* g++.dg/cpp0x/nullptr21.c: Remove printfs, make self-checking.
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "gimple-pretty-print.h"
33 #include "bitmap.h"
34 #include "tree-flow.h"
35 #include "gimple.h"
36 #include "tree-inline.h"
37 #include "hashtab.h"
38 #include "tree-pass.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "vecprim.h"
43
44
45 /* This file builds the SSA form for a function as described in:
46 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
47 Computing Static Single Assignment Form and the Control Dependence
48 Graph. ACM Transactions on Programming Languages and Systems,
49 13(4):451-490, October 1991. */
50
51 /* Structure to map a variable VAR to the set of blocks that contain
52 definitions for VAR. */
53 struct def_blocks_d
54 {
55 /* The variable. */
56 tree var;
57
58 /* Blocks that contain definitions of VAR. Bit I will be set if the
59 Ith block contains a definition of VAR. */
60 bitmap def_blocks;
61
62 /* Blocks that contain a PHI node for VAR. */
63 bitmap phi_blocks;
64
65 /* Blocks where VAR is live-on-entry. Similar semantics as
66 DEF_BLOCKS. */
67 bitmap livein_blocks;
68 };
69
70
71 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
72 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
73 basic blocks where VAR is defined (assigned a new value). It also
74 contains a bitmap of all the blocks where VAR is live-on-entry
75 (i.e., there is a use of VAR in block B without a preceding
76 definition in B). The live-on-entry information is used when
77 computing PHI pruning heuristics. */
78 static htab_t def_blocks;
79
80 /* Stack of trees used to restore the global currdefs to its original
81 state after completing rewriting of a block and its dominator
82 children. Its elements have the following properties:
83
84 - An SSA_NAME (N) indicates that the current definition of the
85 underlying variable should be set to the given SSA_NAME. If the
86 symbol associated with the SSA_NAME is not a GIMPLE register, the
87 next slot in the stack must be a _DECL node (SYM). In this case,
88 the name N in the previous slot is the current reaching
89 definition for SYM.
90
91 - A _DECL node indicates that the underlying variable has no
92 current definition.
93
94 - A NULL node at the top entry is used to mark the last slot
95 associated with the current block. */
96 static VEC(tree,heap) *block_defs_stack;
97
98
99 /* Set of existing SSA names being replaced by update_ssa. */
100 static sbitmap old_ssa_names;
101
102 /* Set of new SSA names being added by update_ssa. Note that both
103 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
104 the operations done on them are presence tests. */
105 static sbitmap new_ssa_names;
106
107 sbitmap interesting_blocks;
108
109 /* Set of SSA names that have been marked to be released after they
110 were registered in the replacement table. They will be finally
111 released after we finish updating the SSA web. */
112 static bitmap names_to_release;
113
114 static VEC(gimple_vec, heap) *phis_to_rewrite;
115
116 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
117 static bitmap blocks_with_phis_to_rewrite;
118
119 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
120 to grow as the callers to register_new_name_mapping will typically
121 create new names on the fly. FIXME. Currently set to 1/3 to avoid
122 frequent reallocations but still need to find a reasonable growth
123 strategy. */
124 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
125
126 /* Tuple used to represent replacement mappings. */
127 struct repl_map_d
128 {
129 tree name;
130 bitmap set;
131 };
132
133
134 /* NEW -> OLD_SET replacement table. If we are replacing several
135 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
136 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
137 static htab_t repl_tbl;
138
139 /* The function the SSA updating data structures have been initialized for.
140 NULL if they need to be initialized by register_new_name_mapping. */
141 static struct function *update_ssa_initialized_fn = NULL;
142
143 /* Statistics kept by update_ssa to use in the virtual mapping
144 heuristic. If the number of virtual mappings is beyond certain
145 threshold, the updater will switch from using the mappings into
146 renaming the virtual symbols from scratch. In some cases, the
147 large number of name mappings for virtual names causes significant
148 slowdowns in the PHI insertion code. */
149 struct update_ssa_stats_d
150 {
151 unsigned num_virtual_mappings;
152 unsigned num_total_mappings;
153 bitmap virtual_symbols;
154 unsigned num_virtual_symbols;
155 };
156 static struct update_ssa_stats_d update_ssa_stats;
157
158 /* Global data to attach to the main dominator walk structure. */
159 struct mark_def_sites_global_data
160 {
161 /* This bitmap contains the variables which are set before they
162 are used in a basic block. */
163 bitmap kills;
164 };
165
166
167 /* Information stored for SSA names. */
168 struct ssa_name_info
169 {
170 /* The current reaching definition replacing this SSA name. */
171 tree current_def;
172
173 /* This field indicates whether or not the variable may need PHI nodes.
174 See the enum's definition for more detailed information about the
175 states. */
176 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
177
178 /* Age of this record (so that info_for_ssa_name table can be cleared
179 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
180 are assumed to be null. */
181 unsigned age;
182 };
183
184 /* The information associated with names. */
185 typedef struct ssa_name_info *ssa_name_info_p;
186 DEF_VEC_P (ssa_name_info_p);
187 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
188
189 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
190 static unsigned current_info_for_ssa_name_age;
191
192 /* The set of blocks affected by update_ssa. */
193 static bitmap blocks_to_update;
194
195 /* The main entry point to the SSA renamer (rewrite_blocks) may be
196 called several times to do different, but related, tasks.
197 Initially, we need it to rename the whole program into SSA form.
198 At other times, we may need it to only rename into SSA newly
199 exposed symbols. Finally, we can also call it to incrementally fix
200 an already built SSA web. */
201 enum rewrite_mode {
202 /* Convert the whole function into SSA form. */
203 REWRITE_ALL,
204
205 /* Incrementally update the SSA web by replacing existing SSA
206 names with new ones. See update_ssa for details. */
207 REWRITE_UPDATE
208 };
209
210
211
212
213 /* Prototypes for debugging functions. */
214 extern void dump_tree_ssa (FILE *);
215 extern void debug_tree_ssa (void);
216 extern void debug_def_blocks (void);
217 extern void dump_tree_ssa_stats (FILE *);
218 extern void debug_tree_ssa_stats (void);
219 extern void dump_update_ssa (FILE *);
220 extern void debug_update_ssa (void);
221 extern void dump_names_replaced_by (FILE *, tree);
222 extern void debug_names_replaced_by (tree);
223 extern void dump_def_blocks (FILE *);
224 extern void debug_def_blocks (void);
225 extern void dump_defs_stack (FILE *, int);
226 extern void debug_defs_stack (int);
227 extern void dump_currdefs (FILE *);
228 extern void debug_currdefs (void);
229
230 /* Return true if STMT needs to be rewritten. When renaming a subset
231 of the variables, not all statements will be processed. This is
232 decided in mark_def_sites. */
233
234 static inline bool
235 rewrite_uses_p (gimple stmt)
236 {
237 return gimple_visited_p (stmt);
238 }
239
240
241 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
242
243 static inline void
244 set_rewrite_uses (gimple stmt, bool rewrite_p)
245 {
246 gimple_set_visited (stmt, rewrite_p);
247 }
248
249
250 /* Return true if the DEFs created by statement STMT should be
251 registered when marking new definition sites. This is slightly
252 different than rewrite_uses_p: it's used by update_ssa to
253 distinguish statements that need to have both uses and defs
254 processed from those that only need to have their defs processed.
255 Statements that define new SSA names only need to have their defs
256 registered, but they don't need to have their uses renamed. */
257
258 static inline bool
259 register_defs_p (gimple stmt)
260 {
261 return gimple_plf (stmt, GF_PLF_1) != 0;
262 }
263
264
265 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
266
267 static inline void
268 set_register_defs (gimple stmt, bool register_defs_p)
269 {
270 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
271 }
272
273
274 /* Get the information associated with NAME. */
275
276 static inline ssa_name_info_p
277 get_ssa_name_ann (tree name)
278 {
279 unsigned ver = SSA_NAME_VERSION (name);
280 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
281 struct ssa_name_info *info;
282
283 if (ver >= len)
284 {
285 unsigned new_len = num_ssa_names;
286
287 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
288 while (len++ < new_len)
289 {
290 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
291 info->age = current_info_for_ssa_name_age;
292 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
293 }
294 }
295
296 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
297 if (info->age < current_info_for_ssa_name_age)
298 {
299 info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
300 info->current_def = NULL_TREE;
301 info->age = current_info_for_ssa_name_age;
302 }
303
304 return info;
305 }
306
307
308 /* Clears info for SSA names. */
309
310 static void
311 clear_ssa_name_info (void)
312 {
313 current_info_for_ssa_name_age++;
314 }
315
316
317 /* Get phi_state field for VAR. */
318
319 static inline enum need_phi_state
320 get_phi_state (tree var)
321 {
322 if (TREE_CODE (var) == SSA_NAME)
323 return get_ssa_name_ann (var)->need_phi_state;
324 else
325 return var_ann (var)->need_phi_state;
326 }
327
328
329 /* Sets phi_state field for VAR to STATE. */
330
331 static inline void
332 set_phi_state (tree var, enum need_phi_state state)
333 {
334 if (TREE_CODE (var) == SSA_NAME)
335 get_ssa_name_ann (var)->need_phi_state = state;
336 else
337 var_ann (var)->need_phi_state = state;
338 }
339
340
341 /* Return the current definition for VAR. */
342
343 tree
344 get_current_def (tree var)
345 {
346 if (TREE_CODE (var) == SSA_NAME)
347 return get_ssa_name_ann (var)->current_def;
348 else
349 return var_ann (var)->current_def;
350 }
351
352
353 /* Sets current definition of VAR to DEF. */
354
355 void
356 set_current_def (tree var, tree def)
357 {
358 if (TREE_CODE (var) == SSA_NAME)
359 get_ssa_name_ann (var)->current_def = def;
360 else
361 var_ann (var)->current_def = def;
362 }
363
364
365 /* Compute global livein information given the set of blocks where
366 an object is locally live at the start of the block (LIVEIN)
367 and the set of blocks where the object is defined (DEF_BLOCKS).
368
369 Note: This routine augments the existing local livein information
370 to include global livein (i.e., it modifies the underlying bitmap
371 for LIVEIN). */
372
373 void
374 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
375 {
376 basic_block bb, *worklist, *tos;
377 unsigned i;
378 bitmap_iterator bi;
379
380 tos = worklist
381 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
382
383 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
384 *tos++ = BASIC_BLOCK (i);
385
386 /* Iterate until the worklist is empty. */
387 while (tos != worklist)
388 {
389 edge e;
390 edge_iterator ei;
391
392 /* Pull a block off the worklist. */
393 bb = *--tos;
394
395 /* For each predecessor block. */
396 FOR_EACH_EDGE (e, ei, bb->preds)
397 {
398 basic_block pred = e->src;
399 int pred_index = pred->index;
400
401 /* None of this is necessary for the entry block. */
402 if (pred != ENTRY_BLOCK_PTR
403 && ! bitmap_bit_p (livein, pred_index)
404 && ! bitmap_bit_p (def_blocks, pred_index))
405 {
406 *tos++ = pred;
407 bitmap_set_bit (livein, pred_index);
408 }
409 }
410 }
411
412 free (worklist);
413 }
414
415
416 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
417 all statements in basic block BB. */
418
419 static void
420 initialize_flags_in_bb (basic_block bb)
421 {
422 gimple stmt;
423 gimple_stmt_iterator gsi;
424
425 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
426 {
427 gimple phi = gsi_stmt (gsi);
428 set_rewrite_uses (phi, false);
429 set_register_defs (phi, false);
430 }
431
432 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
433 {
434 stmt = gsi_stmt (gsi);
435
436 /* We are going to use the operand cache API, such as
437 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
438 cache for each statement should be up-to-date. */
439 gcc_assert (!gimple_modified_p (stmt));
440 set_rewrite_uses (stmt, false);
441 set_register_defs (stmt, false);
442 }
443 }
444
445 /* Mark block BB as interesting for update_ssa. */
446
447 static void
448 mark_block_for_update (basic_block bb)
449 {
450 gcc_assert (blocks_to_update != NULL);
451 if (!bitmap_set_bit (blocks_to_update, bb->index))
452 return;
453 initialize_flags_in_bb (bb);
454 }
455
456 /* Return the set of blocks where variable VAR is defined and the blocks
457 where VAR is live on entry (livein). If no entry is found in
458 DEF_BLOCKS, a new one is created and returned. */
459
460 static inline struct def_blocks_d *
461 get_def_blocks_for (tree var)
462 {
463 struct def_blocks_d db, *db_p;
464 void **slot;
465
466 db.var = var;
467 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
468 if (*slot == NULL)
469 {
470 db_p = XNEW (struct def_blocks_d);
471 db_p->var = var;
472 db_p->def_blocks = BITMAP_ALLOC (NULL);
473 db_p->phi_blocks = BITMAP_ALLOC (NULL);
474 db_p->livein_blocks = BITMAP_ALLOC (NULL);
475 *slot = (void *) db_p;
476 }
477 else
478 db_p = (struct def_blocks_d *) *slot;
479
480 return db_p;
481 }
482
483
484 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
485 VAR is defined by a PHI node. */
486
487 static void
488 set_def_block (tree var, basic_block bb, bool phi_p)
489 {
490 struct def_blocks_d *db_p;
491 enum need_phi_state state;
492
493 state = get_phi_state (var);
494 db_p = get_def_blocks_for (var);
495
496 /* Set the bit corresponding to the block where VAR is defined. */
497 bitmap_set_bit (db_p->def_blocks, bb->index);
498 if (phi_p)
499 bitmap_set_bit (db_p->phi_blocks, bb->index);
500
501 /* Keep track of whether or not we may need to insert PHI nodes.
502
503 If we are in the UNKNOWN state, then this is the first definition
504 of VAR. Additionally, we have not seen any uses of VAR yet, so
505 we do not need a PHI node for this variable at this time (i.e.,
506 transition to NEED_PHI_STATE_NO).
507
508 If we are in any other state, then we either have multiple definitions
509 of this variable occurring in different blocks or we saw a use of the
510 variable which was not dominated by the block containing the
511 definition(s). In this case we may need a PHI node, so enter
512 state NEED_PHI_STATE_MAYBE. */
513 if (state == NEED_PHI_STATE_UNKNOWN)
514 set_phi_state (var, NEED_PHI_STATE_NO);
515 else
516 set_phi_state (var, NEED_PHI_STATE_MAYBE);
517 }
518
519
520 /* Mark block BB as having VAR live at the entry to BB. */
521
522 static void
523 set_livein_block (tree var, basic_block bb)
524 {
525 struct def_blocks_d *db_p;
526 enum need_phi_state state = get_phi_state (var);
527
528 db_p = get_def_blocks_for (var);
529
530 /* Set the bit corresponding to the block where VAR is live in. */
531 bitmap_set_bit (db_p->livein_blocks, bb->index);
532
533 /* Keep track of whether or not we may need to insert PHI nodes.
534
535 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
536 by the single block containing the definition(s) of this variable. If
537 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
538 NEED_PHI_STATE_MAYBE. */
539 if (state == NEED_PHI_STATE_NO)
540 {
541 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
542
543 if (def_block_index == -1
544 || ! dominated_by_p (CDI_DOMINATORS, bb,
545 BASIC_BLOCK (def_block_index)))
546 set_phi_state (var, NEED_PHI_STATE_MAYBE);
547 }
548 else
549 set_phi_state (var, NEED_PHI_STATE_MAYBE);
550 }
551
552
553 /* Return true if symbol SYM is marked for renaming. */
554
555 bool
556 symbol_marked_for_renaming (tree sym)
557 {
558 return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
559 }
560
561
562 /* Return true if NAME is in OLD_SSA_NAMES. */
563
564 static inline bool
565 is_old_name (tree name)
566 {
567 unsigned ver = SSA_NAME_VERSION (name);
568 if (!new_ssa_names)
569 return false;
570 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
571 }
572
573
574 /* Return true if NAME is in NEW_SSA_NAMES. */
575
576 static inline bool
577 is_new_name (tree name)
578 {
579 unsigned ver = SSA_NAME_VERSION (name);
580 if (!new_ssa_names)
581 return false;
582 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
583 }
584
585
586 /* Hashing and equality functions for REPL_TBL. */
587
588 static hashval_t
589 repl_map_hash (const void *p)
590 {
591 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
592 }
593
594 static int
595 repl_map_eq (const void *p1, const void *p2)
596 {
597 return ((const struct repl_map_d *)p1)->name
598 == ((const struct repl_map_d *)p2)->name;
599 }
600
601 static void
602 repl_map_free (void *p)
603 {
604 BITMAP_FREE (((struct repl_map_d *)p)->set);
605 free (p);
606 }
607
608
609 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
610
611 static inline bitmap
612 names_replaced_by (tree new_tree)
613 {
614 struct repl_map_d m;
615 void **slot;
616
617 m.name = new_tree;
618 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
619
620 /* If N was not registered in the replacement table, return NULL. */
621 if (slot == NULL || *slot == NULL)
622 return NULL;
623
624 return ((struct repl_map_d *) *slot)->set;
625 }
626
627
628 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
629
630 static inline void
631 add_to_repl_tbl (tree new_tree, tree old)
632 {
633 struct repl_map_d m, *mp;
634 void **slot;
635
636 m.name = new_tree;
637 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
638 if (*slot == NULL)
639 {
640 mp = XNEW (struct repl_map_d);
641 mp->name = new_tree;
642 mp->set = BITMAP_ALLOC (NULL);
643 *slot = (void *) mp;
644 }
645 else
646 mp = (struct repl_map_d *) *slot;
647
648 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
649 }
650
651
652 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
653 represents the set of names O_1 ... O_j replaced by N_i. This is
654 used by update_ssa and its helpers to introduce new SSA names in an
655 already formed SSA web. */
656
657 static void
658 add_new_name_mapping (tree new_tree, tree old)
659 {
660 timevar_push (TV_TREE_SSA_INCREMENTAL);
661
662 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
663 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
664
665 /* If this mapping is for virtual names, we will need to update
666 virtual operands. If this is a mapping for .MEM, then we gather
667 the symbols associated with each name. */
668 if (!is_gimple_reg (new_tree))
669 {
670 tree sym;
671
672 update_ssa_stats.num_virtual_mappings++;
673 update_ssa_stats.num_virtual_symbols++;
674
675 /* Keep counts of virtual mappings and symbols to use in the
676 virtual mapping heuristic. If we have large numbers of
677 virtual mappings for a relatively low number of symbols, it
678 will make more sense to rename the symbols from scratch.
679 Otherwise, the insertion of PHI nodes for each of the old
680 names in these mappings will be very slow. */
681 sym = SSA_NAME_VAR (new_tree);
682 bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
683 }
684
685 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
686 caller may have created new names since the set was created. */
687 if (new_ssa_names->n_bits <= num_ssa_names - 1)
688 {
689 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
690 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
691 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
692 }
693
694 /* Update the REPL_TBL table. */
695 add_to_repl_tbl (new_tree, old);
696
697 /* If OLD had already been registered as a new name, then all the
698 names that OLD replaces should also be replaced by NEW_TREE. */
699 if (is_new_name (old))
700 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
701
702 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
703 respectively. */
704 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
705 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
706
707 /* Update mapping counter to use in the virtual mapping heuristic. */
708 update_ssa_stats.num_total_mappings++;
709
710 timevar_pop (TV_TREE_SSA_INCREMENTAL);
711 }
712
713
714 /* Call back for walk_dominator_tree used to collect definition sites
715 for every variable in the function. For every statement S in block
716 BB:
717
718 1- Variables defined by S in the DEFS of S are marked in the bitmap
719 KILLS.
720
721 2- If S uses a variable VAR and there is no preceding kill of VAR,
722 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
723
724 This information is used to determine which variables are live
725 across block boundaries to reduce the number of PHI nodes
726 we create. */
727
728 static void
729 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
730 {
731 tree def;
732 use_operand_p use_p;
733 ssa_op_iter iter;
734
735 /* Since this is the first time that we rewrite the program into SSA
736 form, force an operand scan on every statement. */
737 update_stmt (stmt);
738
739 gcc_assert (blocks_to_update == NULL);
740 set_register_defs (stmt, false);
741 set_rewrite_uses (stmt, false);
742
743 if (is_gimple_debug (stmt))
744 {
745 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
746 {
747 tree sym = USE_FROM_PTR (use_p);
748 gcc_assert (DECL_P (sym));
749 set_rewrite_uses (stmt, true);
750 }
751 if (rewrite_uses_p (stmt))
752 SET_BIT (interesting_blocks, bb->index);
753 return;
754 }
755
756 /* If a variable is used before being set, then the variable is live
757 across a block boundary, so mark it live-on-entry to BB. */
758 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
759 {
760 tree sym = USE_FROM_PTR (use_p);
761 gcc_assert (DECL_P (sym));
762 if (!bitmap_bit_p (kills, DECL_UID (sym)))
763 set_livein_block (sym, bb);
764 set_rewrite_uses (stmt, true);
765 }
766
767 /* Now process the defs. Mark BB as the definition block and add
768 each def to the set of killed symbols. */
769 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
770 {
771 gcc_assert (DECL_P (def));
772 set_def_block (def, bb, false);
773 bitmap_set_bit (kills, DECL_UID (def));
774 set_register_defs (stmt, true);
775 }
776
777 /* If we found the statement interesting then also mark the block BB
778 as interesting. */
779 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
780 SET_BIT (interesting_blocks, bb->index);
781 }
782
783 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
784 in the dfs numbering of the dominance tree. */
785
786 struct dom_dfsnum
787 {
788 /* Basic block whose index this entry corresponds to. */
789 unsigned bb_index;
790
791 /* The dfs number of this node. */
792 unsigned dfs_num;
793 };
794
795 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
796 for qsort. */
797
798 static int
799 cmp_dfsnum (const void *a, const void *b)
800 {
801 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
802 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
803
804 return (int) da->dfs_num - (int) db->dfs_num;
805 }
806
807 /* Among the intervals starting at the N points specified in DEFS, find
808 the one that contains S, and return its bb_index. */
809
810 static unsigned
811 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
812 {
813 unsigned f = 0, t = n, m;
814
815 while (t > f + 1)
816 {
817 m = (f + t) / 2;
818 if (defs[m].dfs_num <= s)
819 f = m;
820 else
821 t = m;
822 }
823
824 return defs[f].bb_index;
825 }
826
827 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
828 KILLS is a bitmap of blocks where the value is defined before any use. */
829
830 static void
831 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
832 {
833 VEC(int, heap) *worklist;
834 bitmap_iterator bi;
835 unsigned i, b, p, u, top;
836 bitmap live_phis;
837 basic_block def_bb, use_bb;
838 edge e;
839 edge_iterator ei;
840 bitmap to_remove;
841 struct dom_dfsnum *defs;
842 unsigned n_defs, adef;
843
844 if (bitmap_empty_p (uses))
845 {
846 bitmap_clear (phis);
847 return;
848 }
849
850 /* The phi must dominate a use, or an argument of a live phi. Also, we
851 do not create any phi nodes in def blocks, unless they are also livein. */
852 to_remove = BITMAP_ALLOC (NULL);
853 bitmap_and_compl (to_remove, kills, uses);
854 bitmap_and_compl_into (phis, to_remove);
855 if (bitmap_empty_p (phis))
856 {
857 BITMAP_FREE (to_remove);
858 return;
859 }
860
861 /* We want to remove the unnecessary phi nodes, but we do not want to compute
862 liveness information, as that may be linear in the size of CFG, and if
863 there are lot of different variables to rewrite, this may lead to quadratic
864 behavior.
865
866 Instead, we basically emulate standard dce. We put all uses to worklist,
867 then for each of them find the nearest def that dominates them. If this
868 def is a phi node, we mark it live, and if it was not live before, we
869 add the predecessors of its basic block to the worklist.
870
871 To quickly locate the nearest def that dominates use, we use dfs numbering
872 of the dominance tree (that is already available in order to speed up
873 queries). For each def, we have the interval given by the dfs number on
874 entry to and on exit from the corresponding subtree in the dominance tree.
875 The nearest dominator for a given use is the smallest of these intervals
876 that contains entry and exit dfs numbers for the basic block with the use.
877 If we store the bounds for all the uses to an array and sort it, we can
878 locate the nearest dominating def in logarithmic time by binary search.*/
879 bitmap_ior (to_remove, kills, phis);
880 n_defs = bitmap_count_bits (to_remove);
881 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
882 defs[0].bb_index = 1;
883 defs[0].dfs_num = 0;
884 adef = 1;
885 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
886 {
887 def_bb = BASIC_BLOCK (i);
888 defs[adef].bb_index = i;
889 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
890 defs[adef + 1].bb_index = i;
891 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
892 adef += 2;
893 }
894 BITMAP_FREE (to_remove);
895 gcc_assert (adef == 2 * n_defs + 1);
896 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
897 gcc_assert (defs[0].bb_index == 1);
898
899 /* Now each DEFS entry contains the number of the basic block to that the
900 dfs number corresponds. Change them to the number of basic block that
901 corresponds to the interval following the dfs number. Also, for the
902 dfs_out numbers, increase the dfs number by one (so that it corresponds
903 to the start of the following interval, not to the end of the current
904 one). We use WORKLIST as a stack. */
905 worklist = VEC_alloc (int, heap, n_defs + 1);
906 VEC_quick_push (int, worklist, 1);
907 top = 1;
908 n_defs = 1;
909 for (i = 1; i < adef; i++)
910 {
911 b = defs[i].bb_index;
912 if (b == top)
913 {
914 /* This is a closing element. Interval corresponding to the top
915 of the stack after removing it follows. */
916 VEC_pop (int, worklist);
917 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
918 defs[n_defs].bb_index = top;
919 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
920 }
921 else
922 {
923 /* Opening element. Nothing to do, just push it to the stack and move
924 it to the correct position. */
925 defs[n_defs].bb_index = defs[i].bb_index;
926 defs[n_defs].dfs_num = defs[i].dfs_num;
927 VEC_quick_push (int, worklist, b);
928 top = b;
929 }
930
931 /* If this interval starts at the same point as the previous one, cancel
932 the previous one. */
933 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
934 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
935 else
936 n_defs++;
937 }
938 VEC_pop (int, worklist);
939 gcc_assert (VEC_empty (int, worklist));
940
941 /* Now process the uses. */
942 live_phis = BITMAP_ALLOC (NULL);
943 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
944 {
945 VEC_safe_push (int, heap, worklist, i);
946 }
947
948 while (!VEC_empty (int, worklist))
949 {
950 b = VEC_pop (int, worklist);
951 if (b == ENTRY_BLOCK)
952 continue;
953
954 /* If there is a phi node in USE_BB, it is made live. Otherwise,
955 find the def that dominates the immediate dominator of USE_BB
956 (the kill in USE_BB does not dominate the use). */
957 if (bitmap_bit_p (phis, b))
958 p = b;
959 else
960 {
961 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
962 p = find_dfsnum_interval (defs, n_defs,
963 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
964 if (!bitmap_bit_p (phis, p))
965 continue;
966 }
967
968 /* If the phi node is already live, there is nothing to do. */
969 if (!bitmap_set_bit (live_phis, p))
970 continue;
971
972 /* Add the new uses to the worklist. */
973 def_bb = BASIC_BLOCK (p);
974 FOR_EACH_EDGE (e, ei, def_bb->preds)
975 {
976 u = e->src->index;
977 if (bitmap_bit_p (uses, u))
978 continue;
979
980 /* In case there is a kill directly in the use block, do not record
981 the use (this is also necessary for correctness, as we assume that
982 uses dominated by a def directly in their block have been filtered
983 out before). */
984 if (bitmap_bit_p (kills, u))
985 continue;
986
987 bitmap_set_bit (uses, u);
988 VEC_safe_push (int, heap, worklist, u);
989 }
990 }
991
992 VEC_free (int, heap, worklist);
993 bitmap_copy (phis, live_phis);
994 BITMAP_FREE (live_phis);
995 free (defs);
996 }
997
998 /* Return the set of blocks where variable VAR is defined and the blocks
999 where VAR is live on entry (livein). Return NULL, if no entry is
1000 found in DEF_BLOCKS. */
1001
1002 static inline struct def_blocks_d *
1003 find_def_blocks_for (tree var)
1004 {
1005 struct def_blocks_d dm;
1006 dm.var = var;
1007 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1008 }
1009
1010
1011 /* Retrieve or create a default definition for symbol SYM. */
1012
1013 static inline tree
1014 get_default_def_for (tree sym)
1015 {
1016 tree ddef = gimple_default_def (cfun, sym);
1017
1018 if (ddef == NULL_TREE)
1019 {
1020 ddef = make_ssa_name (sym, gimple_build_nop ());
1021 set_default_def (sym, ddef);
1022 }
1023
1024 return ddef;
1025 }
1026
1027
1028 /* Marks phi node PHI in basic block BB for rewrite. */
1029
1030 static void
1031 mark_phi_for_rewrite (basic_block bb, gimple phi)
1032 {
1033 gimple_vec phis;
1034 unsigned i, idx = bb->index;
1035
1036 if (rewrite_uses_p (phi))
1037 return;
1038
1039 set_rewrite_uses (phi, true);
1040
1041 if (!blocks_with_phis_to_rewrite)
1042 return;
1043
1044 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1045 VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1046 for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1047 VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1048
1049 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1050 if (!phis)
1051 phis = VEC_alloc (gimple, heap, 10);
1052
1053 VEC_safe_push (gimple, heap, phis, phi);
1054 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1055 }
1056
1057 /* Insert PHI nodes for variable VAR using the iterated dominance
1058 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1059 function assumes that the caller is incrementally updating the
1060 existing SSA form, in which case VAR may be an SSA name instead of
1061 a symbol.
1062
1063 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1064 PHI node for VAR. On exit, only the nodes that received a PHI node
1065 for VAR will be present in PHI_INSERTION_POINTS. */
1066
1067 static void
1068 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1069 {
1070 unsigned bb_index;
1071 edge e;
1072 gimple phi;
1073 basic_block bb;
1074 bitmap_iterator bi;
1075 struct def_blocks_d *def_map;
1076
1077 def_map = find_def_blocks_for (var);
1078 gcc_assert (def_map);
1079
1080 /* Remove the blocks where we already have PHI nodes for VAR. */
1081 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1082
1083 /* Remove obviously useless phi nodes. */
1084 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1085 def_map->livein_blocks);
1086
1087 /* And insert the PHI nodes. */
1088 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1089 {
1090 bb = BASIC_BLOCK (bb_index);
1091 if (update_p)
1092 mark_block_for_update (bb);
1093
1094 phi = NULL;
1095
1096 if (TREE_CODE (var) == SSA_NAME)
1097 {
1098 /* If we are rewriting SSA names, create the LHS of the PHI
1099 node by duplicating VAR. This is useful in the case of
1100 pointers, to also duplicate pointer attributes (alias
1101 information, in particular). */
1102 edge_iterator ei;
1103 tree new_lhs;
1104
1105 gcc_assert (update_p);
1106 phi = create_phi_node (var, bb);
1107
1108 new_lhs = duplicate_ssa_name (var, phi);
1109 gimple_phi_set_result (phi, new_lhs);
1110 add_new_name_mapping (new_lhs, var);
1111
1112 /* Add VAR to every argument slot of PHI. We need VAR in
1113 every argument so that rewrite_update_phi_arguments knows
1114 which name is this PHI node replacing. If VAR is a
1115 symbol marked for renaming, this is not necessary, the
1116 renamer will use the symbol on the LHS to get its
1117 reaching definition. */
1118 FOR_EACH_EDGE (e, ei, bb->preds)
1119 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1120 }
1121 else
1122 {
1123 tree tracked_var;
1124
1125 gcc_assert (DECL_P (var));
1126 phi = create_phi_node (var, bb);
1127
1128 tracked_var = target_for_debug_bind (var);
1129 if (tracked_var)
1130 {
1131 gimple note = gimple_build_debug_bind (tracked_var,
1132 PHI_RESULT (phi),
1133 phi);
1134 gimple_stmt_iterator si = gsi_after_labels (bb);
1135 gsi_insert_before (&si, note, GSI_SAME_STMT);
1136 }
1137 }
1138
1139 /* Mark this PHI node as interesting for update_ssa. */
1140 set_register_defs (phi, true);
1141 mark_phi_for_rewrite (bb, phi);
1142 }
1143 }
1144
1145
1146 /* Insert PHI nodes at the dominance frontier of blocks with variable
1147 definitions. DFS contains the dominance frontier information for
1148 the flowgraph. */
1149
1150 static void
1151 insert_phi_nodes (bitmap_head *dfs)
1152 {
1153 referenced_var_iterator rvi;
1154 bitmap_iterator bi;
1155 tree var;
1156 bitmap vars;
1157 unsigned uid;
1158
1159 timevar_push (TV_TREE_INSERT_PHI_NODES);
1160
1161 /* Do two stages to avoid code generation differences for UID
1162 differences but no UID ordering differences. */
1163
1164 vars = BITMAP_ALLOC (NULL);
1165 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1166 {
1167 struct def_blocks_d *def_map;
1168
1169 def_map = find_def_blocks_for (var);
1170 if (def_map == NULL)
1171 continue;
1172
1173 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1174 bitmap_set_bit (vars, DECL_UID (var));
1175 }
1176
1177 EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
1178 {
1179 tree var = referenced_var (uid);
1180 struct def_blocks_d *def_map;
1181 bitmap idf;
1182
1183 def_map = find_def_blocks_for (var);
1184 idf = compute_idf (def_map->def_blocks, dfs);
1185 insert_phi_nodes_for (var, idf, false);
1186 BITMAP_FREE (idf);
1187 }
1188
1189 BITMAP_FREE (vars);
1190
1191 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1192 }
1193
1194
1195 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1196 register DEF (an SSA_NAME) to be a new definition for SYM. */
1197
1198 static void
1199 register_new_def (tree def, tree sym)
1200 {
1201 tree currdef;
1202
1203 /* If this variable is set in a single basic block and all uses are
1204 dominated by the set(s) in that single basic block, then there is
1205 no reason to record anything for this variable in the block local
1206 definition stacks. Doing so just wastes time and memory.
1207
1208 This is the same test to prune the set of variables which may
1209 need PHI nodes. So we just use that information since it's already
1210 computed and available for us to use. */
1211 if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1212 {
1213 set_current_def (sym, def);
1214 return;
1215 }
1216
1217 currdef = get_current_def (sym);
1218
1219 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1220 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1221 in the stack so that we know which symbol is being defined by
1222 this SSA name when we unwind the stack. */
1223 if (currdef && !is_gimple_reg (sym))
1224 VEC_safe_push (tree, heap, block_defs_stack, sym);
1225
1226 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1227 stack is later used by the dominator tree callbacks to restore
1228 the reaching definitions for all the variables defined in the
1229 block after a recursive visit to all its immediately dominated
1230 blocks. If there is no current reaching definition, then just
1231 record the underlying _DECL node. */
1232 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1233
1234 /* Set the current reaching definition for SYM to be DEF. */
1235 set_current_def (sym, def);
1236 }
1237
1238
1239 /* Perform a depth-first traversal of the dominator tree looking for
1240 variables to rename. BB is the block where to start searching.
1241 Renaming is a five step process:
1242
1243 1- Every definition made by PHI nodes at the start of the blocks is
1244 registered as the current definition for the corresponding variable.
1245
1246 2- Every statement in BB is rewritten. USE and VUSE operands are
1247 rewritten with their corresponding reaching definition. DEF and
1248 VDEF targets are registered as new definitions.
1249
1250 3- All the PHI nodes in successor blocks of BB are visited. The
1251 argument corresponding to BB is replaced with its current reaching
1252 definition.
1253
1254 4- Recursively rewrite every dominator child block of BB.
1255
1256 5- Restore (in reverse order) the current reaching definition for every
1257 new definition introduced in this block. This is done so that when
1258 we return from the recursive call, all the current reaching
1259 definitions are restored to the names that were valid in the
1260 dominator parent of BB. */
1261
1262 /* Return the current definition for variable VAR. If none is found,
1263 create a new SSA name to act as the zeroth definition for VAR. */
1264
1265 static tree
1266 get_reaching_def (tree var)
1267 {
1268 tree currdef;
1269
1270 /* Lookup the current reaching definition for VAR. */
1271 currdef = get_current_def (var);
1272
1273 /* If there is no reaching definition for VAR, create and register a
1274 default definition for it (if needed). */
1275 if (currdef == NULL_TREE)
1276 {
1277 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1278 currdef = get_default_def_for (sym);
1279 set_current_def (var, currdef);
1280 }
1281
1282 /* Return the current reaching definition for VAR, or the default
1283 definition, if we had to create one. */
1284 return currdef;
1285 }
1286
1287
1288 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1289
1290 static void
1291 rewrite_debug_stmt_uses (gimple stmt)
1292 {
1293 use_operand_p use_p;
1294 ssa_op_iter iter;
1295 bool update = false;
1296
1297 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1298 {
1299 tree var = USE_FROM_PTR (use_p), def = NULL_TREE;
1300 gcc_assert (DECL_P (var));
1301 if (var_ann (var) == NULL)
1302 {
1303 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1304 {
1305 gimple_stmt_iterator gsi
1306 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1307 int lim;
1308 /* Search a few source bind stmts at the start of first bb to
1309 see if a DEBUG_EXPR_DECL can't be reused. */
1310 for (lim = 32;
1311 !gsi_end_p (gsi) && lim > 0;
1312 gsi_next (&gsi), lim--)
1313 {
1314 gimple gstmt = gsi_stmt (gsi);
1315 if (!gimple_debug_source_bind_p (gstmt))
1316 break;
1317 if (gimple_debug_source_bind_get_value (gstmt) == var)
1318 {
1319 def = gimple_debug_source_bind_get_var (gstmt);
1320 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1321 break;
1322 else
1323 def = NULL_TREE;
1324 }
1325 }
1326 /* If not, add a new source bind stmt. */
1327 if (def == NULL_TREE)
1328 {
1329 gimple def_temp;
1330 def = make_node (DEBUG_EXPR_DECL);
1331 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1332 DECL_ARTIFICIAL (def) = 1;
1333 TREE_TYPE (def) = TREE_TYPE (var);
1334 DECL_MODE (def) = DECL_MODE (var);
1335 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1336 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1337 }
1338 update = true;
1339 }
1340 }
1341 else
1342 {
1343 def = get_current_def (var);
1344 /* Check if get_current_def can be trusted. */
1345 if (def)
1346 {
1347 basic_block bb = gimple_bb (stmt);
1348 basic_block def_bb
1349 = SSA_NAME_IS_DEFAULT_DEF (def)
1350 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1351
1352 /* If definition is in current bb, it is fine. */
1353 if (bb == def_bb)
1354 ;
1355 /* If definition bb doesn't dominate the current bb,
1356 it can't be used. */
1357 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1358 def = NULL;
1359 /* If there is just one definition and dominates the current
1360 bb, it is fine. */
1361 else if (get_phi_state (var) == NEED_PHI_STATE_NO)
1362 ;
1363 else
1364 {
1365 struct def_blocks_d *db_p = get_def_blocks_for (var);
1366
1367 /* If there are some non-debug uses in the current bb,
1368 it is fine. */
1369 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1370 ;
1371 /* Otherwise give up for now. */
1372 else
1373 def = NULL;
1374 }
1375 }
1376 }
1377 if (def == NULL)
1378 {
1379 gimple_debug_bind_reset_value (stmt);
1380 update_stmt (stmt);
1381 return;
1382 }
1383 SET_USE (use_p, def);
1384 }
1385 if (update)
1386 update_stmt (stmt);
1387 }
1388
1389 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1390 the block with its immediate reaching definitions. Update the current
1391 definition of a variable when a new real or virtual definition is found. */
1392
1393 static void
1394 rewrite_stmt (gimple_stmt_iterator si)
1395 {
1396 use_operand_p use_p;
1397 def_operand_p def_p;
1398 ssa_op_iter iter;
1399 gimple stmt = gsi_stmt (si);
1400
1401 /* If mark_def_sites decided that we don't need to rewrite this
1402 statement, ignore it. */
1403 gcc_assert (blocks_to_update == NULL);
1404 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1405 return;
1406
1407 if (dump_file && (dump_flags & TDF_DETAILS))
1408 {
1409 fprintf (dump_file, "Renaming statement ");
1410 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1411 fprintf (dump_file, "\n");
1412 }
1413
1414 /* Step 1. Rewrite USES in the statement. */
1415 if (rewrite_uses_p (stmt))
1416 {
1417 if (is_gimple_debug (stmt))
1418 rewrite_debug_stmt_uses (stmt);
1419 else
1420 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1421 {
1422 tree var = USE_FROM_PTR (use_p);
1423 gcc_assert (DECL_P (var));
1424 SET_USE (use_p, get_reaching_def (var));
1425 }
1426 }
1427
1428 /* Step 2. Register the statement's DEF operands. */
1429 if (register_defs_p (stmt))
1430 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1431 {
1432 tree var = DEF_FROM_PTR (def_p);
1433 tree name = make_ssa_name (var, stmt);
1434 tree tracked_var;
1435 gcc_assert (DECL_P (var));
1436 SET_DEF (def_p, name);
1437 register_new_def (DEF_FROM_PTR (def_p), var);
1438
1439 tracked_var = target_for_debug_bind (var);
1440 if (tracked_var)
1441 {
1442 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1443 gsi_insert_after (&si, note, GSI_SAME_STMT);
1444 }
1445 }
1446 }
1447
1448
1449 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1450 PHI nodes. For every PHI node found, add a new argument containing the
1451 current reaching definition for the variable and the edge through which
1452 that definition is reaching the PHI node. */
1453
1454 static void
1455 rewrite_add_phi_arguments (basic_block bb)
1456 {
1457 edge e;
1458 edge_iterator ei;
1459
1460 FOR_EACH_EDGE (e, ei, bb->succs)
1461 {
1462 gimple phi;
1463 gimple_stmt_iterator gsi;
1464
1465 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1466 gsi_next (&gsi))
1467 {
1468 tree currdef;
1469 gimple stmt;
1470
1471 phi = gsi_stmt (gsi);
1472 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1473 stmt = SSA_NAME_DEF_STMT (currdef);
1474 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1475 }
1476 }
1477 }
1478
1479 /* SSA Rewriting Step 1. Initialization, create a block local stack
1480 of reaching definitions for new SSA names produced in this block
1481 (BLOCK_DEFS). Register new definitions for every PHI node in the
1482 block. */
1483
1484 static void
1485 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1486 basic_block bb)
1487 {
1488 gimple phi;
1489 gimple_stmt_iterator gsi;
1490
1491 if (dump_file && (dump_flags & TDF_DETAILS))
1492 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1493
1494 /* Mark the unwind point for this block. */
1495 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1496
1497 /* Step 1. Register new definitions for every PHI node in the block.
1498 Conceptually, all the PHI nodes are executed in parallel and each PHI
1499 node introduces a new version for the associated variable. */
1500 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1501 {
1502 tree result;
1503
1504 phi = gsi_stmt (gsi);
1505 result = gimple_phi_result (phi);
1506 gcc_assert (is_gimple_reg (result));
1507 register_new_def (result, SSA_NAME_VAR (result));
1508 }
1509
1510 /* Step 2. Rewrite every variable used in each statement in the block
1511 with its immediate reaching definitions. Update the current definition
1512 of a variable when a new real or virtual definition is found. */
1513 if (TEST_BIT (interesting_blocks, bb->index))
1514 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1515 rewrite_stmt (gsi);
1516
1517 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1518 For every PHI node found, add a new argument containing the current
1519 reaching definition for the variable and the edge through which that
1520 definition is reaching the PHI node. */
1521 rewrite_add_phi_arguments (bb);
1522 }
1523
1524
1525
1526 /* Called after visiting all the statements in basic block BB and all
1527 of its dominator children. Restore CURRDEFS to its original value. */
1528
1529 static void
1530 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1531 basic_block bb ATTRIBUTE_UNUSED)
1532 {
1533 /* Restore CURRDEFS to its original state. */
1534 while (VEC_length (tree, block_defs_stack) > 0)
1535 {
1536 tree tmp = VEC_pop (tree, block_defs_stack);
1537 tree saved_def, var;
1538
1539 if (tmp == NULL_TREE)
1540 break;
1541
1542 if (TREE_CODE (tmp) == SSA_NAME)
1543 {
1544 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1545 current definition of its underlying variable. Note that
1546 if the SSA_NAME is not for a GIMPLE register, the symbol
1547 being defined is stored in the next slot in the stack.
1548 This mechanism is needed because an SSA name for a
1549 non-register symbol may be the definition for more than
1550 one symbol (e.g., SFTs, aliased variables, etc). */
1551 saved_def = tmp;
1552 var = SSA_NAME_VAR (saved_def);
1553 if (!is_gimple_reg (var))
1554 var = VEC_pop (tree, block_defs_stack);
1555 }
1556 else
1557 {
1558 /* If we recorded anything else, it must have been a _DECL
1559 node and its current reaching definition must have been
1560 NULL. */
1561 saved_def = NULL;
1562 var = tmp;
1563 }
1564
1565 set_current_def (var, saved_def);
1566 }
1567 }
1568
1569
1570 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1571
1572 void
1573 dump_decl_set (FILE *file, bitmap set)
1574 {
1575 if (set)
1576 {
1577 bitmap_iterator bi;
1578 unsigned i;
1579
1580 fprintf (file, "{ ");
1581
1582 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1583 {
1584 tree var = referenced_var_lookup (cfun, i);
1585 if (var)
1586 print_generic_expr (file, var, 0);
1587 else
1588 fprintf (file, "D.%u", i);
1589 fprintf (file, " ");
1590 }
1591
1592 fprintf (file, "}");
1593 }
1594 else
1595 fprintf (file, "NIL");
1596 }
1597
1598
1599 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1600
1601 DEBUG_FUNCTION void
1602 debug_decl_set (bitmap set)
1603 {
1604 dump_decl_set (stderr, set);
1605 fprintf (stderr, "\n");
1606 }
1607
1608
1609 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1610 stack up to a maximum of N levels. If N is -1, the whole stack is
1611 dumped. New levels are created when the dominator tree traversal
1612 used for renaming enters a new sub-tree. */
1613
1614 void
1615 dump_defs_stack (FILE *file, int n)
1616 {
1617 int i, j;
1618
1619 fprintf (file, "\n\nRenaming stack");
1620 if (n > 0)
1621 fprintf (file, " (up to %d levels)", n);
1622 fprintf (file, "\n\n");
1623
1624 i = 1;
1625 fprintf (file, "Level %d (current level)\n", i);
1626 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1627 {
1628 tree name, var;
1629
1630 name = VEC_index (tree, block_defs_stack, j);
1631 if (name == NULL_TREE)
1632 {
1633 i++;
1634 if (n > 0 && i > n)
1635 break;
1636 fprintf (file, "\nLevel %d\n", i);
1637 continue;
1638 }
1639
1640 if (DECL_P (name))
1641 {
1642 var = name;
1643 name = NULL_TREE;
1644 }
1645 else
1646 {
1647 var = SSA_NAME_VAR (name);
1648 if (!is_gimple_reg (var))
1649 {
1650 j--;
1651 var = VEC_index (tree, block_defs_stack, j);
1652 }
1653 }
1654
1655 fprintf (file, " Previous CURRDEF (");
1656 print_generic_expr (file, var, 0);
1657 fprintf (file, ") = ");
1658 if (name)
1659 print_generic_expr (file, name, 0);
1660 else
1661 fprintf (file, "<NIL>");
1662 fprintf (file, "\n");
1663 }
1664 }
1665
1666
1667 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1668 stack up to a maximum of N levels. If N is -1, the whole stack is
1669 dumped. New levels are created when the dominator tree traversal
1670 used for renaming enters a new sub-tree. */
1671
1672 DEBUG_FUNCTION void
1673 debug_defs_stack (int n)
1674 {
1675 dump_defs_stack (stderr, n);
1676 }
1677
1678
1679 /* Dump the current reaching definition of every symbol to FILE. */
1680
1681 void
1682 dump_currdefs (FILE *file)
1683 {
1684 referenced_var_iterator i;
1685 tree var;
1686
1687 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1688 FOR_EACH_REFERENCED_VAR (cfun, var, i)
1689 if (SYMS_TO_RENAME (cfun) == NULL
1690 || bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1691 {
1692 fprintf (file, "CURRDEF (");
1693 print_generic_expr (file, var, 0);
1694 fprintf (file, ") = ");
1695 if (get_current_def (var))
1696 print_generic_expr (file, get_current_def (var), 0);
1697 else
1698 fprintf (file, "<NIL>");
1699 fprintf (file, "\n");
1700 }
1701 }
1702
1703
1704 /* Dump the current reaching definition of every symbol to stderr. */
1705
1706 DEBUG_FUNCTION void
1707 debug_currdefs (void)
1708 {
1709 dump_currdefs (stderr);
1710 }
1711
1712
1713 /* Dump SSA information to FILE. */
1714
1715 void
1716 dump_tree_ssa (FILE *file)
1717 {
1718 const char *funcname
1719 = lang_hooks.decl_printable_name (current_function_decl, 2);
1720
1721 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1722
1723 dump_def_blocks (file);
1724 dump_defs_stack (file, -1);
1725 dump_currdefs (file);
1726 dump_tree_ssa_stats (file);
1727 }
1728
1729
1730 /* Dump SSA information to stderr. */
1731
1732 DEBUG_FUNCTION void
1733 debug_tree_ssa (void)
1734 {
1735 dump_tree_ssa (stderr);
1736 }
1737
1738
1739 /* Dump statistics for the hash table HTAB. */
1740
1741 static void
1742 htab_statistics (FILE *file, htab_t htab)
1743 {
1744 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1745 (long) htab_size (htab),
1746 (long) htab_elements (htab),
1747 htab_collisions (htab));
1748 }
1749
1750
1751 /* Dump SSA statistics on FILE. */
1752
1753 void
1754 dump_tree_ssa_stats (FILE *file)
1755 {
1756 if (def_blocks || repl_tbl)
1757 fprintf (file, "\nHash table statistics:\n");
1758
1759 if (def_blocks)
1760 {
1761 fprintf (file, " def_blocks: ");
1762 htab_statistics (file, def_blocks);
1763 }
1764
1765 if (repl_tbl)
1766 {
1767 fprintf (file, " repl_tbl: ");
1768 htab_statistics (file, repl_tbl);
1769 }
1770
1771 if (def_blocks || repl_tbl)
1772 fprintf (file, "\n");
1773 }
1774
1775
1776 /* Dump SSA statistics on stderr. */
1777
1778 DEBUG_FUNCTION void
1779 debug_tree_ssa_stats (void)
1780 {
1781 dump_tree_ssa_stats (stderr);
1782 }
1783
1784
1785 /* Hashing and equality functions for DEF_BLOCKS. */
1786
1787 static hashval_t
1788 def_blocks_hash (const void *p)
1789 {
1790 return htab_hash_pointer
1791 ((const void *)((const struct def_blocks_d *)p)->var);
1792 }
1793
1794 static int
1795 def_blocks_eq (const void *p1, const void *p2)
1796 {
1797 return ((const struct def_blocks_d *)p1)->var
1798 == ((const struct def_blocks_d *)p2)->var;
1799 }
1800
1801
1802 /* Free memory allocated by one entry in DEF_BLOCKS. */
1803
1804 static void
1805 def_blocks_free (void *p)
1806 {
1807 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1808 BITMAP_FREE (entry->def_blocks);
1809 BITMAP_FREE (entry->phi_blocks);
1810 BITMAP_FREE (entry->livein_blocks);
1811 free (entry);
1812 }
1813
1814
1815 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1816
1817 static int
1818 debug_def_blocks_r (void **slot, void *data)
1819 {
1820 FILE *file = (FILE *) data;
1821 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1822
1823 fprintf (file, "VAR: ");
1824 print_generic_expr (file, db_p->var, dump_flags);
1825 bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1826 bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1827 bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1828
1829 return 1;
1830 }
1831
1832
1833 /* Dump the DEF_BLOCKS hash table on FILE. */
1834
1835 void
1836 dump_def_blocks (FILE *file)
1837 {
1838 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1839 if (def_blocks)
1840 htab_traverse (def_blocks, debug_def_blocks_r, file);
1841 }
1842
1843
1844 /* Dump the DEF_BLOCKS hash table on stderr. */
1845
1846 DEBUG_FUNCTION void
1847 debug_def_blocks (void)
1848 {
1849 dump_def_blocks (stderr);
1850 }
1851
1852
1853 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1854
1855 static inline void
1856 register_new_update_single (tree new_name, tree old_name)
1857 {
1858 tree currdef = get_current_def (old_name);
1859
1860 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1861 This stack is later used by the dominator tree callbacks to
1862 restore the reaching definitions for all the variables
1863 defined in the block after a recursive visit to all its
1864 immediately dominated blocks. */
1865 VEC_reserve (tree, heap, block_defs_stack, 2);
1866 VEC_quick_push (tree, block_defs_stack, currdef);
1867 VEC_quick_push (tree, block_defs_stack, old_name);
1868
1869 /* Set the current reaching definition for OLD_NAME to be
1870 NEW_NAME. */
1871 set_current_def (old_name, new_name);
1872 }
1873
1874
1875 /* Register NEW_NAME to be the new reaching definition for all the
1876 names in OLD_NAMES. Used by the incremental SSA update routines to
1877 replace old SSA names with new ones. */
1878
1879 static inline void
1880 register_new_update_set (tree new_name, bitmap old_names)
1881 {
1882 bitmap_iterator bi;
1883 unsigned i;
1884
1885 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1886 register_new_update_single (new_name, ssa_name (i));
1887 }
1888
1889
1890
1891 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1892 it is a symbol marked for renaming, replace it with USE_P's current
1893 reaching definition. */
1894
1895 static inline void
1896 maybe_replace_use (use_operand_p use_p)
1897 {
1898 tree rdef = NULL_TREE;
1899 tree use = USE_FROM_PTR (use_p);
1900 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1901
1902 if (symbol_marked_for_renaming (sym))
1903 rdef = get_reaching_def (sym);
1904 else if (is_old_name (use))
1905 rdef = get_reaching_def (use);
1906
1907 if (rdef && rdef != use)
1908 SET_USE (use_p, rdef);
1909 }
1910
1911
1912 /* Same as maybe_replace_use, but without introducing default stmts,
1913 returning false to indicate a need to do so. */
1914
1915 static inline bool
1916 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1917 {
1918 tree rdef = NULL_TREE;
1919 tree use = USE_FROM_PTR (use_p);
1920 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1921
1922 if (symbol_marked_for_renaming (sym))
1923 rdef = get_current_def (sym);
1924 else if (is_old_name (use))
1925 {
1926 rdef = get_current_def (use);
1927 /* We can't assume that, if there's no current definition, the
1928 default one should be used. It could be the case that we've
1929 rearranged blocks so that the earlier definition no longer
1930 dominates the use. */
1931 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1932 rdef = use;
1933 }
1934 else
1935 rdef = use;
1936
1937 if (rdef && rdef != use)
1938 SET_USE (use_p, rdef);
1939
1940 return rdef != NULL_TREE;
1941 }
1942
1943
1944 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1945 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1946 register it as the current definition for the names replaced by
1947 DEF_P. */
1948
1949 static inline void
1950 maybe_register_def (def_operand_p def_p, gimple stmt,
1951 gimple_stmt_iterator gsi)
1952 {
1953 tree def = DEF_FROM_PTR (def_p);
1954 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1955
1956 /* If DEF is a naked symbol that needs renaming, create a new
1957 name for it. */
1958 if (symbol_marked_for_renaming (sym))
1959 {
1960 if (DECL_P (def))
1961 {
1962 tree tracked_var;
1963
1964 def = make_ssa_name (def, stmt);
1965 SET_DEF (def_p, def);
1966
1967 tracked_var = target_for_debug_bind (sym);
1968 if (tracked_var)
1969 {
1970 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1971 /* If stmt ends the bb, insert the debug stmt on the single
1972 non-EH edge from the stmt. */
1973 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1974 {
1975 basic_block bb = gsi_bb (gsi);
1976 edge_iterator ei;
1977 edge e, ef = NULL;
1978 FOR_EACH_EDGE (e, ei, bb->succs)
1979 if (!(e->flags & EDGE_EH))
1980 {
1981 gcc_assert (!ef);
1982 ef = e;
1983 }
1984 /* If there are other predecessors to ef->dest, then
1985 there must be PHI nodes for the modified
1986 variable, and therefore there will be debug bind
1987 stmts after the PHI nodes. The debug bind notes
1988 we'd insert would force the creation of a new
1989 block (diverging codegen) and be redundant with
1990 the post-PHI bind stmts, so don't add them.
1991
1992 As for the exit edge, there wouldn't be redundant
1993 bind stmts, but there wouldn't be a PC to bind
1994 them to either, so avoid diverging the CFG. */
1995 if (ef && single_pred_p (ef->dest)
1996 && ef->dest != EXIT_BLOCK_PTR)
1997 {
1998 /* If there were PHI nodes in the node, we'd
1999 have to make sure the value we're binding
2000 doesn't need rewriting. But there shouldn't
2001 be PHI nodes in a single-predecessor block,
2002 so we just add the note. */
2003 gsi_insert_on_edge_immediate (ef, note);
2004 }
2005 }
2006 else
2007 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
2008 }
2009 }
2010
2011 register_new_update_single (def, sym);
2012 }
2013 else
2014 {
2015 /* If DEF is a new name, register it as a new definition
2016 for all the names replaced by DEF. */
2017 if (is_new_name (def))
2018 register_new_update_set (def, names_replaced_by (def));
2019
2020 /* If DEF is an old name, register DEF as a new
2021 definition for itself. */
2022 if (is_old_name (def))
2023 register_new_update_single (def, def);
2024 }
2025 }
2026
2027
2028 /* Update every variable used in the statement pointed-to by SI. The
2029 statement is assumed to be in SSA form already. Names in
2030 OLD_SSA_NAMES used by SI will be updated to their current reaching
2031 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
2032 will be registered as a new definition for their corresponding name
2033 in OLD_SSA_NAMES. */
2034
2035 static void
2036 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
2037 {
2038 use_operand_p use_p;
2039 def_operand_p def_p;
2040 ssa_op_iter iter;
2041
2042 /* Only update marked statements. */
2043 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
2044 return;
2045
2046 if (dump_file && (dump_flags & TDF_DETAILS))
2047 {
2048 fprintf (dump_file, "Updating SSA information for statement ");
2049 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2050 }
2051
2052 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
2053 symbol is marked for renaming. */
2054 if (rewrite_uses_p (stmt))
2055 {
2056 if (is_gimple_debug (stmt))
2057 {
2058 bool failed = false;
2059
2060 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2061 if (!maybe_replace_use_in_debug_stmt (use_p))
2062 {
2063 failed = true;
2064 break;
2065 }
2066
2067 if (failed)
2068 {
2069 /* DOM sometimes threads jumps in such a way that a
2070 debug stmt ends up referencing a SSA variable that no
2071 longer dominates the debug stmt, but such that all
2072 incoming definitions refer to the same definition in
2073 an earlier dominator. We could try to recover that
2074 definition somehow, but this will have to do for now.
2075
2076 Introducing a default definition, which is what
2077 maybe_replace_use() would do in such cases, may
2078 modify code generation, for the otherwise-unused
2079 default definition would never go away, modifying SSA
2080 version numbers all over. */
2081 gimple_debug_bind_reset_value (stmt);
2082 update_stmt (stmt);
2083 }
2084 }
2085 else
2086 {
2087 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
2088 maybe_replace_use (use_p);
2089 }
2090 }
2091
2092 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
2093 Also register definitions for names whose underlying symbol is
2094 marked for renaming. */
2095 if (register_defs_p (stmt))
2096 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
2097 maybe_register_def (def_p, stmt, gsi);
2098 }
2099
2100
2101 /* Visit all the successor blocks of BB looking for PHI nodes. For
2102 every PHI node found, check if any of its arguments is in
2103 OLD_SSA_NAMES. If so, and if the argument has a current reaching
2104 definition, replace it. */
2105
2106 static void
2107 rewrite_update_phi_arguments (basic_block bb)
2108 {
2109 edge e;
2110 edge_iterator ei;
2111 unsigned i;
2112
2113 FOR_EACH_EDGE (e, ei, bb->succs)
2114 {
2115 gimple phi;
2116 gimple_vec phis;
2117
2118 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2119 continue;
2120
2121 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
2122 FOR_EACH_VEC_ELT (gimple, phis, i, phi)
2123 {
2124 tree arg, lhs_sym, reaching_def = NULL;
2125 use_operand_p arg_p;
2126
2127 gcc_assert (rewrite_uses_p (phi));
2128
2129 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2130 arg = USE_FROM_PTR (arg_p);
2131
2132 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2133 continue;
2134
2135 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2136
2137 if (arg == NULL_TREE)
2138 {
2139 /* When updating a PHI node for a recently introduced
2140 symbol we may find NULL arguments. That's why we
2141 take the symbol from the LHS of the PHI node. */
2142 reaching_def = get_reaching_def (lhs_sym);
2143
2144 }
2145 else
2146 {
2147 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2148
2149 if (symbol_marked_for_renaming (sym))
2150 reaching_def = get_reaching_def (sym);
2151 else if (is_old_name (arg))
2152 reaching_def = get_reaching_def (arg);
2153 }
2154
2155 /* Update the argument if there is a reaching def. */
2156 if (reaching_def)
2157 {
2158 gimple stmt;
2159 source_location locus;
2160 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2161
2162 SET_USE (arg_p, reaching_def);
2163 stmt = SSA_NAME_DEF_STMT (reaching_def);
2164
2165 /* Single element PHI nodes behave like copies, so get the
2166 location from the phi argument. */
2167 if (gimple_code (stmt) == GIMPLE_PHI &&
2168 gimple_phi_num_args (stmt) == 1)
2169 locus = gimple_phi_arg_location (stmt, 0);
2170 else
2171 locus = gimple_location (stmt);
2172
2173 gimple_phi_arg_set_location (phi, arg_i, locus);
2174 }
2175
2176
2177 if (e->flags & EDGE_ABNORMAL)
2178 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2179 }
2180 }
2181 }
2182
2183
2184 /* Initialization of block data structures for the incremental SSA
2185 update pass. Create a block local stack of reaching definitions
2186 for new SSA names produced in this block (BLOCK_DEFS). Register
2187 new definitions for every PHI node in the block. */
2188
2189 static void
2190 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2191 basic_block bb)
2192 {
2193 bool is_abnormal_phi;
2194 gimple_stmt_iterator gsi;
2195
2196 if (dump_file && (dump_flags & TDF_DETAILS))
2197 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2198 bb->index);
2199
2200 /* Mark the unwind point for this block. */
2201 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2202
2203 if (!bitmap_bit_p (blocks_to_update, bb->index))
2204 return;
2205
2206 /* Mark the LHS if any of the arguments flows through an abnormal
2207 edge. */
2208 is_abnormal_phi = bb_has_abnormal_pred (bb);
2209
2210 /* If any of the PHI nodes is a replacement for a name in
2211 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2212 register it as a new definition for its corresponding name. Also
2213 register definitions for names whose underlying symbols are
2214 marked for renaming. */
2215 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2216 {
2217 tree lhs, lhs_sym;
2218 gimple phi = gsi_stmt (gsi);
2219
2220 if (!register_defs_p (phi))
2221 continue;
2222
2223 lhs = gimple_phi_result (phi);
2224 lhs_sym = SSA_NAME_VAR (lhs);
2225
2226 if (symbol_marked_for_renaming (lhs_sym))
2227 register_new_update_single (lhs, lhs_sym);
2228 else
2229 {
2230
2231 /* If LHS is a new name, register a new definition for all
2232 the names replaced by LHS. */
2233 if (is_new_name (lhs))
2234 register_new_update_set (lhs, names_replaced_by (lhs));
2235
2236 /* If LHS is an OLD name, register it as a new definition
2237 for itself. */
2238 if (is_old_name (lhs))
2239 register_new_update_single (lhs, lhs);
2240 }
2241
2242 if (is_abnormal_phi)
2243 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2244 }
2245
2246 /* Step 2. Rewrite every variable used in each statement in the block. */
2247 if (TEST_BIT (interesting_blocks, bb->index))
2248 {
2249 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2250 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2251 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2252 }
2253
2254 /* Step 3. Update PHI nodes. */
2255 rewrite_update_phi_arguments (bb);
2256 }
2257
2258 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2259 the current reaching definition of every name re-written in BB to
2260 the original reaching definition before visiting BB. This
2261 unwinding must be done in the opposite order to what is done in
2262 register_new_update_set. */
2263
2264 static void
2265 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2266 basic_block bb ATTRIBUTE_UNUSED)
2267 {
2268 while (VEC_length (tree, block_defs_stack) > 0)
2269 {
2270 tree var = VEC_pop (tree, block_defs_stack);
2271 tree saved_def;
2272
2273 /* NULL indicates the unwind stop point for this block (see
2274 rewrite_update_enter_block). */
2275 if (var == NULL)
2276 return;
2277
2278 saved_def = VEC_pop (tree, block_defs_stack);
2279 set_current_def (var, saved_def);
2280 }
2281 }
2282
2283
2284 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2285 form.
2286
2287 ENTRY indicates the block where to start. Every block dominated by
2288 ENTRY will be rewritten.
2289
2290 WHAT indicates what actions will be taken by the renamer (see enum
2291 rewrite_mode).
2292
2293 BLOCKS are the set of interesting blocks for the dominator walker
2294 to process. If this set is NULL, then all the nodes dominated
2295 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2296 are not present in BLOCKS are ignored. */
2297
2298 static void
2299 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2300 {
2301 struct dom_walk_data walk_data;
2302
2303 /* Rewrite all the basic blocks in the program. */
2304 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2305
2306 /* Setup callbacks for the generic dominator tree walker. */
2307 memset (&walk_data, 0, sizeof (walk_data));
2308
2309 walk_data.dom_direction = CDI_DOMINATORS;
2310
2311 if (what == REWRITE_ALL)
2312 {
2313 walk_data.before_dom_children = rewrite_enter_block;
2314 walk_data.after_dom_children = rewrite_leave_block;
2315 }
2316 else if (what == REWRITE_UPDATE)
2317 {
2318 walk_data.before_dom_children = rewrite_update_enter_block;
2319 walk_data.after_dom_children = rewrite_update_leave_block;
2320 }
2321 else
2322 gcc_unreachable ();
2323
2324 block_defs_stack = VEC_alloc (tree, heap, 10);
2325
2326 /* Initialize the dominator walker. */
2327 init_walk_dominator_tree (&walk_data);
2328
2329 /* Recursively walk the dominator tree rewriting each statement in
2330 each basic block. */
2331 walk_dominator_tree (&walk_data, entry);
2332
2333 /* Finalize the dominator walker. */
2334 fini_walk_dominator_tree (&walk_data);
2335
2336 /* Debugging dumps. */
2337 if (dump_file && (dump_flags & TDF_STATS))
2338 {
2339 dump_dfa_stats (dump_file);
2340 if (def_blocks)
2341 dump_tree_ssa_stats (dump_file);
2342 }
2343
2344 VEC_free (tree, heap, block_defs_stack);
2345
2346 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2347 }
2348
2349
2350 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2351 at the start of each block, and call mark_def_sites for each statement. */
2352
2353 static void
2354 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2355 {
2356 struct mark_def_sites_global_data *gd;
2357 bitmap kills;
2358 gimple_stmt_iterator gsi;
2359
2360 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2361 kills = gd->kills;
2362
2363 bitmap_clear (kills);
2364 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2365 mark_def_sites (bb, gsi_stmt (gsi), kills);
2366 }
2367
2368
2369 /* Mark the definition site blocks for each variable, so that we know
2370 where the variable is actually live.
2371
2372 The INTERESTING_BLOCKS global will be filled in with all the blocks
2373 that should be processed by the renamer. It is assumed that the
2374 caller has already initialized and zeroed it. */
2375
2376 static void
2377 mark_def_site_blocks (void)
2378 {
2379 struct dom_walk_data walk_data;
2380 struct mark_def_sites_global_data mark_def_sites_global_data;
2381
2382 /* Setup callbacks for the generic dominator tree walker to find and
2383 mark definition sites. */
2384 walk_data.dom_direction = CDI_DOMINATORS;
2385 walk_data.initialize_block_local_data = NULL;
2386 walk_data.before_dom_children = mark_def_sites_block;
2387 walk_data.after_dom_children = NULL;
2388
2389 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2390 large enough to accommodate all the variables referenced in the
2391 function, not just the ones we are renaming. */
2392 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2393 walk_data.global_data = &mark_def_sites_global_data;
2394
2395 /* We do not have any local data. */
2396 walk_data.block_local_data_size = 0;
2397
2398 /* Initialize the dominator walker. */
2399 init_walk_dominator_tree (&walk_data);
2400
2401 /* Recursively walk the dominator tree. */
2402 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2403
2404 /* Finalize the dominator walker. */
2405 fini_walk_dominator_tree (&walk_data);
2406
2407 /* We no longer need this bitmap, clear and free it. */
2408 BITMAP_FREE (mark_def_sites_global_data.kills);
2409 }
2410
2411
2412 /* Initialize internal data needed during renaming. */
2413
2414 static void
2415 init_ssa_renamer (void)
2416 {
2417 tree var;
2418 referenced_var_iterator rvi;
2419
2420 cfun->gimple_df->in_ssa_p = false;
2421
2422 /* Allocate memory for the DEF_BLOCKS hash table. */
2423 gcc_assert (def_blocks == NULL);
2424 def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2425 def_blocks_eq, def_blocks_free);
2426
2427 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
2428 set_current_def (var, NULL_TREE);
2429 }
2430
2431
2432 /* Deallocate internal data structures used by the renamer. */
2433
2434 static void
2435 fini_ssa_renamer (void)
2436 {
2437 if (def_blocks)
2438 {
2439 htab_delete (def_blocks);
2440 def_blocks = NULL;
2441 }
2442
2443 cfun->gimple_df->in_ssa_p = true;
2444 }
2445
2446 /* Main entry point into the SSA builder. The renaming process
2447 proceeds in four main phases:
2448
2449 1- Compute dominance frontier and immediate dominators, needed to
2450 insert PHI nodes and rename the function in dominator tree
2451 order.
2452
2453 2- Find and mark all the blocks that define variables
2454 (mark_def_site_blocks).
2455
2456 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2457
2458 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2459
2460 Steps 3 and 4 are done using the dominator tree walker
2461 (walk_dominator_tree). */
2462
2463 static unsigned int
2464 rewrite_into_ssa (void)
2465 {
2466 bitmap_head *dfs;
2467 basic_block bb;
2468
2469 /* Initialize operand data structures. */
2470 init_ssa_operands (cfun);
2471
2472 /* Initialize internal data needed by the renamer. */
2473 init_ssa_renamer ();
2474
2475 /* Initialize the set of interesting blocks. The callback
2476 mark_def_sites will add to this set those blocks that the renamer
2477 should process. */
2478 interesting_blocks = sbitmap_alloc (last_basic_block);
2479 sbitmap_zero (interesting_blocks);
2480
2481 /* Initialize dominance frontier. */
2482 dfs = XNEWVEC (bitmap_head, last_basic_block);
2483 FOR_EACH_BB (bb)
2484 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2485
2486 /* 1- Compute dominance frontiers. */
2487 calculate_dominance_info (CDI_DOMINATORS);
2488 compute_dominance_frontiers (dfs);
2489
2490 /* 2- Find and mark definition sites. */
2491 mark_def_site_blocks ();
2492
2493 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2494 insert_phi_nodes (dfs);
2495
2496 /* 4- Rename all the blocks. */
2497 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2498
2499 /* Free allocated memory. */
2500 FOR_EACH_BB (bb)
2501 bitmap_clear (&dfs[bb->index]);
2502 free (dfs);
2503
2504 sbitmap_free (interesting_blocks);
2505
2506 fini_ssa_renamer ();
2507
2508 return 0;
2509 }
2510
2511
2512 struct gimple_opt_pass pass_build_ssa =
2513 {
2514 {
2515 GIMPLE_PASS,
2516 "ssa", /* name */
2517 NULL, /* gate */
2518 rewrite_into_ssa, /* execute */
2519 NULL, /* sub */
2520 NULL, /* next */
2521 0, /* static_pass_number */
2522 TV_TREE_SSA_OTHER, /* tv_id */
2523 PROP_cfg | PROP_referenced_vars, /* properties_required */
2524 PROP_ssa, /* properties_provided */
2525 0, /* properties_destroyed */
2526 0, /* todo_flags_start */
2527 TODO_update_ssa_only_virtuals
2528 | TODO_verify_ssa
2529 | TODO_remove_unused_locals /* todo_flags_finish */
2530 }
2531 };
2532
2533
2534 /* Mark the definition of VAR at STMT and BB as interesting for the
2535 renamer. BLOCKS is the set of blocks that need updating. */
2536
2537 static void
2538 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2539 {
2540 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2541 set_register_defs (stmt, true);
2542
2543 if (insert_phi_p)
2544 {
2545 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2546
2547 set_def_block (var, bb, is_phi_p);
2548
2549 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2550 site for both itself and all the old names replaced by it. */
2551 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2552 {
2553 bitmap_iterator bi;
2554 unsigned i;
2555 bitmap set = names_replaced_by (var);
2556 if (set)
2557 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2558 set_def_block (ssa_name (i), bb, is_phi_p);
2559 }
2560 }
2561 }
2562
2563
2564 /* Mark the use of VAR at STMT and BB as interesting for the
2565 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2566 nodes. */
2567
2568 static inline void
2569 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2570 {
2571 basic_block def_bb = gimple_bb (stmt);
2572
2573 mark_block_for_update (def_bb);
2574 mark_block_for_update (bb);
2575
2576 if (gimple_code (stmt) == GIMPLE_PHI)
2577 mark_phi_for_rewrite (def_bb, stmt);
2578 else
2579 {
2580 set_rewrite_uses (stmt, true);
2581
2582 if (is_gimple_debug (stmt))
2583 return;
2584 }
2585
2586 /* If VAR has not been defined in BB, then it is live-on-entry
2587 to BB. Note that we cannot just use the block holding VAR's
2588 definition because if VAR is one of the names in OLD_SSA_NAMES,
2589 it will have several definitions (itself and all the names that
2590 replace it). */
2591 if (insert_phi_p)
2592 {
2593 struct def_blocks_d *db_p = get_def_blocks_for (var);
2594 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2595 set_livein_block (var, bb);
2596 }
2597 }
2598
2599
2600 /* Do a dominator walk starting at BB processing statements that
2601 reference symbols in SYMS_TO_RENAME. This is very similar to
2602 mark_def_sites, but the scan handles statements whose operands may
2603 already be SSA names.
2604
2605 If INSERT_PHI_P is true, mark those uses as live in the
2606 corresponding block. This is later used by the PHI placement
2607 algorithm to make PHI pruning decisions.
2608
2609 FIXME. Most of this would be unnecessary if we could associate a
2610 symbol to all the SSA names that reference it. But that
2611 sounds like it would be expensive to maintain. Still, it
2612 would be interesting to see if it makes better sense to do
2613 that. */
2614
2615 static void
2616 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2617 {
2618 basic_block son;
2619 gimple_stmt_iterator si;
2620 edge e;
2621 edge_iterator ei;
2622
2623 mark_block_for_update (bb);
2624
2625 /* Process PHI nodes marking interesting those that define or use
2626 the symbols that we are interested in. */
2627 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2628 {
2629 gimple phi = gsi_stmt (si);
2630 tree lhs_sym, lhs = gimple_phi_result (phi);
2631
2632 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2633
2634 if (!symbol_marked_for_renaming (lhs_sym))
2635 continue;
2636
2637 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2638
2639 /* Mark the uses in phi nodes as interesting. It would be more correct
2640 to process the arguments of the phi nodes of the successor edges of
2641 BB at the end of prepare_block_for_update, however, that turns out
2642 to be significantly more expensive. Doing it here is conservatively
2643 correct -- it may only cause us to believe a value to be live in a
2644 block that also contains its definition, and thus insert a few more
2645 phi nodes for it. */
2646 FOR_EACH_EDGE (e, ei, bb->preds)
2647 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2648 }
2649
2650 /* Process the statements. */
2651 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2652 {
2653 gimple stmt;
2654 ssa_op_iter i;
2655 use_operand_p use_p;
2656 def_operand_p def_p;
2657
2658 stmt = gsi_stmt (si);
2659
2660 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2661 {
2662 tree use = USE_FROM_PTR (use_p);
2663 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2664 if (symbol_marked_for_renaming (sym))
2665 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2666 }
2667
2668 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2669 {
2670 tree def = DEF_FROM_PTR (def_p);
2671 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2672 if (symbol_marked_for_renaming (sym))
2673 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2674 }
2675 }
2676
2677 /* Now visit all the blocks dominated by BB. */
2678 for (son = first_dom_son (CDI_DOMINATORS, bb);
2679 son;
2680 son = next_dom_son (CDI_DOMINATORS, son))
2681 prepare_block_for_update (son, insert_phi_p);
2682 }
2683
2684
2685 /* Helper for prepare_names_to_update. Mark all the use sites for
2686 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2687 prepare_names_to_update. */
2688
2689 static void
2690 prepare_use_sites_for (tree name, bool insert_phi_p)
2691 {
2692 use_operand_p use_p;
2693 imm_use_iterator iter;
2694
2695 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2696 {
2697 gimple stmt = USE_STMT (use_p);
2698 basic_block bb = gimple_bb (stmt);
2699
2700 if (gimple_code (stmt) == GIMPLE_PHI)
2701 {
2702 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2703 edge e = gimple_phi_arg_edge (stmt, ix);
2704 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2705 }
2706 else
2707 {
2708 /* For regular statements, mark this as an interesting use
2709 for NAME. */
2710 mark_use_interesting (name, stmt, bb, insert_phi_p);
2711 }
2712 }
2713 }
2714
2715
2716 /* Helper for prepare_names_to_update. Mark the definition site for
2717 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2718 prepare_names_to_update. */
2719
2720 static void
2721 prepare_def_site_for (tree name, bool insert_phi_p)
2722 {
2723 gimple stmt;
2724 basic_block bb;
2725
2726 gcc_assert (names_to_release == NULL
2727 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2728
2729 stmt = SSA_NAME_DEF_STMT (name);
2730 bb = gimple_bb (stmt);
2731 if (bb)
2732 {
2733 gcc_assert (bb->index < last_basic_block);
2734 mark_block_for_update (bb);
2735 mark_def_interesting (name, stmt, bb, insert_phi_p);
2736 }
2737 }
2738
2739
2740 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2741 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2742 PHI nodes for newly created names. */
2743
2744 static void
2745 prepare_names_to_update (bool insert_phi_p)
2746 {
2747 unsigned i = 0;
2748 bitmap_iterator bi;
2749 sbitmap_iterator sbi;
2750
2751 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2752 remove it from NEW_SSA_NAMES so that we don't try to visit its
2753 defining basic block (which most likely doesn't exist). Notice
2754 that we cannot do the same with names in OLD_SSA_NAMES because we
2755 want to replace existing instances. */
2756 if (names_to_release)
2757 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2758 RESET_BIT (new_ssa_names, i);
2759
2760 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2761 names may be considered to be live-in on blocks that contain
2762 definitions for their replacements. */
2763 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2764 prepare_def_site_for (ssa_name (i), insert_phi_p);
2765
2766 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2767 OLD_SSA_NAMES, but we have to ignore its definition site. */
2768 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2769 {
2770 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2771 prepare_def_site_for (ssa_name (i), insert_phi_p);
2772 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2773 }
2774 }
2775
2776
2777 /* Dump all the names replaced by NAME to FILE. */
2778
2779 void
2780 dump_names_replaced_by (FILE *file, tree name)
2781 {
2782 unsigned i;
2783 bitmap old_set;
2784 bitmap_iterator bi;
2785
2786 print_generic_expr (file, name, 0);
2787 fprintf (file, " -> { ");
2788
2789 old_set = names_replaced_by (name);
2790 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2791 {
2792 print_generic_expr (file, ssa_name (i), 0);
2793 fprintf (file, " ");
2794 }
2795
2796 fprintf (file, "}\n");
2797 }
2798
2799
2800 /* Dump all the names replaced by NAME to stderr. */
2801
2802 DEBUG_FUNCTION void
2803 debug_names_replaced_by (tree name)
2804 {
2805 dump_names_replaced_by (stderr, name);
2806 }
2807
2808
2809 /* Dump SSA update information to FILE. */
2810
2811 void
2812 dump_update_ssa (FILE *file)
2813 {
2814 unsigned i = 0;
2815 bitmap_iterator bi;
2816
2817 if (!need_ssa_update_p (cfun))
2818 return;
2819
2820 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2821 {
2822 sbitmap_iterator sbi;
2823
2824 fprintf (file, "\nSSA replacement table\n");
2825 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2826 "O_1, ..., O_j\n\n");
2827
2828 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2829 dump_names_replaced_by (file, ssa_name (i));
2830
2831 fprintf (file, "\n");
2832 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2833 update_ssa_stats.num_virtual_mappings);
2834 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2835 update_ssa_stats.num_total_mappings
2836 - update_ssa_stats.num_virtual_mappings);
2837 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2838 update_ssa_stats.num_total_mappings);
2839
2840 fprintf (file, "\nNumber of virtual symbols: %u\n",
2841 update_ssa_stats.num_virtual_symbols);
2842 }
2843
2844 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2845 {
2846 fprintf (file, "\nSymbols to be put in SSA form\n");
2847 dump_decl_set (file, SYMS_TO_RENAME (cfun));
2848 fprintf (file, "\n");
2849 }
2850
2851 if (names_to_release && !bitmap_empty_p (names_to_release))
2852 {
2853 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2854 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2855 {
2856 print_generic_expr (file, ssa_name (i), 0);
2857 fprintf (file, " ");
2858 }
2859 fprintf (file, "\n");
2860 }
2861 }
2862
2863
2864 /* Dump SSA update information to stderr. */
2865
2866 DEBUG_FUNCTION void
2867 debug_update_ssa (void)
2868 {
2869 dump_update_ssa (stderr);
2870 }
2871
2872
2873 /* Initialize data structures used for incremental SSA updates. */
2874
2875 static void
2876 init_update_ssa (struct function *fn)
2877 {
2878 /* Reserve more space than the current number of names. The calls to
2879 add_new_name_mapping are typically done after creating new SSA
2880 names, so we'll need to reallocate these arrays. */
2881 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2882 sbitmap_zero (old_ssa_names);
2883
2884 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2885 sbitmap_zero (new_ssa_names);
2886
2887 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2888 names_to_release = NULL;
2889 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2890 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2891 update_ssa_initialized_fn = fn;
2892 }
2893
2894
2895 /* Deallocate data structures used for incremental SSA updates. */
2896
2897 void
2898 delete_update_ssa (void)
2899 {
2900 unsigned i;
2901 bitmap_iterator bi;
2902
2903 sbitmap_free (old_ssa_names);
2904 old_ssa_names = NULL;
2905
2906 sbitmap_free (new_ssa_names);
2907 new_ssa_names = NULL;
2908
2909 htab_delete (repl_tbl);
2910 repl_tbl = NULL;
2911
2912 bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2913 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2914
2915 if (names_to_release)
2916 {
2917 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2918 release_ssa_name (ssa_name (i));
2919 BITMAP_FREE (names_to_release);
2920 }
2921
2922 clear_ssa_name_info ();
2923
2924 fini_ssa_renamer ();
2925
2926 if (blocks_with_phis_to_rewrite)
2927 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2928 {
2929 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2930
2931 VEC_free (gimple, heap, phis);
2932 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2933 }
2934
2935 BITMAP_FREE (blocks_with_phis_to_rewrite);
2936 BITMAP_FREE (blocks_to_update);
2937 update_ssa_initialized_fn = NULL;
2938 }
2939
2940
2941 /* Create a new name for OLD_NAME in statement STMT and replace the
2942 operand pointed to by DEF_P with the newly created name. Return
2943 the new name and register the replacement mapping <NEW, OLD> in
2944 update_ssa's tables. */
2945
2946 tree
2947 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2948 {
2949 tree new_name = duplicate_ssa_name (old_name, stmt);
2950
2951 SET_DEF (def, new_name);
2952
2953 if (gimple_code (stmt) == GIMPLE_PHI)
2954 {
2955 basic_block bb = gimple_bb (stmt);
2956
2957 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2958 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2959 }
2960
2961 register_new_name_mapping (new_name, old_name);
2962
2963 /* For the benefit of passes that will be updating the SSA form on
2964 their own, set the current reaching definition of OLD_NAME to be
2965 NEW_NAME. */
2966 set_current_def (old_name, new_name);
2967
2968 return new_name;
2969 }
2970
2971
2972 /* Register name NEW to be a replacement for name OLD. This function
2973 must be called for every replacement that should be performed by
2974 update_ssa. */
2975
2976 void
2977 register_new_name_mapping (tree new_tree, tree old)
2978 {
2979 if (!update_ssa_initialized_fn)
2980 init_update_ssa (cfun);
2981
2982 gcc_assert (update_ssa_initialized_fn == cfun);
2983
2984 add_new_name_mapping (new_tree, old);
2985 }
2986
2987
2988 /* Register symbol SYM to be renamed by update_ssa. */
2989
2990 void
2991 mark_sym_for_renaming (tree sym)
2992 {
2993 bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2994 }
2995
2996
2997 /* Register all the symbols in SET to be renamed by update_ssa. */
2998
2999 void
3000 mark_set_for_renaming (bitmap set)
3001 {
3002 bitmap_iterator bi;
3003 unsigned i;
3004
3005 if (set == NULL || bitmap_empty_p (set))
3006 return;
3007
3008 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
3009 mark_sym_for_renaming (referenced_var (i));
3010 }
3011
3012
3013 /* Return true if there is any work to be done by update_ssa
3014 for function FN. */
3015
3016 bool
3017 need_ssa_update_p (struct function *fn)
3018 {
3019 gcc_assert (fn != NULL);
3020 return (update_ssa_initialized_fn == fn
3021 || (fn->gimple_df
3022 && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
3023 }
3024
3025 /* Return true if SSA name mappings have been registered for SSA updating. */
3026
3027 bool
3028 name_mappings_registered_p (void)
3029 {
3030 if (!update_ssa_initialized_fn)
3031 return false;
3032
3033 gcc_assert (update_ssa_initialized_fn == cfun);
3034
3035 return repl_tbl && htab_elements (repl_tbl) > 0;
3036 }
3037
3038 /* Return true if name N has been registered in the replacement table. */
3039
3040 bool
3041 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
3042 {
3043 if (!update_ssa_initialized_fn)
3044 return false;
3045
3046 gcc_assert (update_ssa_initialized_fn == cfun);
3047
3048 return is_new_name (n) || is_old_name (n);
3049 }
3050
3051
3052 /* Mark NAME to be released after update_ssa has finished. */
3053
3054 void
3055 release_ssa_name_after_update_ssa (tree name)
3056 {
3057 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
3058
3059 if (names_to_release == NULL)
3060 names_to_release = BITMAP_ALLOC (NULL);
3061
3062 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
3063 }
3064
3065
3066 /* Insert new PHI nodes to replace VAR. DFS contains dominance
3067 frontier information. BLOCKS is the set of blocks to be updated.
3068
3069 This is slightly different than the regular PHI insertion
3070 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
3071 real names (i.e., GIMPLE registers) are inserted:
3072
3073 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
3074 nodes inside the region affected by the block that defines VAR
3075 and the blocks that define all its replacements. All these
3076 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
3077
3078 First, we compute the entry point to the region (ENTRY). This is
3079 given by the nearest common dominator to all the definition
3080 blocks. When computing the iterated dominance frontier (IDF), any
3081 block not strictly dominated by ENTRY is ignored.
3082
3083 We then call the standard PHI insertion algorithm with the pruned
3084 IDF.
3085
3086 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3087 names is not pruned. PHI nodes are inserted at every IDF block. */
3088
3089 static void
3090 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3091 unsigned update_flags)
3092 {
3093 basic_block entry;
3094 struct def_blocks_d *db;
3095 bitmap idf, pruned_idf;
3096 bitmap_iterator bi;
3097 unsigned i;
3098
3099 if (TREE_CODE (var) == SSA_NAME)
3100 gcc_checking_assert (is_old_name (var));
3101 else
3102 gcc_checking_assert (symbol_marked_for_renaming (var));
3103
3104 /* Get all the definition sites for VAR. */
3105 db = find_def_blocks_for (var);
3106
3107 /* No need to do anything if there were no definitions to VAR. */
3108 if (db == NULL || bitmap_empty_p (db->def_blocks))
3109 return;
3110
3111 /* Compute the initial iterated dominance frontier. */
3112 idf = compute_idf (db->def_blocks, dfs);
3113 pruned_idf = BITMAP_ALLOC (NULL);
3114
3115 if (TREE_CODE (var) == SSA_NAME)
3116 {
3117 if (update_flags == TODO_update_ssa)
3118 {
3119 /* If doing regular SSA updates for GIMPLE registers, we are
3120 only interested in IDF blocks dominated by the nearest
3121 common dominator of all the definition blocks. */
3122 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3123 db->def_blocks);
3124 if (entry != ENTRY_BLOCK_PTR)
3125 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3126 if (BASIC_BLOCK (i) != entry
3127 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3128 bitmap_set_bit (pruned_idf, i);
3129 }
3130 else
3131 {
3132 /* Otherwise, do not prune the IDF for VAR. */
3133 gcc_assert (update_flags == TODO_update_ssa_full_phi);
3134 bitmap_copy (pruned_idf, idf);
3135 }
3136 }
3137 else
3138 {
3139 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3140 for the first time, so we need to compute the full IDF for
3141 it. */
3142 bitmap_copy (pruned_idf, idf);
3143 }
3144
3145 if (!bitmap_empty_p (pruned_idf))
3146 {
3147 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3148 are included in the region to be updated. The feeding blocks
3149 are important to guarantee that the PHI arguments are renamed
3150 properly. */
3151
3152 /* FIXME, this is not needed if we are updating symbols. We are
3153 already starting at the ENTRY block anyway. */
3154 bitmap_ior_into (blocks, pruned_idf);
3155 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3156 {
3157 edge e;
3158 edge_iterator ei;
3159 basic_block bb = BASIC_BLOCK (i);
3160
3161 FOR_EACH_EDGE (e, ei, bb->preds)
3162 if (e->src->index >= 0)
3163 bitmap_set_bit (blocks, e->src->index);
3164 }
3165
3166 insert_phi_nodes_for (var, pruned_idf, true);
3167 }
3168
3169 BITMAP_FREE (pruned_idf);
3170 BITMAP_FREE (idf);
3171 }
3172
3173
3174 /* Heuristic to determine whether SSA name mappings for virtual names
3175 should be discarded and their symbols rewritten from scratch. When
3176 there is a large number of mappings for virtual names, the
3177 insertion of PHI nodes for the old names in the mappings takes
3178 considerable more time than if we inserted PHI nodes for the
3179 symbols instead.
3180
3181 Currently the heuristic takes these stats into account:
3182
3183 - Number of mappings for virtual SSA names.
3184 - Number of distinct virtual symbols involved in those mappings.
3185
3186 If the number of virtual mappings is much larger than the number of
3187 virtual symbols, then it will be faster to compute PHI insertion
3188 spots for the symbols. Even if this involves traversing the whole
3189 CFG, which is what happens when symbols are renamed from scratch. */
3190
3191 static bool
3192 switch_virtuals_to_full_rewrite_p (void)
3193 {
3194 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3195 return false;
3196
3197 if (update_ssa_stats.num_virtual_mappings
3198 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3199 * update_ssa_stats.num_virtual_symbols)
3200 return true;
3201
3202 return false;
3203 }
3204
3205
3206 /* Remove every virtual mapping and mark all the affected virtual
3207 symbols for renaming. */
3208
3209 static void
3210 switch_virtuals_to_full_rewrite (void)
3211 {
3212 unsigned i = 0;
3213 sbitmap_iterator sbi;
3214
3215 if (dump_file)
3216 {
3217 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3218 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
3219 update_ssa_stats.num_virtual_mappings);
3220 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3221 update_ssa_stats.num_virtual_symbols);
3222 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3223 "faster than processing\nthe name mappings.\n\n");
3224 }
3225
3226 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3227 Note that it is not really necessary to remove the mappings from
3228 REPL_TBL, that would only waste time. */
3229 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3230 if (!is_gimple_reg (ssa_name (i)))
3231 RESET_BIT (new_ssa_names, i);
3232
3233 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3234 if (!is_gimple_reg (ssa_name (i)))
3235 RESET_BIT (old_ssa_names, i);
3236
3237 mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3238 }
3239
3240
3241 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3242 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3243
3244 1- The names in OLD_SSA_NAMES dominated by the definitions of
3245 NEW_SSA_NAMES are all re-written to be reached by the
3246 appropriate definition from NEW_SSA_NAMES.
3247
3248 2- If needed, new PHI nodes are added to the iterated dominance
3249 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3250
3251 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3252 calling register_new_name_mapping for every pair of names that the
3253 caller wants to replace.
3254
3255 The caller identifies the new names that have been inserted and the
3256 names that need to be replaced by calling register_new_name_mapping
3257 for every pair <NEW, OLD>. Note that the function assumes that the
3258 new names have already been inserted in the IL.
3259
3260 For instance, given the following code:
3261
3262 1 L0:
3263 2 x_1 = PHI (0, x_5)
3264 3 if (x_1 < 10)
3265 4 if (x_1 > 7)
3266 5 y_2 = 0
3267 6 else
3268 7 y_3 = x_1 + x_7
3269 8 endif
3270 9 x_5 = x_1 + 1
3271 10 goto L0;
3272 11 endif
3273
3274 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3275
3276 1 L0:
3277 2 x_1 = PHI (0, x_5)
3278 3 if (x_1 < 10)
3279 4 x_10 = ...
3280 5 if (x_1 > 7)
3281 6 y_2 = 0
3282 7 else
3283 8 x_11 = ...
3284 9 y_3 = x_1 + x_7
3285 10 endif
3286 11 x_5 = x_1 + 1
3287 12 goto L0;
3288 13 endif
3289
3290 We want to replace all the uses of x_1 with the new definitions of
3291 x_10 and x_11. Note that the only uses that should be replaced are
3292 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3293 *not* be replaced (this is why we cannot just mark symbol 'x' for
3294 renaming).
3295
3296 Additionally, we may need to insert a PHI node at line 11 because
3297 that is a merge point for x_10 and x_11. So the use of x_1 at line
3298 11 will be replaced with the new PHI node. The insertion of PHI
3299 nodes is optional. They are not strictly necessary to preserve the
3300 SSA form, and depending on what the caller inserted, they may not
3301 even be useful for the optimizers. UPDATE_FLAGS controls various
3302 aspects of how update_ssa operates, see the documentation for
3303 TODO_update_ssa*. */
3304
3305 void
3306 update_ssa (unsigned update_flags)
3307 {
3308 basic_block bb, start_bb;
3309 bitmap_iterator bi;
3310 unsigned i = 0;
3311 bool insert_phi_p;
3312 sbitmap_iterator sbi;
3313
3314 if (!need_ssa_update_p (cfun))
3315 return;
3316
3317 timevar_push (TV_TREE_SSA_INCREMENTAL);
3318
3319 if (dump_file && (dump_flags & TDF_DETAILS))
3320 fprintf (dump_file, "\nUpdating SSA:\n");
3321
3322 if (!update_ssa_initialized_fn)
3323 init_update_ssa (cfun);
3324 gcc_assert (update_ssa_initialized_fn == cfun);
3325
3326 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3327 if (!phis_to_rewrite)
3328 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3329 blocks_to_update = BITMAP_ALLOC (NULL);
3330
3331 /* Ensure that the dominance information is up-to-date. */
3332 calculate_dominance_info (CDI_DOMINATORS);
3333
3334 /* Only one update flag should be set. */
3335 gcc_assert (update_flags == TODO_update_ssa
3336 || update_flags == TODO_update_ssa_no_phi
3337 || update_flags == TODO_update_ssa_full_phi
3338 || update_flags == TODO_update_ssa_only_virtuals);
3339
3340 /* If we only need to update virtuals, remove all the mappings for
3341 real names before proceeding. The caller is responsible for
3342 having dealt with the name mappings before calling update_ssa. */
3343 if (update_flags == TODO_update_ssa_only_virtuals)
3344 {
3345 sbitmap_zero (old_ssa_names);
3346 sbitmap_zero (new_ssa_names);
3347 htab_empty (repl_tbl);
3348 }
3349
3350 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3351
3352 if (insert_phi_p)
3353 {
3354 /* If the caller requested PHI nodes to be added, initialize
3355 live-in information data structures (DEF_BLOCKS). */
3356
3357 /* For each SSA name N, the DEF_BLOCKS table describes where the
3358 name is defined, which blocks have PHI nodes for N, and which
3359 blocks have uses of N (i.e., N is live-on-entry in those
3360 blocks). */
3361 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3362 def_blocks_eq, def_blocks_free);
3363 }
3364 else
3365 {
3366 def_blocks = NULL;
3367 }
3368
3369 /* Heuristic to avoid massive slow downs when the replacement
3370 mappings include lots of virtual names. */
3371 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3372 switch_virtuals_to_full_rewrite ();
3373
3374 /* If there are names defined in the replacement table, prepare
3375 definition and use sites for all the names in NEW_SSA_NAMES and
3376 OLD_SSA_NAMES. */
3377 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3378 {
3379 prepare_names_to_update (insert_phi_p);
3380
3381 /* If all the names in NEW_SSA_NAMES had been marked for
3382 removal, and there are no symbols to rename, then there's
3383 nothing else to do. */
3384 if (sbitmap_first_set_bit (new_ssa_names) < 0
3385 && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3386 goto done;
3387 }
3388
3389 /* Next, determine the block at which to start the renaming process. */
3390 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3391 {
3392 /* If we have to rename some symbols from scratch, we need to
3393 start the process at the root of the CFG. FIXME, it should
3394 be possible to determine the nearest block that had a
3395 definition for each of the symbols that are marked for
3396 updating. For now this seems more work than it's worth. */
3397 start_bb = ENTRY_BLOCK_PTR;
3398
3399 /* Traverse the CFG looking for existing definitions and uses of
3400 symbols in SYMS_TO_RENAME. Mark interesting blocks and
3401 statements and set local live-in information for the PHI
3402 placement heuristics. */
3403 prepare_block_for_update (start_bb, insert_phi_p);
3404 }
3405 else
3406 {
3407 /* Otherwise, the entry block to the region is the nearest
3408 common dominator for the blocks in BLOCKS. */
3409 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3410 blocks_to_update);
3411 }
3412
3413 /* If requested, insert PHI nodes at the iterated dominance frontier
3414 of every block, creating new definitions for names in OLD_SSA_NAMES
3415 and for symbols in SYMS_TO_RENAME. */
3416 if (insert_phi_p)
3417 {
3418 bitmap_head *dfs;
3419
3420 /* If the caller requested PHI nodes to be added, compute
3421 dominance frontiers. */
3422 dfs = XNEWVEC (bitmap_head, last_basic_block);
3423 FOR_EACH_BB (bb)
3424 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3425 compute_dominance_frontiers (dfs);
3426
3427 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3428 {
3429 sbitmap_iterator sbi;
3430
3431 /* insert_update_phi_nodes_for will call add_new_name_mapping
3432 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3433 will grow while we are traversing it (but it will not
3434 gain any new members). Copy OLD_SSA_NAMES to a temporary
3435 for traversal. */
3436 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3437 sbitmap_copy (tmp, old_ssa_names);
3438 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3439 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3440 update_flags);
3441 sbitmap_free (tmp);
3442 }
3443
3444 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3445 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3446 update_flags);
3447
3448 FOR_EACH_BB (bb)
3449 bitmap_clear (&dfs[bb->index]);
3450 free (dfs);
3451
3452 /* Insertion of PHI nodes may have added blocks to the region.
3453 We need to re-compute START_BB to include the newly added
3454 blocks. */
3455 if (start_bb != ENTRY_BLOCK_PTR)
3456 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3457 blocks_to_update);
3458 }
3459
3460 /* Reset the current definition for name and symbol before renaming
3461 the sub-graph. */
3462 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3463 set_current_def (ssa_name (i), NULL_TREE);
3464
3465 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3466 set_current_def (referenced_var (i), NULL_TREE);
3467
3468 /* Now start the renaming process at START_BB. */
3469 interesting_blocks = sbitmap_alloc (last_basic_block);
3470 sbitmap_zero (interesting_blocks);
3471 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3472 SET_BIT (interesting_blocks, i);
3473
3474 rewrite_blocks (start_bb, REWRITE_UPDATE);
3475
3476 sbitmap_free (interesting_blocks);
3477
3478 /* Debugging dumps. */
3479 if (dump_file)
3480 {
3481 int c;
3482 unsigned i;
3483
3484 dump_update_ssa (dump_file);
3485
3486 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3487 start_bb->index);
3488
3489 c = 0;
3490 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3491 c++;
3492 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3493 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3494 c, PERCENT (c, last_basic_block));
3495
3496 if (dump_flags & TDF_DETAILS)
3497 {
3498 fprintf (dump_file, "Affected blocks:");
3499 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3500 fprintf (dump_file, " %u", i);
3501 fprintf (dump_file, "\n");
3502 }
3503
3504 fprintf (dump_file, "\n\n");
3505 }
3506
3507 /* Free allocated memory. */
3508 done:
3509 delete_update_ssa ();
3510
3511 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3512 }