
1173
1174 /* Check if FIRST_BB is loop header or not and make sure that
1175 FIRST_BB does not dominate SECOND_BB. */
1176 if (first_edge->src == loop->header
1177 || dominated_by_p (CDI_DOMINATORS,
1178 second_edge->src, first_edge->src))
1179 {
1180 *cond = bb_predicate (second_edge->src);
1181
1182 if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1183 *cond = invert_truthvalue (*cond);
1184 else
1185 /* Select non loop header bb. */
1186 first_edge = second_edge;
1187 }
1188 else
1189 *cond = bb_predicate (first_edge->src);
1190
1191 /* Gimplify the condition: the vectorizer prefers to have gimple
1192 values as conditions. Various targets use different means to
1193 communicate conditions in vector compare operations. Using a
1194 gimple value allows the compiler to emit vector compare and
1195 select RTL without exposing compare's result. */
1196 *cond = force_gimple_operand_gsi (gsi, unshare_expr (*cond),
1197 false, NULL_TREE,
1198 true, GSI_SAME_STMT);
1199 if (!is_gimple_reg (*cond) && !is_gimple_condexpr (*cond))
1200 *cond = ifc_temp_var (TREE_TYPE (*cond), unshare_expr (*cond), gsi);
1201
1202 gcc_assert (*cond);
1203
1204 return first_edge->src;
1205 }
1206
1207 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1208 This routine does not handle PHI nodes with more than two
1209 arguments.
1210
1211 For example,
1212 S1: A = PHI <x1(1), x2(5)
1213 is converted into,
1214 S2: A = cond ? x1 : x2;
1215
1216 The generated code is inserted at GSI that points to the top of
1217 basic block's statement list. When COND is true, phi arg from
1218 TRUE_BB is selected. */
1219
1220 static void
1221 predicate_scalar_phi (gimple phi, tree cond,
1222 basic_block true_bb,
1223 gimple_stmt_iterator *gsi)
1224 {
1225 gimple new_stmt;
1226 basic_block bb;
1227 tree rhs, res, arg, scev;
1228
1229 gcc_assert (gimple_code (phi) == GIMPLE_PHI
1230 && gimple_phi_num_args (phi) == 2);
1231
1232 res = gimple_phi_result (phi);
1233 /* Do not handle virtual phi nodes. */
1234 if (!is_gimple_reg (SSA_NAME_VAR (res)))
1235 return;
1236
1237 bb = gimple_bb (phi);
1238
1239 if ((arg = degenerate_phi_result (phi))
1240 || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1241 res))
1242 && !chrec_contains_undetermined (scev)
1243 && scev != res
1244 && (arg = gimple_phi_arg_def (phi, 0))))
1245 rhs = arg;
1246 else
1247 {
1248 tree arg_0, arg_1;
1249 /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
1250 if (EDGE_PRED (bb, 1)->src == true_bb)
1251 {
1252 arg_0 = gimple_phi_arg_def (phi, 1);
1253 arg_1 = gimple_phi_arg_def (phi, 0);
1254 }
1255 else
1256 {
1257 arg_0 = gimple_phi_arg_def (phi, 0);
1258 arg_1 = gimple_phi_arg_def (phi, 1);
1259 }
1260
1261 /* Build new RHS using selected condition and arguments. */
1262 rhs = build3 (COND_EXPR, TREE_TYPE (res),
1263 unshare_expr (cond), arg_0, arg_1);
1264 }
1265
1266 new_stmt = gimple_build_assign (res, rhs);
1267 SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt;
1268 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1269 update_stmt (new_stmt);
1270
1271 if (dump_file && (dump_flags & TDF_DETAILS))
1272 {
1273 fprintf (dump_file, "new phi replacement stmt\n");
1274 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1275 }
1276 }
1277
1278 /* Replaces in LOOP all the scalar phi nodes other than those in the
1279 LOOP->header block with conditional modify expressions. */
1280
1281 static void
1282 predicate_all_scalar_phis (struct loop *loop)
1283 {
1284 basic_block bb;
1285 unsigned int orig_loop_num_nodes = loop->num_nodes;
1286 unsigned int i;
1287
1288 for (i = 1; i < orig_loop_num_nodes; i++)
1289 {
1290 gimple phi;
1291 tree cond = NULL_TREE;
1292 gimple_stmt_iterator gsi, phi_gsi;
1293 basic_block true_bb = NULL;
1294 bb = ifc_bbs[i];
1295
1296 if (bb == loop->header)
1297 continue;
1298
1299 phi_gsi = gsi_start_phis (bb);
1300 if (gsi_end_p (phi_gsi))
1301 continue;
1302
1303 /* BB has two predecessors. Using predecessor's aux field, set
1304 appropriate condition for the PHI node replacement. */
1305 gsi = gsi_after_labels (bb);
1306 true_bb = find_phi_replacement_condition (loop, bb, &cond, &gsi);
1307
1308 while (!gsi_end_p (phi_gsi))
1309 {
1310 phi = gsi_stmt (phi_gsi);
1311 predicate_scalar_phi (phi, cond, true_bb, &gsi);
1312 release_phi_node (phi);
1313 gsi_next (&phi_gsi);
1314 }
1315
1316 set_phi_nodes (bb, NULL);
1317 }
1318 }
1319
1320 /* Insert in each basic block of LOOP the statements produced by the
1321 gimplification of the predicates. */
1322
1323 static void
1324 insert_gimplified_predicates (loop_p loop)
1325 {
1326 unsigned int i;
1327
1328 for (i = 0; i < loop->num_nodes; i++)
1329 {
1330 basic_block bb = ifc_bbs[i];
1331 gimple_seq stmts;
1332
1333 if (!is_predicated (bb))
1334 {
1335 /* Do not insert statements for a basic block that is not
1336 predicated. Also make sure that the predicate of the
1337 basic block is set to true. */
1338 reset_bb_predicate (bb);
1339 continue;
1340 }
1341
1342 stmts = bb_predicate_gimplified_stmts (bb);
1343 if (stmts)
1344 {
1345 if (flag_tree_loop_if_convert_stores)
1346 {
1347 /* Insert the predicate of the BB just after the label,
1348 as the if-conversion of memory writes will use this
1349 predicate. */
1350 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1351 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1352 }
1353 else
1354 {
1355 /* Insert the predicate of the BB at the end of the BB
1356 as this would reduce the register pressure: the only
1357 use of this predicate will be in successor BBs. */
1358 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1359
1360 if (gsi_end_p (gsi)
1361 || stmt_ends_bb_p (gsi_stmt (gsi)))
1362 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1363 else
1364 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1365 }
1366
1367 /* Once the sequence is code generated, set it to NULL. */
1368 set_bb_predicate_gimplified_stmts (bb, NULL);
1369 }
1370 }
1371 }
1372
1373 /* Predicate each write to memory in LOOP.
1374
1375 This function transforms control flow constructs containing memory
1376 writes of the form:
1377
1378 | for (i = 0; i < N; i++)
1379 | if (cond)
1380 | A[i] = expr;
1381
1382 into the following form that does not contain control flow:
1383
1384 | for (i = 0; i < N; i++)
1385 | A[i] = cond ? expr : A[i];
1386
1387 The original CFG looks like this:
1388
1389 | bb_0
1390 | i = 0
1391 | end_bb_0
1392 |
1393 | bb_1
1394 | if (i < N) goto bb_5 else goto bb_2
1395 | end_bb_1
1396 |
1397 | bb_2
1398 | cond = some_computation;
1399 | if (cond) goto bb_3 else goto bb_4
1400 | end_bb_2
1401 |
1402 | bb_3
1403 | A[i] = expr;
1404 | goto bb_4
1405 | end_bb_3
1406 |
1407 | bb_4
1408 | goto bb_1
1409 | end_bb_4
1410
1411 insert_gimplified_predicates inserts the computation of the COND
1412 expression at the beginning of the destination basic block:
1413
1414 | bb_0
1415 | i = 0
1416 | end_bb_0
1417 |
1418 | bb_1
1419 | if (i < N) goto bb_5 else goto bb_2
1420 | end_bb_1
1421 |
1422 | bb_2
1423 | cond = some_computation;
1424 | if (cond) goto bb_3 else goto bb_4
1425 | end_bb_2
1426 |
1427 | bb_3
1428 | cond = some_computation;
1429 | A[i] = expr;
1430 | goto bb_4
1431 | end_bb_3
1432 |
1433 | bb_4
1434 | goto bb_1
1435 | end_bb_4
1436
1437 predicate_mem_writes is then predicating the memory write as follows:
1438
1439 | bb_0
1440 | i = 0
1441 | end_bb_0
1442 |
1443 | bb_1
1444 | if (i < N) goto bb_5 else goto bb_2
1445 | end_bb_1
1446 |
1447 | bb_2
1448 | if (cond) goto bb_3 else goto bb_4
1449 | end_bb_2
1450 |
1451 | bb_3
1452 | cond = some_computation;
1453 | A[i] = cond ? expr : A[i];
1454 | goto bb_4
1455 | end_bb_3
1456 |
1457 | bb_4
1458 | goto bb_1
1459 | end_bb_4
1460
1461 and finally combine_blocks removes the basic block boundaries making
1462 the loop vectorizable:
1463
1464 | bb_0
1465 | i = 0
1466 | if (i < N) goto bb_5 else goto bb_1
1467 | end_bb_0
1468 |
1469 | bb_1
1470 | cond = some_computation;
1471 | A[i] = cond ? expr : A[i];
1472 | if (i < N) goto bb_5 else goto bb_4
1473 | end_bb_1
1474 |
1475 | bb_4
1476 | goto bb_1
1477 | end_bb_4
1478 */
1479
1480 static void
1481 predicate_mem_writes (loop_p loop)
1482 {
1483 unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1484
1485 for (i = 1; i < orig_loop_num_nodes; i++)
1486 {
1487 gimple_stmt_iterator gsi;
1488 basic_block bb = ifc_bbs[i];
1489 tree cond = bb_predicate (bb);
1490 gimple stmt;
1491
1492 if (is_true_predicate (cond))
1493 continue;
1494
1495 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1496 if ((stmt = gsi_stmt (gsi))
1497 && gimple_assign_single_p (stmt)
1498 && gimple_vdef (stmt))
1499 {
1500 tree lhs = gimple_assign_lhs (stmt);
1501 tree rhs = gimple_assign_rhs1 (stmt);
1502 tree type = TREE_TYPE (lhs);
1503
1504 lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1505 rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1506 rhs = build3 (COND_EXPR, type, unshare_expr (cond), rhs, lhs);
1507 gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1508 update_stmt (stmt);
1509 }
1510 }
1511 }
1512
1513 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1514 other than the exit and latch of the LOOP. Also resets the
1515 GIMPLE_DEBUG information. */
1516
1517 static void
1518 remove_conditions_and_labels (loop_p loop)
1519 {
1520 gimple_stmt_iterator gsi;
1521 unsigned int i;
1522
1523 for (i = 0; i < loop->num_nodes; i++)
1524 {
1525 basic_block bb = ifc_bbs[i];
1526
1527 if (bb_with_exit_edge_p (loop, bb)
1528 || bb == loop->latch)
1529 continue;
1530
1531 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1532 switch (gimple_code (gsi_stmt (gsi)))
1533 {
1534 case GIMPLE_COND:
1535 case GIMPLE_LABEL:
1536 gsi_remove (&gsi, true);
1537 break;
1538
1539 case GIMPLE_DEBUG:
1540 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
1541 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1542 {
1543 gimple_debug_bind_reset_value (gsi_stmt (gsi));
1544 update_stmt (gsi_stmt (gsi));
1545 }
1546 gsi_next (&gsi);
1547 break;
1548
1549 default:
1550 gsi_next (&gsi);
1551 }
1552 }
1553 }
1554
1555 /* Combine all the basic blocks from LOOP into one or two super basic
1556 blocks. Replace PHI nodes with conditional modify expressions. */
1557
1558 static void
1559 combine_blocks (struct loop *loop)
1560 {
1561 basic_block bb, exit_bb, merge_target_bb;
1562 unsigned int orig_loop_num_nodes = loop->num_nodes;
1563 unsigned int i;
1564 edge e;
1565 edge_iterator ei;
1566
1567 remove_conditions_and_labels (loop);
1568 insert_gimplified_predicates (loop);
1569 predicate_all_scalar_phis (loop);
1570
1571 if (flag_tree_loop_if_convert_stores)
1572 predicate_mem_writes (loop);
1573
1574 /* Merge basic blocks: first remove all the edges in the loop,
1575 except for those from the exit block. */
1576 exit_bb = NULL;
1577 for (i = 0; i < orig_loop_num_nodes; i++)
1578 {
1579 bb = ifc_bbs[i];
1580 if (bb_with_exit_edge_p (loop, bb))
1581 {
1582 exit_bb = bb;
1583 break;
1584 }
1585 }
1586 gcc_assert (exit_bb != loop->latch);
1587
1588 for (i = 1; i < orig_loop_num_nodes; i++)
1589 {
1590 bb = ifc_bbs[i];
1591
1592 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1593 {
1594 if (e->src == exit_bb)
1595 ei_next (&ei);
1596 else
1597 remove_edge (e);
1598 }
1599 }
1600
1601 if (exit_bb != NULL)
1602 {
1603 if (exit_bb != loop->header)
1604 {
1605 /* Connect this node to loop header. */
1606 make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
1607 set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
1608 }
1609
1610 /* Redirect non-exit edges to loop->latch. */
1611 FOR_EACH_EDGE (e, ei, exit_bb->succs)
1612 {
1613 if (!loop_exit_edge_p (loop, e))
1614 redirect_edge_and_branch (e, loop->latch);
1615 }
1616 set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
1617 }
1618 else
1619 {
1620 /* If the loop does not have an exit, reconnect header and latch. */
1621 make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
1622 set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
1623 }
1624
1625 merge_target_bb = loop->header;
1626 for (i = 1; i < orig_loop_num_nodes; i++)
1627 {
1628 gimple_stmt_iterator gsi;
1629 gimple_stmt_iterator last;
1630
1631 bb = ifc_bbs[i];
1632
1633 if (bb == exit_bb || bb == loop->latch)
1634 continue;
1635
1636 /* Make stmts member of loop->header. */
1637 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1638 gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
1639
1640 /* Update stmt list. */
1641 last = gsi_last_bb (merge_target_bb);
1642 gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
1643 set_bb_seq (bb, NULL);
1644
1645 delete_basic_block (bb);
1646 }
1647
1648 /* If possible, merge loop header to the block with the exit edge.
1649 This reduces the number of basic blocks to two, to please the
1650 vectorizer that handles only loops with two nodes. */
1651 if (exit_bb
1652 && exit_bb != loop->header
1653 && can_merge_blocks_p (loop->header, exit_bb))
1654 merge_blocks (loop->header, exit_bb);
1655 }
1656
1657 /* If-convert LOOP when it is legal. For the moment this pass has no
1658 profitability analysis. Returns true when something changed. */
1659
1660 static bool
1661 tree_if_conversion (struct loop *loop)
1662 {
1663 bool changed = false;
1664 ifc_bbs = NULL;
1665
1666 if (!if_convertible_loop_p (loop)
1667 || !dbg_cnt (if_conversion_tree))
1668 goto cleanup;
1669
1670 /* Now all statements are if-convertible. Combine all the basic
1671 blocks into one huge basic block doing the if-conversion
1672 on-the-fly. */
1673 combine_blocks (loop);
1674
1675 if (flag_tree_loop_if_convert_stores)
1676 mark_sym_for_renaming (gimple_vop (cfun));
1677
1678 changed = true;
1679
1680 cleanup:
1681 if (ifc_bbs)
1682 {
1683 unsigned int i;
1684
1685 for (i = 0; i < loop->num_nodes; i++)
1686 free_bb_predicate (ifc_bbs[i]);
1687
1688 free (ifc_bbs);
1689 ifc_bbs = NULL;
1690 }
1691
1692 return changed;
1693 }
1694
1695 /* Tree if-conversion pass management. */
1696
1697 static unsigned int
1698 main_tree_if_conversion (void)
1699 {
1700 loop_iterator li;
1701 struct loop *loop;
1702 bool changed = false;
1703 unsigned todo = 0;
1704
1705 if (number_of_loops () <= 1)
1706 return 0;
1707
1708 FOR_EACH_LOOP (li, loop, 0)
1709 changed |= tree_if_conversion (loop);
1710
1711 if (changed)
1712 todo |= TODO_cleanup_cfg;
1713
1714 if (changed && flag_tree_loop_if_convert_stores)
1715 todo |= TODO_update_ssa_only_virtuals;
1716
1717 return todo;
1718 }
1719
1720 /* Returns true when the if-conversion pass is enabled. */
1721
1722 static bool
1723 gate_tree_if_conversion (void)
1724 {
1725 return ((flag_tree_vectorize && flag_tree_loop_if_convert != 0)
1726 || flag_tree_loop_if_convert == 1
1727 || flag_tree_loop_if_convert_stores == 1);
1728 }
1729
1730 struct gimple_opt_pass pass_if_conversion =
1731 {
1732 {
1733 GIMPLE_PASS,
1734 "ifcvt", /* name */
1735 gate_tree_if_conversion, /* gate */
1736 main_tree_if_conversion, /* execute */
1737 NULL, /* sub */
1738 NULL, /* next */
1739 0, /* static_pass_number */
1740 TV_NONE, /* tv_id */
1741 PROP_cfg | PROP_ssa, /* properties_required */
1742 0, /* properties_provided */
1743 0, /* properties_destroyed */
1744 0, /* todo_flags_start */
1745 TODO_dump_func | TODO_verify_stmts | TODO_verify_flow
1746 /* todo_flags_finish */
1747 }
1748 };