tree-pass.h (TODO_remove_unused_locals): Define.
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "tree-gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50
51 /* This file builds the SSA form for a function as described in:
52 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
53 Computing Static Single Assignment Form and the Control Dependence
54 Graph. ACM Transactions on Programming Languages and Systems,
55 13(4):451-490, October 1991. */
56
57 /* True if the code is in ssa form. */
58 bool in_ssa_p;
59
60 /* Structure to map a variable VAR to the set of blocks that contain
61 definitions for VAR. */
62 struct def_blocks_d
63 {
64 /* The variable. */
65 tree var;
66
67 /* Blocks that contain definitions of VAR. Bit I will be set if the
68 Ith block contains a definition of VAR. */
69 bitmap def_blocks;
70
71 /* Blocks that contain a PHI node for VAR. */
72 bitmap phi_blocks;
73
74 /* Blocks where VAR is live-on-entry. Similar semantics as
75 DEF_BLOCKS. */
76 bitmap livein_blocks;
77 };
78
79
80 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
81 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
82 basic blocks where VAR is defined (assigned a new value). It also
83 contains a bitmap of all the blocks where VAR is live-on-entry
84 (i.e., there is a use of VAR in block B without a preceding
85 definition in B). The live-on-entry information is used when
86 computing PHI pruning heuristics. */
87 static htab_t def_blocks;
88
89 /* Stack of trees used to restore the global currdefs to its original
90 state after completing rewriting of a block and its dominator
91 children. Its elements have the following properties:
92
93 - An SSA_NAME indicates that the current definition of the
94 underlying variable should be set to the given SSA_NAME.
95
96 - A _DECL node indicates that the underlying variable has no
97 current definition.
98
99 - A NULL node is used to mark the last node associated with the
100 current block.
101
102 - A NULL node at the top entry is used to mark the last node
103 associated with the current block. */
104 static VEC(tree,heap) *block_defs_stack;
105
106 /* Basic block vectors used in this file ought to be allocated in the
107 heap. We use pointer vector, because ints can be easily passed by
108 value. */
109 DEF_VEC_I(int);
110 DEF_VEC_ALLOC_I(int,heap);
111
112 /* Set of existing SSA names being replaced by update_ssa. */
113 static sbitmap old_ssa_names;
114
115 /* Set of new SSA names being added by update_ssa. Note that both
116 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
117 the operations done on them are presence tests. */
118 static sbitmap new_ssa_names;
119
120 /* Symbols whose SSA form needs to be updated or created for the first
121 time. */
122 static bitmap syms_to_rename;
123
124 /* Set of SSA names that have been marked to be released after they
125 were registered in the replacement table. They will be finally
126 released after we finish updating the SSA web. */
127 static bitmap names_to_release;
128
129 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
130 to grow as the callers to register_new_name_mapping will typically
131 create new names on the fly. FIXME. Currently set to 1/3 to avoid
132 frequent reallocations but still need to find a reasonable growth
133 strategy. */
134 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
135
136 /* Tuple used to represent replacement mappings. */
137 struct repl_map_d
138 {
139 tree name;
140 bitmap set;
141 };
142
143 /* NEW -> OLD_SET replacement table. If we are replacing several
144 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
145 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
146 static htab_t repl_tbl;
147
148 /* true if register_new_name_mapping needs to initialize the data
149 structures needed by update_ssa. */
150 static bool need_to_initialize_update_ssa_p = true;
151
152 /* true if update_ssa needs to update virtual operands. */
153 static bool need_to_update_vops_p = false;
154
155 /* Statistics kept by update_ssa to use in the virtual mapping
156 heuristic. If the number of virtual mappings is beyond certain
157 threshold, the updater will switch from using the mappings into
158 renaming the virtual symbols from scratch. In some cases, the
159 large number of name mappings for virtual names causes significant
160 slowdowns in the PHI insertion code. */
161 struct update_ssa_stats_d
162 {
163 unsigned num_virtual_mappings;
164 unsigned num_total_mappings;
165 bitmap virtual_symbols;
166 unsigned num_virtual_symbols;
167 };
168 static struct update_ssa_stats_d update_ssa_stats;
169
170 /* Global data to attach to the main dominator walk structure. */
171 struct mark_def_sites_global_data
172 {
173 /* This bitmap contains the variables which are set before they
174 are used in a basic block. */
175 bitmap kills;
176
177 /* Bitmap of names to rename. */
178 sbitmap names_to_rename;
179
180 /* Set of blocks that mark_def_sites deems interesting for the
181 renamer to process. */
182 sbitmap interesting_blocks;
183 };
184
185
186 /* Information stored for SSA names. */
187 struct ssa_name_info
188 {
189 /* This field indicates whether or not the variable may need PHI nodes.
190 See the enum's definition for more detailed information about the
191 states. */
192 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
193
194 /* The actual definition of the ssa name. */
195 tree current_def;
196 };
197
198
199 /* The main entry point to the SSA renamer (rewrite_blocks) may be
200 called several times to do different, but related, tasks.
201 Initially, we need it to rename the whole program into SSA form.
202 At other times, we may need it to only rename into SSA newly
203 exposed symbols. Finally, we can also call it to incrementally fix
204 an already built SSA web. */
205 enum rewrite_mode {
206 /* Convert the whole function into SSA form. */
207 REWRITE_ALL,
208
209 /* Incrementally update the SSA web by replacing existing SSA
210 names with new ones. See update_ssa for details. */
211 REWRITE_UPDATE
212 };
213
214
215 /* Use TREE_VISITED to keep track of which statements we want to
216 rename. When renaming a subset of the variables, not all
217 statements will be processed. This is decided in mark_def_sites. */
218 #define REWRITE_THIS_STMT(T) TREE_VISITED (T)
219
220 /* Use the unsigned flag to keep track of which statements we want to
221 visit when marking new definition sites. This is slightly
222 different than REWRITE_THIS_STMT: it's used by update_ssa to
223 distinguish statements that need to have both uses and defs
224 processed from those that only need to have their defs processed.
225 Statements that define new SSA names only need to have their defs
226 registered, but they don't need to have their uses renamed. */
227 #define REGISTER_DEFS_IN_THIS_STMT(T) (T)->common.unsigned_flag
228
229
230 /* Prototypes for debugging functions. */
231 extern void dump_tree_ssa (FILE *);
232 extern void debug_tree_ssa (void);
233 extern void debug_def_blocks (void);
234 extern void dump_tree_ssa_stats (FILE *);
235 extern void debug_tree_ssa_stats (void);
236 void dump_update_ssa (FILE *);
237 void debug_update_ssa (void);
238 void dump_names_replaced_by (FILE *, tree);
239 void debug_names_replaced_by (tree);
240
241 /* Get the information associated with NAME. */
242
243 static inline struct ssa_name_info *
244 get_ssa_name_ann (tree name)
245 {
246 if (!SSA_NAME_AUX (name))
247 SSA_NAME_AUX (name) = xcalloc (1, sizeof (struct ssa_name_info));
248
249 return (struct ssa_name_info *) SSA_NAME_AUX (name);
250 }
251
252
253 /* Gets phi_state field for VAR. */
254
255 static inline enum need_phi_state
256 get_phi_state (tree var)
257 {
258 if (TREE_CODE (var) == SSA_NAME)
259 return get_ssa_name_ann (var)->need_phi_state;
260 else
261 return var_ann (var)->need_phi_state;
262 }
263
264
265 /* Sets phi_state field for VAR to STATE. */
266
267 static inline void
268 set_phi_state (tree var, enum need_phi_state state)
269 {
270 if (TREE_CODE (var) == SSA_NAME)
271 get_ssa_name_ann (var)->need_phi_state = state;
272 else
273 var_ann (var)->need_phi_state = state;
274 }
275
276
277 /* Return the current definition for VAR. */
278
279 tree
280 get_current_def (tree var)
281 {
282 if (TREE_CODE (var) == SSA_NAME)
283 return get_ssa_name_ann (var)->current_def;
284 else
285 return var_ann (var)->current_def;
286 }
287
288
289 /* Sets current definition of VAR to DEF. */
290
291 void
292 set_current_def (tree var, tree def)
293 {
294 if (TREE_CODE (var) == SSA_NAME)
295 get_ssa_name_ann (var)->current_def = def;
296 else
297 var_ann (var)->current_def = def;
298 }
299
300
301 /* Compute global livein information given the set of blockx where
302 an object is locally live at the start of the block (LIVEIN)
303 and the set of blocks where the object is defined (DEF_BLOCKS).
304
305 Note: This routine augments the existing local livein information
306 to include global livein (i.e., it modifies the underlying bitmap
307 for LIVEIN). */
308
309 void
310 compute_global_livein (bitmap livein, bitmap def_blocks)
311 {
312 basic_block bb, *worklist, *tos;
313 unsigned i;
314 bitmap_iterator bi;
315
316 tos = worklist
317 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
318
319 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
320 {
321 *tos++ = BASIC_BLOCK (i);
322 }
323
324 /* Iterate until the worklist is empty. */
325 while (tos != worklist)
326 {
327 edge e;
328 edge_iterator ei;
329
330 /* Pull a block off the worklist. */
331 bb = *--tos;
332
333 /* For each predecessor block. */
334 FOR_EACH_EDGE (e, ei, bb->preds)
335 {
336 basic_block pred = e->src;
337 int pred_index = pred->index;
338
339 /* None of this is necessary for the entry block. */
340 if (pred != ENTRY_BLOCK_PTR
341 && ! bitmap_bit_p (livein, pred_index)
342 && ! bitmap_bit_p (def_blocks, pred_index))
343 {
344 *tos++ = pred;
345 bitmap_set_bit (livein, pred_index);
346 }
347 }
348 }
349
350 free (worklist);
351 }
352
353
354 /* Return the set of blocks where variable VAR is defined and the blocks
355 where VAR is live on entry (livein). If no entry is found in
356 DEF_BLOCKS, a new one is created and returned. */
357
358 static inline struct def_blocks_d *
359 get_def_blocks_for (tree var)
360 {
361 struct def_blocks_d db, *db_p;
362 void **slot;
363
364 db.var = var;
365 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
366 if (*slot == NULL)
367 {
368 db_p = XNEW (struct def_blocks_d);
369 db_p->var = var;
370 db_p->def_blocks = BITMAP_ALLOC (NULL);
371 db_p->phi_blocks = BITMAP_ALLOC (NULL);
372 db_p->livein_blocks = BITMAP_ALLOC (NULL);
373 *slot = (void *) db_p;
374 }
375 else
376 db_p = (struct def_blocks_d *) *slot;
377
378 return db_p;
379 }
380
381
382 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
383 VAR is defined by a PHI node. */
384
385 static void
386 set_def_block (tree var, basic_block bb, bool phi_p)
387 {
388 struct def_blocks_d *db_p;
389 enum need_phi_state state;
390
391 state = get_phi_state (var);
392 db_p = get_def_blocks_for (var);
393
394 /* Set the bit corresponding to the block where VAR is defined. */
395 bitmap_set_bit (db_p->def_blocks, bb->index);
396 if (phi_p)
397 bitmap_set_bit (db_p->phi_blocks, bb->index);
398
399 /* Keep track of whether or not we may need to insert PHI nodes.
400
401 If we are in the UNKNOWN state, then this is the first definition
402 of VAR. Additionally, we have not seen any uses of VAR yet, so
403 we do not need a PHI node for this variable at this time (i.e.,
404 transition to NEED_PHI_STATE_NO).
405
406 If we are in any other state, then we either have multiple definitions
407 of this variable occurring in different blocks or we saw a use of the
408 variable which was not dominated by the block containing the
409 definition(s). In this case we may need a PHI node, so enter
410 state NEED_PHI_STATE_MAYBE. */
411 if (state == NEED_PHI_STATE_UNKNOWN)
412 set_phi_state (var, NEED_PHI_STATE_NO);
413 else
414 set_phi_state (var, NEED_PHI_STATE_MAYBE);
415 }
416
417
418 /* Mark block BB as having VAR live at the entry to BB. */
419
420 static void
421 set_livein_block (tree var, basic_block bb)
422 {
423 struct def_blocks_d *db_p;
424 enum need_phi_state state = get_phi_state (var);
425
426 db_p = get_def_blocks_for (var);
427
428 /* Set the bit corresponding to the block where VAR is live in. */
429 bitmap_set_bit (db_p->livein_blocks, bb->index);
430
431 /* Keep track of whether or not we may need to insert PHI nodes.
432
433 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
434 by the single block containing the definition(s) of this variable. If
435 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
436 NEED_PHI_STATE_MAYBE. */
437 if (state == NEED_PHI_STATE_NO)
438 {
439 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
440
441 if (def_block_index == -1
442 || ! dominated_by_p (CDI_DOMINATORS, bb,
443 BASIC_BLOCK (def_block_index)))
444 set_phi_state (var, NEED_PHI_STATE_MAYBE);
445 }
446 else
447 set_phi_state (var, NEED_PHI_STATE_MAYBE);
448 }
449
450
451 /* Return true if symbol SYM is marked for renaming. */
452
453 static inline bool
454 symbol_marked_for_renaming (tree sym)
455 {
456 gcc_assert (DECL_P (sym));
457 return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
458 }
459
460
461 /* Return true if NAME is in OLD_SSA_NAMES. */
462
463 static inline bool
464 is_old_name (tree name)
465 {
466 unsigned ver = SSA_NAME_VERSION (name);
467 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
468 }
469
470
471 /* Return true if NAME is in NEW_SSA_NAMES. */
472
473 static inline bool
474 is_new_name (tree name)
475 {
476 unsigned ver = SSA_NAME_VERSION (name);
477 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
478 }
479
480
481 /* Hashing and equality functions for REPL_TBL. */
482
483 static hashval_t
484 repl_map_hash (const void *p)
485 {
486 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
487 }
488
489 static int
490 repl_map_eq (const void *p1, const void *p2)
491 {
492 return ((const struct repl_map_d *)p1)->name
493 == ((const struct repl_map_d *)p2)->name;
494 }
495
496 static void
497 repl_map_free (void *p)
498 {
499 BITMAP_FREE (((struct repl_map_d *)p)->set);
500 free (p);
501 }
502
503
504 /* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
505
506 static inline bitmap
507 names_replaced_by (tree new)
508 {
509 struct repl_map_d m;
510 void **slot;
511
512 m.name = new;
513 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
514
515 /* If N was not registered in the replacement table, return NULL. */
516 if (slot == NULL || *slot == NULL)
517 return NULL;
518
519 return ((struct repl_map_d *) *slot)->set;
520 }
521
522
523 /* Add OLD to REPL_TBL[NEW].SET. */
524
525 static inline void
526 add_to_repl_tbl (tree new, tree old)
527 {
528 struct repl_map_d m, *mp;
529 void **slot;
530
531 m.name = new;
532 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
533 if (*slot == NULL)
534 {
535 mp = XNEW (struct repl_map_d);
536 mp->name = new;
537 mp->set = BITMAP_ALLOC (NULL);
538 *slot = (void *) mp;
539 }
540 else
541 mp = (struct repl_map_d *) *slot;
542
543 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
544 }
545
546
547 /* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
548 represents the set of names O_1 ... O_j replaced by N_i. This is
549 used by update_ssa and its helpers to introduce new SSA names in an
550 already formed SSA web. */
551
552 static void
553 add_new_name_mapping (tree new, tree old)
554 {
555 timevar_push (TV_TREE_SSA_INCREMENTAL);
556
557 /* OLD and NEW must be different SSA names for the same symbol. */
558 gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));
559
560 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
561 caller may have created new names since the set was created. */
562 if (new_ssa_names->n_bits <= num_ssa_names - 1)
563 {
564 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
565 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
566 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
567 }
568
569 /* If this mapping is for virtual names, we will need to update
570 virtual operands. */
571 if (!is_gimple_reg (new))
572 {
573 tree sym;
574 size_t uid;
575
576 need_to_update_vops_p = true;
577
578 /* Keep counts of virtual mappings and symbols to use in the
579 virtual mapping heuristic. If we have large numbers of
580 virtual mappings for a relatively low number of symbols, it
581 will make more sense to rename the symbols from scratch.
582 Otherwise, the insertion of PHI nodes for each of the old
583 names in these mappings will be very slow. */
584 sym = SSA_NAME_VAR (new);
585 uid = DECL_UID (sym);
586 update_ssa_stats.num_virtual_mappings++;
587 if (!bitmap_bit_p (update_ssa_stats.virtual_symbols, uid))
588 {
589 bitmap_set_bit (update_ssa_stats.virtual_symbols, uid);
590 update_ssa_stats.num_virtual_symbols++;
591 }
592 }
593
594 /* Update the REPL_TBL table. */
595 add_to_repl_tbl (new, old);
596
597 /* If OLD had already been registered as a new name, then all the
598 names that OLD replaces should also be replaced by NEW. */
599 if (is_new_name (old))
600 bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
601
602 /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
603 respectively. */
604 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
605 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
606
607 /* Update mapping counter to use in the virtual mapping heuristic. */
608 update_ssa_stats.num_total_mappings++;
609
610 timevar_pop (TV_TREE_SSA_INCREMENTAL);
611 }
612
613
614 /* Call back for walk_dominator_tree used to collect definition sites
615 for every variable in the function. For every statement S in block
616 BB:
617
618 1- Variables defined by S in the DEFS of S are marked in the bitmap
619 WALK_DATA->GLOBAL_DATA->KILLS.
620
621 2- If S uses a variable VAR and there is no preceding kill of VAR,
622 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
623
624 This information is used to determine which variables are live
625 across block boundaries to reduce the number of PHI nodes
626 we create. */
627
628 static void
629 mark_def_sites (struct dom_walk_data *walk_data,
630 basic_block bb,
631 block_stmt_iterator bsi)
632 {
633 struct mark_def_sites_global_data *gd =
634 (struct mark_def_sites_global_data *) walk_data->global_data;
635 bitmap kills = gd->kills;
636 tree stmt, def;
637 use_operand_p use_p;
638 def_operand_p def_p;
639 ssa_op_iter iter;
640
641 stmt = bsi_stmt (bsi);
642 update_stmt_if_modified (stmt);
643
644 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
645 REWRITE_THIS_STMT (stmt) = 0;
646
647 /* If a variable is used before being set, then the variable is live
648 across a block boundary, so mark it live-on-entry to BB. */
649 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
650 SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTKILL)
651 {
652 tree sym = USE_FROM_PTR (use_p);
653 gcc_assert (DECL_P (sym));
654 if (!bitmap_bit_p (kills, DECL_UID (sym)))
655 set_livein_block (sym, bb);
656 REWRITE_THIS_STMT (stmt) = 1;
657 }
658
659 /* Note that virtual definitions are irrelevant for computing KILLS
660 because a V_MAY_DEF does not constitute a killing definition of the
661 variable. However, the operand of a virtual definitions is a use
662 of the variable, so it may cause the variable to be considered
663 live-on-entry. */
664 FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
665 {
666 tree sym = USE_FROM_PTR (use_p);
667 gcc_assert (DECL_P (sym));
668 set_livein_block (sym, bb);
669 set_def_block (sym, bb, false);
670 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
671 REWRITE_THIS_STMT (stmt) = 1;
672 }
673
674 /* Now process the defs and must-defs made by this statement. */
675 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
676 {
677 gcc_assert (DECL_P (def));
678 set_def_block (def, bb, false);
679 bitmap_set_bit (kills, DECL_UID (def));
680 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
681 }
682
683 /* If we found the statement interesting then also mark the block BB
684 as interesting. */
685 if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
686 SET_BIT (gd->interesting_blocks, bb->index);
687 }
688
689
690 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
691 return a bitmap with all the blocks in the iterated dominance
692 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
693 frontier information as returned by compute_dominance_frontiers.
694
695 The resulting set of blocks are the potential sites where PHI nodes
696 are needed. The caller is responsible from freeing the memory
697 allocated for the return value. */
698
699 static bitmap
700 find_idf (bitmap def_blocks, bitmap *dfs)
701 {
702 bitmap_iterator bi;
703 unsigned bb_index;
704 VEC(int,heap) *work_stack;
705 bitmap phi_insertion_points;
706
707 work_stack = VEC_alloc (int, heap, n_basic_blocks);
708 phi_insertion_points = BITMAP_ALLOC (NULL);
709
710 /* Seed the work list with all the blocks in DEF_BLOCKS. */
711 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
712 /* We use VEC_quick_push here for speed. This is safe because we
713 know that the number of definition blocks is no greater than
714 the number of basic blocks, which is the initial capacity of
715 WORK_STACK. */
716 VEC_quick_push (int, work_stack, bb_index);
717
718 /* Pop a block off the worklist, add every block that appears in
719 the original block's DF that we have not already processed to
720 the worklist. Iterate until the worklist is empty. Blocks
721 which are added to the worklist are potential sites for
722 PHI nodes. */
723 while (VEC_length (int, work_stack) > 0)
724 {
725 bb_index = VEC_pop (int, work_stack);
726
727 /* Since the registration of NEW -> OLD name mappings is done
728 separately from the call to update_ssa, when updating the SSA
729 form, the basic blocks where new and/or old names are defined
730 may have disappeared by CFG cleanup calls. In this case,
731 we may pull a non-existing block from the work stack. */
732 gcc_assert (bb_index < (unsigned) last_basic_block);
733
734 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
735 0, bb_index, bi)
736 {
737 /* Use a safe push because if there is a definition of VAR
738 in every basic block, then WORK_STACK may eventually have
739 more than N_BASIC_BLOCK entries. */
740 VEC_safe_push (int, heap, work_stack, bb_index);
741 bitmap_set_bit (phi_insertion_points, bb_index);
742 }
743 }
744
745 VEC_free (int, heap, work_stack);
746
747 return phi_insertion_points;
748 }
749
750
751 /* Return the set of blocks where variable VAR is defined and the blocks
752 where VAR is live on entry (livein). Return NULL, if no entry is
753 found in DEF_BLOCKS. */
754
755 static inline struct def_blocks_d *
756 find_def_blocks_for (tree var)
757 {
758 struct def_blocks_d dm;
759 dm.var = var;
760 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
761 }
762
763
764 /* Retrieve or create a default definition for symbol SYM. */
765
766 static inline tree
767 get_default_def_for (tree sym)
768 {
769 tree ddef = default_def (sym);
770
771 if (ddef == NULL_TREE)
772 {
773 ddef = make_ssa_name (sym, build_empty_stmt ());
774 set_default_def (sym, ddef);
775 }
776
777 return ddef;
778 }
779
780
781 /* Insert PHI nodes for variable VAR using the iterated dominance
782 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
783 function assumes that the caller is incrementally updating the SSA
784 form, in which case (1) VAR is assumed to be an SSA name, (2) a new
785 SSA name is created for VAR's symbol, and, (3) all the arguments
786 for the newly created PHI node are set to VAR.
787
788 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
789 PHI node for VAR. On exit, only the nodes that received a PHI node
790 for VAR will be present in PHI_INSERTION_POINTS. */
791
792 static void
793 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
794 {
795 unsigned bb_index;
796 edge e;
797 tree phi;
798 basic_block bb;
799 bitmap_iterator bi;
800 struct def_blocks_d *def_map;
801
802 def_map = find_def_blocks_for (var);
803 gcc_assert (def_map);
804
805 /* Remove the blocks where we already have PHI nodes for VAR. */
806 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
807
808 /* Now compute global livein for this variable. Note this modifies
809 def_map->livein_blocks. */
810 compute_global_livein (def_map->livein_blocks, def_map->def_blocks);
811
812 /* And insert the PHI nodes. */
813 EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks,
814 0, bb_index, bi)
815 {
816 bb = BASIC_BLOCK (bb_index);
817
818 if (update_p && TREE_CODE (var) == SSA_NAME)
819 {
820 /* If we are rewriting SSA names, create the LHS of the PHI
821 node by duplicating VAR. This is useful in the case of
822 pointers, to also duplicate pointer attributes (alias
823 information, in particular). */
824 edge_iterator ei;
825 tree new_lhs;
826
827 phi = create_phi_node (var, bb);
828 new_lhs = duplicate_ssa_name (var, phi);
829 SET_PHI_RESULT (phi, new_lhs);
830 add_new_name_mapping (new_lhs, var);
831
832 /* Add VAR to every argument slot of PHI. We need VAR in
833 every argument so that rewrite_update_phi_arguments knows
834 which name is this PHI node replacing. If VAR is a
835 symbol marked for renaming, this is not necessary, the
836 renamer will use the symbol on the LHS to get its
837 reaching definition. */
838 FOR_EACH_EDGE (e, ei, bb->preds)
839 add_phi_arg (phi, var, e);
840 }
841 else
842 {
843 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
844 phi = create_phi_node (sym, bb);
845 }
846
847 /* Mark this PHI node as interesting for update_ssa. */
848 REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
849 REWRITE_THIS_STMT (phi) = 1;
850 }
851 }
852
853
854 /* Insert PHI nodes at the dominance frontier of blocks with variable
855 definitions. DFS contains the dominance frontier information for
856 the flowgraph. PHI nodes will only be inserted at the dominance
857 frontier of definition blocks for variables whose NEED_PHI_STATE
858 annotation is marked as ``maybe'' or ``unknown'' (computed by
859 mark_def_sites). */
860
861 static void
862 insert_phi_nodes (bitmap *dfs)
863 {
864 referenced_var_iterator rvi;
865 tree var;
866
867 timevar_push (TV_TREE_INSERT_PHI_NODES);
868
869 FOR_EACH_REFERENCED_VAR (var, rvi)
870 {
871 struct def_blocks_d *def_map;
872 bitmap idf;
873
874 def_map = find_def_blocks_for (var);
875 if (def_map == NULL)
876 continue;
877
878 if (get_phi_state (var) != NEED_PHI_STATE_NO)
879 {
880 idf = find_idf (def_map->def_blocks, dfs);
881 insert_phi_nodes_for (var, idf, false);
882 BITMAP_FREE (idf);
883 }
884 }
885
886 timevar_pop (TV_TREE_INSERT_PHI_NODES);
887 }
888
889
890 /* Register DEF (an SSA_NAME) to be a new definition for its underlying
891 variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
892 into the stack pointed to by BLOCK_DEFS_P. */
893
894 void
895 register_new_def (tree def, VEC(tree,heap) **block_defs_p)
896 {
897 tree var = SSA_NAME_VAR (def);
898 tree currdef;
899
900 /* If this variable is set in a single basic block and all uses are
901 dominated by the set(s) in that single basic block, then there is
902 no reason to record anything for this variable in the block local
903 definition stacks. Doing so just wastes time and memory.
904
905 This is the same test to prune the set of variables which may
906 need PHI nodes. So we just use that information since it's already
907 computed and available for us to use. */
908 if (get_phi_state (var) == NEED_PHI_STATE_NO)
909 {
910 set_current_def (var, def);
911 return;
912 }
913
914 currdef = get_current_def (var);
915
916 /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
917 later used by the dominator tree callbacks to restore the reaching
918 definitions for all the variables defined in the block after a recursive
919 visit to all its immediately dominated blocks. If there is no current
920 reaching definition, then just record the underlying _DECL node. */
921 VEC_safe_push (tree, heap, *block_defs_p, currdef ? currdef : var);
922
923 /* Set the current reaching definition for VAR to be DEF. */
924 set_current_def (var, def);
925 }
926
927
928 /* Perform a depth-first traversal of the dominator tree looking for
929 variables to rename. BB is the block where to start searching.
930 Renaming is a five step process:
931
932 1- Every definition made by PHI nodes at the start of the blocks is
933 registered as the current definition for the corresponding variable.
934
935 2- Every statement in BB is rewritten. USE and VUSE operands are
936 rewritten with their corresponding reaching definition. DEF and
937 VDEF targets are registered as new definitions.
938
939 3- All the PHI nodes in successor blocks of BB are visited. The
940 argument corresponding to BB is replaced with its current reaching
941 definition.
942
943 4- Recursively rewrite every dominator child block of BB.
944
945 5- Restore (in reverse order) the current reaching definition for every
946 new definition introduced in this block. This is done so that when
947 we return from the recursive call, all the current reaching
948 definitions are restored to the names that were valid in the
949 dominator parent of BB. */
950
951 /* SSA Rewriting Step 1. Initialization, create a block local stack
952 of reaching definitions for new SSA names produced in this block
953 (BLOCK_DEFS). Register new definitions for every PHI node in the
954 block. */
955
956 static void
957 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
958 basic_block bb)
959 {
960 tree phi;
961
962 if (dump_file && (dump_flags & TDF_DETAILS))
963 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
964
965 /* Mark the unwind point for this block. */
966 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
967
968 /* Step 1. Register new definitions for every PHI node in the block.
969 Conceptually, all the PHI nodes are executed in parallel and each PHI
970 node introduces a new version for the associated variable. */
971 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
972 {
973 tree result = PHI_RESULT (phi);
974 register_new_def (result, &block_defs_stack);
975 }
976 }
977
978
979 /* Return the current definition for variable VAR. If none is found,
980 create a new SSA name to act as the zeroth definition for VAR. If VAR
981 is call clobbered and there exists a more recent definition of
982 GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
983 has been clobbered by a function call since its last assignment. */
984
985 static tree
986 get_reaching_def (tree var)
987 {
988 tree currdef_var, avar;
989
990 /* Lookup the current reaching definition for VAR. */
991 currdef_var = get_current_def (var);
992
993 /* If there is no reaching definition for VAR, create and register a
994 default definition for it (if needed). */
995 if (currdef_var == NULL_TREE)
996 {
997 avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
998 currdef_var = get_default_def_for (avar);
999 set_current_def (var, currdef_var);
1000 }
1001
1002 /* Return the current reaching definition for VAR, or the default
1003 definition, if we had to create one. */
1004 return currdef_var;
1005 }
1006
1007
1008 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1009 the block with its immediate reaching definitions. Update the current
1010 definition of a variable when a new real or virtual definition is found. */
1011
1012 static void
1013 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1014 basic_block bb ATTRIBUTE_UNUSED,
1015 block_stmt_iterator si)
1016 {
1017 tree stmt;
1018 use_operand_p use_p;
1019 def_operand_p def_p;
1020 ssa_op_iter iter;
1021
1022 stmt = bsi_stmt (si);
1023
1024 /* If mark_def_sites decided that we don't need to rewrite this
1025 statement, ignore it. */
1026 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1027 return;
1028
1029 if (dump_file && (dump_flags & TDF_DETAILS))
1030 {
1031 fprintf (dump_file, "Renaming statement ");
1032 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1033 fprintf (dump_file, "\n");
1034 }
1035
1036 /* Step 1. Rewrite USES and VUSES in the statement. */
1037 if (REWRITE_THIS_STMT (stmt))
1038 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1039 SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
1040 {
1041 tree var = USE_FROM_PTR (use_p);
1042 gcc_assert (DECL_P (var));
1043 SET_USE (use_p, get_reaching_def (var));
1044 }
1045
1046 /* Step 2. Register the statement's DEF and VDEF operands. */
1047 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1048 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1049 {
1050 tree var = DEF_FROM_PTR (def_p);
1051 gcc_assert (DECL_P (var));
1052 SET_DEF (def_p, make_ssa_name (var, stmt));
1053 register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
1054 }
1055 }
1056
1057
1058 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1059 PHI nodes. For every PHI node found, add a new argument containing the
1060 current reaching definition for the variable and the edge through which
1061 that definition is reaching the PHI node. */
1062
1063 static void
1064 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1065 basic_block bb)
1066 {
1067 edge e;
1068 edge_iterator ei;
1069
1070 FOR_EACH_EDGE (e, ei, bb->succs)
1071 {
1072 tree phi;
1073
1074 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1075 {
1076 tree currdef;
1077 currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
1078 add_phi_arg (phi, currdef, e);
1079 }
1080 }
1081 }
1082
1083
1084 /* Called after visiting basic block BB. Restore CURRDEFS to its
1085 original value. */
1086
1087 static void
1088 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1089 basic_block bb ATTRIBUTE_UNUSED)
1090 {
1091 /* Restore CURRDEFS to its original state. */
1092 while (VEC_length (tree, block_defs_stack) > 0)
1093 {
1094 tree tmp = VEC_pop (tree, block_defs_stack);
1095 tree saved_def, var;
1096
1097 if (tmp == NULL_TREE)
1098 break;
1099
1100 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
1101 definition of its underlying variable. If we recorded anything
1102 else, it must have been an _DECL node and its current reaching
1103 definition must have been NULL. */
1104 if (TREE_CODE (tmp) == SSA_NAME)
1105 {
1106 saved_def = tmp;
1107 var = SSA_NAME_VAR (saved_def);
1108 }
1109 else
1110 {
1111 saved_def = NULL;
1112 var = tmp;
1113 }
1114
1115 set_current_def (var, saved_def);
1116 }
1117 }
1118
1119
1120 /* Dump SSA information to FILE. */
1121
1122 void
1123 dump_tree_ssa (FILE *file)
1124 {
1125 basic_block bb;
1126 const char *funcname
1127 = lang_hooks.decl_printable_name (current_function_decl, 2);
1128
1129 fprintf (file, "SSA information for %s\n\n", funcname);
1130
1131 FOR_EACH_BB (bb)
1132 {
1133 dump_bb (bb, file, 0);
1134 fputs (" ", file);
1135 print_generic_stmt (file, phi_nodes (bb), dump_flags);
1136 fputs ("\n\n", file);
1137 }
1138 }
1139
1140
1141 /* Dump SSA information to stderr. */
1142
1143 void
1144 debug_tree_ssa (void)
1145 {
1146 dump_tree_ssa (stderr);
1147 }
1148
1149
1150 /* Dump statistics for the hash table HTAB. */
1151
1152 static void
1153 htab_statistics (FILE *file, htab_t htab)
1154 {
1155 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1156 (long) htab_size (htab),
1157 (long) htab_elements (htab),
1158 htab_collisions (htab));
1159 }
1160
1161
1162 /* Dump SSA statistics on FILE. */
1163
1164 void
1165 dump_tree_ssa_stats (FILE *file)
1166 {
1167 fprintf (file, "\nHash table statistics:\n");
1168
1169 fprintf (file, " def_blocks: ");
1170 htab_statistics (file, def_blocks);
1171
1172 fprintf (file, "\n");
1173 }
1174
1175
1176 /* Dump SSA statistics on stderr. */
1177
1178 void
1179 debug_tree_ssa_stats (void)
1180 {
1181 dump_tree_ssa_stats (stderr);
1182 }
1183
1184
1185 /* Hashing and equality functions for DEF_BLOCKS. */
1186
1187 static hashval_t
1188 def_blocks_hash (const void *p)
1189 {
1190 return htab_hash_pointer
1191 ((const void *)((const struct def_blocks_d *)p)->var);
1192 }
1193
1194 static int
1195 def_blocks_eq (const void *p1, const void *p2)
1196 {
1197 return ((const struct def_blocks_d *)p1)->var
1198 == ((const struct def_blocks_d *)p2)->var;
1199 }
1200
1201
1202 /* Free memory allocated by one entry in DEF_BLOCKS. */
1203
1204 static void
1205 def_blocks_free (void *p)
1206 {
1207 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1208 BITMAP_FREE (entry->def_blocks);
1209 BITMAP_FREE (entry->phi_blocks);
1210 BITMAP_FREE (entry->livein_blocks);
1211 free (entry);
1212 }
1213
1214
1215 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1216
1217 static int
1218 debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
1219 {
1220 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1221
1222 fprintf (stderr, "VAR: ");
1223 print_generic_expr (stderr, db_p->var, dump_flags);
1224 bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1225 bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");
1226
1227 return 1;
1228 }
1229
1230
1231 /* Dump the DEF_BLOCKS hash table on stderr. */
1232
1233 void
1234 debug_def_blocks (void)
1235 {
1236 htab_traverse (def_blocks, debug_def_blocks_r, NULL);
1237 }
1238
1239
1240 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1241
1242 static inline void
1243 register_new_update_single (tree new_name, tree old_name)
1244 {
1245 tree currdef = get_current_def (old_name);
1246
1247 /* Push the current reaching definition into *BLOCK_DEFS_P.
1248 This stack is later used by the dominator tree callbacks to
1249 restore the reaching definitions for all the variables
1250 defined in the block after a recursive visit to all its
1251 immediately dominated blocks. */
1252 VEC_reserve (tree, heap, block_defs_stack, 2);
1253 VEC_quick_push (tree, block_defs_stack, currdef);
1254 VEC_quick_push (tree, block_defs_stack, old_name);
1255
1256 /* Set the current reaching definition for OLD_NAME to be
1257 NEW_NAME. */
1258 set_current_def (old_name, new_name);
1259 }
1260
1261
1262 /* Register NEW_NAME to be the new reaching definition for all the
1263 names in OLD_NAMES. Used by the incremental SSA update routines to
1264 replace old SSA names with new ones. */
1265
1266 static inline void
1267 register_new_update_set (tree new_name, bitmap old_names)
1268 {
1269 bitmap_iterator bi;
1270 unsigned i;
1271
1272 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1273 register_new_update_single (new_name, ssa_name (i));
1274 }
1275
1276
1277 /* Initialization of block data structures for the incremental SSA
1278 update pass. Create a block local stack of reaching definitions
1279 for new SSA names produced in this block (BLOCK_DEFS). Register
1280 new definitions for every PHI node in the block. */
1281
1282 static void
1283 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1284 basic_block bb)
1285 {
1286 edge e;
1287 edge_iterator ei;
1288 tree phi;
1289 bool is_abnormal_phi;
1290
1291 if (dump_file && (dump_flags & TDF_DETAILS))
1292 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1293 bb->index);
1294
1295 /* Mark the unwind point for this block. */
1296 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1297
1298 /* Mark the LHS if any of the arguments flows through an abnormal
1299 edge. */
1300 is_abnormal_phi = false;
1301 FOR_EACH_EDGE (e, ei, bb->preds)
1302 if (e->flags & EDGE_ABNORMAL)
1303 {
1304 is_abnormal_phi = true;
1305 break;
1306 }
1307
1308 /* If any of the PHI nodes is a replacement for a name in
1309 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1310 register it as a new definition for its corresponding name. Also
1311 register definitions for names whose underlying symbols are
1312 marked for renaming. */
1313 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1314 {
1315 tree lhs, lhs_sym;
1316
1317 if (!REGISTER_DEFS_IN_THIS_STMT (phi))
1318 continue;
1319
1320 lhs = PHI_RESULT (phi);
1321 lhs_sym = SSA_NAME_VAR (lhs);
1322
1323 if (symbol_marked_for_renaming (lhs_sym))
1324 register_new_update_single (lhs, lhs_sym);
1325 else
1326 {
1327 /* If LHS is a new name, register a new definition for all
1328 the names replaced by LHS. */
1329 if (is_new_name (lhs))
1330 register_new_update_set (lhs, names_replaced_by (lhs));
1331
1332 /* If LHS is an OLD name, register it as a new definition
1333 for itself. */
1334 if (is_old_name (lhs))
1335 register_new_update_single (lhs, lhs);
1336 }
1337
1338 if (is_abnormal_phi)
1339 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1340 }
1341 }
1342
1343
1344 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1345 the current reaching definition of every name re-written in BB to
1346 the original reaching definition before visiting BB. This
1347 unwinding must be done in the opposite order to what is done in
1348 register_new_update_set. */
1349
1350 static void
1351 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1352 basic_block bb ATTRIBUTE_UNUSED)
1353 {
1354 while (VEC_length (tree, block_defs_stack) > 0)
1355 {
1356 tree var = VEC_pop (tree, block_defs_stack);
1357 tree saved_def;
1358
1359 /* NULL indicates the unwind stop point for this block (see
1360 rewrite_update_init_block). */
1361 if (var == NULL)
1362 return;
1363
1364 saved_def = VEC_pop (tree, block_defs_stack);
1365 set_current_def (var, saved_def);
1366 }
1367 }
1368
1369
1370 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1371 it is a symbol marked for renaming, replace it with USE_P's current
1372 reaching definition. */
1373
1374 static inline void
1375 maybe_replace_use (use_operand_p use_p)
1376 {
1377 tree rdef = NULL_TREE;
1378 tree use = USE_FROM_PTR (use_p);
1379 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1380
1381 if (symbol_marked_for_renaming (sym))
1382 rdef = get_reaching_def (sym);
1383 else if (is_old_name (use))
1384 rdef = get_reaching_def (use);
1385
1386 if (rdef && rdef != use)
1387 SET_USE (use_p, rdef);
1388 }
1389
1390
1391 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1392 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1393 register it as the current definition for the names replaced by
1394 DEF_P. */
1395
1396 static inline void
1397 maybe_register_def (def_operand_p def_p, tree stmt)
1398 {
1399 tree def = DEF_FROM_PTR (def_p);
1400 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1401
1402 /* If DEF is a naked symbol that needs renaming, create a
1403 new name for it. */
1404 if (symbol_marked_for_renaming (sym))
1405 {
1406 if (DECL_P (def))
1407 {
1408 def = make_ssa_name (def, stmt);
1409 SET_DEF (def_p, def);
1410 }
1411
1412 register_new_update_single (def, sym);
1413 }
1414 else
1415 {
1416 /* If DEF is a new name, register it as a new definition
1417 for all the names replaced by DEF. */
1418 if (is_new_name (def))
1419 register_new_update_set (def, names_replaced_by (def));
1420
1421 /* If DEF is an old name, register DEF as a new
1422 definition for itself. */
1423 if (is_old_name (def))
1424 register_new_update_single (def, def);
1425 }
1426 }
1427
1428
1429 /* Update every variable used in the statement pointed-to by SI. The
1430 statement is assumed to be in SSA form already. Names in
1431 OLD_SSA_NAMES used by SI will be updated to their current reaching
1432 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1433 will be registered as a new definition for their corresponding name
1434 in OLD_SSA_NAMES. */
1435
1436 static void
1437 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1438 basic_block bb ATTRIBUTE_UNUSED,
1439 block_stmt_iterator si)
1440 {
1441 stmt_ann_t ann;
1442 tree stmt;
1443 use_operand_p use_p;
1444 def_operand_p def_p;
1445 ssa_op_iter iter;
1446
1447 stmt = bsi_stmt (si);
1448 ann = stmt_ann (stmt);
1449
1450 /* Only update marked statements. */
1451 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1452 return;
1453
1454 if (dump_file && (dump_flags & TDF_DETAILS))
1455 {
1456 fprintf (dump_file, "Updating SSA information for statement ");
1457 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1458 fprintf (dump_file, "\n");
1459 }
1460
1461 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1462 symbol is marked for renaming. */
1463 if (REWRITE_THIS_STMT (stmt))
1464 {
1465 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1466 maybe_replace_use (use_p);
1467
1468 if (need_to_update_vops_p)
1469 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1470 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
1471 maybe_replace_use (use_p);
1472 }
1473
1474 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1475 Also register definitions for names whose underlying symbol is
1476 marked for renaming. */
1477 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1478 {
1479 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1480 maybe_register_def (def_p, stmt);
1481
1482 if (need_to_update_vops_p)
1483 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1484 maybe_register_def (def_p, stmt);
1485 }
1486 }
1487
1488
1489 /* Replace the operand pointed to by USE_P with USE's current reaching
1490 definition. */
1491
1492 static inline void
1493 replace_use (use_operand_p use_p, tree use)
1494 {
1495 tree rdef = get_reaching_def (use);
1496 if (rdef != use)
1497 SET_USE (use_p, rdef);
1498 }
1499
1500
1501 /* Visit all the successor blocks of BB looking for PHI nodes. For
1502 every PHI node found, check if any of its arguments is in
1503 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1504 definition, replace it. */
1505
1506 static void
1507 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1508 basic_block bb)
1509 {
1510 edge e;
1511 edge_iterator ei;
1512
1513 FOR_EACH_EDGE (e, ei, bb->succs)
1514 {
1515 tree phi;
1516
1517 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1518 {
1519 tree arg;
1520 use_operand_p arg_p;
1521
1522 /* Skip PHI nodes that are not marked for rewrite. */
1523 if (!REWRITE_THIS_STMT (phi))
1524 continue;
1525
1526 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1527 arg = USE_FROM_PTR (arg_p);
1528
1529 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1530 continue;
1531
1532 if (arg == NULL_TREE)
1533 {
1534 /* When updating a PHI node for a recently introduced
1535 symbol we may find NULL arguments. That's why we
1536 take the symbol from the LHS of the PHI node. */
1537 replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
1538 }
1539 else
1540 {
1541 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
1542
1543 if (symbol_marked_for_renaming (sym))
1544 replace_use (arg_p, sym);
1545 else if (is_old_name (arg))
1546 replace_use (arg_p, arg);
1547 }
1548
1549 if (e->flags & EDGE_ABNORMAL)
1550 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
1551 }
1552 }
1553 }
1554
1555
1556 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
1557 form.
1558
1559 ENTRY indicates the block where to start. Every block dominated by
1560 ENTRY will be rewritten.
1561
1562 WHAT indicates what actions will be taken by the renamer (see enum
1563 rewrite_mode).
1564
1565 BLOCKS are the set of interesting blocks for the dominator walker
1566 to process. If this set is NULL, then all the nodes dominated
1567 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
1568 are not present in BLOCKS are ignored. */
1569
1570 static void
1571 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
1572 {
1573 struct dom_walk_data walk_data;
1574
1575 /* Rewrite all the basic blocks in the program. */
1576 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
1577
1578 /* Setup callbacks for the generic dominator tree walker. */
1579 memset (&walk_data, 0, sizeof (walk_data));
1580
1581 walk_data.dom_direction = CDI_DOMINATORS;
1582 walk_data.interesting_blocks = blocks;
1583
1584 if (what == REWRITE_UPDATE)
1585 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
1586 else
1587 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
1588
1589 if (what == REWRITE_ALL)
1590 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
1591 else if (what == REWRITE_UPDATE)
1592 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
1593 else
1594 gcc_unreachable ();
1595
1596 if (what == REWRITE_ALL)
1597 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
1598 else if (what == REWRITE_UPDATE)
1599 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
1600 else
1601 gcc_unreachable ();
1602
1603 if (what == REWRITE_ALL)
1604 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
1605 else if (what == REWRITE_UPDATE)
1606 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
1607 else
1608 gcc_unreachable ();
1609
1610 block_defs_stack = VEC_alloc (tree, heap, 10);
1611
1612 /* Initialize the dominator walker. */
1613 init_walk_dominator_tree (&walk_data);
1614
1615 /* Recursively walk the dominator tree rewriting each statement in
1616 each basic block. */
1617 walk_dominator_tree (&walk_data, entry);
1618
1619 /* Finalize the dominator walker. */
1620 fini_walk_dominator_tree (&walk_data);
1621
1622 /* Debugging dumps. */
1623 if (dump_file && (dump_flags & TDF_STATS))
1624 {
1625 dump_dfa_stats (dump_file);
1626 if (def_blocks)
1627 dump_tree_ssa_stats (dump_file);
1628 }
1629
1630 if (def_blocks)
1631 {
1632 htab_delete (def_blocks);
1633 def_blocks = NULL;
1634 }
1635
1636 VEC_free (tree, heap, block_defs_stack);
1637
1638 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
1639 }
1640
1641
1642 /* Block initialization routine for mark_def_sites. Clear the
1643 KILLS bitmap at the start of each block. */
1644
1645 static void
1646 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
1647 basic_block bb ATTRIBUTE_UNUSED)
1648 {
1649 struct mark_def_sites_global_data *gd =
1650 (struct mark_def_sites_global_data *) walk_data->global_data;
1651 bitmap kills = gd->kills;
1652 bitmap_clear (kills);
1653 }
1654
1655
1656 /* Mark the definition site blocks for each variable, so that we know
1657 where the variable is actually live.
1658
1659 INTERESTING_BLOCKS will be filled in with all the blocks that
1660 should be processed by the renamer. It is assumed to be
1661 initialized and zeroed by the caller. */
1662
1663 static void
1664 mark_def_site_blocks (sbitmap interesting_blocks)
1665 {
1666 struct dom_walk_data walk_data;
1667 struct mark_def_sites_global_data mark_def_sites_global_data;
1668 referenced_var_iterator rvi;
1669 tree var;
1670
1671 /* Allocate memory for the DEF_BLOCKS hash table. */
1672 def_blocks = htab_create (num_referenced_vars,
1673 def_blocks_hash, def_blocks_eq, def_blocks_free);
1674 FOR_EACH_REFERENCED_VAR(var, rvi)
1675 set_current_def (var, NULL_TREE);
1676
1677 /* Setup callbacks for the generic dominator tree walker to find and
1678 mark definition sites. */
1679 walk_data.walk_stmts_backward = false;
1680 walk_data.dom_direction = CDI_DOMINATORS;
1681 walk_data.initialize_block_local_data = NULL;
1682 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
1683 walk_data.before_dom_children_walk_stmts = mark_def_sites;
1684 walk_data.before_dom_children_after_stmts = NULL;
1685 walk_data.after_dom_children_before_stmts = NULL;
1686 walk_data.after_dom_children_walk_stmts = NULL;
1687 walk_data.after_dom_children_after_stmts = NULL;
1688 walk_data.interesting_blocks = NULL;
1689
1690 /* Notice that this bitmap is indexed using variable UIDs, so it must be
1691 large enough to accommodate all the variables referenced in the
1692 function, not just the ones we are renaming. */
1693 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
1694
1695 /* Create the set of interesting blocks that will be filled by
1696 mark_def_sites. */
1697 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
1698 walk_data.global_data = &mark_def_sites_global_data;
1699
1700 /* We do not have any local data. */
1701 walk_data.block_local_data_size = 0;
1702
1703 /* Initialize the dominator walker. */
1704 init_walk_dominator_tree (&walk_data);
1705
1706 /* Recursively walk the dominator tree. */
1707 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1708
1709 /* Finalize the dominator walker. */
1710 fini_walk_dominator_tree (&walk_data);
1711
1712 /* We no longer need this bitmap, clear and free it. */
1713 BITMAP_FREE (mark_def_sites_global_data.kills);
1714 }
1715
1716
1717 /* Main entry point into the SSA builder. The renaming process
1718 proceeds in four main phases:
1719
1720 1- Compute dominance frontier and immediate dominators, needed to
1721 insert PHI nodes and rename the function in dominator tree
1722 order.
1723
1724 2- Find and mark all the blocks that define variables
1725 (mark_def_site_blocks).
1726
1727 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
1728
1729 4- Rename all the blocks (rewrite_blocks) and statements in the program.
1730
1731 Steps 3 and 4 are done using the dominator tree walker
1732 (walk_dominator_tree). */
1733
1734 static void
1735 rewrite_into_ssa (void)
1736 {
1737 bitmap *dfs;
1738 basic_block bb;
1739 sbitmap interesting_blocks;
1740
1741 timevar_push (TV_TREE_SSA_OTHER);
1742
1743 /* Initialize operand data structures. */
1744 init_ssa_operands ();
1745
1746 /* Initialize the set of interesting blocks. The callback
1747 mark_def_sites will add to this set those blocks that the renamer
1748 should process. */
1749 interesting_blocks = sbitmap_alloc (last_basic_block);
1750 sbitmap_zero (interesting_blocks);
1751
1752 /* Initialize dominance frontier. */
1753 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap));
1754 FOR_EACH_BB (bb)
1755 dfs[bb->index] = BITMAP_ALLOC (NULL);
1756
1757 /* 1- Compute dominance frontiers. */
1758 calculate_dominance_info (CDI_DOMINATORS);
1759 compute_dominance_frontiers (dfs);
1760
1761 /* 2- Find and mark definition sites. */
1762 mark_def_site_blocks (interesting_blocks);
1763
1764 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
1765 insert_phi_nodes (dfs);
1766
1767 /* 4- Rename all the blocks. */
1768 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
1769
1770 /* Free allocated memory. */
1771 FOR_EACH_BB (bb)
1772 BITMAP_FREE (dfs[bb->index]);
1773 free (dfs);
1774 sbitmap_free (interesting_blocks);
1775
1776 timevar_pop (TV_TREE_SSA_OTHER);
1777 in_ssa_p = true;
1778 }
1779
1780
1781 struct tree_opt_pass pass_build_ssa =
1782 {
1783 "ssa", /* name */
1784 NULL, /* gate */
1785 rewrite_into_ssa, /* execute */
1786 NULL, /* sub */
1787 NULL, /* next */
1788 0, /* static_pass_number */
1789 0, /* tv_id */
1790 PROP_cfg | PROP_referenced_vars, /* properties_required */
1791 PROP_ssa, /* properties_provided */
1792 0, /* properties_destroyed */
1793 0, /* todo_flags_start */
1794 TODO_dump_func
1795 | TODO_verify_ssa
1796 | TODO_remove_unused_locals, /* todo_flags_finish */
1797 0 /* letter */
1798 };
1799
1800
1801 /* Mark the definition of VAR at STMT and BB as interesting for the
1802 renamer. BLOCKS is the set of blocks that need updating. */
1803
1804 static void
1805 mark_def_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1806 bool insert_phi_p)
1807 {
1808 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
1809 bitmap_set_bit (blocks, bb->index);
1810
1811 if (insert_phi_p)
1812 {
1813 bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;
1814
1815 set_def_block (var, bb, is_phi_p);
1816
1817 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
1818 site for both itself and all the old names replaced by it. */
1819 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
1820 {
1821 bitmap_iterator bi;
1822 unsigned i;
1823 bitmap set = names_replaced_by (var);
1824 if (set)
1825 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1826 set_def_block (ssa_name (i), bb, is_phi_p);
1827 }
1828 }
1829 }
1830
1831
1832 /* Mark the use of VAR at STMT and BB as interesting for the
1833 renamer. INSERT_PHI_P is true if we are going to insert new PHI
1834 nodes. BLOCKS is the set of blocks that need updating. */
1835
1836 static inline void
1837 mark_use_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1838 bool insert_phi_p)
1839 {
1840 REWRITE_THIS_STMT (stmt) = 1;
1841 bitmap_set_bit (blocks, bb->index);
1842
1843 /* If VAR has not been defined in BB, then it is live-on-entry
1844 to BB. Note that we cannot just use the block holding VAR's
1845 definition because if VAR is one of the names in OLD_SSA_NAMES,
1846 it will have several definitions (itself and all the names that
1847 replace it). */
1848 if (insert_phi_p)
1849 {
1850 struct def_blocks_d *db_p = get_def_blocks_for (var);
1851 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
1852 set_livein_block (var, bb);
1853 }
1854 }
1855
1856
1857 /* Do a dominator walk starting at BB processing statements that
1858 reference symbols in SYMS_TO_RENAME. This is very similar to
1859 mark_def_sites, but the scan handles statements whose operands may
1860 already be SSA names. Blocks that contain defs or uses of symbols
1861 in SYMS_TO_RENAME are added to BLOCKS.
1862
1863 If INSERT_PHI_P is true, mark those uses as live in the
1864 corresponding block. This is later used by the PHI placement
1865 algorithm to make PHI pruning decisions. */
1866
1867 static void
1868 prepare_block_for_update (basic_block bb, bitmap blocks, bool insert_phi_p)
1869 {
1870 basic_block son;
1871 block_stmt_iterator si;
1872 tree phi;
1873
1874 /* Process PHI nodes marking interesting those that define or use
1875 the symbols that we are interested in. */
1876 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1877 {
1878 tree lhs_sym, lhs = PHI_RESULT (phi);
1879
1880 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
1881
1882 if (symbol_marked_for_renaming (lhs_sym))
1883 {
1884 mark_use_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1885 mark_def_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1886 }
1887 }
1888
1889 /* Process the statements. */
1890 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1891 {
1892 tree stmt;
1893 ssa_op_iter i;
1894 use_operand_p use_p;
1895 def_operand_p def_p;
1896
1897 stmt = bsi_stmt (si);
1898
1899 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
1900 {
1901 tree use = USE_FROM_PTR (use_p);
1902 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1903 if (symbol_marked_for_renaming (sym))
1904 mark_use_interesting (use, stmt, bb, blocks, insert_phi_p);
1905 }
1906
1907 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
1908 {
1909 tree def = DEF_FROM_PTR (def_p);
1910 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1911
1912 if (symbol_marked_for_renaming (sym))
1913 mark_def_interesting (def, stmt, bb, blocks, insert_phi_p);
1914 }
1915
1916 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
1917 {
1918 tree def = DEF_FROM_PTR (def_p);
1919 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1920
1921 if (symbol_marked_for_renaming (sym))
1922 {
1923 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1924 mark_def_interesting (sym, stmt, bb, blocks, insert_phi_p);
1925 }
1926 }
1927
1928 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
1929 {
1930 tree use = USE_FROM_PTR (use_p);
1931 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1932
1933 if (symbol_marked_for_renaming (sym))
1934 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1935 }
1936 }
1937
1938 /* Now visit all the blocks dominated by BB. */
1939 for (son = first_dom_son (CDI_DOMINATORS, bb);
1940 son;
1941 son = next_dom_son (CDI_DOMINATORS, son))
1942 prepare_block_for_update (son, blocks, insert_phi_p);
1943 }
1944
1945
1946 /* Helper for prepare_names_to_update. Mark all the use sites for
1947 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
1948 prepare_names_to_update. */
1949
1950 static void
1951 prepare_use_sites_for (tree name, bitmap blocks, bool insert_phi_p)
1952 {
1953 use_operand_p use_p;
1954 imm_use_iterator iter;
1955
1956 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
1957 {
1958 tree stmt = USE_STMT (use_p);
1959 basic_block bb = bb_for_stmt (stmt);
1960
1961 if (TREE_CODE (stmt) == PHI_NODE)
1962 {
1963 /* Mark this use of NAME interesting for the renamer.
1964 Notice that we explicitly call mark_use_interesting with
1965 INSERT_PHI_P == false.
1966
1967 This is to avoid marking NAME as live-in in this block
1968 BB. If we were to mark NAME live-in to BB, then NAME
1969 would be considered live-in through ALL incoming edges to
1970 BB which is not what we want. Since we are updating the
1971 SSA form for NAME, we don't really know what other names
1972 of NAME are coming in through other edges into BB.
1973
1974 If we considered NAME live-in at BB, then the PHI
1975 placement algorithm may try to insert PHI nodes in blocks
1976 that are not only unnecessary but also the renamer would
1977 not know how to fill in. */
1978 mark_use_interesting (name, stmt, bb, blocks, false);
1979
1980 /* As discussed above, we only want to mark NAME live-in
1981 through the edge corresponding to its slot inside the PHI
1982 argument list. So, we look for the block BB1 where NAME
1983 is flowing through. If BB1 does not contain a definition
1984 of NAME, then consider NAME live-in at BB1. */
1985 if (insert_phi_p)
1986 {
1987 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
1988 edge e = PHI_ARG_EDGE (stmt, ix);
1989 basic_block bb1 = e->src;
1990 struct def_blocks_d *db = get_def_blocks_for (name);
1991
1992 if (!bitmap_bit_p (db->def_blocks, bb1->index))
1993 set_livein_block (name, bb1);
1994 }
1995 }
1996 else
1997 {
1998 /* For regular statements, mark this as an interesting use
1999 for NAME. */
2000 mark_use_interesting (name, stmt, bb, blocks, insert_phi_p);
2001 }
2002 }
2003 }
2004
2005
2006 /* Helper for prepare_names_to_update. Mark the definition site for
2007 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2008 prepare_names_to_update. */
2009
2010 static void
2011 prepare_def_site_for (tree name, bitmap blocks, bool insert_phi_p)
2012 {
2013 tree stmt;
2014 basic_block bb;
2015
2016 gcc_assert (names_to_release == NULL
2017 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2018
2019 stmt = SSA_NAME_DEF_STMT (name);
2020 bb = bb_for_stmt (stmt);
2021 if (bb)
2022 {
2023 gcc_assert (bb->index < last_basic_block);
2024 mark_def_interesting (name, stmt, bb, blocks, insert_phi_p);
2025 }
2026 }
2027
2028
2029 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2030 OLD_SSA_NAMES. Add each definition block to BLOCKS. INSERT_PHI_P
2031 is true if the caller wants to insert PHI nodes for newly created
2032 names. */
2033
2034 static void
2035 prepare_names_to_update (bitmap blocks, bool insert_phi_p)
2036 {
2037 unsigned i = 0;
2038 bitmap_iterator bi;
2039 sbitmap_iterator sbi;
2040
2041 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2042 remove it from NEW_SSA_NAMES so that we don't try to visit its
2043 defining basic block (which most likely doesn't exist). Notice
2044 that we cannot do the same with names in OLD_SSA_NAMES because we
2045 want to replace existing instances. */
2046 if (names_to_release)
2047 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2048 RESET_BIT (new_ssa_names, i);
2049
2050 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2051 names may be considered to be live-in on blocks that contain
2052 definitions for their replacements. */
2053 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2054 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2055
2056 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2057 OLD_SSA_NAMES, but we have to ignore its definition site. */
2058 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2059 {
2060 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2061 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2062 prepare_use_sites_for (ssa_name (i), blocks, insert_phi_p);
2063 }
2064 }
2065
2066
2067 /* Dump all the names replaced by NAME to FILE. */
2068
2069 void
2070 dump_names_replaced_by (FILE *file, tree name)
2071 {
2072 unsigned i;
2073 bitmap old_set;
2074 bitmap_iterator bi;
2075
2076 print_generic_expr (file, name, 0);
2077 fprintf (file, " -> { ");
2078
2079 old_set = names_replaced_by (name);
2080 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2081 {
2082 print_generic_expr (file, ssa_name (i), 0);
2083 fprintf (file, " ");
2084 }
2085
2086 fprintf (file, "}\n");
2087 }
2088
2089
2090 /* Dump all the names replaced by NAME to stderr. */
2091
2092 void
2093 debug_names_replaced_by (tree name)
2094 {
2095 dump_names_replaced_by (stderr, name);
2096 }
2097
2098
2099 /* Dump SSA update information to FILE. */
2100
2101 void
2102 dump_update_ssa (FILE *file)
2103 {
2104 unsigned i = 0;
2105 bitmap_iterator bi;
2106
2107 if (!need_ssa_update_p ())
2108 return;
2109
2110 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2111 {
2112 sbitmap_iterator sbi;
2113
2114 fprintf (file, "\nSSA replacement table\n");
2115 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2116 "O_1, ..., O_j\n\n");
2117
2118 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2119 dump_names_replaced_by (file, ssa_name (i));
2120
2121 fprintf (file, "\n");
2122 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2123 update_ssa_stats.num_virtual_mappings);
2124 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2125 update_ssa_stats.num_total_mappings
2126 - update_ssa_stats.num_virtual_mappings);
2127 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2128 update_ssa_stats.num_total_mappings);
2129
2130 fprintf (file, "\nNumber of virtual symbols: %u\n",
2131 update_ssa_stats.num_virtual_symbols);
2132 }
2133
2134 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2135 {
2136 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2137 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2138 {
2139 print_generic_expr (file, referenced_var (i), 0);
2140 fprintf (file, " ");
2141 }
2142 }
2143
2144 if (names_to_release && !bitmap_empty_p (names_to_release))
2145 {
2146 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2147 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2148 {
2149 print_generic_expr (file, ssa_name (i), 0);
2150 fprintf (file, " ");
2151 }
2152 }
2153
2154 fprintf (file, "\n\n");
2155 }
2156
2157
2158 /* Dump SSA update information to stderr. */
2159
2160 void
2161 debug_update_ssa (void)
2162 {
2163 dump_update_ssa (stderr);
2164 }
2165
2166
2167 /* Initialize data structures used for incremental SSA updates. */
2168
2169 static void
2170 init_update_ssa (void)
2171 {
2172 /* Reserve more space than the current number of names. The calls to
2173 add_new_name_mapping are typically done after creating new SSA
2174 names, so we'll need to reallocate these arrays. */
2175 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2176 sbitmap_zero (old_ssa_names);
2177
2178 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2179 sbitmap_zero (new_ssa_names);
2180
2181 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2182 need_to_initialize_update_ssa_p = false;
2183 need_to_update_vops_p = false;
2184 syms_to_rename = BITMAP_ALLOC (NULL);
2185 names_to_release = NULL;
2186 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2187 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2188 }
2189
2190
2191 /* Deallocate data structures used for incremental SSA updates. */
2192
2193 void
2194 delete_update_ssa (void)
2195 {
2196 unsigned i;
2197 bitmap_iterator bi;
2198
2199 sbitmap_free (old_ssa_names);
2200 old_ssa_names = NULL;
2201
2202 sbitmap_free (new_ssa_names);
2203 new_ssa_names = NULL;
2204
2205 htab_delete (repl_tbl);
2206 repl_tbl = NULL;
2207
2208 need_to_initialize_update_ssa_p = true;
2209 need_to_update_vops_p = false;
2210 BITMAP_FREE (syms_to_rename);
2211 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2212
2213 if (names_to_release)
2214 {
2215 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2216 release_ssa_name (ssa_name (i));
2217 BITMAP_FREE (names_to_release);
2218 }
2219
2220 for (i = 1; i < num_ssa_names; i++)
2221 {
2222 tree n = ssa_name (i);
2223
2224 if (n)
2225 {
2226 free (SSA_NAME_AUX (n));
2227 SSA_NAME_AUX (n) = NULL;
2228 }
2229 }
2230 }
2231
2232
2233 /* Create a new name for OLD_NAME in statement STMT and replace the
2234 operand pointed to by DEF_P with the newly created name. Return
2235 the new name and register the replacement mapping <NEW, OLD> in
2236 update_ssa's tables. */
2237
2238 tree
2239 create_new_def_for (tree old_name, tree stmt, def_operand_p def)
2240 {
2241 tree new_name = duplicate_ssa_name (old_name, stmt);
2242
2243 SET_DEF (def, new_name);
2244
2245 if (TREE_CODE (stmt) == PHI_NODE)
2246 {
2247 edge e;
2248 edge_iterator ei;
2249 basic_block bb = bb_for_stmt (stmt);
2250
2251 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2252 FOR_EACH_EDGE (e, ei, bb->preds)
2253 if (e->flags & EDGE_ABNORMAL)
2254 {
2255 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2256 break;
2257 }
2258 }
2259
2260 register_new_name_mapping (new_name, old_name);
2261
2262 /* For the benefit of passes that will be updating the SSA form on
2263 their own, set the current reaching definition of OLD_NAME to be
2264 NEW_NAME. */
2265 set_current_def (old_name, new_name);
2266
2267 return new_name;
2268 }
2269
2270
2271 /* Register name NEW to be a replacement for name OLD. This function
2272 must be called for every replacement that should be performed by
2273 update_ssa. */
2274
2275 void
2276 register_new_name_mapping (tree new, tree old)
2277 {
2278 if (need_to_initialize_update_ssa_p)
2279 init_update_ssa ();
2280
2281 add_new_name_mapping (new, old);
2282 }
2283
2284
2285 /* Register symbol SYM to be renamed by update_ssa. */
2286
2287 void
2288 mark_sym_for_renaming (tree sym)
2289 {
2290 if (need_to_initialize_update_ssa_p)
2291 init_update_ssa ();
2292
2293 bitmap_set_bit (syms_to_rename, DECL_UID (sym));
2294
2295 if (!is_gimple_reg (sym))
2296 need_to_update_vops_p = true;
2297 }
2298
2299
2300 /* Register all the symbols in SET to be renamed by update_ssa. */
2301
2302 void
2303 mark_set_for_renaming (bitmap set)
2304 {
2305 bitmap_iterator bi;
2306 unsigned i;
2307
2308 if (bitmap_empty_p (set))
2309 return;
2310
2311 if (need_to_initialize_update_ssa_p)
2312 init_update_ssa ();
2313
2314 bitmap_ior_into (syms_to_rename, set);
2315
2316 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2317 if (!is_gimple_reg (referenced_var (i)))
2318 {
2319 need_to_update_vops_p = true;
2320 break;
2321 }
2322 }
2323
2324
2325 /* Return true if there is any work to be done by update_ssa. */
2326
2327 bool
2328 need_ssa_update_p (void)
2329 {
2330 return syms_to_rename || old_ssa_names || new_ssa_names;
2331 }
2332
2333
2334 /* Return true if name N has been registered in the replacement table. */
2335
2336 bool
2337 name_registered_for_update_p (tree n)
2338 {
2339 if (!need_ssa_update_p ())
2340 return false;
2341
2342 return is_new_name (n)
2343 || is_old_name (n)
2344 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2345 }
2346
2347
2348 /* Return the set of all the SSA names marked to be replaced. */
2349
2350 bitmap
2351 ssa_names_to_replace (void)
2352 {
2353 unsigned i = 0;
2354 bitmap ret;
2355 sbitmap_iterator sbi;
2356
2357 ret = BITMAP_ALLOC (NULL);
2358 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2359 bitmap_set_bit (ret, i);
2360
2361 return ret;
2362 }
2363
2364
2365 /* Mark NAME to be released after update_ssa has finished. */
2366
2367 void
2368 release_ssa_name_after_update_ssa (tree name)
2369 {
2370 gcc_assert (!need_to_initialize_update_ssa_p);
2371
2372 if (names_to_release == NULL)
2373 names_to_release = BITMAP_ALLOC (NULL);
2374
2375 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2376 }
2377
2378
2379 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2380 frontier information. BLOCKS is the set of blocks to be updated.
2381
2382 This is slightly different than the regular PHI insertion
2383 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2384 real names (i.e., GIMPLE registers) are inserted:
2385
2386 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2387 nodes inside the region affected by the block that defines VAR
2388 and the blocks that define all its replacements. All these
2389 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2390
2391 First, we compute the entry point to the region (ENTRY). This is
2392 given by the nearest common dominator to all the definition
2393 blocks. When computing the iterated dominance frontier (IDF), any
2394 block not strictly dominated by ENTRY is ignored.
2395
2396 We then call the standard PHI insertion algorithm with the pruned
2397 IDF.
2398
2399 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2400 names is not pruned. PHI nodes are inserted at every IDF block. */
2401
2402 static void
2403 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2404 unsigned update_flags)
2405 {
2406 basic_block entry;
2407 struct def_blocks_d *db;
2408 bitmap idf, pruned_idf;
2409 bitmap_iterator bi;
2410 unsigned i;
2411
2412 #if defined ENABLE_CHECKING
2413 if (TREE_CODE (var) == SSA_NAME)
2414 gcc_assert (is_old_name (var));
2415 else
2416 gcc_assert (symbol_marked_for_renaming (var));
2417 #endif
2418
2419 /* Get all the definition sites for VAR. */
2420 db = find_def_blocks_for (var);
2421
2422 /* No need to do anything if there were no definitions to VAR. */
2423 if (db == NULL || bitmap_empty_p (db->def_blocks))
2424 return;
2425
2426 /* Compute the initial iterated dominance frontier. */
2427 idf = find_idf (db->def_blocks, dfs);
2428 pruned_idf = BITMAP_ALLOC (NULL);
2429
2430 if (TREE_CODE (var) == SSA_NAME)
2431 {
2432 if (update_flags == TODO_update_ssa)
2433 {
2434 /* If doing regular SSA updates for GIMPLE registers, we are
2435 only interested in IDF blocks dominated by the nearest
2436 common dominator of all the definition blocks. */
2437 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2438 db->def_blocks);
2439
2440 if (entry != ENTRY_BLOCK_PTR)
2441 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2442 if (BASIC_BLOCK (i) != entry
2443 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2444 bitmap_set_bit (pruned_idf, i);
2445 }
2446 else
2447 {
2448 /* Otherwise, do not prune the IDF for VAR. */
2449 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2450 bitmap_copy (pruned_idf, idf);
2451 }
2452 }
2453 else
2454 {
2455 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2456 for the first time, so we need to compute the full IDF for
2457 it. */
2458 bitmap_copy (pruned_idf, idf);
2459 }
2460
2461 if (!bitmap_empty_p (pruned_idf))
2462 {
2463 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2464 are included in the region to be updated. The feeding blocks
2465 are important to guarantee that the PHI arguments are renamed
2466 properly. */
2467 bitmap_ior_into (blocks, pruned_idf);
2468 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2469 {
2470 edge e;
2471 edge_iterator ei;
2472 basic_block bb = BASIC_BLOCK (i);
2473
2474 FOR_EACH_EDGE (e, ei, bb->preds)
2475 if (e->src->index >= 0)
2476 bitmap_set_bit (blocks, e->src->index);
2477 }
2478
2479 insert_phi_nodes_for (var, pruned_idf, true);
2480 }
2481
2482 BITMAP_FREE (pruned_idf);
2483 BITMAP_FREE (idf);
2484 }
2485
2486
2487 /* Heuristic to determine whether SSA name mappings for virtual names
2488 should be discarded and their symbols rewritten from scratch. When
2489 there is a large number of mappings for virtual names, the
2490 insertion of PHI nodes for the old names in the mappings takes
2491 considerable more time than if we inserted PHI nodes for the
2492 symbols instead.
2493
2494 Currently the heuristic takes these stats into account:
2495
2496 - Number of mappings for virtual SSA names.
2497 - Number of distinct virtual symbols involved in those mappings.
2498
2499 If the number of virtual mappings is much larger than the number of
2500 virtual symbols, then it will be faster to compute PHI insertion
2501 spots for the symbols. Even if this involves traversing the whole
2502 CFG, which is what happens when symbols are renamed from scratch. */
2503
2504 static bool
2505 switch_virtuals_to_full_rewrite_p (void)
2506 {
2507 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
2508 return false;
2509
2510 if (update_ssa_stats.num_virtual_mappings
2511 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
2512 * update_ssa_stats.num_virtual_symbols)
2513 return true;
2514
2515 return false;
2516 }
2517
2518
2519 /* Remove every virtual mapping and mark all the affected virtual
2520 symbols for renaming. */
2521
2522 static void
2523 switch_virtuals_to_full_rewrite (void)
2524 {
2525 unsigned i = 0;
2526 sbitmap_iterator sbi;
2527
2528 if (dump_file)
2529 {
2530 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
2531 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
2532 update_ssa_stats.num_virtual_mappings);
2533 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
2534 update_ssa_stats.num_virtual_symbols);
2535 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
2536 "faster than processing\nthe name mappings.\n\n");
2537 }
2538
2539 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
2540 Note that it is not really necessary to remove the mappings from
2541 REPL_TBL, that would only waste time. */
2542 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2543 if (!is_gimple_reg (ssa_name (i)))
2544 RESET_BIT (new_ssa_names, i);
2545
2546 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2547 if (!is_gimple_reg (ssa_name (i)))
2548 RESET_BIT (old_ssa_names, i);
2549
2550 bitmap_ior_into (syms_to_rename, update_ssa_stats.virtual_symbols);
2551 }
2552
2553
2554 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
2555 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
2556
2557 1- The names in OLD_SSA_NAMES dominated by the definitions of
2558 NEW_SSA_NAMES are all re-written to be reached by the
2559 appropriate definition from NEW_SSA_NAMES.
2560
2561 2- If needed, new PHI nodes are added to the iterated dominance
2562 frontier of the blocks where each of NEW_SSA_NAMES are defined.
2563
2564 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
2565 calling register_new_name_mapping for every pair of names that the
2566 caller wants to replace.
2567
2568 The caller identifies the new names that have been inserted and the
2569 names that need to be replaced by calling register_new_name_mapping
2570 for every pair <NEW, OLD>. Note that the function assumes that the
2571 new names have already been inserted in the IL.
2572
2573 For instance, given the following code:
2574
2575 1 L0:
2576 2 x_1 = PHI (0, x_5)
2577 3 if (x_1 < 10)
2578 4 if (x_1 > 7)
2579 5 y_2 = 0
2580 6 else
2581 7 y_3 = x_1 + x_7
2582 8 endif
2583 9 x_5 = x_1 + 1
2584 10 goto L0;
2585 11 endif
2586
2587 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
2588
2589 1 L0:
2590 2 x_1 = PHI (0, x_5)
2591 3 if (x_1 < 10)
2592 4 x_10 = ...
2593 5 if (x_1 > 7)
2594 6 y_2 = 0
2595 7 else
2596 8 x_11 = ...
2597 9 y_3 = x_1 + x_7
2598 10 endif
2599 11 x_5 = x_1 + 1
2600 12 goto L0;
2601 13 endif
2602
2603 We want to replace all the uses of x_1 with the new definitions of
2604 x_10 and x_11. Note that the only uses that should be replaced are
2605 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
2606 *not* be replaced (this is why we cannot just mark symbol 'x' for
2607 renaming).
2608
2609 Additionally, we may need to insert a PHI node at line 11 because
2610 that is a merge point for x_10 and x_11. So the use of x_1 at line
2611 11 will be replaced with the new PHI node. The insertion of PHI
2612 nodes is optional. They are not strictly necessary to preserve the
2613 SSA form, and depending on what the caller inserted, they may not
2614 even be useful for the optimizers. UPDATE_FLAGS controls various
2615 aspects of how update_ssa operates, see the documentation for
2616 TODO_update_ssa*. */
2617
2618 void
2619 update_ssa (unsigned update_flags)
2620 {
2621 bitmap blocks;
2622 basic_block bb, start_bb;
2623 bitmap_iterator bi;
2624 unsigned i = 0;
2625 sbitmap tmp;
2626 bool insert_phi_p;
2627 sbitmap_iterator sbi;
2628
2629 if (!need_ssa_update_p ())
2630 return;
2631
2632 timevar_push (TV_TREE_SSA_INCREMENTAL);
2633
2634 /* Ensure that the dominance information is up-to-date. */
2635 calculate_dominance_info (CDI_DOMINATORS);
2636
2637 /* Only one update flag should be set. */
2638 gcc_assert (update_flags == TODO_update_ssa
2639 || update_flags == TODO_update_ssa_no_phi
2640 || update_flags == TODO_update_ssa_full_phi
2641 || update_flags == TODO_update_ssa_only_virtuals);
2642
2643 /* If we only need to update virtuals, remove all the mappings for
2644 real names before proceeding. The caller is responsible for
2645 having dealt with the name mappings before calling update_ssa. */
2646 if (update_flags == TODO_update_ssa_only_virtuals)
2647 {
2648 sbitmap_zero (old_ssa_names);
2649 sbitmap_zero (new_ssa_names);
2650 htab_empty (repl_tbl);
2651 }
2652
2653 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
2654
2655 if (insert_phi_p)
2656 {
2657 /* If the caller requested PHI nodes to be added, initialize
2658 live-in information data structures (DEF_BLOCKS). */
2659
2660 /* For each SSA name N, the DEF_BLOCKS table describes where the
2661 name is defined, which blocks have PHI nodes for N, and which
2662 blocks have uses of N (i.e., N is live-on-entry in those
2663 blocks). */
2664 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
2665 def_blocks_eq, def_blocks_free);
2666 }
2667 else
2668 {
2669 def_blocks = NULL;
2670 }
2671
2672 blocks = BITMAP_ALLOC (NULL);
2673
2674 /* Clear the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags
2675 for every statement and PHI node. */
2676 FOR_EACH_BB (bb)
2677 {
2678 block_stmt_iterator si;
2679 tree phi;
2680
2681 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2682 {
2683 REWRITE_THIS_STMT (phi) = 0;
2684 REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
2685 }
2686
2687 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2688 {
2689 tree stmt = bsi_stmt (si);
2690 /* We are going to use the operand cache API, such as
2691 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
2692 cache for each statement should be up-to-date. */
2693 gcc_assert (!stmt_modified_p (stmt));
2694 REWRITE_THIS_STMT (stmt) = 0;
2695 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
2696 }
2697 }
2698
2699 /* Heuristic to avoid massive slow downs when the replacement
2700 mappings include lots of virtual names. */
2701 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
2702 switch_virtuals_to_full_rewrite ();
2703
2704 /* If there are names defined in the replacement table, prepare
2705 definition and use sites for all the names in NEW_SSA_NAMES and
2706 OLD_SSA_NAMES. */
2707 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
2708 {
2709 prepare_names_to_update (blocks, insert_phi_p);
2710
2711 /* If all the names in NEW_SSA_NAMES had been marked for
2712 removal, and there are no symbols to rename, then there's
2713 nothing else to do. */
2714 if (sbitmap_first_set_bit (new_ssa_names) < 0
2715 && bitmap_empty_p (syms_to_rename))
2716 goto done;
2717 }
2718
2719 /* Next, determine the block at which to start the renaming process. */
2720 if (!bitmap_empty_p (syms_to_rename))
2721 {
2722 /* If we have to rename some symbols from scratch, we need to
2723 start the process at the root of the CFG. FIXME, it should
2724 be possible to determine the nearest block that had a
2725 definition for each of the symbols that are marked for
2726 updating. For now this seems more work than it's worth. */
2727 start_bb = ENTRY_BLOCK_PTR;
2728
2729 /* Traverse the CFG looking for definitions and uses of symbols
2730 in SYMS_TO_RENAME. Mark interesting blocks and statements
2731 and set local live-in information for the PHI placement
2732 heuristics. */
2733 prepare_block_for_update (start_bb, blocks, insert_phi_p);
2734 }
2735 else
2736 {
2737 /* Otherwise, the entry block to the region is the nearest
2738 common dominator for the blocks in BLOCKS. */
2739 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2740 }
2741
2742 /* If requested, insert PHI nodes at the iterated dominance frontier
2743 of every block, creating new definitions for names in OLD_SSA_NAMES
2744 and for symbols in SYMS_TO_RENAME. */
2745 if (insert_phi_p)
2746 {
2747 bitmap *dfs;
2748
2749 /* If the caller requested PHI nodes to be added, compute
2750 dominance frontiers. */
2751 dfs = XNEWVEC (bitmap, last_basic_block);
2752 FOR_EACH_BB (bb)
2753 dfs[bb->index] = BITMAP_ALLOC (NULL);
2754 compute_dominance_frontiers (dfs);
2755
2756 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
2757 {
2758 sbitmap_iterator sbi;
2759
2760 /* insert_update_phi_nodes_for will call add_new_name_mapping
2761 when inserting new PHI nodes, so the set OLD_SSA_NAMES
2762 will grow while we are traversing it (but it will not
2763 gain any new members). Copy OLD_SSA_NAMES to a temporary
2764 for traversal. */
2765 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
2766 sbitmap_copy (tmp, old_ssa_names);
2767 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
2768 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks,
2769 update_flags);
2770 sbitmap_free (tmp);
2771 }
2772
2773 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2774 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks,
2775 update_flags);
2776
2777 FOR_EACH_BB (bb)
2778 BITMAP_FREE (dfs[bb->index]);
2779 free (dfs);
2780
2781 /* Insertion of PHI nodes may have added blocks to the region.
2782 We need to re-compute START_BB to include the newly added
2783 blocks. */
2784 if (start_bb != ENTRY_BLOCK_PTR)
2785 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2786 }
2787
2788 /* Reset the current definition for name and symbol before renaming
2789 the sub-graph. */
2790 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2791 set_current_def (ssa_name (i), NULL_TREE);
2792
2793 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2794 set_current_def (referenced_var (i), NULL_TREE);
2795
2796 /* Now start the renaming process at START_BB. */
2797 tmp = sbitmap_alloc (last_basic_block);
2798 sbitmap_zero (tmp);
2799 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2800 SET_BIT (tmp, i);
2801
2802 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
2803
2804 sbitmap_free (tmp);
2805
2806 /* Debugging dumps. */
2807 if (dump_file)
2808 {
2809 int c;
2810 unsigned i;
2811
2812 dump_update_ssa (dump_file);
2813
2814 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
2815 start_bb->index);
2816
2817 c = 0;
2818 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2819 c++;
2820 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
2821 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
2822 c, PERCENT (c, last_basic_block));
2823
2824 if (dump_flags & TDF_DETAILS)
2825 {
2826 fprintf (dump_file, "Affected blocks: ");
2827 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2828 fprintf (dump_file, "%u ", i);
2829 fprintf (dump_file, "\n");
2830 }
2831
2832 fprintf (dump_file, "\n\n");
2833 }
2834
2835 /* Free allocated memory. */
2836 done:
2837 BITMAP_FREE (blocks);
2838 delete_update_ssa ();
2839
2840 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2841 }