decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "alias.h"
26 #include "symtab.h"
27 #include "tree.h"
28 #include "fold-const.h"
29 #include "flags.h"
30 #include "tm_p.h"
31 #include "langhooks.h"
32 #include "predict.h"
33 #include "hard-reg-set.h"
34 #include "function.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfganal.h"
38 #include "basic-block.h"
39 #include "gimple-pretty-print.h"
40 #include "tree-ssa-alias.h"
41 #include "internal-fn.h"
42 #include "gimple-expr.h"
43 #include "gimple.h"
44 #include "gimple-iterator.h"
45 #include "gimple-ssa.h"
46 #include "tree-cfg.h"
47 #include "tree-phinodes.h"
48 #include "ssa-iterators.h"
49 #include "stringpool.h"
50 #include "tree-ssanames.h"
51 #include "tree-into-ssa.h"
52 #include "rtl.h"
53 #include "insn-config.h"
54 #include "expmed.h"
55 #include "dojump.h"
56 #include "explow.h"
57 #include "calls.h"
58 #include "emit-rtl.h"
59 #include "varasm.h"
60 #include "stmt.h"
61 #include "expr.h"
62 #include "tree-dfa.h"
63 #include "tree-ssa.h"
64 #include "tree-inline.h"
65 #include "tree-pass.h"
66 #include "cfgloop.h"
67 #include "domwalk.h"
68 #include "params.h"
69 #include "diagnostic-core.h"
70
71 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
72
73 /* This file builds the SSA form for a function as described in:
74 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
75 Computing Static Single Assignment Form and the Control Dependence
76 Graph. ACM Transactions on Programming Languages and Systems,
77 13(4):451-490, October 1991. */
78
79 /* Structure to map a variable VAR to the set of blocks that contain
80 definitions for VAR. */
81 struct def_blocks_d
82 {
83 /* Blocks that contain definitions of VAR. Bit I will be set if the
84 Ith block contains a definition of VAR. */
85 bitmap def_blocks;
86
87 /* Blocks that contain a PHI node for VAR. */
88 bitmap phi_blocks;
89
90 /* Blocks where VAR is live-on-entry. Similar semantics as
91 DEF_BLOCKS. */
92 bitmap livein_blocks;
93 };
94
95 typedef struct def_blocks_d *def_blocks_p;
96
97
98 /* Stack of trees used to restore the global currdefs to its original
99 state after completing rewriting of a block and its dominator
100 children. Its elements have the following properties:
101
102 - An SSA_NAME (N) indicates that the current definition of the
103 underlying variable should be set to the given SSA_NAME. If the
104 symbol associated with the SSA_NAME is not a GIMPLE register, the
105 next slot in the stack must be a _DECL node (SYM). In this case,
106 the name N in the previous slot is the current reaching
107 definition for SYM.
108
109 - A _DECL node indicates that the underlying variable has no
110 current definition.
111
112 - A NULL node at the top entry is used to mark the last slot
113 associated with the current block. */
114 static vec<tree> block_defs_stack;
115
116
117 /* Set of existing SSA names being replaced by update_ssa. */
118 static sbitmap old_ssa_names;
119
120 /* Set of new SSA names being added by update_ssa. Note that both
121 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
122 the operations done on them are presence tests. */
123 static sbitmap new_ssa_names;
124
125 static sbitmap interesting_blocks;
126
127 /* Set of SSA names that have been marked to be released after they
128 were registered in the replacement table. They will be finally
129 released after we finish updating the SSA web. */
130 static bitmap names_to_release;
131
132 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
133 the to basic block with index I. Allocated once per compilation, *not*
134 released between different functions. */
135 static vec< vec<gphi *> > phis_to_rewrite;
136
137 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
138 static bitmap blocks_with_phis_to_rewrite;
139
140 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
141 to grow as the callers to create_new_def_for will create new names on
142 the fly.
143 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
144 need to find a reasonable growth strategy. */
145 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
146
147
148 /* The function the SSA updating data structures have been initialized for.
149 NULL if they need to be initialized by create_new_def_for. */
150 static struct function *update_ssa_initialized_fn = NULL;
151
152 /* Global data to attach to the main dominator walk structure. */
153 struct mark_def_sites_global_data
154 {
155 /* This bitmap contains the variables which are set before they
156 are used in a basic block. */
157 bitmap kills;
158 };
159
160 /* It is advantageous to avoid things like life analysis for variables which
161 do not need PHI nodes. This enum describes whether or not a particular
162 variable may need a PHI node. */
163
164 enum need_phi_state {
165 /* This is the default. If we are still in this state after finding
166 all the definition and use sites, then we will assume the variable
167 needs PHI nodes. This is probably an overly conservative assumption. */
168 NEED_PHI_STATE_UNKNOWN,
169
170 /* This state indicates that we have seen one or more sets of the
171 variable in a single basic block and that the sets dominate all
172 uses seen so far. If after finding all definition and use sites
173 we are still in this state, then the variable does not need any
174 PHI nodes. */
175 NEED_PHI_STATE_NO,
176
177 /* This state indicates that we have either seen multiple definitions of
178 the variable in multiple blocks, or that we encountered a use in a
179 block that was not dominated by the block containing the set(s) of
180 this variable. This variable is assumed to need PHI nodes. */
181 NEED_PHI_STATE_MAYBE
182 };
183
184 /* Information stored for both SSA names and decls. */
185 struct common_info_d
186 {
187 /* This field indicates whether or not the variable may need PHI nodes.
188 See the enum's definition for more detailed information about the
189 states. */
190 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
191
192 /* The current reaching definition replacing this var. */
193 tree current_def;
194
195 /* Definitions for this var. */
196 struct def_blocks_d def_blocks;
197 };
198
199 /* The information associated with decls and SSA names. */
200 typedef struct common_info_d *common_info_p;
201
202 /* Information stored for decls. */
203 struct var_info_d
204 {
205 /* The variable. */
206 tree var;
207
208 /* Information stored for both SSA names and decls. */
209 struct common_info_d info;
210 };
211
212 /* The information associated with decls. */
213 typedef struct var_info_d *var_info_p;
214
215
216 /* VAR_INFOS hashtable helpers. */
217
218 struct var_info_hasher : typed_free_remove <var_info_d>
219 {
220 typedef var_info_d *value_type;
221 typedef var_info_d *compare_type;
222 static inline hashval_t hash (const value_type &);
223 static inline bool equal (const value_type &, const compare_type &);
224 };
225
226 inline hashval_t
227 var_info_hasher::hash (const value_type &p)
228 {
229 return DECL_UID (p->var);
230 }
231
232 inline bool
233 var_info_hasher::equal (const value_type &p1, const compare_type &p2)
234 {
235 return p1->var == p2->var;
236 }
237
238
239 /* Each entry in VAR_INFOS contains an element of type STRUCT
240 VAR_INFO_D. */
241 static hash_table<var_info_hasher> *var_infos;
242
243
244 /* Information stored for SSA names. */
245 struct ssa_name_info
246 {
247 /* Age of this record (so that info_for_ssa_name table can be cleared
248 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
249 are assumed to be null. */
250 unsigned age;
251
252 /* Replacement mappings, allocated from update_ssa_obstack. */
253 bitmap repl_set;
254
255 /* Information stored for both SSA names and decls. */
256 struct common_info_d info;
257 };
258
259 /* The information associated with names. */
260 typedef struct ssa_name_info *ssa_name_info_p;
261
262 static vec<ssa_name_info_p> info_for_ssa_name;
263 static unsigned current_info_for_ssa_name_age;
264
265 static bitmap_obstack update_ssa_obstack;
266
267 /* The set of blocks affected by update_ssa. */
268 static bitmap blocks_to_update;
269
270 /* The main entry point to the SSA renamer (rewrite_blocks) may be
271 called several times to do different, but related, tasks.
272 Initially, we need it to rename the whole program into SSA form.
273 At other times, we may need it to only rename into SSA newly
274 exposed symbols. Finally, we can also call it to incrementally fix
275 an already built SSA web. */
276 enum rewrite_mode {
277 /* Convert the whole function into SSA form. */
278 REWRITE_ALL,
279
280 /* Incrementally update the SSA web by replacing existing SSA
281 names with new ones. See update_ssa for details. */
282 REWRITE_UPDATE
283 };
284
285 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
286 static bitmap symbols_to_rename_set;
287 static vec<tree> symbols_to_rename;
288
289 /* Mark SYM for renaming. */
290
291 static void
292 mark_for_renaming (tree sym)
293 {
294 if (!symbols_to_rename_set)
295 symbols_to_rename_set = BITMAP_ALLOC (NULL);
296 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
297 symbols_to_rename.safe_push (sym);
298 }
299
300 /* Return true if SYM is marked for renaming. */
301
302 static bool
303 marked_for_renaming (tree sym)
304 {
305 if (!symbols_to_rename_set || sym == NULL_TREE)
306 return false;
307 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
308 }
309
310
311 /* Return true if STMT needs to be rewritten. When renaming a subset
312 of the variables, not all statements will be processed. This is
313 decided in mark_def_sites. */
314
315 static inline bool
316 rewrite_uses_p (gimple stmt)
317 {
318 return gimple_visited_p (stmt);
319 }
320
321
322 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
323
324 static inline void
325 set_rewrite_uses (gimple stmt, bool rewrite_p)
326 {
327 gimple_set_visited (stmt, rewrite_p);
328 }
329
330
331 /* Return true if the DEFs created by statement STMT should be
332 registered when marking new definition sites. This is slightly
333 different than rewrite_uses_p: it's used by update_ssa to
334 distinguish statements that need to have both uses and defs
335 processed from those that only need to have their defs processed.
336 Statements that define new SSA names only need to have their defs
337 registered, but they don't need to have their uses renamed. */
338
339 static inline bool
340 register_defs_p (gimple stmt)
341 {
342 return gimple_plf (stmt, GF_PLF_1) != 0;
343 }
344
345
346 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
347
348 static inline void
349 set_register_defs (gimple stmt, bool register_defs_p)
350 {
351 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
352 }
353
354
355 /* Get the information associated with NAME. */
356
357 static inline ssa_name_info_p
358 get_ssa_name_ann (tree name)
359 {
360 unsigned ver = SSA_NAME_VERSION (name);
361 unsigned len = info_for_ssa_name.length ();
362 struct ssa_name_info *info;
363
364 /* Re-allocate the vector at most once per update/into-SSA. */
365 if (ver >= len)
366 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
367
368 /* But allocate infos lazily. */
369 info = info_for_ssa_name[ver];
370 if (!info)
371 {
372 info = XCNEW (struct ssa_name_info);
373 info->age = current_info_for_ssa_name_age;
374 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
375 info_for_ssa_name[ver] = info;
376 }
377
378 if (info->age < current_info_for_ssa_name_age)
379 {
380 info->age = current_info_for_ssa_name_age;
381 info->repl_set = NULL;
382 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
383 info->info.current_def = NULL_TREE;
384 info->info.def_blocks.def_blocks = NULL;
385 info->info.def_blocks.phi_blocks = NULL;
386 info->info.def_blocks.livein_blocks = NULL;
387 }
388
389 return info;
390 }
391
392 /* Return and allocate the auxiliar information for DECL. */
393
394 static inline var_info_p
395 get_var_info (tree decl)
396 {
397 struct var_info_d vi;
398 var_info_d **slot;
399 vi.var = decl;
400 slot = var_infos->find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
401 if (*slot == NULL)
402 {
403 var_info_p v = XCNEW (struct var_info_d);
404 v->var = decl;
405 *slot = v;
406 return v;
407 }
408 return *slot;
409 }
410
411
412 /* Clears info for SSA names. */
413
414 static void
415 clear_ssa_name_info (void)
416 {
417 current_info_for_ssa_name_age++;
418
419 /* If current_info_for_ssa_name_age wraps we use stale information.
420 Asser that this does not happen. */
421 gcc_assert (current_info_for_ssa_name_age != 0);
422 }
423
424
425 /* Get access to the auxiliar information stored per SSA name or decl. */
426
427 static inline common_info_p
428 get_common_info (tree var)
429 {
430 if (TREE_CODE (var) == SSA_NAME)
431 return &get_ssa_name_ann (var)->info;
432 else
433 return &get_var_info (var)->info;
434 }
435
436
437 /* Return the current definition for VAR. */
438
439 tree
440 get_current_def (tree var)
441 {
442 return get_common_info (var)->current_def;
443 }
444
445
446 /* Sets current definition of VAR to DEF. */
447
448 void
449 set_current_def (tree var, tree def)
450 {
451 get_common_info (var)->current_def = def;
452 }
453
454 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
455 all statements in basic block BB. */
456
457 static void
458 initialize_flags_in_bb (basic_block bb)
459 {
460 gimple stmt;
461 gimple_stmt_iterator gsi;
462
463 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
464 {
465 gimple phi = gsi_stmt (gsi);
466 set_rewrite_uses (phi, false);
467 set_register_defs (phi, false);
468 }
469
470 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
471 {
472 stmt = gsi_stmt (gsi);
473
474 /* We are going to use the operand cache API, such as
475 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
476 cache for each statement should be up-to-date. */
477 gcc_checking_assert (!gimple_modified_p (stmt));
478 set_rewrite_uses (stmt, false);
479 set_register_defs (stmt, false);
480 }
481 }
482
483 /* Mark block BB as interesting for update_ssa. */
484
485 static void
486 mark_block_for_update (basic_block bb)
487 {
488 gcc_checking_assert (blocks_to_update != NULL);
489 if (!bitmap_set_bit (blocks_to_update, bb->index))
490 return;
491 initialize_flags_in_bb (bb);
492 }
493
494 /* Return the set of blocks where variable VAR is defined and the blocks
495 where VAR is live on entry (livein). If no entry is found in
496 DEF_BLOCKS, a new one is created and returned. */
497
498 static inline struct def_blocks_d *
499 get_def_blocks_for (common_info_p info)
500 {
501 struct def_blocks_d *db_p = &info->def_blocks;
502 if (!db_p->def_blocks)
503 {
504 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
505 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
506 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
507 }
508
509 return db_p;
510 }
511
512
513 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
514 VAR is defined by a PHI node. */
515
516 static void
517 set_def_block (tree var, basic_block bb, bool phi_p)
518 {
519 struct def_blocks_d *db_p;
520 common_info_p info;
521
522 info = get_common_info (var);
523 db_p = get_def_blocks_for (info);
524
525 /* Set the bit corresponding to the block where VAR is defined. */
526 bitmap_set_bit (db_p->def_blocks, bb->index);
527 if (phi_p)
528 bitmap_set_bit (db_p->phi_blocks, bb->index);
529
530 /* Keep track of whether or not we may need to insert PHI nodes.
531
532 If we are in the UNKNOWN state, then this is the first definition
533 of VAR. Additionally, we have not seen any uses of VAR yet, so
534 we do not need a PHI node for this variable at this time (i.e.,
535 transition to NEED_PHI_STATE_NO).
536
537 If we are in any other state, then we either have multiple definitions
538 of this variable occurring in different blocks or we saw a use of the
539 variable which was not dominated by the block containing the
540 definition(s). In this case we may need a PHI node, so enter
541 state NEED_PHI_STATE_MAYBE. */
542 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
543 info->need_phi_state = NEED_PHI_STATE_NO;
544 else
545 info->need_phi_state = NEED_PHI_STATE_MAYBE;
546 }
547
548
549 /* Mark block BB as having VAR live at the entry to BB. */
550
551 static void
552 set_livein_block (tree var, basic_block bb)
553 {
554 common_info_p info;
555 struct def_blocks_d *db_p;
556
557 info = get_common_info (var);
558 db_p = get_def_blocks_for (info);
559
560 /* Set the bit corresponding to the block where VAR is live in. */
561 bitmap_set_bit (db_p->livein_blocks, bb->index);
562
563 /* Keep track of whether or not we may need to insert PHI nodes.
564
565 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
566 by the single block containing the definition(s) of this variable. If
567 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
568 NEED_PHI_STATE_MAYBE. */
569 if (info->need_phi_state == NEED_PHI_STATE_NO)
570 {
571 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
572
573 if (def_block_index == -1
574 || ! dominated_by_p (CDI_DOMINATORS, bb,
575 BASIC_BLOCK_FOR_FN (cfun, def_block_index)))
576 info->need_phi_state = NEED_PHI_STATE_MAYBE;
577 }
578 else
579 info->need_phi_state = NEED_PHI_STATE_MAYBE;
580 }
581
582
583 /* Return true if NAME is in OLD_SSA_NAMES. */
584
585 static inline bool
586 is_old_name (tree name)
587 {
588 unsigned ver = SSA_NAME_VERSION (name);
589 if (!old_ssa_names)
590 return false;
591 return (ver < SBITMAP_SIZE (old_ssa_names)
592 && bitmap_bit_p (old_ssa_names, ver));
593 }
594
595
596 /* Return true if NAME is in NEW_SSA_NAMES. */
597
598 static inline bool
599 is_new_name (tree name)
600 {
601 unsigned ver = SSA_NAME_VERSION (name);
602 if (!new_ssa_names)
603 return false;
604 return (ver < SBITMAP_SIZE (new_ssa_names)
605 && bitmap_bit_p (new_ssa_names, ver));
606 }
607
608
609 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
610
611 static inline bitmap
612 names_replaced_by (tree new_tree)
613 {
614 return get_ssa_name_ann (new_tree)->repl_set;
615 }
616
617
618 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
619
620 static inline void
621 add_to_repl_tbl (tree new_tree, tree old)
622 {
623 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
624 if (!*set)
625 *set = BITMAP_ALLOC (&update_ssa_obstack);
626 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
627 }
628
629
630 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
631 represents the set of names O_1 ... O_j replaced by N_i. This is
632 used by update_ssa and its helpers to introduce new SSA names in an
633 already formed SSA web. */
634
635 static void
636 add_new_name_mapping (tree new_tree, tree old)
637 {
638 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
639 gcc_checking_assert (new_tree != old
640 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
641
642 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
643 caller may have created new names since the set was created. */
644 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
645 {
646 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
647 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
648 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
649 }
650
651 /* Update the REPL_TBL table. */
652 add_to_repl_tbl (new_tree, old);
653
654 /* If OLD had already been registered as a new name, then all the
655 names that OLD replaces should also be replaced by NEW_TREE. */
656 if (is_new_name (old))
657 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
658
659 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
660 respectively. */
661 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
662 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
663 }
664
665
666 /* Call back for walk_dominator_tree used to collect definition sites
667 for every variable in the function. For every statement S in block
668 BB:
669
670 1- Variables defined by S in the DEFS of S are marked in the bitmap
671 KILLS.
672
673 2- If S uses a variable VAR and there is no preceding kill of VAR,
674 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
675
676 This information is used to determine which variables are live
677 across block boundaries to reduce the number of PHI nodes
678 we create. */
679
680 static void
681 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
682 {
683 tree def;
684 use_operand_p use_p;
685 ssa_op_iter iter;
686
687 /* Since this is the first time that we rewrite the program into SSA
688 form, force an operand scan on every statement. */
689 update_stmt (stmt);
690
691 gcc_checking_assert (blocks_to_update == NULL);
692 set_register_defs (stmt, false);
693 set_rewrite_uses (stmt, false);
694
695 if (is_gimple_debug (stmt))
696 {
697 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
698 {
699 tree sym = USE_FROM_PTR (use_p);
700 gcc_checking_assert (DECL_P (sym));
701 set_rewrite_uses (stmt, true);
702 }
703 if (rewrite_uses_p (stmt))
704 bitmap_set_bit (interesting_blocks, bb->index);
705 return;
706 }
707
708 /* If a variable is used before being set, then the variable is live
709 across a block boundary, so mark it live-on-entry to BB. */
710 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
711 {
712 tree sym = USE_FROM_PTR (use_p);
713 gcc_checking_assert (DECL_P (sym));
714 if (!bitmap_bit_p (kills, DECL_UID (sym)))
715 set_livein_block (sym, bb);
716 set_rewrite_uses (stmt, true);
717 }
718
719 /* Now process the defs. Mark BB as the definition block and add
720 each def to the set of killed symbols. */
721 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
722 {
723 gcc_checking_assert (DECL_P (def));
724 set_def_block (def, bb, false);
725 bitmap_set_bit (kills, DECL_UID (def));
726 set_register_defs (stmt, true);
727 }
728
729 /* If we found the statement interesting then also mark the block BB
730 as interesting. */
731 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
732 bitmap_set_bit (interesting_blocks, bb->index);
733 }
734
735 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
736 in the dfs numbering of the dominance tree. */
737
738 struct dom_dfsnum
739 {
740 /* Basic block whose index this entry corresponds to. */
741 unsigned bb_index;
742
743 /* The dfs number of this node. */
744 unsigned dfs_num;
745 };
746
747 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
748 for qsort. */
749
750 static int
751 cmp_dfsnum (const void *a, const void *b)
752 {
753 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
754 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
755
756 return (int) da->dfs_num - (int) db->dfs_num;
757 }
758
759 /* Among the intervals starting at the N points specified in DEFS, find
760 the one that contains S, and return its bb_index. */
761
762 static unsigned
763 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
764 {
765 unsigned f = 0, t = n, m;
766
767 while (t > f + 1)
768 {
769 m = (f + t) / 2;
770 if (defs[m].dfs_num <= s)
771 f = m;
772 else
773 t = m;
774 }
775
776 return defs[f].bb_index;
777 }
778
779 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
780 KILLS is a bitmap of blocks where the value is defined before any use. */
781
782 static void
783 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
784 {
785 bitmap_iterator bi;
786 unsigned i, b, p, u, top;
787 bitmap live_phis;
788 basic_block def_bb, use_bb;
789 edge e;
790 edge_iterator ei;
791 bitmap to_remove;
792 struct dom_dfsnum *defs;
793 unsigned n_defs, adef;
794
795 if (bitmap_empty_p (uses))
796 {
797 bitmap_clear (phis);
798 return;
799 }
800
801 /* The phi must dominate a use, or an argument of a live phi. Also, we
802 do not create any phi nodes in def blocks, unless they are also livein. */
803 to_remove = BITMAP_ALLOC (NULL);
804 bitmap_and_compl (to_remove, kills, uses);
805 bitmap_and_compl_into (phis, to_remove);
806 if (bitmap_empty_p (phis))
807 {
808 BITMAP_FREE (to_remove);
809 return;
810 }
811
812 /* We want to remove the unnecessary phi nodes, but we do not want to compute
813 liveness information, as that may be linear in the size of CFG, and if
814 there are lot of different variables to rewrite, this may lead to quadratic
815 behavior.
816
817 Instead, we basically emulate standard dce. We put all uses to worklist,
818 then for each of them find the nearest def that dominates them. If this
819 def is a phi node, we mark it live, and if it was not live before, we
820 add the predecessors of its basic block to the worklist.
821
822 To quickly locate the nearest def that dominates use, we use dfs numbering
823 of the dominance tree (that is already available in order to speed up
824 queries). For each def, we have the interval given by the dfs number on
825 entry to and on exit from the corresponding subtree in the dominance tree.
826 The nearest dominator for a given use is the smallest of these intervals
827 that contains entry and exit dfs numbers for the basic block with the use.
828 If we store the bounds for all the uses to an array and sort it, we can
829 locate the nearest dominating def in logarithmic time by binary search.*/
830 bitmap_ior (to_remove, kills, phis);
831 n_defs = bitmap_count_bits (to_remove);
832 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
833 defs[0].bb_index = 1;
834 defs[0].dfs_num = 0;
835 adef = 1;
836 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
837 {
838 def_bb = BASIC_BLOCK_FOR_FN (cfun, i);
839 defs[adef].bb_index = i;
840 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
841 defs[adef + 1].bb_index = i;
842 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
843 adef += 2;
844 }
845 BITMAP_FREE (to_remove);
846 gcc_assert (adef == 2 * n_defs + 1);
847 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
848 gcc_assert (defs[0].bb_index == 1);
849
850 /* Now each DEFS entry contains the number of the basic block to that the
851 dfs number corresponds. Change them to the number of basic block that
852 corresponds to the interval following the dfs number. Also, for the
853 dfs_out numbers, increase the dfs number by one (so that it corresponds
854 to the start of the following interval, not to the end of the current
855 one). We use WORKLIST as a stack. */
856 auto_vec<int> worklist (n_defs + 1);
857 worklist.quick_push (1);
858 top = 1;
859 n_defs = 1;
860 for (i = 1; i < adef; i++)
861 {
862 b = defs[i].bb_index;
863 if (b == top)
864 {
865 /* This is a closing element. Interval corresponding to the top
866 of the stack after removing it follows. */
867 worklist.pop ();
868 top = worklist[worklist.length () - 1];
869 defs[n_defs].bb_index = top;
870 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
871 }
872 else
873 {
874 /* Opening element. Nothing to do, just push it to the stack and move
875 it to the correct position. */
876 defs[n_defs].bb_index = defs[i].bb_index;
877 defs[n_defs].dfs_num = defs[i].dfs_num;
878 worklist.quick_push (b);
879 top = b;
880 }
881
882 /* If this interval starts at the same point as the previous one, cancel
883 the previous one. */
884 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
885 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
886 else
887 n_defs++;
888 }
889 worklist.pop ();
890 gcc_assert (worklist.is_empty ());
891
892 /* Now process the uses. */
893 live_phis = BITMAP_ALLOC (NULL);
894 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
895 {
896 worklist.safe_push (i);
897 }
898
899 while (!worklist.is_empty ())
900 {
901 b = worklist.pop ();
902 if (b == ENTRY_BLOCK)
903 continue;
904
905 /* If there is a phi node in USE_BB, it is made live. Otherwise,
906 find the def that dominates the immediate dominator of USE_BB
907 (the kill in USE_BB does not dominate the use). */
908 if (bitmap_bit_p (phis, b))
909 p = b;
910 else
911 {
912 use_bb = get_immediate_dominator (CDI_DOMINATORS,
913 BASIC_BLOCK_FOR_FN (cfun, b));
914 p = find_dfsnum_interval (defs, n_defs,
915 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
916 if (!bitmap_bit_p (phis, p))
917 continue;
918 }
919
920 /* If the phi node is already live, there is nothing to do. */
921 if (!bitmap_set_bit (live_phis, p))
922 continue;
923
924 /* Add the new uses to the worklist. */
925 def_bb = BASIC_BLOCK_FOR_FN (cfun, p);
926 FOR_EACH_EDGE (e, ei, def_bb->preds)
927 {
928 u = e->src->index;
929 if (bitmap_bit_p (uses, u))
930 continue;
931
932 /* In case there is a kill directly in the use block, do not record
933 the use (this is also necessary for correctness, as we assume that
934 uses dominated by a def directly in their block have been filtered
935 out before). */
936 if (bitmap_bit_p (kills, u))
937 continue;
938
939 bitmap_set_bit (uses, u);
940 worklist.safe_push (u);
941 }
942 }
943
944 bitmap_copy (phis, live_phis);
945 BITMAP_FREE (live_phis);
946 free (defs);
947 }
948
949 /* Return the set of blocks where variable VAR is defined and the blocks
950 where VAR is live on entry (livein). Return NULL, if no entry is
951 found in DEF_BLOCKS. */
952
953 static inline struct def_blocks_d *
954 find_def_blocks_for (tree var)
955 {
956 def_blocks_p p = &get_common_info (var)->def_blocks;
957 if (!p->def_blocks)
958 return NULL;
959 return p;
960 }
961
962
963 /* Marks phi node PHI in basic block BB for rewrite. */
964
965 static void
966 mark_phi_for_rewrite (basic_block bb, gphi *phi)
967 {
968 vec<gphi *> phis;
969 unsigned n, idx = bb->index;
970
971 if (rewrite_uses_p (phi))
972 return;
973
974 set_rewrite_uses (phi, true);
975
976 if (!blocks_with_phis_to_rewrite)
977 return;
978
979 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
980
981 n = (unsigned) last_basic_block_for_fn (cfun) + 1;
982 if (phis_to_rewrite.length () < n)
983 phis_to_rewrite.safe_grow_cleared (n);
984
985 phis = phis_to_rewrite[idx];
986 phis.reserve (10);
987
988 phis.safe_push (phi);
989 phis_to_rewrite[idx] = phis;
990 }
991
992 /* Insert PHI nodes for variable VAR using the iterated dominance
993 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
994 function assumes that the caller is incrementally updating the
995 existing SSA form, in which case VAR may be an SSA name instead of
996 a symbol.
997
998 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
999 PHI node for VAR. On exit, only the nodes that received a PHI node
1000 for VAR will be present in PHI_INSERTION_POINTS. */
1001
1002 static void
1003 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1004 {
1005 unsigned bb_index;
1006 edge e;
1007 gphi *phi;
1008 basic_block bb;
1009 bitmap_iterator bi;
1010 struct def_blocks_d *def_map = find_def_blocks_for (var);
1011
1012 /* Remove the blocks where we already have PHI nodes for VAR. */
1013 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1014
1015 /* Remove obviously useless phi nodes. */
1016 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1017 def_map->livein_blocks);
1018
1019 /* And insert the PHI nodes. */
1020 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1021 {
1022 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1023 if (update_p)
1024 mark_block_for_update (bb);
1025
1026 if (dump_file && (dump_flags & TDF_DETAILS))
1027 {
1028 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1029 print_generic_expr (dump_file, var, TDF_SLIM);
1030 fprintf (dump_file, "\n");
1031 }
1032 phi = NULL;
1033
1034 if (TREE_CODE (var) == SSA_NAME)
1035 {
1036 /* If we are rewriting SSA names, create the LHS of the PHI
1037 node by duplicating VAR. This is useful in the case of
1038 pointers, to also duplicate pointer attributes (alias
1039 information, in particular). */
1040 edge_iterator ei;
1041 tree new_lhs;
1042
1043 gcc_checking_assert (update_p);
1044 new_lhs = duplicate_ssa_name (var, NULL);
1045 phi = create_phi_node (new_lhs, bb);
1046 add_new_name_mapping (new_lhs, var);
1047
1048 /* Add VAR to every argument slot of PHI. We need VAR in
1049 every argument so that rewrite_update_phi_arguments knows
1050 which name is this PHI node replacing. If VAR is a
1051 symbol marked for renaming, this is not necessary, the
1052 renamer will use the symbol on the LHS to get its
1053 reaching definition. */
1054 FOR_EACH_EDGE (e, ei, bb->preds)
1055 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1056 }
1057 else
1058 {
1059 tree tracked_var;
1060
1061 gcc_checking_assert (DECL_P (var));
1062 phi = create_phi_node (var, bb);
1063
1064 tracked_var = target_for_debug_bind (var);
1065 if (tracked_var)
1066 {
1067 gimple note = gimple_build_debug_bind (tracked_var,
1068 PHI_RESULT (phi),
1069 phi);
1070 gimple_stmt_iterator si = gsi_after_labels (bb);
1071 gsi_insert_before (&si, note, GSI_SAME_STMT);
1072 }
1073 }
1074
1075 /* Mark this PHI node as interesting for update_ssa. */
1076 set_register_defs (phi, true);
1077 mark_phi_for_rewrite (bb, phi);
1078 }
1079 }
1080
1081 /* Sort var_infos after DECL_UID of their var. */
1082
1083 static int
1084 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1085 {
1086 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1087 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1088 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1089 return -1;
1090 else
1091 return 1;
1092 }
1093
1094 /* Insert PHI nodes at the dominance frontier of blocks with variable
1095 definitions. DFS contains the dominance frontier information for
1096 the flowgraph. */
1097
1098 static void
1099 insert_phi_nodes (bitmap_head *dfs)
1100 {
1101 hash_table<var_info_hasher>::iterator hi;
1102 unsigned i;
1103 var_info_p info;
1104
1105 timevar_push (TV_TREE_INSERT_PHI_NODES);
1106
1107 auto_vec<var_info_p> vars (var_infos->elements ());
1108 FOR_EACH_HASH_TABLE_ELEMENT (*var_infos, info, var_info_p, hi)
1109 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1110 vars.quick_push (info);
1111
1112 /* Do two stages to avoid code generation differences for UID
1113 differences but no UID ordering differences. */
1114 vars.qsort (insert_phi_nodes_compare_var_infos);
1115
1116 FOR_EACH_VEC_ELT (vars, i, info)
1117 {
1118 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1119 insert_phi_nodes_for (info->var, idf, false);
1120 BITMAP_FREE (idf);
1121 }
1122
1123 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1124 }
1125
1126
1127 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1128 register DEF (an SSA_NAME) to be a new definition for SYM. */
1129
1130 static void
1131 register_new_def (tree def, tree sym)
1132 {
1133 common_info_p info = get_common_info (sym);
1134 tree currdef;
1135
1136 /* If this variable is set in a single basic block and all uses are
1137 dominated by the set(s) in that single basic block, then there is
1138 no reason to record anything for this variable in the block local
1139 definition stacks. Doing so just wastes time and memory.
1140
1141 This is the same test to prune the set of variables which may
1142 need PHI nodes. So we just use that information since it's already
1143 computed and available for us to use. */
1144 if (info->need_phi_state == NEED_PHI_STATE_NO)
1145 {
1146 info->current_def = def;
1147 return;
1148 }
1149
1150 currdef = info->current_def;
1151
1152 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1153 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1154 in the stack so that we know which symbol is being defined by
1155 this SSA name when we unwind the stack. */
1156 if (currdef && !is_gimple_reg (sym))
1157 block_defs_stack.safe_push (sym);
1158
1159 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1160 stack is later used by the dominator tree callbacks to restore
1161 the reaching definitions for all the variables defined in the
1162 block after a recursive visit to all its immediately dominated
1163 blocks. If there is no current reaching definition, then just
1164 record the underlying _DECL node. */
1165 block_defs_stack.safe_push (currdef ? currdef : sym);
1166
1167 /* Set the current reaching definition for SYM to be DEF. */
1168 info->current_def = def;
1169 }
1170
1171
1172 /* Perform a depth-first traversal of the dominator tree looking for
1173 variables to rename. BB is the block where to start searching.
1174 Renaming is a five step process:
1175
1176 1- Every definition made by PHI nodes at the start of the blocks is
1177 registered as the current definition for the corresponding variable.
1178
1179 2- Every statement in BB is rewritten. USE and VUSE operands are
1180 rewritten with their corresponding reaching definition. DEF and
1181 VDEF targets are registered as new definitions.
1182
1183 3- All the PHI nodes in successor blocks of BB are visited. The
1184 argument corresponding to BB is replaced with its current reaching
1185 definition.
1186
1187 4- Recursively rewrite every dominator child block of BB.
1188
1189 5- Restore (in reverse order) the current reaching definition for every
1190 new definition introduced in this block. This is done so that when
1191 we return from the recursive call, all the current reaching
1192 definitions are restored to the names that were valid in the
1193 dominator parent of BB. */
1194
1195 /* Return the current definition for variable VAR. If none is found,
1196 create a new SSA name to act as the zeroth definition for VAR. */
1197
1198 static tree
1199 get_reaching_def (tree var)
1200 {
1201 common_info_p info = get_common_info (var);
1202 tree currdef;
1203
1204 /* Lookup the current reaching definition for VAR. */
1205 currdef = info->current_def;
1206
1207 /* If there is no reaching definition for VAR, create and register a
1208 default definition for it (if needed). */
1209 if (currdef == NULL_TREE)
1210 {
1211 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1212 currdef = get_or_create_ssa_default_def (cfun, sym);
1213 }
1214
1215 /* Return the current reaching definition for VAR, or the default
1216 definition, if we had to create one. */
1217 return currdef;
1218 }
1219
1220
1221 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1222
1223 static void
1224 rewrite_debug_stmt_uses (gimple stmt)
1225 {
1226 use_operand_p use_p;
1227 ssa_op_iter iter;
1228 bool update = false;
1229
1230 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1231 {
1232 tree var = USE_FROM_PTR (use_p), def;
1233 common_info_p info = get_common_info (var);
1234 gcc_checking_assert (DECL_P (var));
1235 def = info->current_def;
1236 if (!def)
1237 {
1238 if (TREE_CODE (var) == PARM_DECL
1239 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
1240 {
1241 gimple_stmt_iterator gsi
1242 =
1243 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1244 int lim;
1245 /* Search a few source bind stmts at the start of first bb to
1246 see if a DEBUG_EXPR_DECL can't be reused. */
1247 for (lim = 32;
1248 !gsi_end_p (gsi) && lim > 0;
1249 gsi_next (&gsi), lim--)
1250 {
1251 gimple gstmt = gsi_stmt (gsi);
1252 if (!gimple_debug_source_bind_p (gstmt))
1253 break;
1254 if (gimple_debug_source_bind_get_value (gstmt) == var)
1255 {
1256 def = gimple_debug_source_bind_get_var (gstmt);
1257 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1258 break;
1259 else
1260 def = NULL_TREE;
1261 }
1262 }
1263 /* If not, add a new source bind stmt. */
1264 if (def == NULL_TREE)
1265 {
1266 gimple def_temp;
1267 def = make_node (DEBUG_EXPR_DECL);
1268 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1269 DECL_ARTIFICIAL (def) = 1;
1270 TREE_TYPE (def) = TREE_TYPE (var);
1271 DECL_MODE (def) = DECL_MODE (var);
1272 gsi =
1273 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1274 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1275 }
1276 update = true;
1277 }
1278 }
1279 else
1280 {
1281 /* Check if info->current_def can be trusted. */
1282 basic_block bb = gimple_bb (stmt);
1283 basic_block def_bb
1284 = SSA_NAME_IS_DEFAULT_DEF (def)
1285 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1286
1287 /* If definition is in current bb, it is fine. */
1288 if (bb == def_bb)
1289 ;
1290 /* If definition bb doesn't dominate the current bb,
1291 it can't be used. */
1292 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1293 def = NULL;
1294 /* If there is just one definition and dominates the current
1295 bb, it is fine. */
1296 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1297 ;
1298 else
1299 {
1300 struct def_blocks_d *db_p = get_def_blocks_for (info);
1301
1302 /* If there are some non-debug uses in the current bb,
1303 it is fine. */
1304 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1305 ;
1306 /* Otherwise give up for now. */
1307 else
1308 def = NULL;
1309 }
1310 }
1311 if (def == NULL)
1312 {
1313 gimple_debug_bind_reset_value (stmt);
1314 update_stmt (stmt);
1315 return;
1316 }
1317 SET_USE (use_p, def);
1318 }
1319 if (update)
1320 update_stmt (stmt);
1321 }
1322
1323 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1324 the block with its immediate reaching definitions. Update the current
1325 definition of a variable when a new real or virtual definition is found. */
1326
1327 static void
1328 rewrite_stmt (gimple_stmt_iterator *si)
1329 {
1330 use_operand_p use_p;
1331 def_operand_p def_p;
1332 ssa_op_iter iter;
1333 gimple stmt = gsi_stmt (*si);
1334
1335 /* If mark_def_sites decided that we don't need to rewrite this
1336 statement, ignore it. */
1337 gcc_assert (blocks_to_update == NULL);
1338 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1339 return;
1340
1341 if (dump_file && (dump_flags & TDF_DETAILS))
1342 {
1343 fprintf (dump_file, "Renaming statement ");
1344 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1345 fprintf (dump_file, "\n");
1346 }
1347
1348 /* Step 1. Rewrite USES in the statement. */
1349 if (rewrite_uses_p (stmt))
1350 {
1351 if (is_gimple_debug (stmt))
1352 rewrite_debug_stmt_uses (stmt);
1353 else
1354 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1355 {
1356 tree var = USE_FROM_PTR (use_p);
1357 gcc_checking_assert (DECL_P (var));
1358 SET_USE (use_p, get_reaching_def (var));
1359 }
1360 }
1361
1362 /* Step 2. Register the statement's DEF operands. */
1363 if (register_defs_p (stmt))
1364 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1365 {
1366 tree var = DEF_FROM_PTR (def_p);
1367 tree name;
1368 tree tracked_var;
1369
1370 gcc_checking_assert (DECL_P (var));
1371
1372 if (gimple_clobber_p (stmt)
1373 && is_gimple_reg (var))
1374 {
1375 /* If we rewrite a DECL into SSA form then drop its
1376 clobber stmts and replace uses with a new default def. */
1377 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1378 && !gimple_vdef (stmt));
1379 gsi_replace (si, gimple_build_nop (), true);
1380 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1381 break;
1382 }
1383
1384 name = make_ssa_name (var, stmt);
1385 SET_DEF (def_p, name);
1386 register_new_def (DEF_FROM_PTR (def_p), var);
1387
1388 tracked_var = target_for_debug_bind (var);
1389 if (tracked_var)
1390 {
1391 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1392 gsi_insert_after (si, note, GSI_SAME_STMT);
1393 }
1394 }
1395 }
1396
1397
1398 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1399 PHI nodes. For every PHI node found, add a new argument containing the
1400 current reaching definition for the variable and the edge through which
1401 that definition is reaching the PHI node. */
1402
1403 static void
1404 rewrite_add_phi_arguments (basic_block bb)
1405 {
1406 edge e;
1407 edge_iterator ei;
1408
1409 FOR_EACH_EDGE (e, ei, bb->succs)
1410 {
1411 gphi *phi;
1412 gphi_iterator gsi;
1413
1414 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1415 gsi_next (&gsi))
1416 {
1417 tree currdef, res;
1418 location_t loc;
1419
1420 phi = gsi.phi ();
1421 res = gimple_phi_result (phi);
1422 currdef = get_reaching_def (SSA_NAME_VAR (res));
1423 /* Virtual operand PHI args do not need a location. */
1424 if (virtual_operand_p (res))
1425 loc = UNKNOWN_LOCATION;
1426 else
1427 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1428 add_phi_arg (phi, currdef, e, loc);
1429 }
1430 }
1431 }
1432
1433 class rewrite_dom_walker : public dom_walker
1434 {
1435 public:
1436 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1437
1438 virtual void before_dom_children (basic_block);
1439 virtual void after_dom_children (basic_block);
1440 };
1441
1442 /* SSA Rewriting Step 1. Initialization, create a block local stack
1443 of reaching definitions for new SSA names produced in this block
1444 (BLOCK_DEFS). Register new definitions for every PHI node in the
1445 block. */
1446
1447 void
1448 rewrite_dom_walker::before_dom_children (basic_block bb)
1449 {
1450 if (dump_file && (dump_flags & TDF_DETAILS))
1451 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1452
1453 /* Mark the unwind point for this block. */
1454 block_defs_stack.safe_push (NULL_TREE);
1455
1456 /* Step 1. Register new definitions for every PHI node in the block.
1457 Conceptually, all the PHI nodes are executed in parallel and each PHI
1458 node introduces a new version for the associated variable. */
1459 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1460 gsi_next (&gsi))
1461 {
1462 tree result = gimple_phi_result (gsi_stmt (gsi));
1463 register_new_def (result, SSA_NAME_VAR (result));
1464 }
1465
1466 /* Step 2. Rewrite every variable used in each statement in the block
1467 with its immediate reaching definitions. Update the current definition
1468 of a variable when a new real or virtual definition is found. */
1469 if (bitmap_bit_p (interesting_blocks, bb->index))
1470 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1471 gsi_next (&gsi))
1472 rewrite_stmt (&gsi);
1473
1474 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1475 For every PHI node found, add a new argument containing the current
1476 reaching definition for the variable and the edge through which that
1477 definition is reaching the PHI node. */
1478 rewrite_add_phi_arguments (bb);
1479 }
1480
1481
1482
1483 /* Called after visiting all the statements in basic block BB and all
1484 of its dominator children. Restore CURRDEFS to its original value. */
1485
1486 void
1487 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1488 {
1489 /* Restore CURRDEFS to its original state. */
1490 while (block_defs_stack.length () > 0)
1491 {
1492 tree tmp = block_defs_stack.pop ();
1493 tree saved_def, var;
1494
1495 if (tmp == NULL_TREE)
1496 break;
1497
1498 if (TREE_CODE (tmp) == SSA_NAME)
1499 {
1500 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1501 current definition of its underlying variable. Note that
1502 if the SSA_NAME is not for a GIMPLE register, the symbol
1503 being defined is stored in the next slot in the stack.
1504 This mechanism is needed because an SSA name for a
1505 non-register symbol may be the definition for more than
1506 one symbol (e.g., SFTs, aliased variables, etc). */
1507 saved_def = tmp;
1508 var = SSA_NAME_VAR (saved_def);
1509 if (!is_gimple_reg (var))
1510 var = block_defs_stack.pop ();
1511 }
1512 else
1513 {
1514 /* If we recorded anything else, it must have been a _DECL
1515 node and its current reaching definition must have been
1516 NULL. */
1517 saved_def = NULL;
1518 var = tmp;
1519 }
1520
1521 get_common_info (var)->current_def = saved_def;
1522 }
1523 }
1524
1525
1526 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1527
1528 DEBUG_FUNCTION void
1529 debug_decl_set (bitmap set)
1530 {
1531 dump_decl_set (stderr, set);
1532 fprintf (stderr, "\n");
1533 }
1534
1535
1536 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1537 stack up to a maximum of N levels. If N is -1, the whole stack is
1538 dumped. New levels are created when the dominator tree traversal
1539 used for renaming enters a new sub-tree. */
1540
1541 void
1542 dump_defs_stack (FILE *file, int n)
1543 {
1544 int i, j;
1545
1546 fprintf (file, "\n\nRenaming stack");
1547 if (n > 0)
1548 fprintf (file, " (up to %d levels)", n);
1549 fprintf (file, "\n\n");
1550
1551 i = 1;
1552 fprintf (file, "Level %d (current level)\n", i);
1553 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1554 {
1555 tree name, var;
1556
1557 name = block_defs_stack[j];
1558 if (name == NULL_TREE)
1559 {
1560 i++;
1561 if (n > 0 && i > n)
1562 break;
1563 fprintf (file, "\nLevel %d\n", i);
1564 continue;
1565 }
1566
1567 if (DECL_P (name))
1568 {
1569 var = name;
1570 name = NULL_TREE;
1571 }
1572 else
1573 {
1574 var = SSA_NAME_VAR (name);
1575 if (!is_gimple_reg (var))
1576 {
1577 j--;
1578 var = block_defs_stack[j];
1579 }
1580 }
1581
1582 fprintf (file, " Previous CURRDEF (");
1583 print_generic_expr (file, var, 0);
1584 fprintf (file, ") = ");
1585 if (name)
1586 print_generic_expr (file, name, 0);
1587 else
1588 fprintf (file, "<NIL>");
1589 fprintf (file, "\n");
1590 }
1591 }
1592
1593
1594 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1595 stack up to a maximum of N levels. If N is -1, the whole stack is
1596 dumped. New levels are created when the dominator tree traversal
1597 used for renaming enters a new sub-tree. */
1598
1599 DEBUG_FUNCTION void
1600 debug_defs_stack (int n)
1601 {
1602 dump_defs_stack (stderr, n);
1603 }
1604
1605
1606 /* Dump the current reaching definition of every symbol to FILE. */
1607
1608 void
1609 dump_currdefs (FILE *file)
1610 {
1611 unsigned i;
1612 tree var;
1613
1614 if (symbols_to_rename.is_empty ())
1615 return;
1616
1617 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1618 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1619 {
1620 common_info_p info = get_common_info (var);
1621 fprintf (file, "CURRDEF (");
1622 print_generic_expr (file, var, 0);
1623 fprintf (file, ") = ");
1624 if (info->current_def)
1625 print_generic_expr (file, info->current_def, 0);
1626 else
1627 fprintf (file, "<NIL>");
1628 fprintf (file, "\n");
1629 }
1630 }
1631
1632
1633 /* Dump the current reaching definition of every symbol to stderr. */
1634
1635 DEBUG_FUNCTION void
1636 debug_currdefs (void)
1637 {
1638 dump_currdefs (stderr);
1639 }
1640
1641
1642 /* Dump SSA information to FILE. */
1643
1644 void
1645 dump_tree_ssa (FILE *file)
1646 {
1647 const char *funcname
1648 = lang_hooks.decl_printable_name (current_function_decl, 2);
1649
1650 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1651
1652 dump_var_infos (file);
1653 dump_defs_stack (file, -1);
1654 dump_currdefs (file);
1655 dump_tree_ssa_stats (file);
1656 }
1657
1658
1659 /* Dump SSA information to stderr. */
1660
1661 DEBUG_FUNCTION void
1662 debug_tree_ssa (void)
1663 {
1664 dump_tree_ssa (stderr);
1665 }
1666
1667
1668 /* Dump statistics for the hash table HTAB. */
1669
1670 static void
1671 htab_statistics (FILE *file, const hash_table<var_info_hasher> &htab)
1672 {
1673 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1674 (long) htab.size (),
1675 (long) htab.elements (),
1676 htab.collisions ());
1677 }
1678
1679
1680 /* Dump SSA statistics on FILE. */
1681
1682 void
1683 dump_tree_ssa_stats (FILE *file)
1684 {
1685 if (var_infos)
1686 {
1687 fprintf (file, "\nHash table statistics:\n");
1688 fprintf (file, " var_infos: ");
1689 htab_statistics (file, *var_infos);
1690 fprintf (file, "\n");
1691 }
1692 }
1693
1694
1695 /* Dump SSA statistics on stderr. */
1696
1697 DEBUG_FUNCTION void
1698 debug_tree_ssa_stats (void)
1699 {
1700 dump_tree_ssa_stats (stderr);
1701 }
1702
1703
1704 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1705
1706 int
1707 debug_var_infos_r (var_info_d **slot, FILE *file)
1708 {
1709 struct var_info_d *info = *slot;
1710
1711 fprintf (file, "VAR: ");
1712 print_generic_expr (file, info->var, dump_flags);
1713 bitmap_print (file, info->info.def_blocks.def_blocks,
1714 ", DEF_BLOCKS: { ", "}");
1715 bitmap_print (file, info->info.def_blocks.livein_blocks,
1716 ", LIVEIN_BLOCKS: { ", "}");
1717 bitmap_print (file, info->info.def_blocks.phi_blocks,
1718 ", PHI_BLOCKS: { ", "}\n");
1719
1720 return 1;
1721 }
1722
1723
1724 /* Dump the VAR_INFOS hash table on FILE. */
1725
1726 void
1727 dump_var_infos (FILE *file)
1728 {
1729 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1730 if (var_infos)
1731 var_infos->traverse <FILE *, debug_var_infos_r> (file);
1732 }
1733
1734
1735 /* Dump the VAR_INFOS hash table on stderr. */
1736
1737 DEBUG_FUNCTION void
1738 debug_var_infos (void)
1739 {
1740 dump_var_infos (stderr);
1741 }
1742
1743
1744 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1745
1746 static inline void
1747 register_new_update_single (tree new_name, tree old_name)
1748 {
1749 common_info_p info = get_common_info (old_name);
1750 tree currdef = info->current_def;
1751
1752 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1753 This stack is later used by the dominator tree callbacks to
1754 restore the reaching definitions for all the variables
1755 defined in the block after a recursive visit to all its
1756 immediately dominated blocks. */
1757 block_defs_stack.reserve (2);
1758 block_defs_stack.quick_push (currdef);
1759 block_defs_stack.quick_push (old_name);
1760
1761 /* Set the current reaching definition for OLD_NAME to be
1762 NEW_NAME. */
1763 info->current_def = new_name;
1764 }
1765
1766
1767 /* Register NEW_NAME to be the new reaching definition for all the
1768 names in OLD_NAMES. Used by the incremental SSA update routines to
1769 replace old SSA names with new ones. */
1770
1771 static inline void
1772 register_new_update_set (tree new_name, bitmap old_names)
1773 {
1774 bitmap_iterator bi;
1775 unsigned i;
1776
1777 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1778 register_new_update_single (new_name, ssa_name (i));
1779 }
1780
1781
1782
1783 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1784 it is a symbol marked for renaming, replace it with USE_P's current
1785 reaching definition. */
1786
1787 static inline void
1788 maybe_replace_use (use_operand_p use_p)
1789 {
1790 tree rdef = NULL_TREE;
1791 tree use = USE_FROM_PTR (use_p);
1792 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1793
1794 if (marked_for_renaming (sym))
1795 rdef = get_reaching_def (sym);
1796 else if (is_old_name (use))
1797 rdef = get_reaching_def (use);
1798
1799 if (rdef && rdef != use)
1800 SET_USE (use_p, rdef);
1801 }
1802
1803
1804 /* Same as maybe_replace_use, but without introducing default stmts,
1805 returning false to indicate a need to do so. */
1806
1807 static inline bool
1808 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1809 {
1810 tree rdef = NULL_TREE;
1811 tree use = USE_FROM_PTR (use_p);
1812 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1813
1814 if (marked_for_renaming (sym))
1815 rdef = get_var_info (sym)->info.current_def;
1816 else if (is_old_name (use))
1817 {
1818 rdef = get_ssa_name_ann (use)->info.current_def;
1819 /* We can't assume that, if there's no current definition, the
1820 default one should be used. It could be the case that we've
1821 rearranged blocks so that the earlier definition no longer
1822 dominates the use. */
1823 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1824 rdef = use;
1825 }
1826 else
1827 rdef = use;
1828
1829 if (rdef && rdef != use)
1830 SET_USE (use_p, rdef);
1831
1832 return rdef != NULL_TREE;
1833 }
1834
1835
1836 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1837 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1838 register it as the current definition for the names replaced by
1839 DEF_P. Returns whether the statement should be removed. */
1840
1841 static inline bool
1842 maybe_register_def (def_operand_p def_p, gimple stmt,
1843 gimple_stmt_iterator gsi)
1844 {
1845 tree def = DEF_FROM_PTR (def_p);
1846 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1847 bool to_delete = false;
1848
1849 /* If DEF is a naked symbol that needs renaming, create a new
1850 name for it. */
1851 if (marked_for_renaming (sym))
1852 {
1853 if (DECL_P (def))
1854 {
1855 if (gimple_clobber_p (stmt) && is_gimple_reg (sym))
1856 {
1857 gcc_checking_assert (TREE_CODE (sym) == VAR_DECL);
1858 /* Replace clobber stmts with a default def. This new use of a
1859 default definition may make it look like SSA_NAMEs have
1860 conflicting lifetimes, so we need special code to let them
1861 coalesce properly. */
1862 to_delete = true;
1863 def = get_or_create_ssa_default_def (cfun, sym);
1864 }
1865 else
1866 def = make_ssa_name (def, stmt);
1867 SET_DEF (def_p, def);
1868
1869 tree tracked_var = target_for_debug_bind (sym);
1870 if (tracked_var)
1871 {
1872 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1873 /* If stmt ends the bb, insert the debug stmt on the single
1874 non-EH edge from the stmt. */
1875 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1876 {
1877 basic_block bb = gsi_bb (gsi);
1878 edge_iterator ei;
1879 edge e, ef = NULL;
1880 FOR_EACH_EDGE (e, ei, bb->succs)
1881 if (!(e->flags & EDGE_EH))
1882 {
1883 gcc_checking_assert (!ef);
1884 ef = e;
1885 }
1886 /* If there are other predecessors to ef->dest, then
1887 there must be PHI nodes for the modified
1888 variable, and therefore there will be debug bind
1889 stmts after the PHI nodes. The debug bind notes
1890 we'd insert would force the creation of a new
1891 block (diverging codegen) and be redundant with
1892 the post-PHI bind stmts, so don't add them.
1893
1894 As for the exit edge, there wouldn't be redundant
1895 bind stmts, but there wouldn't be a PC to bind
1896 them to either, so avoid diverging the CFG. */
1897 if (ef && single_pred_p (ef->dest)
1898 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1899 {
1900 /* If there were PHI nodes in the node, we'd
1901 have to make sure the value we're binding
1902 doesn't need rewriting. But there shouldn't
1903 be PHI nodes in a single-predecessor block,
1904 so we just add the note. */
1905 gsi_insert_on_edge_immediate (ef, note);
1906 }
1907 }
1908 else
1909 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1910 }
1911 }
1912
1913 register_new_update_single (def, sym);
1914 }
1915 else
1916 {
1917 /* If DEF is a new name, register it as a new definition
1918 for all the names replaced by DEF. */
1919 if (is_new_name (def))
1920 register_new_update_set (def, names_replaced_by (def));
1921
1922 /* If DEF is an old name, register DEF as a new
1923 definition for itself. */
1924 if (is_old_name (def))
1925 register_new_update_single (def, def);
1926 }
1927
1928 return to_delete;
1929 }
1930
1931
1932 /* Update every variable used in the statement pointed-to by SI. The
1933 statement is assumed to be in SSA form already. Names in
1934 OLD_SSA_NAMES used by SI will be updated to their current reaching
1935 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1936 will be registered as a new definition for their corresponding name
1937 in OLD_SSA_NAMES. Returns whether STMT should be removed. */
1938
1939 static bool
1940 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1941 {
1942 use_operand_p use_p;
1943 def_operand_p def_p;
1944 ssa_op_iter iter;
1945
1946 /* Only update marked statements. */
1947 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1948 return false;
1949
1950 if (dump_file && (dump_flags & TDF_DETAILS))
1951 {
1952 fprintf (dump_file, "Updating SSA information for statement ");
1953 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1954 }
1955
1956 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1957 symbol is marked for renaming. */
1958 if (rewrite_uses_p (stmt))
1959 {
1960 if (is_gimple_debug (stmt))
1961 {
1962 bool failed = false;
1963
1964 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1965 if (!maybe_replace_use_in_debug_stmt (use_p))
1966 {
1967 failed = true;
1968 break;
1969 }
1970
1971 if (failed)
1972 {
1973 /* DOM sometimes threads jumps in such a way that a
1974 debug stmt ends up referencing a SSA variable that no
1975 longer dominates the debug stmt, but such that all
1976 incoming definitions refer to the same definition in
1977 an earlier dominator. We could try to recover that
1978 definition somehow, but this will have to do for now.
1979
1980 Introducing a default definition, which is what
1981 maybe_replace_use() would do in such cases, may
1982 modify code generation, for the otherwise-unused
1983 default definition would never go away, modifying SSA
1984 version numbers all over. */
1985 gimple_debug_bind_reset_value (stmt);
1986 update_stmt (stmt);
1987 }
1988 }
1989 else
1990 {
1991 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1992 maybe_replace_use (use_p);
1993 }
1994 }
1995
1996 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1997 Also register definitions for names whose underlying symbol is
1998 marked for renaming. */
1999 bool to_delete = false;
2000 if (register_defs_p (stmt))
2001 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
2002 to_delete |= maybe_register_def (def_p, stmt, gsi);
2003
2004 return to_delete;
2005 }
2006
2007
2008 /* Visit all the successor blocks of BB looking for PHI nodes. For
2009 every PHI node found, check if any of its arguments is in
2010 OLD_SSA_NAMES. If so, and if the argument has a current reaching
2011 definition, replace it. */
2012
2013 static void
2014 rewrite_update_phi_arguments (basic_block bb)
2015 {
2016 edge e;
2017 edge_iterator ei;
2018 unsigned i;
2019
2020 FOR_EACH_EDGE (e, ei, bb->succs)
2021 {
2022 gphi *phi;
2023 vec<gphi *> phis;
2024
2025 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2026 continue;
2027
2028 phis = phis_to_rewrite[e->dest->index];
2029 FOR_EACH_VEC_ELT (phis, i, phi)
2030 {
2031 tree arg, lhs_sym, reaching_def = NULL;
2032 use_operand_p arg_p;
2033
2034 gcc_checking_assert (rewrite_uses_p (phi));
2035
2036 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2037 arg = USE_FROM_PTR (arg_p);
2038
2039 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2040 continue;
2041
2042 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2043
2044 if (arg == NULL_TREE)
2045 {
2046 /* When updating a PHI node for a recently introduced
2047 symbol we may find NULL arguments. That's why we
2048 take the symbol from the LHS of the PHI node. */
2049 reaching_def = get_reaching_def (lhs_sym);
2050
2051 }
2052 else
2053 {
2054 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2055
2056 if (marked_for_renaming (sym))
2057 reaching_def = get_reaching_def (sym);
2058 else if (is_old_name (arg))
2059 reaching_def = get_reaching_def (arg);
2060 }
2061
2062 /* Update the argument if there is a reaching def. */
2063 if (reaching_def)
2064 {
2065 source_location locus;
2066 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2067
2068 SET_USE (arg_p, reaching_def);
2069
2070 /* Virtual operands do not need a location. */
2071 if (virtual_operand_p (reaching_def))
2072 locus = UNKNOWN_LOCATION;
2073 else
2074 {
2075 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2076 gphi *other_phi = dyn_cast <gphi *> (stmt);
2077
2078 /* Single element PHI nodes behave like copies, so get the
2079 location from the phi argument. */
2080 if (other_phi
2081 && gimple_phi_num_args (other_phi) == 1)
2082 locus = gimple_phi_arg_location (other_phi, 0);
2083 else
2084 locus = gimple_location (stmt);
2085 }
2086
2087 gimple_phi_arg_set_location (phi, arg_i, locus);
2088 }
2089
2090
2091 if (e->flags & EDGE_ABNORMAL)
2092 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2093 }
2094 }
2095 }
2096
2097 class rewrite_update_dom_walker : public dom_walker
2098 {
2099 public:
2100 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2101
2102 virtual void before_dom_children (basic_block);
2103 virtual void after_dom_children (basic_block);
2104 };
2105
2106 /* Initialization of block data structures for the incremental SSA
2107 update pass. Create a block local stack of reaching definitions
2108 for new SSA names produced in this block (BLOCK_DEFS). Register
2109 new definitions for every PHI node in the block. */
2110
2111 void
2112 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2113 {
2114 bool is_abnormal_phi;
2115
2116 if (dump_file && (dump_flags & TDF_DETAILS))
2117 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2118 bb->index);
2119
2120 /* Mark the unwind point for this block. */
2121 block_defs_stack.safe_push (NULL_TREE);
2122
2123 if (!bitmap_bit_p (blocks_to_update, bb->index))
2124 return;
2125
2126 /* Mark the LHS if any of the arguments flows through an abnormal
2127 edge. */
2128 is_abnormal_phi = bb_has_abnormal_pred (bb);
2129
2130 /* If any of the PHI nodes is a replacement for a name in
2131 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2132 register it as a new definition for its corresponding name. Also
2133 register definitions for names whose underlying symbols are
2134 marked for renaming. */
2135 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2136 gsi_next (&gsi))
2137 {
2138 tree lhs, lhs_sym;
2139 gphi *phi = gsi.phi ();
2140
2141 if (!register_defs_p (phi))
2142 continue;
2143
2144 lhs = gimple_phi_result (phi);
2145 lhs_sym = SSA_NAME_VAR (lhs);
2146
2147 if (marked_for_renaming (lhs_sym))
2148 register_new_update_single (lhs, lhs_sym);
2149 else
2150 {
2151
2152 /* If LHS is a new name, register a new definition for all
2153 the names replaced by LHS. */
2154 if (is_new_name (lhs))
2155 register_new_update_set (lhs, names_replaced_by (lhs));
2156
2157 /* If LHS is an OLD name, register it as a new definition
2158 for itself. */
2159 if (is_old_name (lhs))
2160 register_new_update_single (lhs, lhs);
2161 }
2162
2163 if (is_abnormal_phi)
2164 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2165 }
2166
2167 /* Step 2. Rewrite every variable used in each statement in the block. */
2168 if (bitmap_bit_p (interesting_blocks, bb->index))
2169 {
2170 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2171 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2172 if (rewrite_update_stmt (gsi_stmt (gsi), gsi))
2173 gsi_remove (&gsi, true);
2174 else
2175 gsi_next (&gsi);
2176 }
2177
2178 /* Step 3. Update PHI nodes. */
2179 rewrite_update_phi_arguments (bb);
2180 }
2181
2182 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2183 the current reaching definition of every name re-written in BB to
2184 the original reaching definition before visiting BB. This
2185 unwinding must be done in the opposite order to what is done in
2186 register_new_update_set. */
2187
2188 void
2189 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2190 {
2191 while (block_defs_stack.length () > 0)
2192 {
2193 tree var = block_defs_stack.pop ();
2194 tree saved_def;
2195
2196 /* NULL indicates the unwind stop point for this block (see
2197 rewrite_update_enter_block). */
2198 if (var == NULL)
2199 return;
2200
2201 saved_def = block_defs_stack.pop ();
2202 get_common_info (var)->current_def = saved_def;
2203 }
2204 }
2205
2206
2207 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2208 form.
2209
2210 ENTRY indicates the block where to start. Every block dominated by
2211 ENTRY will be rewritten.
2212
2213 WHAT indicates what actions will be taken by the renamer (see enum
2214 rewrite_mode).
2215
2216 BLOCKS are the set of interesting blocks for the dominator walker
2217 to process. If this set is NULL, then all the nodes dominated
2218 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2219 are not present in BLOCKS are ignored. */
2220
2221 static void
2222 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2223 {
2224 /* Rewrite all the basic blocks in the program. */
2225 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2226
2227 block_defs_stack.create (10);
2228
2229 /* Recursively walk the dominator tree rewriting each statement in
2230 each basic block. */
2231 if (what == REWRITE_ALL)
2232 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2233 else if (what == REWRITE_UPDATE)
2234 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2235 else
2236 gcc_unreachable ();
2237
2238 /* Debugging dumps. */
2239 if (dump_file && (dump_flags & TDF_STATS))
2240 {
2241 dump_dfa_stats (dump_file);
2242 if (var_infos)
2243 dump_tree_ssa_stats (dump_file);
2244 }
2245
2246 block_defs_stack.release ();
2247
2248 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2249 }
2250
2251 class mark_def_dom_walker : public dom_walker
2252 {
2253 public:
2254 mark_def_dom_walker (cdi_direction direction);
2255 ~mark_def_dom_walker ();
2256
2257 virtual void before_dom_children (basic_block);
2258
2259 private:
2260 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2261 large enough to accommodate all the variables referenced in the
2262 function, not just the ones we are renaming. */
2263 bitmap m_kills;
2264 };
2265
2266 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2267 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2268 {
2269 }
2270
2271 mark_def_dom_walker::~mark_def_dom_walker ()
2272 {
2273 BITMAP_FREE (m_kills);
2274 }
2275
2276 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2277 at the start of each block, and call mark_def_sites for each statement. */
2278
2279 void
2280 mark_def_dom_walker::before_dom_children (basic_block bb)
2281 {
2282 gimple_stmt_iterator gsi;
2283
2284 bitmap_clear (m_kills);
2285 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2286 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2287 }
2288
2289 /* Initialize internal data needed during renaming. */
2290
2291 static void
2292 init_ssa_renamer (void)
2293 {
2294 cfun->gimple_df->in_ssa_p = false;
2295
2296 /* Allocate memory for the DEF_BLOCKS hash table. */
2297 gcc_assert (!var_infos);
2298 var_infos = new hash_table<var_info_hasher>
2299 (vec_safe_length (cfun->local_decls));
2300
2301 bitmap_obstack_initialize (&update_ssa_obstack);
2302 }
2303
2304
2305 /* Deallocate internal data structures used by the renamer. */
2306
2307 static void
2308 fini_ssa_renamer (void)
2309 {
2310 delete var_infos;
2311 var_infos = NULL;
2312
2313 bitmap_obstack_release (&update_ssa_obstack);
2314
2315 cfun->gimple_df->ssa_renaming_needed = 0;
2316 cfun->gimple_df->rename_vops = 0;
2317 cfun->gimple_df->in_ssa_p = true;
2318 }
2319
2320 /* Main entry point into the SSA builder. The renaming process
2321 proceeds in four main phases:
2322
2323 1- Compute dominance frontier and immediate dominators, needed to
2324 insert PHI nodes and rename the function in dominator tree
2325 order.
2326
2327 2- Find and mark all the blocks that define variables.
2328
2329 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2330
2331 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2332
2333 Steps 3 and 4 are done using the dominator tree walker
2334 (walk_dominator_tree). */
2335
2336 namespace {
2337
2338 const pass_data pass_data_build_ssa =
2339 {
2340 GIMPLE_PASS, /* type */
2341 "ssa", /* name */
2342 OPTGROUP_NONE, /* optinfo_flags */
2343 TV_TREE_SSA_OTHER, /* tv_id */
2344 PROP_cfg, /* properties_required */
2345 PROP_ssa, /* properties_provided */
2346 0, /* properties_destroyed */
2347 0, /* todo_flags_start */
2348 TODO_remove_unused_locals, /* todo_flags_finish */
2349 };
2350
2351 class pass_build_ssa : public gimple_opt_pass
2352 {
2353 public:
2354 pass_build_ssa (gcc::context *ctxt)
2355 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2356 {}
2357
2358 /* opt_pass methods: */
2359 virtual bool gate (function *fun)
2360 {
2361 /* Do nothing for funcions that was produced already in SSA form. */
2362 return !(fun->curr_properties & PROP_ssa);
2363 }
2364
2365 virtual unsigned int execute (function *);
2366
2367 }; // class pass_build_ssa
2368
2369 unsigned int
2370 pass_build_ssa::execute (function *fun)
2371 {
2372 bitmap_head *dfs;
2373 basic_block bb;
2374 unsigned i;
2375
2376 /* Initialize operand data structures. */
2377 init_ssa_operands (fun);
2378
2379 /* Initialize internal data needed by the renamer. */
2380 init_ssa_renamer ();
2381
2382 /* Initialize the set of interesting blocks. The callback
2383 mark_def_sites will add to this set those blocks that the renamer
2384 should process. */
2385 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (fun));
2386 bitmap_clear (interesting_blocks);
2387
2388 /* Initialize dominance frontier. */
2389 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (fun));
2390 FOR_EACH_BB_FN (bb, fun)
2391 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2392
2393 /* 1- Compute dominance frontiers. */
2394 calculate_dominance_info (CDI_DOMINATORS);
2395 compute_dominance_frontiers (dfs);
2396
2397 /* 2- Find and mark definition sites. */
2398 mark_def_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
2399
2400 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2401 insert_phi_nodes (dfs);
2402
2403 /* 4- Rename all the blocks. */
2404 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (fun), REWRITE_ALL);
2405
2406 /* Free allocated memory. */
2407 FOR_EACH_BB_FN (bb, fun)
2408 bitmap_clear (&dfs[bb->index]);
2409 free (dfs);
2410
2411 sbitmap_free (interesting_blocks);
2412
2413 fini_ssa_renamer ();
2414
2415 /* Try to get rid of all gimplifier generated temporaries by making
2416 its SSA names anonymous. This way we can garbage collect them
2417 all after removing unused locals which we do in our TODO. */
2418 for (i = 1; i < num_ssa_names; ++i)
2419 {
2420 tree decl, name = ssa_name (i);
2421 if (!name
2422 || SSA_NAME_IS_DEFAULT_DEF (name))
2423 continue;
2424 decl = SSA_NAME_VAR (name);
2425 if (decl
2426 && TREE_CODE (decl) == VAR_DECL
2427 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2428 && DECL_IGNORED_P (decl))
2429 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2430 }
2431
2432 return 0;
2433 }
2434
2435 } // anon namespace
2436
2437 gimple_opt_pass *
2438 make_pass_build_ssa (gcc::context *ctxt)
2439 {
2440 return new pass_build_ssa (ctxt);
2441 }
2442
2443
2444 /* Mark the definition of VAR at STMT and BB as interesting for the
2445 renamer. BLOCKS is the set of blocks that need updating. */
2446
2447 static void
2448 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2449 {
2450 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2451 set_register_defs (stmt, true);
2452
2453 if (insert_phi_p)
2454 {
2455 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2456
2457 set_def_block (var, bb, is_phi_p);
2458
2459 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2460 site for both itself and all the old names replaced by it. */
2461 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2462 {
2463 bitmap_iterator bi;
2464 unsigned i;
2465 bitmap set = names_replaced_by (var);
2466 if (set)
2467 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2468 set_def_block (ssa_name (i), bb, is_phi_p);
2469 }
2470 }
2471 }
2472
2473
2474 /* Mark the use of VAR at STMT and BB as interesting for the
2475 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2476 nodes. */
2477
2478 static inline void
2479 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2480 {
2481 basic_block def_bb = gimple_bb (stmt);
2482
2483 mark_block_for_update (def_bb);
2484 mark_block_for_update (bb);
2485
2486 if (gimple_code (stmt) == GIMPLE_PHI)
2487 mark_phi_for_rewrite (def_bb, as_a <gphi *> (stmt));
2488 else
2489 {
2490 set_rewrite_uses (stmt, true);
2491
2492 if (is_gimple_debug (stmt))
2493 return;
2494 }
2495
2496 /* If VAR has not been defined in BB, then it is live-on-entry
2497 to BB. Note that we cannot just use the block holding VAR's
2498 definition because if VAR is one of the names in OLD_SSA_NAMES,
2499 it will have several definitions (itself and all the names that
2500 replace it). */
2501 if (insert_phi_p)
2502 {
2503 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2504 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2505 set_livein_block (var, bb);
2506 }
2507 }
2508
2509
2510 /* Do a dominator walk starting at BB processing statements that
2511 reference symbols in SSA operands. This is very similar to
2512 mark_def_sites, but the scan handles statements whose operands may
2513 already be SSA names.
2514
2515 If INSERT_PHI_P is true, mark those uses as live in the
2516 corresponding block. This is later used by the PHI placement
2517 algorithm to make PHI pruning decisions.
2518
2519 FIXME. Most of this would be unnecessary if we could associate a
2520 symbol to all the SSA names that reference it. But that
2521 sounds like it would be expensive to maintain. Still, it
2522 would be interesting to see if it makes better sense to do
2523 that. */
2524
2525 static void
2526 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2527 {
2528 basic_block son;
2529 edge e;
2530 edge_iterator ei;
2531
2532 mark_block_for_update (bb);
2533
2534 /* Process PHI nodes marking interesting those that define or use
2535 the symbols that we are interested in. */
2536 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
2537 gsi_next (&si))
2538 {
2539 gphi *phi = si.phi ();
2540 tree lhs_sym, lhs = gimple_phi_result (phi);
2541
2542 if (TREE_CODE (lhs) == SSA_NAME
2543 && (! virtual_operand_p (lhs)
2544 || ! cfun->gimple_df->rename_vops))
2545 continue;
2546
2547 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2548 mark_for_renaming (lhs_sym);
2549 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2550
2551 /* Mark the uses in phi nodes as interesting. It would be more correct
2552 to process the arguments of the phi nodes of the successor edges of
2553 BB at the end of prepare_block_for_update, however, that turns out
2554 to be significantly more expensive. Doing it here is conservatively
2555 correct -- it may only cause us to believe a value to be live in a
2556 block that also contains its definition, and thus insert a few more
2557 phi nodes for it. */
2558 FOR_EACH_EDGE (e, ei, bb->preds)
2559 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2560 }
2561
2562 /* Process the statements. */
2563 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
2564 gsi_next (&si))
2565 {
2566 gimple stmt;
2567 ssa_op_iter i;
2568 use_operand_p use_p;
2569 def_operand_p def_p;
2570
2571 stmt = gsi_stmt (si);
2572
2573 if (cfun->gimple_df->rename_vops
2574 && gimple_vuse (stmt))
2575 {
2576 tree use = gimple_vuse (stmt);
2577 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2578 mark_for_renaming (sym);
2579 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2580 }
2581
2582 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2583 {
2584 tree use = USE_FROM_PTR (use_p);
2585 if (!DECL_P (use))
2586 continue;
2587 mark_for_renaming (use);
2588 mark_use_interesting (use, stmt, bb, insert_phi_p);
2589 }
2590
2591 if (cfun->gimple_df->rename_vops
2592 && gimple_vdef (stmt))
2593 {
2594 tree def = gimple_vdef (stmt);
2595 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2596 mark_for_renaming (sym);
2597 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2598 }
2599
2600 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2601 {
2602 tree def = DEF_FROM_PTR (def_p);
2603 if (!DECL_P (def))
2604 continue;
2605 mark_for_renaming (def);
2606 mark_def_interesting (def, stmt, bb, insert_phi_p);
2607 }
2608 }
2609
2610 /* Now visit all the blocks dominated by BB. */
2611 for (son = first_dom_son (CDI_DOMINATORS, bb);
2612 son;
2613 son = next_dom_son (CDI_DOMINATORS, son))
2614 prepare_block_for_update (son, insert_phi_p);
2615 }
2616
2617
2618 /* Helper for prepare_names_to_update. Mark all the use sites for
2619 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2620 prepare_names_to_update. */
2621
2622 static void
2623 prepare_use_sites_for (tree name, bool insert_phi_p)
2624 {
2625 use_operand_p use_p;
2626 imm_use_iterator iter;
2627
2628 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2629 {
2630 gimple stmt = USE_STMT (use_p);
2631 basic_block bb = gimple_bb (stmt);
2632
2633 if (gimple_code (stmt) == GIMPLE_PHI)
2634 {
2635 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2636 edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt), ix);
2637 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2638 }
2639 else
2640 {
2641 /* For regular statements, mark this as an interesting use
2642 for NAME. */
2643 mark_use_interesting (name, stmt, bb, insert_phi_p);
2644 }
2645 }
2646 }
2647
2648
2649 /* Helper for prepare_names_to_update. Mark the definition site for
2650 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2651 prepare_names_to_update. */
2652
2653 static void
2654 prepare_def_site_for (tree name, bool insert_phi_p)
2655 {
2656 gimple stmt;
2657 basic_block bb;
2658
2659 gcc_checking_assert (names_to_release == NULL
2660 || !bitmap_bit_p (names_to_release,
2661 SSA_NAME_VERSION (name)));
2662
2663 stmt = SSA_NAME_DEF_STMT (name);
2664 bb = gimple_bb (stmt);
2665 if (bb)
2666 {
2667 gcc_checking_assert (bb->index < last_basic_block_for_fn (cfun));
2668 mark_block_for_update (bb);
2669 mark_def_interesting (name, stmt, bb, insert_phi_p);
2670 }
2671 }
2672
2673
2674 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2675 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2676 PHI nodes for newly created names. */
2677
2678 static void
2679 prepare_names_to_update (bool insert_phi_p)
2680 {
2681 unsigned i = 0;
2682 bitmap_iterator bi;
2683 sbitmap_iterator sbi;
2684
2685 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2686 remove it from NEW_SSA_NAMES so that we don't try to visit its
2687 defining basic block (which most likely doesn't exist). Notice
2688 that we cannot do the same with names in OLD_SSA_NAMES because we
2689 want to replace existing instances. */
2690 if (names_to_release)
2691 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2692 bitmap_clear_bit (new_ssa_names, i);
2693
2694 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2695 names may be considered to be live-in on blocks that contain
2696 definitions for their replacements. */
2697 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2698 prepare_def_site_for (ssa_name (i), insert_phi_p);
2699
2700 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2701 OLD_SSA_NAMES, but we have to ignore its definition site. */
2702 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2703 {
2704 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2705 prepare_def_site_for (ssa_name (i), insert_phi_p);
2706 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2707 }
2708 }
2709
2710
2711 /* Dump all the names replaced by NAME to FILE. */
2712
2713 void
2714 dump_names_replaced_by (FILE *file, tree name)
2715 {
2716 unsigned i;
2717 bitmap old_set;
2718 bitmap_iterator bi;
2719
2720 print_generic_expr (file, name, 0);
2721 fprintf (file, " -> { ");
2722
2723 old_set = names_replaced_by (name);
2724 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2725 {
2726 print_generic_expr (file, ssa_name (i), 0);
2727 fprintf (file, " ");
2728 }
2729
2730 fprintf (file, "}\n");
2731 }
2732
2733
2734 /* Dump all the names replaced by NAME to stderr. */
2735
2736 DEBUG_FUNCTION void
2737 debug_names_replaced_by (tree name)
2738 {
2739 dump_names_replaced_by (stderr, name);
2740 }
2741
2742
2743 /* Dump SSA update information to FILE. */
2744
2745 void
2746 dump_update_ssa (FILE *file)
2747 {
2748 unsigned i = 0;
2749 bitmap_iterator bi;
2750
2751 if (!need_ssa_update_p (cfun))
2752 return;
2753
2754 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2755 {
2756 sbitmap_iterator sbi;
2757
2758 fprintf (file, "\nSSA replacement table\n");
2759 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2760 "O_1, ..., O_j\n\n");
2761
2762 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2763 dump_names_replaced_by (file, ssa_name (i));
2764 }
2765
2766 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2767 {
2768 fprintf (file, "\nSymbols to be put in SSA form\n");
2769 dump_decl_set (file, symbols_to_rename_set);
2770 fprintf (file, "\n");
2771 }
2772
2773 if (names_to_release && !bitmap_empty_p (names_to_release))
2774 {
2775 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2776 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2777 {
2778 print_generic_expr (file, ssa_name (i), 0);
2779 fprintf (file, " ");
2780 }
2781 fprintf (file, "\n");
2782 }
2783 }
2784
2785
2786 /* Dump SSA update information to stderr. */
2787
2788 DEBUG_FUNCTION void
2789 debug_update_ssa (void)
2790 {
2791 dump_update_ssa (stderr);
2792 }
2793
2794
2795 /* Initialize data structures used for incremental SSA updates. */
2796
2797 static void
2798 init_update_ssa (struct function *fn)
2799 {
2800 /* Reserve more space than the current number of names. The calls to
2801 add_new_name_mapping are typically done after creating new SSA
2802 names, so we'll need to reallocate these arrays. */
2803 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2804 bitmap_clear (old_ssa_names);
2805
2806 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2807 bitmap_clear (new_ssa_names);
2808
2809 bitmap_obstack_initialize (&update_ssa_obstack);
2810
2811 names_to_release = NULL;
2812 update_ssa_initialized_fn = fn;
2813 }
2814
2815
2816 /* Deallocate data structures used for incremental SSA updates. */
2817
2818 void
2819 delete_update_ssa (void)
2820 {
2821 unsigned i;
2822 bitmap_iterator bi;
2823
2824 sbitmap_free (old_ssa_names);
2825 old_ssa_names = NULL;
2826
2827 sbitmap_free (new_ssa_names);
2828 new_ssa_names = NULL;
2829
2830 BITMAP_FREE (symbols_to_rename_set);
2831 symbols_to_rename_set = NULL;
2832 symbols_to_rename.release ();
2833
2834 if (names_to_release)
2835 {
2836 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2837 release_ssa_name (ssa_name (i));
2838 BITMAP_FREE (names_to_release);
2839 }
2840
2841 clear_ssa_name_info ();
2842
2843 fini_ssa_renamer ();
2844
2845 if (blocks_with_phis_to_rewrite)
2846 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2847 {
2848 vec<gphi *> phis = phis_to_rewrite[i];
2849 phis.release ();
2850 phis_to_rewrite[i].create (0);
2851 }
2852
2853 BITMAP_FREE (blocks_with_phis_to_rewrite);
2854 BITMAP_FREE (blocks_to_update);
2855
2856 update_ssa_initialized_fn = NULL;
2857 }
2858
2859
2860 /* Create a new name for OLD_NAME in statement STMT and replace the
2861 operand pointed to by DEF_P with the newly created name. If DEF_P
2862 is NULL then STMT should be a GIMPLE assignment.
2863 Return the new name and register the replacement mapping <NEW, OLD> in
2864 update_ssa's tables. */
2865
2866 tree
2867 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2868 {
2869 tree new_name;
2870
2871 timevar_push (TV_TREE_SSA_INCREMENTAL);
2872
2873 if (!update_ssa_initialized_fn)
2874 init_update_ssa (cfun);
2875
2876 gcc_assert (update_ssa_initialized_fn == cfun);
2877
2878 new_name = duplicate_ssa_name (old_name, stmt);
2879 if (def)
2880 SET_DEF (def, new_name);
2881 else
2882 gimple_assign_set_lhs (stmt, new_name);
2883
2884 if (gimple_code (stmt) == GIMPLE_PHI)
2885 {
2886 basic_block bb = gimple_bb (stmt);
2887
2888 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2889 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2890 }
2891
2892 add_new_name_mapping (new_name, old_name);
2893
2894 /* For the benefit of passes that will be updating the SSA form on
2895 their own, set the current reaching definition of OLD_NAME to be
2896 NEW_NAME. */
2897 get_ssa_name_ann (old_name)->info.current_def = new_name;
2898
2899 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2900
2901 return new_name;
2902 }
2903
2904
2905 /* Mark virtual operands of FN for renaming by update_ssa. */
2906
2907 void
2908 mark_virtual_operands_for_renaming (struct function *fn)
2909 {
2910 fn->gimple_df->ssa_renaming_needed = 1;
2911 fn->gimple_df->rename_vops = 1;
2912 }
2913
2914 /* Replace all uses of NAME by underlying variable and mark it
2915 for renaming. This assumes the defining statement of NAME is
2916 going to be removed. */
2917
2918 void
2919 mark_virtual_operand_for_renaming (tree name)
2920 {
2921 tree name_var = SSA_NAME_VAR (name);
2922 bool used = false;
2923 imm_use_iterator iter;
2924 use_operand_p use_p;
2925 gimple stmt;
2926
2927 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2928 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2929 {
2930 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2931 SET_USE (use_p, name_var);
2932 used = true;
2933 }
2934 if (used)
2935 mark_virtual_operands_for_renaming (cfun);
2936 }
2937
2938 /* Replace all uses of the virtual PHI result by its underlying variable
2939 and mark it for renaming. This assumes the PHI node is going to be
2940 removed. */
2941
2942 void
2943 mark_virtual_phi_result_for_renaming (gphi *phi)
2944 {
2945 if (dump_file && (dump_flags & TDF_DETAILS))
2946 {
2947 fprintf (dump_file, "Marking result for renaming : ");
2948 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2949 fprintf (dump_file, "\n");
2950 }
2951
2952 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2953 }
2954
2955 /* Return true if there is any work to be done by update_ssa
2956 for function FN. */
2957
2958 bool
2959 need_ssa_update_p (struct function *fn)
2960 {
2961 gcc_assert (fn != NULL);
2962 return (update_ssa_initialized_fn == fn
2963 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2964 }
2965
2966 /* Return true if name N has been registered in the replacement table. */
2967
2968 bool
2969 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2970 {
2971 if (!update_ssa_initialized_fn)
2972 return false;
2973
2974 gcc_assert (update_ssa_initialized_fn == cfun);
2975
2976 return is_new_name (n) || is_old_name (n);
2977 }
2978
2979
2980 /* Mark NAME to be released after update_ssa has finished. */
2981
2982 void
2983 release_ssa_name_after_update_ssa (tree name)
2984 {
2985 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2986
2987 if (names_to_release == NULL)
2988 names_to_release = BITMAP_ALLOC (NULL);
2989
2990 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2991 }
2992
2993
2994 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2995 frontier information. BLOCKS is the set of blocks to be updated.
2996
2997 This is slightly different than the regular PHI insertion
2998 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2999 real names (i.e., GIMPLE registers) are inserted:
3000
3001 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
3002 nodes inside the region affected by the block that defines VAR
3003 and the blocks that define all its replacements. All these
3004 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
3005
3006 First, we compute the entry point to the region (ENTRY). This is
3007 given by the nearest common dominator to all the definition
3008 blocks. When computing the iterated dominance frontier (IDF), any
3009 block not strictly dominated by ENTRY is ignored.
3010
3011 We then call the standard PHI insertion algorithm with the pruned
3012 IDF.
3013
3014 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3015 names is not pruned. PHI nodes are inserted at every IDF block. */
3016
3017 static void
3018 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3019 unsigned update_flags)
3020 {
3021 basic_block entry;
3022 struct def_blocks_d *db;
3023 bitmap idf, pruned_idf;
3024 bitmap_iterator bi;
3025 unsigned i;
3026
3027 if (TREE_CODE (var) == SSA_NAME)
3028 gcc_checking_assert (is_old_name (var));
3029 else
3030 gcc_checking_assert (marked_for_renaming (var));
3031
3032 /* Get all the definition sites for VAR. */
3033 db = find_def_blocks_for (var);
3034
3035 /* No need to do anything if there were no definitions to VAR. */
3036 if (db == NULL || bitmap_empty_p (db->def_blocks))
3037 return;
3038
3039 /* Compute the initial iterated dominance frontier. */
3040 idf = compute_idf (db->def_blocks, dfs);
3041 pruned_idf = BITMAP_ALLOC (NULL);
3042
3043 if (TREE_CODE (var) == SSA_NAME)
3044 {
3045 if (update_flags == TODO_update_ssa)
3046 {
3047 /* If doing regular SSA updates for GIMPLE registers, we are
3048 only interested in IDF blocks dominated by the nearest
3049 common dominator of all the definition blocks. */
3050 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3051 db->def_blocks);
3052 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3053 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3054 if (BASIC_BLOCK_FOR_FN (cfun, i) != entry
3055 && dominated_by_p (CDI_DOMINATORS,
3056 BASIC_BLOCK_FOR_FN (cfun, i), entry))
3057 bitmap_set_bit (pruned_idf, i);
3058 }
3059 else
3060 {
3061 /* Otherwise, do not prune the IDF for VAR. */
3062 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3063 bitmap_copy (pruned_idf, idf);
3064 }
3065 }
3066 else
3067 {
3068 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3069 for the first time, so we need to compute the full IDF for
3070 it. */
3071 bitmap_copy (pruned_idf, idf);
3072 }
3073
3074 if (!bitmap_empty_p (pruned_idf))
3075 {
3076 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3077 are included in the region to be updated. The feeding blocks
3078 are important to guarantee that the PHI arguments are renamed
3079 properly. */
3080
3081 /* FIXME, this is not needed if we are updating symbols. We are
3082 already starting at the ENTRY block anyway. */
3083 bitmap_ior_into (blocks, pruned_idf);
3084 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3085 {
3086 edge e;
3087 edge_iterator ei;
3088 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
3089
3090 FOR_EACH_EDGE (e, ei, bb->preds)
3091 if (e->src->index >= 0)
3092 bitmap_set_bit (blocks, e->src->index);
3093 }
3094
3095 insert_phi_nodes_for (var, pruned_idf, true);
3096 }
3097
3098 BITMAP_FREE (pruned_idf);
3099 BITMAP_FREE (idf);
3100 }
3101
3102 /* Sort symbols_to_rename after their DECL_UID. */
3103
3104 static int
3105 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3106 {
3107 const_tree syma = *(const const_tree *)a;
3108 const_tree symb = *(const const_tree *)b;
3109 if (DECL_UID (syma) == DECL_UID (symb))
3110 return 0;
3111 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3112 }
3113
3114 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3115 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3116
3117 1- The names in OLD_SSA_NAMES dominated by the definitions of
3118 NEW_SSA_NAMES are all re-written to be reached by the
3119 appropriate definition from NEW_SSA_NAMES.
3120
3121 2- If needed, new PHI nodes are added to the iterated dominance
3122 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3123
3124 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3125 calling create_new_def_for to create new defs for names that the
3126 caller wants to replace.
3127
3128 The caller cretaes the new names to be inserted and the names that need
3129 to be replaced by calling create_new_def_for for each old definition
3130 to be replaced. Note that the function assumes that the
3131 new defining statement has already been inserted in the IL.
3132
3133 For instance, given the following code:
3134
3135 1 L0:
3136 2 x_1 = PHI (0, x_5)
3137 3 if (x_1 < 10)
3138 4 if (x_1 > 7)
3139 5 y_2 = 0
3140 6 else
3141 7 y_3 = x_1 + x_7
3142 8 endif
3143 9 x_5 = x_1 + 1
3144 10 goto L0;
3145 11 endif
3146
3147 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3148
3149 1 L0:
3150 2 x_1 = PHI (0, x_5)
3151 3 if (x_1 < 10)
3152 4 x_10 = ...
3153 5 if (x_1 > 7)
3154 6 y_2 = 0
3155 7 else
3156 8 x_11 = ...
3157 9 y_3 = x_1 + x_7
3158 10 endif
3159 11 x_5 = x_1 + 1
3160 12 goto L0;
3161 13 endif
3162
3163 We want to replace all the uses of x_1 with the new definitions of
3164 x_10 and x_11. Note that the only uses that should be replaced are
3165 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3166 *not* be replaced (this is why we cannot just mark symbol 'x' for
3167 renaming).
3168
3169 Additionally, we may need to insert a PHI node at line 11 because
3170 that is a merge point for x_10 and x_11. So the use of x_1 at line
3171 11 will be replaced with the new PHI node. The insertion of PHI
3172 nodes is optional. They are not strictly necessary to preserve the
3173 SSA form, and depending on what the caller inserted, they may not
3174 even be useful for the optimizers. UPDATE_FLAGS controls various
3175 aspects of how update_ssa operates, see the documentation for
3176 TODO_update_ssa*. */
3177
3178 void
3179 update_ssa (unsigned update_flags)
3180 {
3181 basic_block bb, start_bb;
3182 bitmap_iterator bi;
3183 unsigned i = 0;
3184 bool insert_phi_p;
3185 sbitmap_iterator sbi;
3186 tree sym;
3187
3188 /* Only one update flag should be set. */
3189 gcc_assert (update_flags == TODO_update_ssa
3190 || update_flags == TODO_update_ssa_no_phi
3191 || update_flags == TODO_update_ssa_full_phi
3192 || update_flags == TODO_update_ssa_only_virtuals);
3193
3194 if (!need_ssa_update_p (cfun))
3195 return;
3196
3197 #ifdef ENABLE_CHECKING
3198 timevar_push (TV_TREE_STMT_VERIFY);
3199
3200 bool err = false;
3201
3202 FOR_EACH_BB_FN (bb, cfun)
3203 {
3204 gimple_stmt_iterator gsi;
3205 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3206 {
3207 gimple stmt = gsi_stmt (gsi);
3208
3209 ssa_op_iter i;
3210 use_operand_p use_p;
3211 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
3212 {
3213 tree use = USE_FROM_PTR (use_p);
3214 if (TREE_CODE (use) != SSA_NAME)
3215 continue;
3216
3217 if (SSA_NAME_IN_FREE_LIST (use))
3218 {
3219 error ("statement uses released SSA name:");
3220 debug_gimple_stmt (stmt);
3221 fprintf (stderr, "The use of ");
3222 print_generic_expr (stderr, use, 0);
3223 fprintf (stderr," should have been replaced\n");
3224 err = true;
3225 }
3226 }
3227 }
3228 }
3229
3230 if (err)
3231 internal_error ("cannot update SSA form");
3232
3233 timevar_pop (TV_TREE_STMT_VERIFY);
3234 #endif
3235
3236 timevar_push (TV_TREE_SSA_INCREMENTAL);
3237
3238 if (dump_file && (dump_flags & TDF_DETAILS))
3239 fprintf (dump_file, "\nUpdating SSA:\n");
3240
3241 if (!update_ssa_initialized_fn)
3242 init_update_ssa (cfun);
3243 else if (update_flags == TODO_update_ssa_only_virtuals)
3244 {
3245 /* If we only need to update virtuals, remove all the mappings for
3246 real names before proceeding. The caller is responsible for
3247 having dealt with the name mappings before calling update_ssa. */
3248 bitmap_clear (old_ssa_names);
3249 bitmap_clear (new_ssa_names);
3250 }
3251
3252 gcc_assert (update_ssa_initialized_fn == cfun);
3253
3254 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3255 if (!phis_to_rewrite.exists ())
3256 phis_to_rewrite.create (last_basic_block_for_fn (cfun) + 1);
3257 blocks_to_update = BITMAP_ALLOC (NULL);
3258
3259 /* Ensure that the dominance information is up-to-date. */
3260 calculate_dominance_info (CDI_DOMINATORS);
3261
3262 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3263
3264 /* If there are names defined in the replacement table, prepare
3265 definition and use sites for all the names in NEW_SSA_NAMES and
3266 OLD_SSA_NAMES. */
3267 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3268 {
3269 prepare_names_to_update (insert_phi_p);
3270
3271 /* If all the names in NEW_SSA_NAMES had been marked for
3272 removal, and there are no symbols to rename, then there's
3273 nothing else to do. */
3274 if (bitmap_first_set_bit (new_ssa_names) < 0
3275 && !cfun->gimple_df->ssa_renaming_needed)
3276 goto done;
3277 }
3278
3279 /* Next, determine the block at which to start the renaming process. */
3280 if (cfun->gimple_df->ssa_renaming_needed)
3281 {
3282 /* If we rename bare symbols initialize the mapping to
3283 auxiliar info we need to keep track of. */
3284 var_infos = new hash_table<var_info_hasher> (47);
3285
3286 /* If we have to rename some symbols from scratch, we need to
3287 start the process at the root of the CFG. FIXME, it should
3288 be possible to determine the nearest block that had a
3289 definition for each of the symbols that are marked for
3290 updating. For now this seems more work than it's worth. */
3291 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3292
3293 /* Traverse the CFG looking for existing definitions and uses of
3294 symbols in SSA operands. Mark interesting blocks and
3295 statements and set local live-in information for the PHI
3296 placement heuristics. */
3297 prepare_block_for_update (start_bb, insert_phi_p);
3298
3299 #ifdef ENABLE_CHECKING
3300 for (i = 1; i < num_ssa_names; ++i)
3301 {
3302 tree name = ssa_name (i);
3303 if (!name
3304 || virtual_operand_p (name))
3305 continue;
3306
3307 /* For all but virtual operands, which do not have SSA names
3308 with overlapping life ranges, ensure that symbols marked
3309 for renaming do not have existing SSA names associated with
3310 them as we do not re-write them out-of-SSA before going
3311 into SSA for the remaining symbol uses. */
3312 if (marked_for_renaming (SSA_NAME_VAR (name)))
3313 {
3314 fprintf (stderr, "Existing SSA name for symbol marked for "
3315 "renaming: ");
3316 print_generic_expr (stderr, name, TDF_SLIM);
3317 fprintf (stderr, "\n");
3318 internal_error ("SSA corruption");
3319 }
3320 }
3321 #endif
3322 }
3323 else
3324 {
3325 /* Otherwise, the entry block to the region is the nearest
3326 common dominator for the blocks in BLOCKS. */
3327 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3328 blocks_to_update);
3329 }
3330
3331 /* If requested, insert PHI nodes at the iterated dominance frontier
3332 of every block, creating new definitions for names in OLD_SSA_NAMES
3333 and for symbols found. */
3334 if (insert_phi_p)
3335 {
3336 bitmap_head *dfs;
3337
3338 /* If the caller requested PHI nodes to be added, compute
3339 dominance frontiers. */
3340 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
3341 FOR_EACH_BB_FN (bb, cfun)
3342 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3343 compute_dominance_frontiers (dfs);
3344
3345 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3346 {
3347 sbitmap_iterator sbi;
3348
3349 /* insert_update_phi_nodes_for will call add_new_name_mapping
3350 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3351 will grow while we are traversing it (but it will not
3352 gain any new members). Copy OLD_SSA_NAMES to a temporary
3353 for traversal. */
3354 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3355 bitmap_copy (tmp, old_ssa_names);
3356 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3357 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3358 update_flags);
3359 sbitmap_free (tmp);
3360 }
3361
3362 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3363 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3364 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3365 update_flags);
3366
3367 FOR_EACH_BB_FN (bb, cfun)
3368 bitmap_clear (&dfs[bb->index]);
3369 free (dfs);
3370
3371 /* Insertion of PHI nodes may have added blocks to the region.
3372 We need to re-compute START_BB to include the newly added
3373 blocks. */
3374 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3375 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3376 blocks_to_update);
3377 }
3378
3379 /* Reset the current definition for name and symbol before renaming
3380 the sub-graph. */
3381 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3382 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3383
3384 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3385 get_var_info (sym)->info.current_def = NULL_TREE;
3386
3387 /* Now start the renaming process at START_BB. */
3388 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3389 bitmap_clear (interesting_blocks);
3390 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3391 bitmap_set_bit (interesting_blocks, i);
3392
3393 rewrite_blocks (start_bb, REWRITE_UPDATE);
3394
3395 sbitmap_free (interesting_blocks);
3396
3397 /* Debugging dumps. */
3398 if (dump_file)
3399 {
3400 int c;
3401 unsigned i;
3402
3403 dump_update_ssa (dump_file);
3404
3405 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3406 start_bb->index);
3407
3408 c = 0;
3409 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3410 c++;
3411 fprintf (dump_file, "Number of blocks in CFG: %d\n",
3412 last_basic_block_for_fn (cfun));
3413 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3414 c, PERCENT (c, last_basic_block_for_fn (cfun)));
3415
3416 if (dump_flags & TDF_DETAILS)
3417 {
3418 fprintf (dump_file, "Affected blocks:");
3419 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3420 fprintf (dump_file, " %u", i);
3421 fprintf (dump_file, "\n");
3422 }
3423
3424 fprintf (dump_file, "\n\n");
3425 }
3426
3427 /* Free allocated memory. */
3428 done:
3429 delete_update_ssa ();
3430
3431 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3432 }