re PR tree-optimization/50319 (if-conversion produces unvectorizable conditions)
[gcc.git] / gcc / tree-if-conv.c
1 /* If-conversion for vectorizer.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Devang Patel <dpatel@apple.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass implements a tree level if-conversion of loops. Its
23 initial goal is to help the vectorizer to vectorize loops with
24 conditions.
25
26 A short description of if-conversion:
27
28 o Decide if a loop is if-convertible or not.
29 o Walk all loop basic blocks in breadth first order (BFS order).
30 o Remove conditional statements (at the end of basic block)
31 and propagate condition into destination basic blocks'
32 predicate list.
33 o Replace modify expression with conditional modify expression
34 using current basic block's condition.
35 o Merge all basic blocks
36 o Replace phi nodes with conditional modify expr
37 o Merge all basic blocks into header
38
39 Sample transformation:
40
41 INPUT
42 -----
43
44 # i_23 = PHI <0(0), i_18(10)>;
45 <L0>:;
46 j_15 = A[i_23];
47 if (j_15 > 41) goto <L1>; else goto <L17>;
48
49 <L17>:;
50 goto <bb 3> (<L3>);
51
52 <L1>:;
53
54 # iftmp.2_4 = PHI <0(8), 42(2)>;
55 <L3>:;
56 A[i_23] = iftmp.2_4;
57 i_18 = i_23 + 1;
58 if (i_18 <= 15) goto <L19>; else goto <L18>;
59
60 <L19>:;
61 goto <bb 1> (<L0>);
62
63 <L18>:;
64
65 OUTPUT
66 ------
67
68 # i_23 = PHI <0(0), i_18(10)>;
69 <L0>:;
70 j_15 = A[i_23];
71
72 <L3>:;
73 iftmp.2_4 = j_15 > 41 ? 42 : 0;
74 A[i_23] = iftmp.2_4;
75 i_18 = i_23 + 1;
76 if (i_18 <= 15) goto <L19>; else goto <L18>;
77
78 <L19>:;
79 goto <bb 1> (<L0>);
80
81 <L18>:;
82 */
83
84 #include "config.h"
85 #include "system.h"
86 #include "coretypes.h"
87 #include "tm.h"
88 #include "tree.h"
89 #include "flags.h"
90 #include "timevar.h"
91 #include "basic-block.h"
92 #include "tree-pretty-print.h"
93 #include "gimple-pretty-print.h"
94 #include "tree-flow.h"
95 #include "tree-dump.h"
96 #include "cfgloop.h"
97 #include "tree-chrec.h"
98 #include "tree-data-ref.h"
99 #include "tree-scalar-evolution.h"
100 #include "tree-pass.h"
101 #include "dbgcnt.h"
102
103 /* List of basic blocks in if-conversion-suitable order. */
104 static basic_block *ifc_bbs;
105
106 /* Structure used to predicate basic blocks. This is attached to the
107 ->aux field of the BBs in the loop to be if-converted. */
108 typedef struct bb_predicate_s {
109
110 /* The condition under which this basic block is executed. */
111 tree predicate;
112
113 /* PREDICATE is gimplified, and the sequence of statements is
114 recorded here, in order to avoid the duplication of computations
115 that occur in previous conditions. See PR44483. */
116 gimple_seq predicate_gimplified_stmts;
117 } *bb_predicate_p;
118
119 /* Returns true when the basic block BB has a predicate. */
120
121 static inline bool
122 bb_has_predicate (basic_block bb)
123 {
124 return bb->aux != NULL;
125 }
126
127 /* Returns the gimplified predicate for basic block BB. */
128
129 static inline tree
130 bb_predicate (basic_block bb)
131 {
132 return ((bb_predicate_p) bb->aux)->predicate;
133 }
134
135 /* Sets the gimplified predicate COND for basic block BB. */
136
137 static inline void
138 set_bb_predicate (basic_block bb, tree cond)
139 {
140 gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR
141 && is_gimple_condexpr (TREE_OPERAND (cond, 0)))
142 || is_gimple_condexpr (cond));
143 ((bb_predicate_p) bb->aux)->predicate = cond;
144 }
145
146 /* Returns the sequence of statements of the gimplification of the
147 predicate for basic block BB. */
148
149 static inline gimple_seq
150 bb_predicate_gimplified_stmts (basic_block bb)
151 {
152 return ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts;
153 }
154
155 /* Sets the sequence of statements STMTS of the gimplification of the
156 predicate for basic block BB. */
157
158 static inline void
159 set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
160 {
161 ((bb_predicate_p) bb->aux)->predicate_gimplified_stmts = stmts;
162 }
163
164 /* Adds the sequence of statements STMTS to the sequence of statements
165 of the predicate for basic block BB. */
166
167 static inline void
168 add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts)
169 {
170 gimple_seq_add_seq
171 (&(((bb_predicate_p) bb->aux)->predicate_gimplified_stmts), stmts);
172 }
173
174 /* Initializes to TRUE the predicate of basic block BB. */
175
176 static inline void
177 init_bb_predicate (basic_block bb)
178 {
179 bb->aux = XNEW (struct bb_predicate_s);
180 set_bb_predicate_gimplified_stmts (bb, NULL);
181 set_bb_predicate (bb, boolean_true_node);
182 }
183
184 /* Free the predicate of basic block BB. */
185
186 static inline void
187 free_bb_predicate (basic_block bb)
188 {
189 gimple_seq stmts;
190
191 if (!bb_has_predicate (bb))
192 return;
193
194 /* Release the SSA_NAMEs created for the gimplification of the
195 predicate. */
196 stmts = bb_predicate_gimplified_stmts (bb);
197 if (stmts)
198 {
199 gimple_stmt_iterator i;
200
201 for (i = gsi_start (stmts); !gsi_end_p (i); gsi_next (&i))
202 free_stmt_operands (gsi_stmt (i));
203 }
204
205 free (bb->aux);
206 bb->aux = NULL;
207 }
208
209 /* Free the predicate of BB and reinitialize it with the true
210 predicate. */
211
212 static inline void
213 reset_bb_predicate (basic_block bb)
214 {
215 free_bb_predicate (bb);
216 init_bb_predicate (bb);
217 }
218
219 /* Returns a new SSA_NAME of type TYPE that is assigned the value of
220 the expression EXPR. Inserts the statement created for this
221 computation before GSI and leaves the iterator GSI at the same
222 statement. */
223
224 static tree
225 ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi)
226 {
227 const char *name = "_ifc_";
228 tree var, new_name;
229 gimple stmt;
230
231 /* Create new temporary variable. */
232 var = create_tmp_var (type, name);
233 add_referenced_var (var);
234
235 /* Build new statement to assign EXPR to new variable. */
236 stmt = gimple_build_assign (var, expr);
237
238 /* Get SSA name for the new variable and set make new statement
239 its definition statement. */
240 new_name = make_ssa_name (var, stmt);
241 gimple_assign_set_lhs (stmt, new_name);
242 SSA_NAME_DEF_STMT (new_name) = stmt;
243 update_stmt (stmt);
244
245 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
246 return gimple_assign_lhs (stmt);
247 }
248
249 /* Return true when COND is a true predicate. */
250
251 static inline bool
252 is_true_predicate (tree cond)
253 {
254 return (cond == NULL_TREE
255 || cond == boolean_true_node
256 || integer_onep (cond));
257 }
258
259 /* Returns true when BB has a predicate that is not trivial: true or
260 NULL_TREE. */
261
262 static inline bool
263 is_predicated (basic_block bb)
264 {
265 return !is_true_predicate (bb_predicate (bb));
266 }
267
268 /* Parses the predicate COND and returns its comparison code and
269 operands OP0 and OP1. */
270
271 static enum tree_code
272 parse_predicate (tree cond, tree *op0, tree *op1)
273 {
274 gimple s;
275
276 if (TREE_CODE (cond) == SSA_NAME
277 && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond)))
278 {
279 if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
280 {
281 *op0 = gimple_assign_rhs1 (s);
282 *op1 = gimple_assign_rhs2 (s);
283 return gimple_assign_rhs_code (s);
284 }
285
286 else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR)
287 {
288 tree op = gimple_assign_rhs1 (s);
289 tree type = TREE_TYPE (op);
290 enum tree_code code = parse_predicate (op, op0, op1);
291
292 return code == ERROR_MARK ? ERROR_MARK
293 : invert_tree_comparison (code, HONOR_NANS (TYPE_MODE (type)));
294 }
295
296 return ERROR_MARK;
297 }
298
299 if (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison)
300 {
301 *op0 = TREE_OPERAND (cond, 0);
302 *op1 = TREE_OPERAND (cond, 1);
303 return TREE_CODE (cond);
304 }
305
306 return ERROR_MARK;
307 }
308
309 /* Returns the fold of predicate C1 OR C2 at location LOC. */
310
311 static tree
312 fold_or_predicates (location_t loc, tree c1, tree c2)
313 {
314 tree op1a, op1b, op2a, op2b;
315 enum tree_code code1 = parse_predicate (c1, &op1a, &op1b);
316 enum tree_code code2 = parse_predicate (c2, &op2a, &op2b);
317
318 if (code1 != ERROR_MARK && code2 != ERROR_MARK)
319 {
320 tree t = maybe_fold_or_comparisons (code1, op1a, op1b,
321 code2, op2a, op2b);
322 if (t)
323 return t;
324 }
325
326 return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2);
327 }
328
329 /* Add condition NC to the predicate list of basic block BB. */
330
331 static inline void
332 add_to_predicate_list (basic_block bb, tree nc)
333 {
334 tree bc, *tp;
335
336 if (is_true_predicate (nc))
337 return;
338
339 if (!is_predicated (bb))
340 bc = nc;
341 else
342 {
343 bc = bb_predicate (bb);
344 bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc);
345 if (is_true_predicate (bc))
346 {
347 reset_bb_predicate (bb);
348 return;
349 }
350 }
351
352 /* Allow a TRUTH_NOT_EXPR around the main predicate. */
353 if (TREE_CODE (bc) == TRUTH_NOT_EXPR)
354 tp = &TREE_OPERAND (bc, 0);
355 else
356 tp = &bc;
357 if (!is_gimple_condexpr (*tp))
358 {
359 gimple_seq stmts;
360 *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE);
361 add_bb_predicate_gimplified_stmts (bb, stmts);
362 }
363 set_bb_predicate (bb, bc);
364 }
365
366 /* Add the condition COND to the previous condition PREV_COND, and add
367 this to the predicate list of the destination of edge E. LOOP is
368 the loop to be if-converted. */
369
370 static void
371 add_to_dst_predicate_list (struct loop *loop, edge e,
372 tree prev_cond, tree cond)
373 {
374 if (!flow_bb_inside_loop_p (loop, e->dest))
375 return;
376
377 if (!is_true_predicate (prev_cond))
378 cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
379 prev_cond, cond);
380
381 add_to_predicate_list (e->dest, cond);
382 }
383
384 /* Return true if one of the successor edges of BB exits LOOP. */
385
386 static bool
387 bb_with_exit_edge_p (struct loop *loop, basic_block bb)
388 {
389 edge e;
390 edge_iterator ei;
391
392 FOR_EACH_EDGE (e, ei, bb->succs)
393 if (loop_exit_edge_p (loop, e))
394 return true;
395
396 return false;
397 }
398
399 /* Return true when PHI is if-convertible. PHI is part of loop LOOP
400 and it belongs to basic block BB.
401
402 PHI is not if-convertible if:
403 - it has more than 2 arguments.
404
405 When the flag_tree_loop_if_convert_stores is not set, PHI is not
406 if-convertible if:
407 - a virtual PHI is immediately used in another PHI node,
408 - there is a virtual PHI in a BB other than the loop->header. */
409
410 static bool
411 if_convertible_phi_p (struct loop *loop, basic_block bb, gimple phi)
412 {
413 if (dump_file && (dump_flags & TDF_DETAILS))
414 {
415 fprintf (dump_file, "-------------------------\n");
416 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
417 }
418
419 if (bb != loop->header && gimple_phi_num_args (phi) != 2)
420 {
421 if (dump_file && (dump_flags & TDF_DETAILS))
422 fprintf (dump_file, "More than two phi node args.\n");
423 return false;
424 }
425
426 if (flag_tree_loop_if_convert_stores)
427 return true;
428
429 /* When the flag_tree_loop_if_convert_stores is not set, check
430 that there are no memory writes in the branches of the loop to be
431 if-converted. */
432 if (!is_gimple_reg (SSA_NAME_VAR (gimple_phi_result (phi))))
433 {
434 imm_use_iterator imm_iter;
435 use_operand_p use_p;
436
437 if (bb != loop->header)
438 {
439 if (dump_file && (dump_flags & TDF_DETAILS))
440 fprintf (dump_file, "Virtual phi not on loop->header.\n");
441 return false;
442 }
443
444 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (phi))
445 {
446 if (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
447 {
448 if (dump_file && (dump_flags & TDF_DETAILS))
449 fprintf (dump_file, "Difficult to handle this virtual phi.\n");
450 return false;
451 }
452 }
453 }
454
455 return true;
456 }
457
458 /* Records the status of a data reference. This struct is attached to
459 each DR->aux field. */
460
461 struct ifc_dr {
462 /* -1 when not initialized, 0 when false, 1 when true. */
463 int written_at_least_once;
464
465 /* -1 when not initialized, 0 when false, 1 when true. */
466 int rw_unconditionally;
467 };
468
469 #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux)
470 #define DR_WRITTEN_AT_LEAST_ONCE(DR) (IFC_DR (DR)->written_at_least_once)
471 #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally)
472
473 /* Returns true when the memory references of STMT are read or written
474 unconditionally. In other words, this function returns true when
475 for every data reference A in STMT there exist other accesses to
476 a data reference with the same base with predicates that add up (OR-up) to
477 the true predicate: this ensures that the data reference A is touched
478 (read or written) on every iteration of the if-converted loop. */
479
480 static bool
481 memrefs_read_or_written_unconditionally (gimple stmt,
482 VEC (data_reference_p, heap) *drs)
483 {
484 int i, j;
485 data_reference_p a, b;
486 tree ca = bb_predicate (gimple_bb (stmt));
487
488 for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
489 if (DR_STMT (a) == stmt)
490 {
491 bool found = false;
492 int x = DR_RW_UNCONDITIONALLY (a);
493
494 if (x == 0)
495 return false;
496
497 if (x == 1)
498 continue;
499
500 for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
501 {
502 tree ref_base_a = DR_REF (a);
503 tree ref_base_b = DR_REF (b);
504
505 if (DR_STMT (b) == stmt)
506 continue;
507
508 while (TREE_CODE (ref_base_a) == COMPONENT_REF
509 || TREE_CODE (ref_base_a) == IMAGPART_EXPR
510 || TREE_CODE (ref_base_a) == REALPART_EXPR)
511 ref_base_a = TREE_OPERAND (ref_base_a, 0);
512
513 while (TREE_CODE (ref_base_b) == COMPONENT_REF
514 || TREE_CODE (ref_base_b) == IMAGPART_EXPR
515 || TREE_CODE (ref_base_b) == REALPART_EXPR)
516 ref_base_b = TREE_OPERAND (ref_base_b, 0);
517
518 if (!operand_equal_p (ref_base_a, ref_base_b, 0))
519 {
520 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
521
522 if (DR_RW_UNCONDITIONALLY (b) == 1
523 || is_true_predicate (cb)
524 || is_true_predicate (ca
525 = fold_or_predicates (EXPR_LOCATION (cb), ca, cb)))
526 {
527 DR_RW_UNCONDITIONALLY (a) = 1;
528 DR_RW_UNCONDITIONALLY (b) = 1;
529 found = true;
530 break;
531 }
532 }
533 }
534
535 if (!found)
536 {
537 DR_RW_UNCONDITIONALLY (a) = 0;
538 return false;
539 }
540 }
541
542 return true;
543 }
544
545 /* Returns true when the memory references of STMT are unconditionally
546 written. In other words, this function returns true when for every
547 data reference A written in STMT, there exist other writes to the
548 same data reference with predicates that add up (OR-up) to the true
549 predicate: this ensures that the data reference A is written on
550 every iteration of the if-converted loop. */
551
552 static bool
553 write_memrefs_written_at_least_once (gimple stmt,
554 VEC (data_reference_p, heap) *drs)
555 {
556 int i, j;
557 data_reference_p a, b;
558 tree ca = bb_predicate (gimple_bb (stmt));
559
560 for (i = 0; VEC_iterate (data_reference_p, drs, i, a); i++)
561 if (DR_STMT (a) == stmt
562 && DR_IS_WRITE (a))
563 {
564 bool found = false;
565 int x = DR_WRITTEN_AT_LEAST_ONCE (a);
566
567 if (x == 0)
568 return false;
569
570 if (x == 1)
571 continue;
572
573 for (j = 0; VEC_iterate (data_reference_p, drs, j, b); j++)
574 if (DR_STMT (b) != stmt
575 && DR_IS_WRITE (b)
576 && same_data_refs_base_objects (a, b))
577 {
578 tree cb = bb_predicate (gimple_bb (DR_STMT (b)));
579
580 if (DR_WRITTEN_AT_LEAST_ONCE (b) == 1
581 || is_true_predicate (cb)
582 || is_true_predicate (ca = fold_or_predicates (EXPR_LOCATION (cb),
583 ca, cb)))
584 {
585 DR_WRITTEN_AT_LEAST_ONCE (a) = 1;
586 DR_WRITTEN_AT_LEAST_ONCE (b) = 1;
587 found = true;
588 break;
589 }
590 }
591
592 if (!found)
593 {
594 DR_WRITTEN_AT_LEAST_ONCE (a) = 0;
595 return false;
596 }
597 }
598
599 return true;
600 }
601
602 /* Return true when the memory references of STMT won't trap in the
603 if-converted code. There are two things that we have to check for:
604
605 - writes to memory occur to writable memory: if-conversion of
606 memory writes transforms the conditional memory writes into
607 unconditional writes, i.e. "if (cond) A[i] = foo" is transformed
608 into "A[i] = cond ? foo : A[i]", and as the write to memory may not
609 be executed at all in the original code, it may be a readonly
610 memory. To check that A is not const-qualified, we check that
611 there exists at least an unconditional write to A in the current
612 function.
613
614 - reads or writes to memory are valid memory accesses for every
615 iteration. To check that the memory accesses are correctly formed
616 and that we are allowed to read and write in these locations, we
617 check that the memory accesses to be if-converted occur at every
618 iteration unconditionally. */
619
620 static bool
621 ifcvt_memrefs_wont_trap (gimple stmt, VEC (data_reference_p, heap) *refs)
622 {
623 return write_memrefs_written_at_least_once (stmt, refs)
624 && memrefs_read_or_written_unconditionally (stmt, refs);
625 }
626
627 /* Wrapper around gimple_could_trap_p refined for the needs of the
628 if-conversion. Try to prove that the memory accesses of STMT could
629 not trap in the innermost loop containing STMT. */
630
631 static bool
632 ifcvt_could_trap_p (gimple stmt, VEC (data_reference_p, heap) *refs)
633 {
634 if (gimple_vuse (stmt)
635 && !gimple_could_trap_p_1 (stmt, false, false)
636 && ifcvt_memrefs_wont_trap (stmt, refs))
637 return false;
638
639 return gimple_could_trap_p (stmt);
640 }
641
642 /* Return true when STMT is if-convertible.
643
644 GIMPLE_ASSIGN statement is not if-convertible if,
645 - it is not movable,
646 - it could trap,
647 - LHS is not var decl. */
648
649 static bool
650 if_convertible_gimple_assign_stmt_p (gimple stmt,
651 VEC (data_reference_p, heap) *refs)
652 {
653 tree lhs = gimple_assign_lhs (stmt);
654 basic_block bb;
655
656 if (dump_file && (dump_flags & TDF_DETAILS))
657 {
658 fprintf (dump_file, "-------------------------\n");
659 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
660 }
661
662 if (!is_gimple_reg_type (TREE_TYPE (lhs)))
663 return false;
664
665 /* Some of these constrains might be too conservative. */
666 if (stmt_ends_bb_p (stmt)
667 || gimple_has_volatile_ops (stmt)
668 || (TREE_CODE (lhs) == SSA_NAME
669 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
670 || gimple_has_side_effects (stmt))
671 {
672 if (dump_file && (dump_flags & TDF_DETAILS))
673 fprintf (dump_file, "stmt not suitable for ifcvt\n");
674 return false;
675 }
676
677 if (flag_tree_loop_if_convert_stores)
678 {
679 if (ifcvt_could_trap_p (stmt, refs))
680 {
681 if (dump_file && (dump_flags & TDF_DETAILS))
682 fprintf (dump_file, "tree could trap...\n");
683 return false;
684 }
685 return true;
686 }
687
688 if (gimple_assign_rhs_could_trap_p (stmt))
689 {
690 if (dump_file && (dump_flags & TDF_DETAILS))
691 fprintf (dump_file, "tree could trap...\n");
692 return false;
693 }
694
695 bb = gimple_bb (stmt);
696
697 if (TREE_CODE (lhs) != SSA_NAME
698 && bb != bb->loop_father->header
699 && !bb_with_exit_edge_p (bb->loop_father, bb))
700 {
701 if (dump_file && (dump_flags & TDF_DETAILS))
702 {
703 fprintf (dump_file, "LHS is not var\n");
704 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
705 }
706 return false;
707 }
708
709 return true;
710 }
711
712 /* Return true when STMT is if-convertible.
713
714 A statement is if-convertible if:
715 - it is an if-convertible GIMPLE_ASSGIN,
716 - it is a GIMPLE_LABEL or a GIMPLE_COND. */
717
718 static bool
719 if_convertible_stmt_p (gimple stmt, VEC (data_reference_p, heap) *refs)
720 {
721 switch (gimple_code (stmt))
722 {
723 case GIMPLE_LABEL:
724 case GIMPLE_DEBUG:
725 case GIMPLE_COND:
726 return true;
727
728 case GIMPLE_ASSIGN:
729 return if_convertible_gimple_assign_stmt_p (stmt, refs);
730
731 case GIMPLE_CALL:
732 {
733 tree fndecl = gimple_call_fndecl (stmt);
734 if (fndecl)
735 {
736 int flags = gimple_call_flags (stmt);
737 if ((flags & ECF_CONST)
738 && !(flags & ECF_LOOPING_CONST_OR_PURE)
739 /* We can only vectorize some builtins at the moment,
740 so restrict if-conversion to those. */
741 && DECL_BUILT_IN (fndecl))
742 return true;
743 }
744 return false;
745 }
746
747 default:
748 /* Don't know what to do with 'em so don't do anything. */
749 if (dump_file && (dump_flags & TDF_DETAILS))
750 {
751 fprintf (dump_file, "don't know what to do\n");
752 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
753 }
754 return false;
755 break;
756 }
757
758 return true;
759 }
760
761 /* Return true when BB post-dominates all its predecessors. */
762
763 static bool
764 bb_postdominates_preds (basic_block bb)
765 {
766 unsigned i;
767
768 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
769 if (!dominated_by_p (CDI_POST_DOMINATORS, EDGE_PRED (bb, i)->src, bb))
770 return false;
771
772 return true;
773 }
774
775 /* Return true when BB is if-convertible. This routine does not check
776 basic block's statements and phis.
777
778 A basic block is not if-convertible if:
779 - it is non-empty and it is after the exit block (in BFS order),
780 - it is after the exit block but before the latch,
781 - its edges are not normal.
782
783 EXIT_BB is the basic block containing the exit of the LOOP. BB is
784 inside LOOP. */
785
786 static bool
787 if_convertible_bb_p (struct loop *loop, basic_block bb, basic_block exit_bb)
788 {
789 edge e;
790 edge_iterator ei;
791
792 if (dump_file && (dump_flags & TDF_DETAILS))
793 fprintf (dump_file, "----------[%d]-------------\n", bb->index);
794
795 if (EDGE_COUNT (bb->preds) > 2
796 || EDGE_COUNT (bb->succs) > 2)
797 return false;
798
799 if (exit_bb)
800 {
801 if (bb != loop->latch)
802 {
803 if (dump_file && (dump_flags & TDF_DETAILS))
804 fprintf (dump_file, "basic block after exit bb but before latch\n");
805 return false;
806 }
807 else if (!empty_block_p (bb))
808 {
809 if (dump_file && (dump_flags & TDF_DETAILS))
810 fprintf (dump_file, "non empty basic block after exit bb\n");
811 return false;
812 }
813 else if (bb == loop->latch
814 && bb != exit_bb
815 && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb))
816 {
817 if (dump_file && (dump_flags & TDF_DETAILS))
818 fprintf (dump_file, "latch is not dominated by exit_block\n");
819 return false;
820 }
821 }
822
823 /* Be less adventurous and handle only normal edges. */
824 FOR_EACH_EDGE (e, ei, bb->succs)
825 if (e->flags &
826 (EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP))
827 {
828 if (dump_file && (dump_flags & TDF_DETAILS))
829 fprintf (dump_file, "Difficult to handle edges\n");
830 return false;
831 }
832
833 if (EDGE_COUNT (bb->preds) == 2
834 && bb != loop->header
835 && !bb_postdominates_preds (bb))
836 return false;
837
838 return true;
839 }
840
841 /* Return true when all predecessor blocks of BB are visited. The
842 VISITED bitmap keeps track of the visited blocks. */
843
844 static bool
845 pred_blocks_visited_p (basic_block bb, bitmap *visited)
846 {
847 edge e;
848 edge_iterator ei;
849 FOR_EACH_EDGE (e, ei, bb->preds)
850 if (!bitmap_bit_p (*visited, e->src->index))
851 return false;
852
853 return true;
854 }
855
856 /* Get body of a LOOP in suitable order for if-conversion. It is
857 caller's responsibility to deallocate basic block list.
858 If-conversion suitable order is, breadth first sort (BFS) order
859 with an additional constraint: select a block only if all its
860 predecessors are already selected. */
861
862 static basic_block *
863 get_loop_body_in_if_conv_order (const struct loop *loop)
864 {
865 basic_block *blocks, *blocks_in_bfs_order;
866 basic_block bb;
867 bitmap visited;
868 unsigned int index = 0;
869 unsigned int visited_count = 0;
870
871 gcc_assert (loop->num_nodes);
872 gcc_assert (loop->latch != EXIT_BLOCK_PTR);
873
874 blocks = XCNEWVEC (basic_block, loop->num_nodes);
875 visited = BITMAP_ALLOC (NULL);
876
877 blocks_in_bfs_order = get_loop_body_in_bfs_order (loop);
878
879 index = 0;
880 while (index < loop->num_nodes)
881 {
882 bb = blocks_in_bfs_order [index];
883
884 if (bb->flags & BB_IRREDUCIBLE_LOOP)
885 {
886 free (blocks_in_bfs_order);
887 BITMAP_FREE (visited);
888 free (blocks);
889 return NULL;
890 }
891
892 if (!bitmap_bit_p (visited, bb->index))
893 {
894 if (pred_blocks_visited_p (bb, &visited)
895 || bb == loop->header)
896 {
897 /* This block is now visited. */
898 bitmap_set_bit (visited, bb->index);
899 blocks[visited_count++] = bb;
900 }
901 }
902
903 index++;
904
905 if (index == loop->num_nodes
906 && visited_count != loop->num_nodes)
907 /* Not done yet. */
908 index = 0;
909 }
910 free (blocks_in_bfs_order);
911 BITMAP_FREE (visited);
912 return blocks;
913 }
914
915 /* Returns true when the analysis of the predicates for all the basic
916 blocks in LOOP succeeded.
917
918 predicate_bbs first allocates the predicates of the basic blocks.
919 These fields are then initialized with the tree expressions
920 representing the predicates under which a basic block is executed
921 in the LOOP. As the loop->header is executed at each iteration, it
922 has the "true" predicate. Other statements executed under a
923 condition are predicated with that condition, for example
924
925 | if (x)
926 | S1;
927 | else
928 | S2;
929
930 S1 will be predicated with "x", and
931 S2 will be predicated with "!x". */
932
933 static bool
934 predicate_bbs (loop_p loop)
935 {
936 unsigned int i;
937
938 for (i = 0; i < loop->num_nodes; i++)
939 init_bb_predicate (ifc_bbs[i]);
940
941 for (i = 0; i < loop->num_nodes; i++)
942 {
943 basic_block bb = ifc_bbs[i];
944 tree cond;
945 gimple_stmt_iterator itr;
946
947 /* The loop latch is always executed and has no extra conditions
948 to be processed: skip it. */
949 if (bb == loop->latch)
950 {
951 reset_bb_predicate (loop->latch);
952 continue;
953 }
954
955 cond = bb_predicate (bb);
956
957 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
958 {
959 gimple stmt = gsi_stmt (itr);
960
961 switch (gimple_code (stmt))
962 {
963 case GIMPLE_LABEL:
964 case GIMPLE_ASSIGN:
965 case GIMPLE_CALL:
966 case GIMPLE_DEBUG:
967 break;
968
969 case GIMPLE_COND:
970 {
971 tree c2, tem;
972 edge true_edge, false_edge;
973 location_t loc = gimple_location (stmt);
974 tree c = fold_build2_loc (loc, gimple_cond_code (stmt),
975 boolean_type_node,
976 gimple_cond_lhs (stmt),
977 gimple_cond_rhs (stmt));
978
979 /* Add new condition into destination's predicate list. */
980 extract_true_false_edges_from_block (gimple_bb (stmt),
981 &true_edge, &false_edge);
982
983 /* If C is true, then TRUE_EDGE is taken. */
984 add_to_dst_predicate_list (loop, true_edge,
985 unshare_expr (cond),
986 unshare_expr (c));
987
988 /* If C is false, then FALSE_EDGE is taken. */
989 c2 = invert_truthvalue_loc (loc, unshare_expr (c));
990 tem = canonicalize_cond_expr_cond (c2);
991 if (tem)
992 c2 = tem;
993 add_to_dst_predicate_list (loop, false_edge,
994 unshare_expr (cond), c2);
995
996 cond = NULL_TREE;
997 break;
998 }
999
1000 default:
1001 /* Not handled yet in if-conversion. */
1002 return false;
1003 }
1004 }
1005
1006 /* If current bb has only one successor, then consider it as an
1007 unconditional goto. */
1008 if (single_succ_p (bb))
1009 {
1010 basic_block bb_n = single_succ (bb);
1011
1012 /* The successor bb inherits the predicate of its
1013 predecessor. If there is no predicate in the predecessor
1014 bb, then consider the successor bb as always executed. */
1015 if (cond == NULL_TREE)
1016 cond = boolean_true_node;
1017
1018 add_to_predicate_list (bb_n, cond);
1019 }
1020 }
1021
1022 /* The loop header is always executed. */
1023 reset_bb_predicate (loop->header);
1024 gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL
1025 && bb_predicate_gimplified_stmts (loop->latch) == NULL);
1026
1027 return true;
1028 }
1029
1030 /* Return true when LOOP is if-convertible. This is a helper function
1031 for if_convertible_loop_p. REFS and DDRS are initialized and freed
1032 in if_convertible_loop_p. */
1033
1034 static bool
1035 if_convertible_loop_p_1 (struct loop *loop,
1036 VEC (loop_p, heap) **loop_nest,
1037 VEC (data_reference_p, heap) **refs,
1038 VEC (ddr_p, heap) **ddrs)
1039 {
1040 bool res;
1041 unsigned int i;
1042 basic_block exit_bb = NULL;
1043
1044 /* Don't if-convert the loop when the data dependences cannot be
1045 computed: the loop won't be vectorized in that case. */
1046 res = compute_data_dependences_for_loop (loop, true, loop_nest, refs, ddrs);
1047 if (!res)
1048 return false;
1049
1050 calculate_dominance_info (CDI_DOMINATORS);
1051 calculate_dominance_info (CDI_POST_DOMINATORS);
1052
1053 /* Allow statements that can be handled during if-conversion. */
1054 ifc_bbs = get_loop_body_in_if_conv_order (loop);
1055 if (!ifc_bbs)
1056 {
1057 if (dump_file && (dump_flags & TDF_DETAILS))
1058 fprintf (dump_file, "Irreducible loop\n");
1059 return false;
1060 }
1061
1062 for (i = 0; i < loop->num_nodes; i++)
1063 {
1064 basic_block bb = ifc_bbs[i];
1065
1066 if (!if_convertible_bb_p (loop, bb, exit_bb))
1067 return false;
1068
1069 if (bb_with_exit_edge_p (loop, bb))
1070 exit_bb = bb;
1071 }
1072
1073 res = predicate_bbs (loop);
1074 if (!res)
1075 return false;
1076
1077 if (flag_tree_loop_if_convert_stores)
1078 {
1079 data_reference_p dr;
1080
1081 for (i = 0; VEC_iterate (data_reference_p, *refs, i, dr); i++)
1082 {
1083 dr->aux = XNEW (struct ifc_dr);
1084 DR_WRITTEN_AT_LEAST_ONCE (dr) = -1;
1085 DR_RW_UNCONDITIONALLY (dr) = -1;
1086 }
1087 }
1088
1089 for (i = 0; i < loop->num_nodes; i++)
1090 {
1091 basic_block bb = ifc_bbs[i];
1092 gimple_stmt_iterator itr;
1093
1094 for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr))
1095 if (!if_convertible_phi_p (loop, bb, gsi_stmt (itr)))
1096 return false;
1097
1098 /* Check the if-convertibility of statements in predicated BBs. */
1099 if (is_predicated (bb))
1100 for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr))
1101 if (!if_convertible_stmt_p (gsi_stmt (itr), *refs))
1102 return false;
1103 }
1104
1105 if (dump_file)
1106 fprintf (dump_file, "Applying if-conversion\n");
1107
1108 return true;
1109 }
1110
1111 /* Return true when LOOP is if-convertible.
1112 LOOP is if-convertible if:
1113 - it is innermost,
1114 - it has two or more basic blocks,
1115 - it has only one exit,
1116 - loop header is not the exit edge,
1117 - if its basic blocks and phi nodes are if convertible. */
1118
1119 static bool
1120 if_convertible_loop_p (struct loop *loop)
1121 {
1122 edge e;
1123 edge_iterator ei;
1124 bool res = false;
1125 VEC (data_reference_p, heap) *refs;
1126 VEC (ddr_p, heap) *ddrs;
1127 VEC (loop_p, heap) *loop_nest;
1128
1129 /* Handle only innermost loop. */
1130 if (!loop || loop->inner)
1131 {
1132 if (dump_file && (dump_flags & TDF_DETAILS))
1133 fprintf (dump_file, "not innermost loop\n");
1134 return false;
1135 }
1136
1137 /* If only one block, no need for if-conversion. */
1138 if (loop->num_nodes <= 2)
1139 {
1140 if (dump_file && (dump_flags & TDF_DETAILS))
1141 fprintf (dump_file, "less than 2 basic blocks\n");
1142 return false;
1143 }
1144
1145 /* More than one loop exit is too much to handle. */
1146 if (!single_exit (loop))
1147 {
1148 if (dump_file && (dump_flags & TDF_DETAILS))
1149 fprintf (dump_file, "multiple exits\n");
1150 return false;
1151 }
1152
1153 /* If one of the loop header's edge is an exit edge then do not
1154 apply if-conversion. */
1155 FOR_EACH_EDGE (e, ei, loop->header->succs)
1156 if (loop_exit_edge_p (loop, e))
1157 return false;
1158
1159 refs = VEC_alloc (data_reference_p, heap, 5);
1160 ddrs = VEC_alloc (ddr_p, heap, 25);
1161 loop_nest = VEC_alloc (loop_p, heap, 3);
1162 res = if_convertible_loop_p_1 (loop, &loop_nest, &refs, &ddrs);
1163
1164 if (flag_tree_loop_if_convert_stores)
1165 {
1166 data_reference_p dr;
1167 unsigned int i;
1168
1169 for (i = 0; VEC_iterate (data_reference_p, refs, i, dr); i++)
1170 free (dr->aux);
1171 }
1172
1173 VEC_free (loop_p, heap, loop_nest);
1174 free_data_refs (refs);
1175 free_dependence_relations (ddrs);
1176 return res;
1177 }
1178
1179 /* Basic block BB has two predecessors. Using predecessor's bb
1180 predicate, set an appropriate condition COND for the PHI node
1181 replacement. Return the true block whose phi arguments are
1182 selected when cond is true. LOOP is the loop containing the
1183 if-converted region, GSI is the place to insert the code for the
1184 if-conversion. */
1185
1186 static basic_block
1187 find_phi_replacement_condition (struct loop *loop,
1188 basic_block bb, tree *cond,
1189 gimple_stmt_iterator *gsi)
1190 {
1191 edge first_edge, second_edge;
1192 tree tmp_cond;
1193
1194 gcc_assert (EDGE_COUNT (bb->preds) == 2);
1195 first_edge = EDGE_PRED (bb, 0);
1196 second_edge = EDGE_PRED (bb, 1);
1197
1198 /* Use condition based on following criteria:
1199 1)
1200 S1: x = !c ? a : b;
1201
1202 S2: x = c ? b : a;
1203
1204 S2 is preferred over S1. Make 'b' first_bb and use its condition.
1205
1206 2) Do not make loop header first_bb.
1207
1208 3)
1209 S1: x = !(c == d)? a : b;
1210
1211 S21: t1 = c == d;
1212 S22: x = t1 ? b : a;
1213
1214 S3: x = (c == d) ? b : a;
1215
1216 S3 is preferred over S1 and S2*, Make 'b' first_bb and use
1217 its condition.
1218
1219 4) If pred B is dominated by pred A then use pred B's condition.
1220 See PR23115. */
1221
1222 /* Select condition that is not TRUTH_NOT_EXPR. */
1223 tmp_cond = bb_predicate (first_edge->src);
1224 gcc_assert (tmp_cond);
1225
1226 if (TREE_CODE (tmp_cond) == TRUTH_NOT_EXPR)
1227 {
1228 edge tmp_edge;
1229
1230 tmp_edge = first_edge;
1231 first_edge = second_edge;
1232 second_edge = tmp_edge;
1233 }
1234
1235 /* Check if FIRST_BB is loop header or not and make sure that
1236 FIRST_BB does not dominate SECOND_BB. */
1237 if (first_edge->src == loop->header
1238 || dominated_by_p (CDI_DOMINATORS,
1239 second_edge->src, first_edge->src))
1240 {
1241 *cond = bb_predicate (second_edge->src);
1242
1243 if (TREE_CODE (*cond) == TRUTH_NOT_EXPR)
1244 *cond = TREE_OPERAND (*cond, 0);
1245 else
1246 /* Select non loop header bb. */
1247 first_edge = second_edge;
1248 }
1249 else
1250 *cond = bb_predicate (first_edge->src);
1251
1252 /* Gimplify the condition to a valid cond-expr conditonal operand. */
1253 *cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (*cond),
1254 is_gimple_condexpr, NULL_TREE,
1255 true, GSI_SAME_STMT);
1256
1257 return first_edge->src;
1258 }
1259
1260 /* Replace a scalar PHI node with a COND_EXPR using COND as condition.
1261 This routine does not handle PHI nodes with more than two
1262 arguments.
1263
1264 For example,
1265 S1: A = PHI <x1(1), x2(5)
1266 is converted into,
1267 S2: A = cond ? x1 : x2;
1268
1269 The generated code is inserted at GSI that points to the top of
1270 basic block's statement list. When COND is true, phi arg from
1271 TRUE_BB is selected. */
1272
1273 static void
1274 predicate_scalar_phi (gimple phi, tree cond,
1275 basic_block true_bb,
1276 gimple_stmt_iterator *gsi)
1277 {
1278 gimple new_stmt;
1279 basic_block bb;
1280 tree rhs, res, arg, scev;
1281
1282 gcc_assert (gimple_code (phi) == GIMPLE_PHI
1283 && gimple_phi_num_args (phi) == 2);
1284
1285 res = gimple_phi_result (phi);
1286 /* Do not handle virtual phi nodes. */
1287 if (!is_gimple_reg (SSA_NAME_VAR (res)))
1288 return;
1289
1290 bb = gimple_bb (phi);
1291
1292 if ((arg = degenerate_phi_result (phi))
1293 || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father,
1294 res))
1295 && !chrec_contains_undetermined (scev)
1296 && scev != res
1297 && (arg = gimple_phi_arg_def (phi, 0))))
1298 rhs = arg;
1299 else
1300 {
1301 tree arg_0, arg_1;
1302 /* Use condition that is not TRUTH_NOT_EXPR in conditional modify expr. */
1303 if (EDGE_PRED (bb, 1)->src == true_bb)
1304 {
1305 arg_0 = gimple_phi_arg_def (phi, 1);
1306 arg_1 = gimple_phi_arg_def (phi, 0);
1307 }
1308 else
1309 {
1310 arg_0 = gimple_phi_arg_def (phi, 0);
1311 arg_1 = gimple_phi_arg_def (phi, 1);
1312 }
1313
1314 gcc_checking_assert (bb == bb->loop_father->header
1315 || bb_postdominates_preds (bb));
1316
1317 /* Build new RHS using selected condition and arguments. */
1318 rhs = build3 (COND_EXPR, TREE_TYPE (res),
1319 unshare_expr (cond), arg_0, arg_1);
1320 }
1321
1322 new_stmt = gimple_build_assign (res, rhs);
1323 SSA_NAME_DEF_STMT (gimple_phi_result (phi)) = new_stmt;
1324 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
1325 update_stmt (new_stmt);
1326
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1328 {
1329 fprintf (dump_file, "new phi replacement stmt\n");
1330 print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM);
1331 }
1332 }
1333
1334 /* Replaces in LOOP all the scalar phi nodes other than those in the
1335 LOOP->header block with conditional modify expressions. */
1336
1337 static void
1338 predicate_all_scalar_phis (struct loop *loop)
1339 {
1340 basic_block bb;
1341 unsigned int orig_loop_num_nodes = loop->num_nodes;
1342 unsigned int i;
1343
1344 for (i = 1; i < orig_loop_num_nodes; i++)
1345 {
1346 gimple phi;
1347 tree cond = NULL_TREE;
1348 gimple_stmt_iterator gsi, phi_gsi;
1349 basic_block true_bb = NULL;
1350 bb = ifc_bbs[i];
1351
1352 if (bb == loop->header)
1353 continue;
1354
1355 phi_gsi = gsi_start_phis (bb);
1356 if (gsi_end_p (phi_gsi))
1357 continue;
1358
1359 /* BB has two predecessors. Using predecessor's aux field, set
1360 appropriate condition for the PHI node replacement. */
1361 gsi = gsi_after_labels (bb);
1362 true_bb = find_phi_replacement_condition (loop, bb, &cond, &gsi);
1363
1364 while (!gsi_end_p (phi_gsi))
1365 {
1366 phi = gsi_stmt (phi_gsi);
1367 predicate_scalar_phi (phi, cond, true_bb, &gsi);
1368 release_phi_node (phi);
1369 gsi_next (&phi_gsi);
1370 }
1371
1372 set_phi_nodes (bb, NULL);
1373 }
1374 }
1375
1376 /* Insert in each basic block of LOOP the statements produced by the
1377 gimplification of the predicates. */
1378
1379 static void
1380 insert_gimplified_predicates (loop_p loop)
1381 {
1382 unsigned int i;
1383
1384 for (i = 0; i < loop->num_nodes; i++)
1385 {
1386 basic_block bb = ifc_bbs[i];
1387 gimple_seq stmts;
1388
1389 if (!is_predicated (bb))
1390 {
1391 /* Do not insert statements for a basic block that is not
1392 predicated. Also make sure that the predicate of the
1393 basic block is set to true. */
1394 reset_bb_predicate (bb);
1395 continue;
1396 }
1397
1398 stmts = bb_predicate_gimplified_stmts (bb);
1399 if (stmts)
1400 {
1401 if (flag_tree_loop_if_convert_stores)
1402 {
1403 /* Insert the predicate of the BB just after the label,
1404 as the if-conversion of memory writes will use this
1405 predicate. */
1406 gimple_stmt_iterator gsi = gsi_after_labels (bb);
1407 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1408 }
1409 else
1410 {
1411 /* Insert the predicate of the BB at the end of the BB
1412 as this would reduce the register pressure: the only
1413 use of this predicate will be in successor BBs. */
1414 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1415
1416 if (gsi_end_p (gsi)
1417 || stmt_ends_bb_p (gsi_stmt (gsi)))
1418 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1419 else
1420 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1421 }
1422
1423 /* Once the sequence is code generated, set it to NULL. */
1424 set_bb_predicate_gimplified_stmts (bb, NULL);
1425 }
1426 }
1427 }
1428
1429 /* Predicate each write to memory in LOOP.
1430
1431 This function transforms control flow constructs containing memory
1432 writes of the form:
1433
1434 | for (i = 0; i < N; i++)
1435 | if (cond)
1436 | A[i] = expr;
1437
1438 into the following form that does not contain control flow:
1439
1440 | for (i = 0; i < N; i++)
1441 | A[i] = cond ? expr : A[i];
1442
1443 The original CFG looks like this:
1444
1445 | bb_0
1446 | i = 0
1447 | end_bb_0
1448 |
1449 | bb_1
1450 | if (i < N) goto bb_5 else goto bb_2
1451 | end_bb_1
1452 |
1453 | bb_2
1454 | cond = some_computation;
1455 | if (cond) goto bb_3 else goto bb_4
1456 | end_bb_2
1457 |
1458 | bb_3
1459 | A[i] = expr;
1460 | goto bb_4
1461 | end_bb_3
1462 |
1463 | bb_4
1464 | goto bb_1
1465 | end_bb_4
1466
1467 insert_gimplified_predicates inserts the computation of the COND
1468 expression at the beginning of the destination basic block:
1469
1470 | bb_0
1471 | i = 0
1472 | end_bb_0
1473 |
1474 | bb_1
1475 | if (i < N) goto bb_5 else goto bb_2
1476 | end_bb_1
1477 |
1478 | bb_2
1479 | cond = some_computation;
1480 | if (cond) goto bb_3 else goto bb_4
1481 | end_bb_2
1482 |
1483 | bb_3
1484 | cond = some_computation;
1485 | A[i] = expr;
1486 | goto bb_4
1487 | end_bb_3
1488 |
1489 | bb_4
1490 | goto bb_1
1491 | end_bb_4
1492
1493 predicate_mem_writes is then predicating the memory write as follows:
1494
1495 | bb_0
1496 | i = 0
1497 | end_bb_0
1498 |
1499 | bb_1
1500 | if (i < N) goto bb_5 else goto bb_2
1501 | end_bb_1
1502 |
1503 | bb_2
1504 | if (cond) goto bb_3 else goto bb_4
1505 | end_bb_2
1506 |
1507 | bb_3
1508 | cond = some_computation;
1509 | A[i] = cond ? expr : A[i];
1510 | goto bb_4
1511 | end_bb_3
1512 |
1513 | bb_4
1514 | goto bb_1
1515 | end_bb_4
1516
1517 and finally combine_blocks removes the basic block boundaries making
1518 the loop vectorizable:
1519
1520 | bb_0
1521 | i = 0
1522 | if (i < N) goto bb_5 else goto bb_1
1523 | end_bb_0
1524 |
1525 | bb_1
1526 | cond = some_computation;
1527 | A[i] = cond ? expr : A[i];
1528 | if (i < N) goto bb_5 else goto bb_4
1529 | end_bb_1
1530 |
1531 | bb_4
1532 | goto bb_1
1533 | end_bb_4
1534 */
1535
1536 static void
1537 predicate_mem_writes (loop_p loop)
1538 {
1539 unsigned int i, orig_loop_num_nodes = loop->num_nodes;
1540
1541 for (i = 1; i < orig_loop_num_nodes; i++)
1542 {
1543 gimple_stmt_iterator gsi;
1544 basic_block bb = ifc_bbs[i];
1545 tree cond = bb_predicate (bb);
1546 gimple stmt;
1547
1548 if (is_true_predicate (cond))
1549 continue;
1550
1551 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1552 if ((stmt = gsi_stmt (gsi))
1553 && gimple_assign_single_p (stmt)
1554 && gimple_vdef (stmt))
1555 {
1556 tree lhs = gimple_assign_lhs (stmt);
1557 tree rhs = gimple_assign_rhs1 (stmt);
1558 tree type = TREE_TYPE (lhs);
1559
1560 lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi);
1561 rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi);
1562 rhs = build3 (COND_EXPR, type, unshare_expr (cond), rhs, lhs);
1563 gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi));
1564 update_stmt (stmt);
1565 }
1566 }
1567 }
1568
1569 /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks
1570 other than the exit and latch of the LOOP. Also resets the
1571 GIMPLE_DEBUG information. */
1572
1573 static void
1574 remove_conditions_and_labels (loop_p loop)
1575 {
1576 gimple_stmt_iterator gsi;
1577 unsigned int i;
1578
1579 for (i = 0; i < loop->num_nodes; i++)
1580 {
1581 basic_block bb = ifc_bbs[i];
1582
1583 if (bb_with_exit_edge_p (loop, bb)
1584 || bb == loop->latch)
1585 continue;
1586
1587 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
1588 switch (gimple_code (gsi_stmt (gsi)))
1589 {
1590 case GIMPLE_COND:
1591 case GIMPLE_LABEL:
1592 gsi_remove (&gsi, true);
1593 break;
1594
1595 case GIMPLE_DEBUG:
1596 /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */
1597 if (gimple_debug_bind_p (gsi_stmt (gsi)))
1598 {
1599 gimple_debug_bind_reset_value (gsi_stmt (gsi));
1600 update_stmt (gsi_stmt (gsi));
1601 }
1602 gsi_next (&gsi);
1603 break;
1604
1605 default:
1606 gsi_next (&gsi);
1607 }
1608 }
1609 }
1610
1611 /* Combine all the basic blocks from LOOP into one or two super basic
1612 blocks. Replace PHI nodes with conditional modify expressions. */
1613
1614 static void
1615 combine_blocks (struct loop *loop)
1616 {
1617 basic_block bb, exit_bb, merge_target_bb;
1618 unsigned int orig_loop_num_nodes = loop->num_nodes;
1619 unsigned int i;
1620 edge e;
1621 edge_iterator ei;
1622
1623 remove_conditions_and_labels (loop);
1624 insert_gimplified_predicates (loop);
1625 predicate_all_scalar_phis (loop);
1626
1627 if (flag_tree_loop_if_convert_stores)
1628 predicate_mem_writes (loop);
1629
1630 /* Merge basic blocks: first remove all the edges in the loop,
1631 except for those from the exit block. */
1632 exit_bb = NULL;
1633 for (i = 0; i < orig_loop_num_nodes; i++)
1634 {
1635 bb = ifc_bbs[i];
1636 free_bb_predicate (bb);
1637 if (bb_with_exit_edge_p (loop, bb))
1638 {
1639 exit_bb = bb;
1640 break;
1641 }
1642 }
1643 gcc_assert (exit_bb != loop->latch);
1644
1645 for (i = 1; i < orig_loop_num_nodes; i++)
1646 {
1647 bb = ifc_bbs[i];
1648
1649 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));)
1650 {
1651 if (e->src == exit_bb)
1652 ei_next (&ei);
1653 else
1654 remove_edge (e);
1655 }
1656 }
1657
1658 if (exit_bb != NULL)
1659 {
1660 if (exit_bb != loop->header)
1661 {
1662 /* Connect this node to loop header. */
1663 make_edge (loop->header, exit_bb, EDGE_FALLTHRU);
1664 set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header);
1665 }
1666
1667 /* Redirect non-exit edges to loop->latch. */
1668 FOR_EACH_EDGE (e, ei, exit_bb->succs)
1669 {
1670 if (!loop_exit_edge_p (loop, e))
1671 redirect_edge_and_branch (e, loop->latch);
1672 }
1673 set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb);
1674 }
1675 else
1676 {
1677 /* If the loop does not have an exit, reconnect header and latch. */
1678 make_edge (loop->header, loop->latch, EDGE_FALLTHRU);
1679 set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header);
1680 }
1681
1682 merge_target_bb = loop->header;
1683 for (i = 1; i < orig_loop_num_nodes; i++)
1684 {
1685 gimple_stmt_iterator gsi;
1686 gimple_stmt_iterator last;
1687
1688 bb = ifc_bbs[i];
1689
1690 if (bb == exit_bb || bb == loop->latch)
1691 continue;
1692
1693 /* Make stmts member of loop->header. */
1694 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1695 gimple_set_bb (gsi_stmt (gsi), merge_target_bb);
1696
1697 /* Update stmt list. */
1698 last = gsi_last_bb (merge_target_bb);
1699 gsi_insert_seq_after (&last, bb_seq (bb), GSI_NEW_STMT);
1700 set_bb_seq (bb, NULL);
1701
1702 delete_basic_block (bb);
1703 }
1704
1705 /* If possible, merge loop header to the block with the exit edge.
1706 This reduces the number of basic blocks to two, to please the
1707 vectorizer that handles only loops with two nodes. */
1708 if (exit_bb
1709 && exit_bb != loop->header
1710 && can_merge_blocks_p (loop->header, exit_bb))
1711 merge_blocks (loop->header, exit_bb);
1712
1713 free (ifc_bbs);
1714 ifc_bbs = NULL;
1715 }
1716
1717 /* If-convert LOOP when it is legal. For the moment this pass has no
1718 profitability analysis. Returns true when something changed. */
1719
1720 static bool
1721 tree_if_conversion (struct loop *loop)
1722 {
1723 bool changed = false;
1724 ifc_bbs = NULL;
1725
1726 if (!if_convertible_loop_p (loop)
1727 || !dbg_cnt (if_conversion_tree))
1728 goto cleanup;
1729
1730 /* Now all statements are if-convertible. Combine all the basic
1731 blocks into one huge basic block doing the if-conversion
1732 on-the-fly. */
1733 combine_blocks (loop);
1734
1735 if (flag_tree_loop_if_convert_stores)
1736 mark_sym_for_renaming (gimple_vop (cfun));
1737
1738 changed = true;
1739
1740 cleanup:
1741 if (ifc_bbs)
1742 {
1743 unsigned int i;
1744
1745 for (i = 0; i < loop->num_nodes; i++)
1746 free_bb_predicate (ifc_bbs[i]);
1747
1748 free (ifc_bbs);
1749 ifc_bbs = NULL;
1750 }
1751
1752 return changed;
1753 }
1754
1755 /* Tree if-conversion pass management. */
1756
1757 static unsigned int
1758 main_tree_if_conversion (void)
1759 {
1760 loop_iterator li;
1761 struct loop *loop;
1762 bool changed = false;
1763 unsigned todo = 0;
1764
1765 if (number_of_loops () <= 1)
1766 return 0;
1767
1768 FOR_EACH_LOOP (li, loop, 0)
1769 changed |= tree_if_conversion (loop);
1770
1771 if (changed)
1772 todo |= TODO_cleanup_cfg;
1773
1774 if (changed && flag_tree_loop_if_convert_stores)
1775 todo |= TODO_update_ssa_only_virtuals;
1776
1777 free_dominance_info (CDI_POST_DOMINATORS);
1778
1779 return todo;
1780 }
1781
1782 /* Returns true when the if-conversion pass is enabled. */
1783
1784 static bool
1785 gate_tree_if_conversion (void)
1786 {
1787 return ((flag_tree_vectorize && flag_tree_loop_if_convert != 0)
1788 || flag_tree_loop_if_convert == 1
1789 || flag_tree_loop_if_convert_stores == 1);
1790 }
1791
1792 struct gimple_opt_pass pass_if_conversion =
1793 {
1794 {
1795 GIMPLE_PASS,
1796 "ifcvt", /* name */
1797 gate_tree_if_conversion, /* gate */
1798 main_tree_if_conversion, /* execute */
1799 NULL, /* sub */
1800 NULL, /* next */
1801 0, /* static_pass_number */
1802 TV_NONE, /* tv_id */
1803 PROP_cfg | PROP_ssa, /* properties_required */
1804 0, /* properties_provided */
1805 0, /* properties_destroyed */
1806 0, /* todo_flags_start */
1807 TODO_verify_stmts | TODO_verify_flow
1808 /* todo_flags_finish */
1809 }
1810 };