tree-pass.h (TODO_verify_ssa, [...]): Remove.
[gcc.git] / gcc / tree-if-conv.c
1 /* If-conversion for vectorizer.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Devang Patel <dpatel@apple.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This pass implements a tree level if-conversion of loops. Its
22 initial goal is to help the vectorizer to vectorize loops with
23 conditions.
24
25 A short description of if-conversion:
26
27 o Decide if a loop is if-convertible or not.
28 o Walk all loop basic blocks in breadth first order (BFS order).
29 o Remove conditional statements (at the end of basic block)
30 and propagate condition into destination basic blocks'
31 predicate list.
32 o Replace modify expression with conditional modify expression
33 using current basic block's condition.
34 o Merge all basic blocks
35 o Replace phi nodes with conditional modify expr
36 o Merge all basic blocks into header
37
38 Sample transformation:
39
40 INPUT
41 -----
42
43 # i_23 = PHI <0(0), i_18(10)>;
44 <L0>:;
45 j_15 = A[i_23];
46 if (j_15 > 41) goto <L1>; else goto <L17>;
47
48 <L17>:;
49 goto <bb 3> (<L3>);
50
51 <L1>:;
52
53 # iftmp.2_4 = PHI <0(8), 42(2)>;
54 <L3>:;
55 A[i_23] = iftmp.2_4;
56 i_18 = i_23 + 1;
57 if (i_18 <= 15) goto <L19>; else goto <L18>;
58
59 <L19>:;
60 goto <bb 1> (<L0>);
61
62 <L18>:;
63
64 OUTPUT
65 ------
66
67 # i_23 = PHI <0(0), i_18(10)>;
68 <L0>:;
69 j_15 = A[i_23];
70
71 <L3>:;
72 iftmp.2_4 = j_15 > 41 ? 42 : 0;
73 A[i_23] = iftmp.2_4;
74 i_18 = i_23 + 1;
75 if (i_18 <= 15) goto <L19>; else goto <L18>;
76
77 <L19>:;
78 goto <bb 1> (<L0>);
79
80 <L18>:;
81 */
82
83 #include "config.h"
84 #include "system.h"
85 #include "coretypes.h"
86 #include "tm.h"
87 #include "tree.h"
88 #include "stor-layout.h"
89 #include "flags.h"
90 #include "basic-block.h"
91 #include "gimple-pretty-print.h"
92 #include "tree-ssa-alias.h"
93 #include "internal-fn.h"
94 #include "gimple-fold.h"
95 #include "gimple-expr.h"
96 #include "is-a.h"
97 #include "gimple.h"
98 #include "gimplify.h"
99 #include "gimple-iterator.h"
100 #include "gimplify-me.h"
101 #include "gimple-ssa.h"
102 #include "tree-cfg.h"
103 #include "tree-phinodes.h"
104 #include "ssa-iterators.h"
105 #include "stringpool.h"
106 #include "tree-ssanames.h"
107 #include "tree-into-ssa.h"
108 #include "tree-ssa.h"
109 #include "cfgloop.h"
110 #include "tree-chrec.h"
111 #include "tree-data-ref.h"
112 #include "tree-scalar-evolution.h"
113 #include "tree-ssa-loop-ivopts.h"
114 #include "tree-ssa-address.h"
115 #include "tree-pass.h"
116 #include "dbgcnt.h"
117 #include "expr.h"
118 #include "optabs.h"
119
120 /* List of basic blocks in if-conversion-suitable order. */
121 static basic_block *ifc_bbs;
122
123 /* Structure used to predicate basic blocks. This is attached to the
124 ->aux field of the BBs in the loop to be if-converted. */
125 typedef struct bb_predicate_s {
126
127 /* The condition under which this basic block is executed. */
128 tree predicate;
129
130 /* PREDICATE is gimplified, and the sequence of statements is
131 recorded here, in order to avoid the duplication of computations
132 that occur in previous conditions. See PR44483. */
133 gimple_seq predicate_gimplified_stmts;
134 } *bb_predicate_p;
135
136 /* Returns true when the basic block BB has a predicate. */
137
138 static inline bool
139 bb_has_predicate (basic_block bb)
140 {
141 return bb->aux != NULL;
142 }
143
144 /* Returns the gimplified predicate for basic block BB. */
145
146 static inline tree
147 bb_predicate (basic_block bb)
148 {
149 return ((bb_predicate_p) bb->aux)->predicate;
150 }
151
152 /* Sets the gimplified predicate COND for basic block BB. */
153
154 static inline void
155 set_bb_predicate (basic_block bb, tree cond)
156 {
157 gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
158 && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
159 || is_gimple_condexpr (cond));
160 ((bb_predicate_p) bb->aux)->predicate = cond;
161 }
162
163 /* Returns the sequence of statements of the gimplification of the
164 predicate for basic block BB. */
165
166 static inline gimple_seq
167 bb_predicate_gimplified_stmts (basic_block bb)
168 {
169 return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
170 }
171
172 /* Sets the sequence of statements STMTS of the gimplification of the
173 predicate for basic block BB. */
174
175 static inline void
176 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
177 {
178 ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
179 }
180
181 /* Adds the sequence of statements STMTS to the sequence of statements
182 of the predicate for basic block BB. */
183
184 static inline void
185 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
186 {
187 gimple_seq_add_seq
188 (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
189 }
190
191 /* Initializes to TRUE the predicate of basic block BB. */
192
193 static inline void
194 init_bb_predicate (basic_block bb)
195 {
196 bb->aux = XNEW (struct bb_predicate_s);
197 set_bb_predicate_gimplified_stmts (bb, NULL);
198 set_bb_predicate (bb, boolean_true_node);
199 }
200
201 /* Release the SSA_NAMEs associated with the predicate of basic block BB,
202 but don't actually free it. */
203
204 static inline void
205 release_bb_predicate (basic_block bb)
206 {
207 gimple_seq stmts = bb_predicate_gimplified_stmts (bb);
208 if (stmts)
209 {
210 gimple_stmt_iterator i;
211
212 for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
213 free_stmt_operands (cfun, gsi_stmt (i));
214 set_bb_predicate_gimplified_stmts (bb, NULL);
215 }
216 }
217
218 /* Free the predicate of basic block BB. */
219
220 static inline void
221 free_bb_predicate (basic_block bb)
222 {
223 if (!bb_has_predicate (bb))
224 return;
225
226 release_bb_predicate (bb);
227 free (bb->aux);
228 bb->aux = NULL;
229 }
230
231 /* Reinitialize predicate of BB with the true predicate. */
232
233 static inline void
234 reset_bb_predicate (basic_block bb)
235 {
236 if (!bb_has_predicate (bb))
237 init_bb_predicate (bb);
238 else
239 {
240 release_bb_predicate (bb);
241 set_bb_predicate (bb, boolean_true_node);
242 }
243 }
244
245 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
246 the expression EXPR. Inserts the statement created for this
247 computation before GSI and leaves the iterator GSI at the same
248 statement. */
249
250 static tree
251 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
252 {
253 tree new_name = make_temp_ssa_name (type, NULL, "_ifc_");
254 gimple stmt = gimple_build_assign (new_name, expr);
255 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
256 return new_name;
257 }
258
259 /* Return true when COND is a true predicate. */
260
261 static inline bool
262 is_true_predicate (tree cond)
263 {
264 return (cond == NULL_TREE
265 || cond == boolean_true_node
266 || integer_onep (cond));
267 }
268
269 /* Returns true when BB has a predicate that is not trivial: true or
270 NULL_TREE. */
271
272 static inline bool
273 is_predicated (basic_block bb)
274 {
275 return !is_true_predicate (bb_predicate (bb));
276 }
277
278 /* Parses the predicate COND and returns its comparison code and
279 operands OP0 and OP1. */
280
281 static enum tree_code
282 parse_predicate (tree cond, tree *op0, tree *op1)
283 {
284 gimple s;
285
286 if (TREE_CODE (cond) == SSA_NAME
287 && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
288 {
289 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
290 {
291 *op0 = gimple_assign_rhs1 (s);
292 *op1 = gimple_assign_rhs2 (s);
293 return gimple_assign_rhs_code (s);
294 }
295
296 else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
297 {
298 tree op = gimple_assign_rhs1 (s);
299 tree type = TREE_TYPE (op);
300 enum tree_code code = parse_predicate (op, op0, op1);
301
302 return code == ERROR_MARK ? ERROR_MARK
303 : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
304 }
305
306 return ERROR_MARK;
307 }
308
309 if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
310 {
311 *op0 = TREE_OPERAND (cond, 0);
312 *op1 = TREE_OPERAND (cond, 1);
313 return TREE_CODE (cond);
314 }
315
316 return ERROR_MARK;
317 }
318
319 /* Returns the fold of predicate C1 OR C2 at location LOC. */
320
321 static tree
322 fold_or_predicates (location_t loc, tree c1, tree c2)
323 {
324 tree op1a, op1b, op2a, op2b;
325 enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
326 enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
327
328 if (code1 != ERROR_MARK && code2 != ERROR_MARK)
329 {
330 tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
331 code2, op2a, op2b);
332 if (t)
333 return t;
334 }
335
336 return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
337 }
338
339 /* Returns true if N is either a constant or a SSA_NAME. */
340
341 static bool
342 constant_or_ssa_name (tree n)
343 {
344 switch (TREE_CODE (n))
345 {
346 case SSA_NAME:
347 case INTEGER_CST:
348 case REAL_CST:
349 case COMPLEX_CST:
350 case VECTOR_CST:
351 return true;
352 default:
353 return false;
354 }
355 }
356
357 /* Returns either a COND_EXPR or the folded expression if the folded
358 expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR,
359 a constant or a SSA_NAME. */
360
361 static tree
362 fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs)
363 {
364 tree rhs1, lhs1, cond_expr;
365 cond_expr = fold_ternary (COND_EXPR, type, cond,
366 rhs, lhs);
367
368 if (cond_expr == NULL_TREE)
369 return build3 (COND_EXPR, type, cond, rhs, lhs);
370
371 STRIP_USELESS_TYPE_CONVERSION (cond_expr);
372
373 if (constant_or_ssa_name (cond_expr))
374 return cond_expr;
375
376 if (TREE_CODE (cond_expr) == ABS_EXPR)
377 {
378 rhs1 = TREE_OPERAND (cond_expr, 1);
379 STRIP_USELESS_TYPE_CONVERSION (rhs1);
380 if (constant_or_ssa_name (rhs1))
381 return build1 (ABS_EXPR, type, rhs1);
382 }
383
384 if (TREE_CODE (cond_expr) == MIN_EXPR
385 || TREE_CODE (cond_expr) == MAX_EXPR)
386 {
387 lhs1 = TREE_OPERAND (cond_expr, 0);
388 STRIP_USELESS_TYPE_CONVERSION (lhs1);
389 rhs1 = TREE_OPERAND (cond_expr, 1);
390 STRIP_USELESS_TYPE_CONVERSION (rhs1);
391 if (constant_or_ssa_name (rhs1)
392 && constant_or_ssa_name (lhs1))
393 return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1);
394 }
395 return build3 (COND_EXPR, type, cond, rhs, lhs);
396 }
397
398 /* Add condition NC to the predicate list of basic block BB. LOOP is
399 the loop to be if-converted. */
400
401 static inline void
402 add_to_predicate_list (struct loop *loop, basic_block bb, tree nc)
403 {
404 tree bc, *tp;
405
406 if (is_true_predicate (nc))
407 return;
408
409 if (!is_predicated (bb))
410 {
411 /* If dominance tells us this basic block is always executed, don't
412 record any predicates for it. */
413 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
414 return;
415
416 bc = nc;
417 }
418 else
419 {
420 bc = bb_predicate (bb);
421 bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
422 if (is_true_predicate (bc))
423 {
424 reset_bb_predicate (bb);
425 return;
426 }
427 }
428
429 /* Allow a TRUTH_NOT_EXPR around the main predicate. */
430 if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
431 tp = &TREE_OPERAND (bc, 0);
432 else
433 tp = &bc;
434 if (!is_gimple_condexpr (*tp))
435 {
436 gimple_seq stmts;
437 *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
438 add_bb_predicate_gimplified_stmts (bb, stmts);
439 }
440 set_bb_predicate (bb, bc);
441 }
442
443 /* Add the condition COND to the previous condition PREV_COND, and add
444 this to the predicate list of the destination of edge E. LOOP is
445 the loop to be if-converted. */
446
447 static void
448 add_to_dst_predicate_list (struct loop *loop, edge e,
449 tree prev_cond, tree cond)
450 {
451 if (!flow_bb_inside_loop_p (loop, e->dest))
452 return;
453
454 if (!is_true_predicate (prev_cond))
455 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
456 prev_cond, cond);
457
458 add_to_predicate_list (loop, e->dest, cond);
459 }
460
461 /* Return true if one of the successor edges of BB exits LOOP. */
462
463 static bool
464 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
465 {
466 edge e;
467 edge_iterator ei;
468
469 FOR_EACH_EDGE (e, ei, bb->succs)
470 if (loop_exit_edge_p (loop, e))
471 return true;
472
473 return false;
474 }
475
476 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
477 and it belongs to basic block BB.
478
479 PHI is not if-convertible if:
480 - it has more than 2 arguments.
481
482 When the flag_tree_loop_if_convert_stores is not set, PHI is not
483 if-convertible if:
484 - a virtual PHI is immediately used in another PHI node,
485 - there is a virtual PHI in a BB other than the loop->header. */
486
487 static bool
488 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi,
489 bool any_mask_load_store)
490 {
491 if (dump_file && (dump_flags & TDF_DETAILS))
492 {
493 fprintf (dump_file, "-------------------------\n");
494 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
495 }
496
497 if (bb != loop->header && gimple_phi_num_args (phi) != 2)
498 {
499 if (dump_file && (dump_flags & TDF_DETAILS))
500 fprintf (dump_file, "More than two phi node args.\n");
501 return false;
502 }
503
504 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
505 return true;
506
507 /* When the flag_tree_loop_if_convert_stores is not set, check
508 that there are no memory writes in the branches of the loop to be
509 if-converted. */
510 if (virtual_operand_p (gimple_phi_result (phi)))
511 {
512 imm_use_iterator imm_iter;
513 use_operand_p use_p;
514
515 if (bb != loop->header)
516 {
517 if (dump_file && (dump_flags & TDF_DETAILS))
518 fprintf (dump_file, "Virtual phi not on loop->header.\n");
519 return false;
520 }
521
522 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
523 {
524 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
525 {
526 if (dump_file && (dump_flags & TDF_DETAILS))
527 fprintf (dump_file, "Difficult to handle this virtual phi.\n");
528 return false;
529 }
530 }
531 }
532
533 return true;
534 }
535
536 /* Records the status of a data reference. This struct is attached to
537 each DR->aux field. */
538
539 struct ifc_dr {
540 /* -1 when not initialized, 0 when false, 1 when true. */
541 int written_at_least_once;
542
543 /* -1 when not initialized, 0 when false, 1 when true. */
544 int rw_unconditionally;
545 };
546
547 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
548 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
549 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
550
551 /* Returns true when the memory references of STMT are read or written
552 unconditionally. In other words, this function returns true when
553 for every data reference A in STMT there exist other accesses to
554 a data reference with the same base with predicates that add up (OR-up) to
555 the true predicate: this ensures that the data reference A is touched
556 (read or written) on every iteration of the if-converted loop. */
557
558 static bool
559 memrefs_read_or_written_unconditionally (gimple stmt,
560 vec<data_reference_p> drs)
561 {
562 int i, j;
563 data_reference_p a, b;
564 tree ca = bb_predicate (gimple_bb (stmt));
565
566 for (i = 0; drs.iterate (i, &a); i++)
567 if (DR_STMT (a) == stmt)
568 {
569 bool found = false;
570 int x = DR_RW_UNCONDITIONALLY (a);
571
572 if (x == 0)
573 return false;
574
575 if (x == 1)
576 continue;
577
578 for (j = 0; drs.iterate (j, &b); j++)
579 {
580 tree ref_base_a = DR_REF (a);
581 tree ref_base_b = DR_REF (b);
582
583 if (DR_STMT (b) == stmt)
584 continue;
585
586 while (TREE_CODE (ref_base_a) == COMPONENT_REF
587 || TREE_CODE (ref_base_a) == IMAGPART_EXPR
588 || TREE_CODE (ref_base_a) == REALPART_EXPR)
589 ref_base_a = TREE_OPERAND (ref_base_a, 0);
590
591 while (TREE_CODE (ref_base_b) == COMPONENT_REF
592 || TREE_CODE (ref_base_b) == IMAGPART_EXPR
593 || TREE_CODE (ref_base_b) == REALPART_EXPR)
594 ref_base_b = TREE_OPERAND (ref_base_b, 0);
595
596 if (!operand_equal_p (ref_base_a, ref_base_b, 0))
597 {
598 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
599
600 if (DR_RW_UNCONDITIONALLY (b) == 1
601 || is_true_predicate (cb)
602 || is_true_predicate (ca
603 = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
604 {
605 DR_RW_UNCONDITIONALLY (a) = 1;
606 DR_RW_UNCONDITIONALLY (b) = 1;
607 found = true;
608 break;
609 }
610 }
611 }
612
613 if (!found)
614 {
615 DR_RW_UNCONDITIONALLY (a) = 0;
616 return false;
617 }
618 }
619
620 return true;
621 }
622
623 /* Returns true when the memory references of STMT are unconditionally
624 written. In other words, this function returns true when for every
625 data reference A written in STMT, there exist other writes to the
626 same data reference with predicates that add up (OR-up) to the true
627 predicate: this ensures that the data reference A is written on
628 every iteration of the if-converted loop. */
629
630 static bool
631 write_memrefs_written_at_least_once (gimple stmt,
632 vec<data_reference_p> drs)
633 {
634 int i, j;
635 data_reference_p a, b;
636 tree ca = bb_predicate (gimple_bb (stmt));
637
638 for (i = 0; drs.iterate (i, &a); i++)
639 if (DR_STMT (a) == stmt
640 && DR_IS_WRITE (a))
641 {
642 bool found = false;
643 int x = DR_WRITTEN_AT_LEAST_ONCE (a);
644
645 if (x == 0)
646 return false;
647
648 if (x == 1)
649 continue;
650
651 for (j = 0; drs.iterate (j, &b); j++)
652 if (DR_STMT (b) != stmt
653 && DR_IS_WRITE (b)
654 && same_data_refs_base_objects (a, b))
655 {
656 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
657
658 if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
659 || is_true_predicate (cb)
660 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
661 ca, cb)))
662 {
663 DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
664 DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
665 found = true;
666 break;
667 }
668 }
669
670 if (!found)
671 {
672 DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
673 return false;
674 }
675 }
676
677 return true;
678 }
679
680 /* Return true when the memory references of STMT won't trap in the
681 if-converted code. There are two things that we have to check for:
682
683 - writes to memory occur to writable memory: if-conversion of
684 memory writes transforms the conditional memory writes into
685 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
686 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
687 be executed at all in the original code, it may be a readonly
688 memory. To check that A is not const-qualified, we check that
689 there exists at least an unconditional write to A in the current
690 function.
691
692 - reads or writes to memory are valid memory accesses for every
693 iteration. To check that the memory accesses are correctly formed
694 and that we are allowed to read and write in these locations, we
695 check that the memory accesses to be if-converted occur at every
696 iteration unconditionally. */
697
698 static bool
699 ifcvt_memrefs_wont_trap (gimple stmt, vec<data_reference_p> refs)
700 {
701 return write_memrefs_written_at_least_once (stmt, refs)
702 && memrefs_read_or_written_unconditionally (stmt, refs);
703 }
704
705 /* Wrapper around gimple_could_trap_p refined for the needs of the
706 if-conversion. Try to prove that the memory accesses of STMT could
707 not trap in the innermost loop containing STMT. */
708
709 static bool
710 ifcvt_could_trap_p (gimple stmt, vec<data_reference_p> refs)
711 {
712 if (gimple_vuse (stmt)
713 && !gimple_could_trap_p_1 (stmt, false, false)
714 && ifcvt_memrefs_wont_trap (stmt, refs))
715 return false;
716
717 return gimple_could_trap_p (stmt);
718 }
719
720 /* Return true if STMT could be converted into a masked load or store
721 (conditional load or store based on a mask computed from bb predicate). */
722
723 static bool
724 ifcvt_can_use_mask_load_store (gimple stmt)
725 {
726 tree lhs, ref;
727 enum machine_mode mode;
728 basic_block bb = gimple_bb (stmt);
729 bool is_load;
730
731 if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize)
732 || bb->loop_father->dont_vectorize
733 || !gimple_assign_single_p (stmt)
734 || gimple_has_volatile_ops (stmt))
735 return false;
736
737 /* Check whether this is a load or store. */
738 lhs = gimple_assign_lhs (stmt);
739 if (gimple_store_p (stmt))
740 {
741 if (!is_gimple_val (gimple_assign_rhs1 (stmt)))
742 return false;
743 is_load = false;
744 ref = lhs;
745 }
746 else if (gimple_assign_load_p (stmt))
747 {
748 is_load = true;
749 ref = gimple_assign_rhs1 (stmt);
750 }
751 else
752 return false;
753
754 if (may_be_nonaddressable_p (ref))
755 return false;
756
757 /* Mask should be integer mode of the same size as the load/store
758 mode. */
759 mode = TYPE_MODE (TREE_TYPE (lhs));
760 if (int_mode_for_mode (mode) == BLKmode
761 || VECTOR_MODE_P (mode))
762 return false;
763
764 if (can_vec_mask_load_store_p (mode, is_load))
765 return true;
766
767 return false;
768 }
769
770 /* Return true when STMT is if-convertible.
771
772 GIMPLE_ASSIGN statement is not if-convertible if,
773 - it is not movable,
774 - it could trap,
775 - LHS is not var decl. */
776
777 static bool
778 if_convertible_gimple_assign_stmt_p (gimple stmt,
779 vec<data_reference_p> refs,
780 bool *any_mask_load_store)
781 {
782 tree lhs = gimple_assign_lhs (stmt);
783 basic_block bb;
784
785 if (dump_file && (dump_flags & TDF_DETAILS))
786 {
787 fprintf (dump_file, "-------------------------\n");
788 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
789 }
790
791 if (!is_gimple_reg_type (TREE_TYPE (lhs)))
792 return false;
793
794 /* Some of these constrains might be too conservative. */
795 if (stmt_ends_bb_p (stmt)
796 || gimple_has_volatile_ops (stmt)
797 || (TREE_CODE (lhs) == SSA_NAME
798 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
799 || gimple_has_side_effects (stmt))
800 {
801 if (dump_file && (dump_flags & TDF_DETAILS))
802 fprintf (dump_file, "stmt not suitable for ifcvt\n");
803 return false;
804 }
805
806 /* tree-into-ssa.c uses GF_PLF_1, so avoid it, because
807 in between if_convertible_loop_p and combine_blocks
808 we can perform loop versioning. */
809 gimple_set_plf (stmt, GF_PLF_2, false);
810
811 if (flag_tree_loop_if_convert_stores)
812 {
813 if (ifcvt_could_trap_p (stmt, refs))
814 {
815 if (ifcvt_can_use_mask_load_store (stmt))
816 {
817 gimple_set_plf (stmt, GF_PLF_2, true);
818 *any_mask_load_store = true;
819 return true;
820 }
821 if (dump_file && (dump_flags & TDF_DETAILS))
822 fprintf (dump_file, "tree could trap...\n");
823 return false;
824 }
825 return true;
826 }
827
828 if (gimple_assign_rhs_could_trap_p (stmt))
829 {
830 if (ifcvt_can_use_mask_load_store (stmt))
831 {
832 gimple_set_plf (stmt, GF_PLF_2, true);
833 *any_mask_load_store = true;
834 return true;
835 }
836 if (dump_file && (dump_flags & TDF_DETAILS))
837 fprintf (dump_file, "tree could trap...\n");
838 return false;
839 }
840
841 bb = gimple_bb (stmt);
842
843 if (TREE_CODE (lhs) != SSA_NAME
844 && bb != bb->loop_father->header
845 && !bb_with_exit_edge_p (bb->loop_father, bb))
846 {
847 if (ifcvt_can_use_mask_load_store (stmt))
848 {
849 gimple_set_plf (stmt, GF_PLF_2, true);
850 *any_mask_load_store = true;
851 return true;
852 }
853 if (dump_file && (dump_flags & TDF_DETAILS))
854 {
855 fprintf (dump_file, "LHS is not var\n");
856 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
857 }
858 return false;
859 }
860
861 return true;
862 }
863
864 /* Return true when STMT is if-convertible.
865
866 A statement is if-convertible if:
867 - it is an if-convertible GIMPLE_ASSIGN,
868 - it is a GIMPLE_LABEL or a GIMPLE_COND. */
869
870 static bool
871 if_convertible_stmt_p (gimple stmt, vec<data_reference_p> refs,
872 bool *any_mask_load_store)
873 {
874 switch (gimple_code (stmt))
875 {
876 case GIMPLE_LABEL:
877 case GIMPLE_DEBUG:
878 case GIMPLE_COND:
879 return true;
880
881 case GIMPLE_ASSIGN:
882 return if_convertible_gimple_assign_stmt_p (stmt, refs,
883 any_mask_load_store);
884
885 case GIMPLE_CALL:
886 {
887 tree fndecl = gimple_call_fndecl (stmt);
888 if (fndecl)
889 {
890 int flags = gimple_call_flags (stmt);
891 if ((flags & ECF_CONST)
892 && !(flags & ECF_LOOPING_CONST_OR_PURE)
893 /* We can only vectorize some builtins at the moment,
894 so restrict if-conversion to those. */
895 && DECL_BUILT_IN (fndecl))
896 return true;
897 }
898 return false;
899 }
900
901 default:
902 /* Don't know what to do with 'em so don't do anything. */
903 if (dump_file && (dump_flags & TDF_DETAILS))
904 {
905 fprintf (dump_file, "don't know what to do\n");
906 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
907 }
908 return false;
909 break;
910 }
911
912 return true;
913 }
914
915 /* Return true when BB is if-convertible. This routine does not check
916 basic block's statements and phis.
917
918 A basic block is not if-convertible if:
919 - it is non-empty and it is after the exit block (in BFS order),
920 - it is after the exit block but before the latch,
921 - its edges are not normal.
922
923 EXIT_BB is the basic block containing the exit of the LOOP. BB is
924 inside LOOP. */
925
926 static bool
927 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
928 {
929 edge e;
930 edge_iterator ei;
931
932 if (dump_file && (dump_flags & TDF_DETAILS))
933 fprintf (dump_file, "----------[%d]-------------\n", bb->index);
934
935 if (EDGE_COUNT (bb->preds) > 2
936 || EDGE_COUNT (bb->succs) > 2)
937 return false;
938
939 if (exit_bb)
940 {
941 if (bb != loop->latch)
942 {
943 if (dump_file && (dump_flags & TDF_DETAILS))
944 fprintf (dump_file, "basic block after exit bb but before latch\n");
945 return false;
946 }
947 else if (!empty_block_p (bb))
948 {
949 if (dump_file && (dump_flags & TDF_DETAILS))
950 fprintf (dump_file, "non empty basic block after exit bb\n");
951 return false;
952 }
953 else if (bb == loop->latch
954 && bb != exit_bb
955 && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
956 {
957 if (dump_file && (dump_flags & TDF_DETAILS))
958 fprintf (dump_file, "latch is not dominated by exit_block\n");
959 return false;
960 }
961 }
962
963 /* Be less adventurous and handle only normal edges. */
964 FOR_EACH_EDGE (e, ei, bb->succs)
965 if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
966 {
967 if (dump_file && (dump_flags & TDF_DETAILS))
968 fprintf (dump_file, "Difficult to handle edges\n");
969 return false;
970 }
971
972 /* At least one incoming edge has to be non-critical as otherwise edge
973 predicates are not equal to basic-block predicates of the edge
974 source. */
975 if (EDGE_COUNT (bb->preds) > 1
976 && bb != loop->header)
977 {
978 bool found = false;
979 FOR_EACH_EDGE (e, ei, bb->preds)
980 if (EDGE_COUNT (e->src->succs) == 1)
981 found = true;
982 if (!found)
983 {
984 if (dump_file && (dump_flags & TDF_DETAILS))
985 fprintf (dump_file, "only critical predecessors\n");
986 return false;
987 }
988 }
989
990 return true;
991 }
992
993 /* Return true when all predecessor blocks of BB are visited. The
994 VISITED bitmap keeps track of the visited blocks. */
995
996 static bool
997 pred_blocks_visited_p (basic_block bb, bitmap *visited)
998 {
999 edge e;
1000 edge_iterator ei;
1001 FOR_EACH_EDGE (e, ei, bb->preds)
1002 if (!bitmap_bit_p (*visited, e->src->index))
1003 return false;
1004
1005 return true;
1006 }
1007
1008 /* Get body of a LOOP in suitable order for if-conversion. It is
1009 caller's responsibility to deallocate basic block list.
1010 If-conversion suitable order is, breadth first sort (BFS) order
1011 with an additional constraint: select a block only if all its
1012 predecessors are already selected. */
1013
1014 static basic_block *
1015 get_loop_body_in_if_conv_order (const struct loop *loop)
1016 {
1017 basic_block *blocks, *blocks_in_bfs_order;
1018 basic_block bb;
1019 bitmap visited;
1020 unsigned int index = 0;
1021 unsigned int visited_count = 0;
1022
1023 gcc_assert (loop->num_nodes);
1024 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1025
1026 blocks = XCNEWVEC (basic_block, loop->num_nodes);
1027 visited = BITMAP_ALLOC (NULL);
1028
1029 blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
1030
1031 index = 0;
1032 while (index < loop->num_nodes)
1033 {
1034 bb = blocks_in_bfs_order [index];
1035
1036 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1037 {
1038 free (blocks_in_bfs_order);
1039 BITMAP_FREE (visited);
1040 free (blocks);
1041 return NULL;
1042 }
1043
1044 if (!bitmap_bit_p (visited, bb->index))
1045 {
1046 if (pred_blocks_visited_p (bb, &visited)
1047 || bb == loop->header)
1048 {
1049 /* This block is now visited. */
1050 bitmap_set_bit (visited, bb->index);
1051 blocks[visited_count++] = bb;
1052 }
1053 }
1054
1055 index++;
1056
1057 if (index == loop->num_nodes
1058 && visited_count != loop->num_nodes)
1059 /* Not done yet. */
1060 index = 0;
1061 }
1062 free (blocks_in_bfs_order);
1063 BITMAP_FREE (visited);
1064 return blocks;
1065 }
1066
1067 /* Returns true when the analysis of the predicates for all the basic
1068 blocks in LOOP succeeded.
1069
1070 predicate_bbs first allocates the predicates of the basic blocks.
1071 These fields are then initialized with the tree expressions
1072 representing the predicates under which a basic block is executed
1073 in the LOOP. As the loop->header is executed at each iteration, it
1074 has the "true" predicate. Other statements executed under a
1075 condition are predicated with that condition, for example
1076
1077 | if (x)
1078 | S1;
1079 | else
1080 | S2;
1081
1082 S1 will be predicated with "x", and
1083 S2 will be predicated with "!x". */
1084
1085 static void
1086 predicate_bbs (loop_p loop)
1087 {
1088 unsigned int i;
1089
1090 for (i = 0; i < loop->num_nodes; i++)
1091 init_bb_predicate (ifc_bbs[i]);
1092
1093 for (i = 0; i < loop->num_nodes; i++)
1094 {
1095 basic_block bb = ifc_bbs[i];
1096 tree cond;
1097 gimple stmt;
1098
1099 /* The loop latch is always executed and has no extra conditions
1100 to be processed: skip it. */
1101 if (bb == loop->latch)
1102 {
1103 reset_bb_predicate (loop->latch);
1104 continue;
1105 }
1106
1107 cond = bb_predicate (bb);
1108 stmt = last_stmt (bb);
1109 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1110 {
1111 tree c2;
1112 edge true_edge, false_edge;
1113 location_t loc = gimple_location (stmt);
1114 tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
1115 boolean_type_node,
1116 gimple_cond_lhs (stmt),
1117 gimple_cond_rhs (stmt));
1118
1119 /* Add new condition into destination's predicate list. */
1120 extract_true_false_edges_from_block (gimple_bb (stmt),
1121 &true_edge, &false_edge);
1122
1123 /* If C is true, then TRUE_EDGE is taken. */
1124 add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond),
1125 unshare_expr (c));
1126
1127 /* If C is false, then FALSE_EDGE is taken. */
1128 c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node,
1129 unshare_expr (c));
1130 add_to_dst_predicate_list (loop, false_edge,
1131 unshare_expr (cond), c2);
1132
1133 cond = NULL_TREE;
1134 }
1135
1136 /* If current bb has only one successor, then consider it as an
1137 unconditional goto. */
1138 if (single_succ_p (bb))
1139 {
1140 basic_block bb_n = single_succ (bb);
1141
1142 /* The successor bb inherits the predicate of its
1143 predecessor. If there is no predicate in the predecessor
1144 bb, then consider the successor bb as always executed. */
1145 if (cond == NULL_TREE)
1146 cond = boolean_true_node;
1147
1148 add_to_predicate_list (loop, bb_n, cond);
1149 }
1150 }
1151
1152 /* The loop header is always executed. */
1153 reset_bb_predicate (loop->header);
1154 gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
1155 && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1156 }
1157
1158 /* Return true when LOOP is if-convertible. This is a helper function
1159 for if_convertible_loop_p. REFS and DDRS are initialized and freed
1160 in if_convertible_loop_p. */
1161
1162 static bool
1163 if_convertible_loop_p_1 (struct loop *loop,
1164 vec<loop_p> *loop_nest,
1165 vec<data_reference_p> *refs,
1166 vec<ddr_p> *ddrs, bool *any_mask_load_store)
1167 {
1168 bool res;
1169 unsigned int i;
1170 basic_block exit_bb = NULL;
1171
1172 /* Don't if-convert the loop when the data dependences cannot be
1173 computed: the loop won't be vectorized in that case. */
1174 res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
1175 if (!res)
1176 return false;
1177
1178 calculate_dominance_info (CDI_DOMINATORS);
1179
1180 /* Allow statements that can be handled during if-conversion. */
1181 ifc_bbs = get_loop_body_in_if_conv_order (loop);
1182 if (!ifc_bbs)
1183 {
1184 if (dump_file && (dump_flags & TDF_DETAILS))
1185 fprintf (dump_file, "Irreducible loop\n");
1186 return false;
1187 }
1188
1189 for (i = 0; i < loop->num_nodes; i++)
1190 {
1191 basic_block bb = ifc_bbs[i];
1192
1193 if (!if_convertible_bb_p (loop, bb, exit_bb))
1194 return false;
1195
1196 if (bb_with_exit_edge_p (loop, bb))
1197 exit_bb = bb;
1198 }
1199
1200 for (i = 0; i < loop->num_nodes; i++)
1201 {
1202 basic_block bb = ifc_bbs[i];
1203 gimple_stmt_iterator gsi;
1204
1205 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1206 switch (gimple_code (gsi_stmt (gsi)))
1207 {
1208 case GIMPLE_LABEL:
1209 case GIMPLE_ASSIGN:
1210 case GIMPLE_CALL:
1211 case GIMPLE_DEBUG:
1212 case GIMPLE_COND:
1213 break;
1214 default:
1215 return false;
1216 }
1217 }
1218
1219 if (flag_tree_loop_if_convert_stores)
1220 {
1221 data_reference_p dr;
1222
1223 for (i = 0; refs->iterate (i, &dr); i++)
1224 {
1225 dr->aux = XNEW (struct ifc_dr);
1226 DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1227 DR_RW_UNCONDITIONALLY (dr) = -1;
1228 }
1229 predicate_bbs (loop);
1230 }
1231
1232 for (i = 0; i < loop->num_nodes; i++)
1233 {
1234 basic_block bb = ifc_bbs[i];
1235 gimple_stmt_iterator itr;
1236
1237 /* Check the if-convertibility of statements in predicated BBs. */
1238 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1239 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1240 if (!if_convertible_stmt_p (gsi_stmt (itr), *refs,
1241 any_mask_load_store))
1242 return false;
1243 }
1244
1245 if (flag_tree_loop_if_convert_stores)
1246 for (i = 0; i < loop->num_nodes; i++)
1247 free_bb_predicate (ifc_bbs[i]);
1248
1249 /* Checking PHIs needs to be done after stmts, as the fact whether there
1250 are any masked loads or stores affects the tests. */
1251 for (i = 0; i < loop->num_nodes; i++)
1252 {
1253 basic_block bb = ifc_bbs[i];
1254 gimple_stmt_iterator itr;
1255
1256 for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1257 if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr),
1258 *any_mask_load_store))
1259 return false;
1260 }
1261
1262 if (dump_file)
1263 fprintf (dump_file, "Applying if-conversion\n");
1264
1265 return true;
1266 }
1267
1268 /* Return true when LOOP is if-convertible.
1269 LOOP is if-convertible if:
1270 - it is innermost,
1271 - it has two or more basic blocks,
1272 - it has only one exit,
1273 - loop header is not the exit edge,
1274 - if its basic blocks and phi nodes are if convertible. */
1275
1276 static bool
1277 if_convertible_loop_p (struct loop *loop, bool *any_mask_load_store)
1278 {
1279 edge e;
1280 edge_iterator ei;
1281 bool res = false;
1282 vec<data_reference_p> refs;
1283 vec<ddr_p> ddrs;
1284
1285 /* Handle only innermost loop. */
1286 if (!loop || loop->inner)
1287 {
1288 if (dump_file && (dump_flags & TDF_DETAILS))
1289 fprintf (dump_file, "not innermost loop\n");
1290 return false;
1291 }
1292
1293 /* If only one block, no need for if-conversion. */
1294 if (loop->num_nodes <= 2)
1295 {
1296 if (dump_file && (dump_flags & TDF_DETAILS))
1297 fprintf (dump_file, "less than 2 basic blocks\n");
1298 return false;
1299 }
1300
1301 /* More than one loop exit is too much to handle. */
1302 if (!single_exit (loop))
1303 {
1304 if (dump_file && (dump_flags & TDF_DETAILS))
1305 fprintf (dump_file, "multiple exits\n");
1306 return false;
1307 }
1308
1309 /* If one of the loop header's edge is an exit edge then do not
1310 apply if-conversion. */
1311 FOR_EACH_EDGE (e, ei, loop->header->succs)
1312 if (loop_exit_edge_p (loop, e))
1313 return false;
1314
1315 refs.create (5);
1316 ddrs.create (25);
1317 auto_vec<loop_p, 3> loop_nest;
1318 res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs,
1319 any_mask_load_store);
1320
1321 if (flag_tree_loop_if_convert_stores)
1322 {
1323 data_reference_p dr;
1324 unsigned int i;
1325
1326 for (i = 0; refs.iterate (i, &dr); i++)
1327 free (dr->aux);
1328 }
1329
1330 free_data_refs (refs);
1331 free_dependence_relations (ddrs);
1332 return res;
1333 }
1334
1335 /* Basic block BB has two predecessors. Using predecessor's bb
1336 predicate, set an appropriate condition COND for the PHI node
1337 replacement. Return the true block whose phi arguments are
1338 selected when cond is true. LOOP is the loop containing the
1339 if-converted region, GSI is the place to insert the code for the
1340 if-conversion. */
1341
1342 static basic_block
1343 find_phi_replacement_condition (basic_block bb, tree *cond,
1344 gimple_stmt_iterator *gsi)
1345 {
1346 edge first_edge, second_edge;
1347 tree tmp_cond;
1348
1349 gcc_assert (EDGE_COUNT (bb->preds) == 2);
1350 first_edge = EDGE_PRED (bb, 0);
1351 second_edge = EDGE_PRED (bb, 1);
1352
1353 /* Prefer an edge with a not negated predicate.
1354 ??? That's a very weak cost model. */
1355 tmp_cond = bb_predicate (first_edge->src);
1356 gcc_assert (tmp_cond);
1357 if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1358 {
1359 edge tmp_edge;
1360
1361 tmp_edge = first_edge;
1362 first_edge = second_edge;
1363 second_edge = tmp_edge;
1364 }
1365
1366 /* Check if the edge we take the condition from is not critical.
1367 We know that at least one non-critical edge exists. */
1368 if (EDGE_COUNT (first_edge->src->succs) > 1)
1369 {
1370 *cond = bb_predicate (second_edge->src);
1371
1372 if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1373 *cond = TREE_OPERAND (*cond, 0);
1374 else
1375 /* Select non loop header bb. */
1376 first_edge = second_edge;
1377 }
1378 else
1379 *cond = bb_predicate (first_edge->src);
1380
1381 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1382 *cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (*cond),
1383 is_gimple_condexpr, NULL_TREE,
1384 true, GSI_SAME_STMT);
1385
1386 return first_edge->src;
1387 }
1388
1389 /* Returns true if def-stmt for phi argument ARG is simple increment/decrement
1390 which is in predicated basic block.
1391 In fact, the following PHI pattern is searching:
1392 loop-header:
1393 reduc_1 = PHI <..., reduc_2>
1394 ...
1395 if (...)
1396 reduc_3 = ...
1397 reduc_2 = PHI <reduc_1, reduc_3>
1398
1399 REDUC, OP0 and OP1 contain reduction stmt and its operands. */
1400
1401 static bool
1402 is_cond_scalar_reduction (gimple phi, gimple *reduc,
1403 tree *op0, tree *op1)
1404 {
1405 tree lhs, r_op1, r_op2;
1406 tree arg_0, arg_1;
1407 gimple stmt;
1408 gimple header_phi = NULL;
1409 enum tree_code reduction_op;
1410 struct loop *loop = gimple_bb (phi)->loop_father;
1411 edge latch_e = loop_latch_edge (loop);
1412
1413 arg_0 = PHI_ARG_DEF (phi, 0);
1414 arg_1 = PHI_ARG_DEF (phi, 1);
1415 if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME)
1416 return false;
1417
1418 if (gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI)
1419 {
1420 lhs = arg_1;
1421 header_phi = SSA_NAME_DEF_STMT (arg_0);
1422 stmt = SSA_NAME_DEF_STMT (arg_1);
1423 }
1424 else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI)
1425 {
1426 lhs = arg_0;
1427 header_phi = SSA_NAME_DEF_STMT (arg_1);
1428 stmt = SSA_NAME_DEF_STMT (arg_0);
1429 }
1430 else
1431 return false;
1432 if (gimple_bb (header_phi) != loop->header)
1433 return false;
1434
1435 if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi))
1436 return false;
1437
1438 if (gimple_code (stmt) != GIMPLE_ASSIGN
1439 || gimple_has_volatile_ops (stmt))
1440 return false;
1441
1442 if (!is_predicated (gimple_bb (stmt)))
1443 return false;
1444
1445 if (!has_single_use (lhs))
1446 return false;
1447
1448 reduction_op = gimple_assign_rhs_code (stmt);
1449 if (reduction_op != PLUS_EXPR && reduction_op != MINUS_EXPR)
1450 return false;
1451 r_op1 = gimple_assign_rhs1 (stmt);
1452 r_op2 = gimple_assign_rhs2 (stmt);
1453
1454 /* Make R_OP1 to hold reduction variable. */
1455 if (r_op2 == PHI_RESULT (header_phi)
1456 && reduction_op == PLUS_EXPR)
1457 {
1458 tree tmp = r_op1;
1459 r_op1 = r_op2;
1460 r_op2 = tmp;
1461 }
1462 else if (r_op1 != PHI_RESULT (header_phi))
1463 return false;
1464
1465 *op0 = r_op1; *op1 = r_op2;
1466 *reduc = stmt;
1467 return true;
1468 }
1469
1470 /* Converts conditional scalar reduction into unconditional form, e.g.
1471 bb_4
1472 if (_5 != 0) goto bb_5 else goto bb_6
1473 end_bb_4
1474 bb_5
1475 res_6 = res_13 + 1;
1476 end_bb_5
1477 bb_6
1478 # res_2 = PHI <res_13(4), res_6(5)>
1479 end_bb_6
1480
1481 will be converted into sequence
1482 _ifc__1 = _5 != 0 ? 1 : 0;
1483 res_2 = res_13 + _ifc__1;
1484 Argument SWAP tells that arguments of conditional expression should be
1485 swapped.
1486 Returns rhs of resulting PHI assignment. */
1487
1488 static tree
1489 convert_scalar_cond_reduction (gimple reduc, gimple_stmt_iterator *gsi,
1490 tree cond, tree op0, tree op1, bool swap)
1491 {
1492 gimple_stmt_iterator stmt_it;
1493 gimple new_assign;
1494 tree rhs;
1495 tree rhs1 = gimple_assign_rhs1 (reduc);
1496 tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_");
1497 tree c;
1498 tree zero = build_zero_cst (TREE_TYPE (rhs1));
1499
1500 if (dump_file && (dump_flags & TDF_DETAILS))
1501 {
1502 fprintf (dump_file, "Found cond scalar reduction.\n");
1503 print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM);
1504 }
1505
1506 /* Build cond expression using COND and constant operand
1507 of reduction rhs. */
1508 c = fold_build_cond_expr (TREE_TYPE (rhs1),
1509 unshare_expr (cond),
1510 swap ? zero : op1,
1511 swap ? op1 : zero);
1512
1513 /* Create assignment stmt and insert it at GSI. */
1514 new_assign = gimple_build_assign (tmp, c);
1515 gsi_insert_before (gsi, new_assign, GSI_SAME_STMT);
1516 /* Build rhs for unconditional increment/decrement. */
1517 rhs = fold_build2 (gimple_assign_rhs_code (reduc),
1518 TREE_TYPE (rhs1), op0, tmp);
1519
1520 /* Delete original reduction stmt. */
1521 stmt_it = gsi_for_stmt (reduc);
1522 gsi_remove (&stmt_it, true);
1523 release_defs (reduc);
1524 return rhs;
1525 }
1526
1527 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1528 This routine does not handle PHI nodes with more than two
1529 arguments.
1530
1531 For example,
1532 S1: A = PHI <x1(1), x2(5)>
1533 is converted into,
1534 S2: A = cond ? x1 : x2;
1535
1536 The generated code is inserted at GSI that points to the top of
1537 basic block's statement list. When COND is true, phi arg from
1538 TRUE_BB is selected. */
1539
1540 static void
1541 predicate_scalar_phi (gimple phi, tree cond,
1542 basic_block true_bb,
1543 gimple_stmt_iterator *gsi)
1544 {
1545 gimple new_stmt;
1546 basic_block bb;
1547 tree rhs, res, arg, scev;
1548
1549 gcc_assert (gimple_code (phi) == GIMPLE_PHI
1550 && gimple_phi_num_args (phi) == 2);
1551
1552 res = gimple_phi_result (phi);
1553 /* Do not handle virtual phi nodes. */
1554 if (virtual_operand_p (res))
1555 return;
1556
1557 bb = gimple_bb (phi);
1558
1559 if ((arg = degenerate_phi_result (phi))
1560 || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1561 res))
1562 && !chrec_contains_undetermined (scev)
1563 && scev != res
1564 && (arg = gimple_phi_arg_def (phi, 0))))
1565 rhs = arg;
1566 else
1567 {
1568 tree arg_0, arg_1;
1569 tree op0, op1;
1570 gimple reduc;
1571
1572 /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
1573 if (EDGE_PRED (bb, 1)->src == true_bb)
1574 {
1575 arg_0 = gimple_phi_arg_def (phi, 1);
1576 arg_1 = gimple_phi_arg_def (phi, 0);
1577 }
1578 else
1579 {
1580 arg_0 = gimple_phi_arg_def (phi, 0);
1581 arg_1 = gimple_phi_arg_def (phi, 1);
1582 }
1583 if (is_cond_scalar_reduction (phi, &reduc, &op0, &op1))
1584 /* Convert reduction stmt into vectorizable form. */
1585 rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1,
1586 true_bb != gimple_bb (reduc));
1587 else
1588 /* Build new RHS using selected condition and arguments. */
1589 rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond),
1590 arg_0, arg_1);
1591 }
1592
1593 new_stmt = gimple_build_assign (res, rhs);
1594 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1595 update_stmt (new_stmt);
1596
1597 if (dump_file && (dump_flags & TDF_DETAILS))
1598 {
1599 fprintf (dump_file, "new phi replacement stmt\n");
1600 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1601 }
1602 }
1603
1604 /* Replaces in LOOP all the scalar phi nodes other than those in the
1605 LOOP->header block with conditional modify expressions. */
1606
1607 static void
1608 predicate_all_scalar_phis (struct loop *loop)
1609 {
1610 basic_block bb;
1611 unsigned int orig_loop_num_nodes = loop->num_nodes;
1612 unsigned int i;
1613
1614 for (i = 1; i < orig_loop_num_nodes; i++)
1615 {
1616 gimple phi;
1617 tree cond = NULL_TREE;
1618 gimple_stmt_iterator gsi, phi_gsi;
1619 basic_block true_bb = NULL;
1620 bb = ifc_bbs[i];
1621
1622 if (bb == loop->header)
1623 continue;
1624
1625 phi_gsi = gsi_start_phis (bb);
1626 if (gsi_end_p (phi_gsi))
1627 continue;
1628
1629 /* BB has two predecessors. Using predecessor's aux field, set
1630 appropriate condition for the PHI node replacement. */
1631 gsi = gsi_after_labels (bb);
1632 true_bb = find_phi_replacement_condition (bb, &cond, &gsi);
1633
1634 while (!gsi_end_p (phi_gsi))
1635 {
1636 phi = gsi_stmt (phi_gsi);
1637 predicate_scalar_phi (phi, cond, true_bb, &gsi);
1638 release_phi_node (phi);
1639 gsi_next (&phi_gsi);
1640 }
1641
1642 set_phi_nodes (bb, NULL);
1643 }
1644 }
1645
1646 /* Insert in each basic block of LOOP the statements produced by the
1647 gimplification of the predicates. */
1648
1649 static void
1650 insert_gimplified_predicates (loop_p loop, bool any_mask_load_store)
1651 {
1652 unsigned int i;
1653
1654 for (i = 0; i < loop->num_nodes; i++)
1655 {
1656 basic_block bb = ifc_bbs[i];
1657 gimple_seq stmts;
1658
1659 if (!is_predicated (bb))
1660 {
1661 /* Do not insert statements for a basic block that is not
1662 predicated. Also make sure that the predicate of the
1663 basic block is set to true. */
1664 reset_bb_predicate (bb);
1665 continue;
1666 }
1667
1668 stmts = bb_predicate_gimplified_stmts (bb);
1669 if (stmts)
1670 {
1671 if (flag_tree_loop_if_convert_stores
1672 || any_mask_load_store)
1673 {
1674 /* Insert the predicate of the BB just after the label,
1675 as the if-conversion of memory writes will use this
1676 predicate. */
1677 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1678 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1679 }
1680 else
1681 {
1682 /* Insert the predicate of the BB at the end of the BB
1683 as this would reduce the register pressure: the only
1684 use of this predicate will be in successor BBs. */
1685 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1686
1687 if (gsi_end_p (gsi)
1688 || stmt_ends_bb_p (gsi_stmt (gsi)))
1689 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1690 else
1691 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1692 }
1693
1694 /* Once the sequence is code generated, set it to NULL. */
1695 set_bb_predicate_gimplified_stmts (bb, NULL);
1696 }
1697 }
1698 }
1699
1700 /* Predicate each write to memory in LOOP.
1701
1702 This function transforms control flow constructs containing memory
1703 writes of the form:
1704
1705 | for (i = 0; i < N; i++)
1706 | if (cond)
1707 | A[i] = expr;
1708
1709 into the following form that does not contain control flow:
1710
1711 | for (i = 0; i < N; i++)
1712 | A[i] = cond ? expr : A[i];
1713
1714 The original CFG looks like this:
1715
1716 | bb_0
1717 | i = 0
1718 | end_bb_0
1719 |
1720 | bb_1
1721 | if (i < N) goto bb_5 else goto bb_2
1722 | end_bb_1
1723 |
1724 | bb_2
1725 | cond = some_computation;
1726 | if (cond) goto bb_3 else goto bb_4
1727 | end_bb_2
1728 |
1729 | bb_3
1730 | A[i] = expr;
1731 | goto bb_4
1732 | end_bb_3
1733 |
1734 | bb_4
1735 | goto bb_1
1736 | end_bb_4
1737
1738 insert_gimplified_predicates inserts the computation of the COND
1739 expression at the beginning of the destination basic block:
1740
1741 | bb_0
1742 | i = 0
1743 | end_bb_0
1744 |
1745 | bb_1
1746 | if (i < N) goto bb_5 else goto bb_2
1747 | end_bb_1
1748 |
1749 | bb_2
1750 | cond = some_computation;
1751 | if (cond) goto bb_3 else goto bb_4
1752 | end_bb_2
1753 |
1754 | bb_3
1755 | cond = some_computation;
1756 | A[i] = expr;
1757 | goto bb_4
1758 | end_bb_3
1759 |
1760 | bb_4
1761 | goto bb_1
1762 | end_bb_4
1763
1764 predicate_mem_writes is then predicating the memory write as follows:
1765
1766 | bb_0
1767 | i = 0
1768 | end_bb_0
1769 |
1770 | bb_1
1771 | if (i < N) goto bb_5 else goto bb_2
1772 | end_bb_1
1773 |
1774 | bb_2
1775 | if (cond) goto bb_3 else goto bb_4
1776 | end_bb_2
1777 |
1778 | bb_3
1779 | cond = some_computation;
1780 | A[i] = cond ? expr : A[i];
1781 | goto bb_4
1782 | end_bb_3
1783 |
1784 | bb_4
1785 | goto bb_1
1786 | end_bb_4
1787
1788 and finally combine_blocks removes the basic block boundaries making
1789 the loop vectorizable:
1790
1791 | bb_0
1792 | i = 0
1793 | if (i < N) goto bb_5 else goto bb_1
1794 | end_bb_0
1795 |
1796 | bb_1
1797 | cond = some_computation;
1798 | A[i] = cond ? expr : A[i];
1799 | if (i < N) goto bb_5 else goto bb_4
1800 | end_bb_1
1801 |
1802 | bb_4
1803 | goto bb_1
1804 | end_bb_4
1805 */
1806
1807 static void
1808 predicate_mem_writes (loop_p loop)
1809 {
1810 unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1811
1812 for (i = 1; i < orig_loop_num_nodes; i++)
1813 {
1814 gimple_stmt_iterator gsi;
1815 basic_block bb = ifc_bbs[i];
1816 tree cond = bb_predicate (bb);
1817 bool swap;
1818 gimple stmt;
1819
1820 if (is_true_predicate (cond))
1821 continue;
1822
1823 swap = false;
1824 if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1825 {
1826 swap = true;
1827 cond = TREE_OPERAND (cond, 0);
1828 }
1829
1830 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1831 if (!gimple_assign_single_p (stmt = gsi_stmt (gsi)))
1832 continue;
1833 else if (gimple_plf (stmt, GF_PLF_2))
1834 {
1835 tree lhs = gimple_assign_lhs (stmt);
1836 tree rhs = gimple_assign_rhs1 (stmt);
1837 tree ref, addr, ptr, masktype, mask_op0, mask_op1, mask;
1838 gimple new_stmt;
1839 int bitsize = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (lhs)));
1840
1841 masktype = build_nonstandard_integer_type (bitsize, 1);
1842 mask_op0 = build_int_cst (masktype, swap ? 0 : -1);
1843 mask_op1 = build_int_cst (masktype, swap ? -1 : 0);
1844 ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs;
1845 mark_addressable (ref);
1846 addr = force_gimple_operand_gsi (&gsi, build_fold_addr_expr (ref),
1847 true, NULL_TREE, true,
1848 GSI_SAME_STMT);
1849 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1850 is_gimple_condexpr, NULL_TREE,
1851 true, GSI_SAME_STMT);
1852 mask = fold_build_cond_expr (masktype, unshare_expr (cond),
1853 mask_op0, mask_op1);
1854 mask = ifc_temp_var (masktype, mask, &gsi);
1855 ptr = build_int_cst (reference_alias_ptr_type (ref), 0);
1856 /* Copy points-to info if possible. */
1857 if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr))
1858 copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr),
1859 ref);
1860 if (TREE_CODE (lhs) == SSA_NAME)
1861 {
1862 new_stmt
1863 = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr,
1864 ptr, mask);
1865 gimple_call_set_lhs (new_stmt, lhs);
1866 }
1867 else
1868 new_stmt
1869 = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr,
1870 mask, rhs);
1871 gsi_replace (&gsi, new_stmt, true);
1872 }
1873 else if (gimple_vdef (stmt))
1874 {
1875 tree lhs = gimple_assign_lhs (stmt);
1876 tree rhs = gimple_assign_rhs1 (stmt);
1877 tree type = TREE_TYPE (lhs);
1878
1879 lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1880 rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1881 if (swap)
1882 {
1883 tree tem = lhs;
1884 lhs = rhs;
1885 rhs = tem;
1886 }
1887 cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond),
1888 is_gimple_condexpr, NULL_TREE,
1889 true, GSI_SAME_STMT);
1890 rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs);
1891 gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1892 update_stmt (stmt);
1893 }
1894 }
1895 }
1896
1897 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1898 other than the exit and latch of the LOOP. Also resets the
1899 GIMPLE_DEBUG information. */
1900
1901 static void
1902 remove_conditions_and_labels (loop_p loop)
1903 {
1904 gimple_stmt_iterator gsi;
1905 unsigned int i;
1906
1907 for (i = 0; i < loop->num_nodes; i++)
1908 {
1909 basic_block bb = ifc_bbs[i];
1910
1911 if (bb_with_exit_edge_p (loop, bb)
1912 || bb == loop->latch)
1913 continue;
1914
1915 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1916 switch (gimple_code (gsi_stmt (gsi)))
1917 {
1918 case GIMPLE_COND:
1919 case GIMPLE_LABEL:
1920 gsi_remove (&gsi, true);
1921 break;
1922
1923 case GIMPLE_DEBUG:
1924 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
1925 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1926 {
1927 gimple_debug_bind_reset_value (gsi_stmt (gsi));
1928 update_stmt (gsi_stmt (gsi));
1929 }
1930 gsi_next (&gsi);
1931 break;
1932
1933 default:
1934 gsi_next (&gsi);
1935 }
1936 }
1937 }
1938
1939 /* Combine all the basic blocks from LOOP into one or two super basic
1940 blocks. Replace PHI nodes with conditional modify expressions. */
1941
1942 static void
1943 combine_blocks (struct loop *loop, bool any_mask_load_store)
1944 {
1945 basic_block bb, exit_bb, merge_target_bb;
1946 unsigned int orig_loop_num_nodes = loop->num_nodes;
1947 unsigned int i;
1948 edge e;
1949 edge_iterator ei;
1950
1951 predicate_bbs (loop);
1952 remove_conditions_and_labels (loop);
1953 insert_gimplified_predicates (loop, any_mask_load_store);
1954 predicate_all_scalar_phis (loop);
1955
1956 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
1957 predicate_mem_writes (loop);
1958
1959 /* Merge basic blocks: first remove all the edges in the loop,
1960 except for those from the exit block. */
1961 exit_bb = NULL;
1962 for (i = 0; i < orig_loop_num_nodes; i++)
1963 {
1964 bb = ifc_bbs[i];
1965 free_bb_predicate (bb);
1966 if (bb_with_exit_edge_p (loop, bb))
1967 {
1968 gcc_assert (exit_bb == NULL);
1969 exit_bb = bb;
1970 }
1971 }
1972 gcc_assert (exit_bb != loop->latch);
1973
1974 for (i = 1; i < orig_loop_num_nodes; i++)
1975 {
1976 bb = ifc_bbs[i];
1977
1978 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1979 {
1980 if (e->src == exit_bb)
1981 ei_next (&ei);
1982 else
1983 remove_edge (e);
1984 }
1985 }
1986
1987 if (exit_bb != NULL)
1988 {
1989 if (exit_bb != loop->header)
1990 {
1991 /* Connect this node to loop header. */
1992 make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
1993 set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
1994 }
1995
1996 /* Redirect non-exit edges to loop->latch. */
1997 FOR_EACH_EDGE (e, ei, exit_bb->succs)
1998 {
1999 if (!loop_exit_edge_p (loop, e))
2000 redirect_edge_and_branch (e, loop->latch);
2001 }
2002 set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
2003 }
2004 else
2005 {
2006 /* If the loop does not have an exit, reconnect header and latch. */
2007 make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
2008 set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
2009 }
2010
2011 merge_target_bb = loop->header;
2012 for (i = 1; i < orig_loop_num_nodes; i++)
2013 {
2014 gimple_stmt_iterator gsi;
2015 gimple_stmt_iterator last;
2016
2017 bb = ifc_bbs[i];
2018
2019 if (bb == exit_bb || bb == loop->latch)
2020 continue;
2021
2022 /* Make stmts member of loop->header. */
2023 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2024 gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
2025
2026 /* Update stmt list. */
2027 last = gsi_last_bb (merge_target_bb);
2028 gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
2029 set_bb_seq (bb, NULL);
2030
2031 delete_basic_block (bb);
2032 }
2033
2034 /* If possible, merge loop header to the block with the exit edge.
2035 This reduces the number of basic blocks to two, to please the
2036 vectorizer that handles only loops with two nodes. */
2037 if (exit_bb
2038 && exit_bb != loop->header
2039 && can_merge_blocks_p (loop->header, exit_bb))
2040 merge_blocks (loop->header, exit_bb);
2041
2042 free (ifc_bbs);
2043 ifc_bbs = NULL;
2044 }
2045
2046 /* Version LOOP before if-converting it, the original loop
2047 will be then if-converted, the new copy of the loop will not,
2048 and the LOOP_VECTORIZED internal call will be guarding which
2049 loop to execute. The vectorizer pass will fold this
2050 internal call into either true or false. */
2051
2052 static bool
2053 version_loop_for_if_conversion (struct loop *loop)
2054 {
2055 basic_block cond_bb;
2056 tree cond = make_ssa_name (boolean_type_node, NULL);
2057 struct loop *new_loop;
2058 gimple g;
2059 gimple_stmt_iterator gsi;
2060
2061 g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2,
2062 build_int_cst (integer_type_node, loop->num),
2063 integer_zero_node);
2064 gimple_call_set_lhs (g, cond);
2065
2066 initialize_original_copy_tables ();
2067 new_loop = loop_version (loop, cond, &cond_bb,
2068 REG_BR_PROB_BASE, REG_BR_PROB_BASE,
2069 REG_BR_PROB_BASE, true);
2070 free_original_copy_tables ();
2071 if (new_loop == NULL)
2072 return false;
2073 new_loop->dont_vectorize = true;
2074 new_loop->force_vectorize = false;
2075 gsi = gsi_last_bb (cond_bb);
2076 gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num));
2077 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2078 update_ssa (TODO_update_ssa);
2079 return true;
2080 }
2081
2082 /* If-convert LOOP when it is legal. For the moment this pass has no
2083 profitability analysis. Returns non-zero todo flags when something
2084 changed. */
2085
2086 static unsigned int
2087 tree_if_conversion (struct loop *loop)
2088 {
2089 unsigned int todo = 0;
2090 ifc_bbs = NULL;
2091 bool any_mask_load_store = false;
2092
2093 if (!if_convertible_loop_p (loop, &any_mask_load_store)
2094 || !dbg_cnt (if_conversion_tree))
2095 goto cleanup;
2096
2097 if (any_mask_load_store
2098 && ((!flag_tree_loop_vectorize && !loop->force_vectorize)
2099 || loop->dont_vectorize))
2100 goto cleanup;
2101
2102 if (any_mask_load_store && !version_loop_for_if_conversion (loop))
2103 goto cleanup;
2104
2105 /* Now all statements are if-convertible. Combine all the basic
2106 blocks into one huge basic block doing the if-conversion
2107 on-the-fly. */
2108 combine_blocks (loop, any_mask_load_store);
2109
2110 todo |= TODO_cleanup_cfg;
2111 if (flag_tree_loop_if_convert_stores || any_mask_load_store)
2112 {
2113 mark_virtual_operands_for_renaming (cfun);
2114 todo |= TODO_update_ssa_only_virtuals;
2115 }
2116
2117 cleanup:
2118 if (ifc_bbs)
2119 {
2120 unsigned int i;
2121
2122 for (i = 0; i < loop->num_nodes; i++)
2123 free_bb_predicate (ifc_bbs[i]);
2124
2125 free (ifc_bbs);
2126 ifc_bbs = NULL;
2127 }
2128
2129 return todo;
2130 }
2131
2132 /* Tree if-conversion pass management. */
2133
2134 namespace {
2135
2136 const pass_data pass_data_if_conversion =
2137 {
2138 GIMPLE_PASS, /* type */
2139 "ifcvt", /* name */
2140 OPTGROUP_NONE, /* optinfo_flags */
2141 true, /* has_execute */
2142 TV_NONE, /* tv_id */
2143 ( PROP_cfg | PROP_ssa ), /* properties_required */
2144 0, /* properties_provided */
2145 0, /* properties_destroyed */
2146 0, /* todo_flags_start */
2147 0, /* todo_flags_finish */
2148 };
2149
2150 class pass_if_conversion : public gimple_opt_pass
2151 {
2152 public:
2153 pass_if_conversion (gcc::context *ctxt)
2154 : gimple_opt_pass (pass_data_if_conversion, ctxt)
2155 {}
2156
2157 /* opt_pass methods: */
2158 virtual bool gate (function *);
2159 virtual unsigned int execute (function *);
2160
2161 }; // class pass_if_conversion
2162
2163 bool
2164 pass_if_conversion::gate (function *fun)
2165 {
2166 return (((flag_tree_loop_vectorize || fun->has_force_vectorize_loops)
2167 && flag_tree_loop_if_convert != 0)
2168 || flag_tree_loop_if_convert == 1
2169 || flag_tree_loop_if_convert_stores == 1);
2170 }
2171
2172 unsigned int
2173 pass_if_conversion::execute (function *fun)
2174 {
2175 struct loop *loop;
2176 unsigned todo = 0;
2177
2178 if (number_of_loops (fun) <= 1)
2179 return 0;
2180
2181 FOR_EACH_LOOP (loop, 0)
2182 if (flag_tree_loop_if_convert == 1
2183 || flag_tree_loop_if_convert_stores == 1
2184 || ((flag_tree_loop_vectorize || loop->force_vectorize)
2185 && !loop->dont_vectorize))
2186 todo |= tree_if_conversion (loop);
2187
2188 #ifdef ENABLE_CHECKING
2189 {
2190 basic_block bb;
2191 FOR_EACH_BB_FN (bb, fun)
2192 gcc_assert (!bb->aux);
2193 }
2194 #endif
2195
2196 return todo;
2197 }
2198
2199 } // anon namespace
2200
2201 gimple_opt_pass *
2202 make_pass_if_conversion (gcc::context *ctxt)
2203 {
2204 return new pass_if_conversion (ctxt);
2205 }