re PR middle-end/54146 (Very slow compile with attribute((flatten)))
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "gimple-pretty-print.h"
33 #include "bitmap.h"
34 #include "tree-flow.h"
35 #include "gimple.h"
36 #include "tree-inline.h"
37 #include "hashtab.h"
38 #include "tree-pass.h"
39 #include "cfgloop.h"
40 #include "domwalk.h"
41 #include "params.h"
42 #include "vecprim.h"
43 #include "diagnostic-core.h"
44
45
46 /* This file builds the SSA form for a function as described in:
47 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
48 Computing Static Single Assignment Form and the Control Dependence
49 Graph. ACM Transactions on Programming Languages and Systems,
50 13(4):451-490, October 1991. */
51
52 /* Structure to map a variable VAR to the set of blocks that contain
53 definitions for VAR. */
54 struct def_blocks_d
55 {
56 /* Blocks that contain definitions of VAR. Bit I will be set if the
57 Ith block contains a definition of VAR. */
58 bitmap def_blocks;
59
60 /* Blocks that contain a PHI node for VAR. */
61 bitmap phi_blocks;
62
63 /* Blocks where VAR is live-on-entry. Similar semantics as
64 DEF_BLOCKS. */
65 bitmap livein_blocks;
66 };
67
68 typedef struct def_blocks_d *def_blocks_p;
69
70
71 /* Stack of trees used to restore the global currdefs to its original
72 state after completing rewriting of a block and its dominator
73 children. Its elements have the following properties:
74
75 - An SSA_NAME (N) indicates that the current definition of the
76 underlying variable should be set to the given SSA_NAME. If the
77 symbol associated with the SSA_NAME is not a GIMPLE register, the
78 next slot in the stack must be a _DECL node (SYM). In this case,
79 the name N in the previous slot is the current reaching
80 definition for SYM.
81
82 - A _DECL node indicates that the underlying variable has no
83 current definition.
84
85 - A NULL node at the top entry is used to mark the last slot
86 associated with the current block. */
87 static VEC(tree,heap) *block_defs_stack;
88
89
90 /* Set of existing SSA names being replaced by update_ssa. */
91 static sbitmap old_ssa_names;
92
93 /* Set of new SSA names being added by update_ssa. Note that both
94 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
95 the operations done on them are presence tests. */
96 static sbitmap new_ssa_names;
97
98 sbitmap interesting_blocks;
99
100 /* Set of SSA names that have been marked to be released after they
101 were registered in the replacement table. They will be finally
102 released after we finish updating the SSA web. */
103 static bitmap names_to_release;
104
105 /* VEC of VECs of PHIs to rewrite in a basic block. Element I corresponds
106 the to basic block with index I. Allocated once per compilation, *not*
107 released between different functions. */
108 static VEC(gimple_vec, heap) *phis_to_rewrite;
109
110 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
111 static bitmap blocks_with_phis_to_rewrite;
112
113 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
114 to grow as the callers to register_new_name_mapping will typically
115 create new names on the fly. FIXME. Currently set to 1/3 to avoid
116 frequent reallocations but still need to find a reasonable growth
117 strategy. */
118 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
119
120
121 /* The function the SSA updating data structures have been initialized for.
122 NULL if they need to be initialized by register_new_name_mapping. */
123 static struct function *update_ssa_initialized_fn = NULL;
124
125 /* Global data to attach to the main dominator walk structure. */
126 struct mark_def_sites_global_data
127 {
128 /* This bitmap contains the variables which are set before they
129 are used in a basic block. */
130 bitmap kills;
131 };
132
133 /* Information stored for both SSA names and decls. */
134 struct common_info_d
135 {
136 /* This field indicates whether or not the variable may need PHI nodes.
137 See the enum's definition for more detailed information about the
138 states. */
139 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
140
141 /* The current reaching definition replacing this var. */
142 tree current_def;
143
144 /* Definitions for this var. */
145 struct def_blocks_d def_blocks;
146 };
147
148 /* The information associated with decls and SSA names. */
149 typedef struct common_info_d *common_info_p;
150
151 /* Information stored for decls. */
152 struct var_info_d
153 {
154 /* The variable. */
155 tree var;
156
157 /* Information stored for both SSA names and decls. */
158 struct common_info_d info;
159 };
160
161 /* The information associated with decls. */
162 typedef struct var_info_d *var_info_p;
163
164 DEF_VEC_P(var_info_p);
165 DEF_VEC_ALLOC_P(var_info_p,heap);
166
167 /* Each entry in VAR_INFOS contains an element of type STRUCT
168 VAR_INFO_D. */
169 static htab_t var_infos;
170
171
172 /* Information stored for SSA names. */
173 struct ssa_name_info
174 {
175 /* Age of this record (so that info_for_ssa_name table can be cleared
176 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
177 are assumed to be null. */
178 unsigned age;
179
180 /* Replacement mappings, allocated from update_ssa_obstack. */
181 bitmap repl_set;
182
183 /* Information stored for both SSA names and decls. */
184 struct common_info_d info;
185 };
186
187 /* The information associated with names. */
188 typedef struct ssa_name_info *ssa_name_info_p;
189 DEF_VEC_P (ssa_name_info_p);
190 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
191
192 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
193 static unsigned current_info_for_ssa_name_age;
194
195 static bitmap_obstack update_ssa_obstack;
196
197 /* The set of blocks affected by update_ssa. */
198 static bitmap blocks_to_update;
199
200 /* The main entry point to the SSA renamer (rewrite_blocks) may be
201 called several times to do different, but related, tasks.
202 Initially, we need it to rename the whole program into SSA form.
203 At other times, we may need it to only rename into SSA newly
204 exposed symbols. Finally, we can also call it to incrementally fix
205 an already built SSA web. */
206 enum rewrite_mode {
207 /* Convert the whole function into SSA form. */
208 REWRITE_ALL,
209
210 /* Incrementally update the SSA web by replacing existing SSA
211 names with new ones. See update_ssa for details. */
212 REWRITE_UPDATE
213 };
214
215
216
217
218 /* Prototypes for debugging functions. */
219 extern void dump_tree_ssa (FILE *);
220 extern void debug_tree_ssa (void);
221 extern void debug_def_blocks (void);
222 extern void dump_tree_ssa_stats (FILE *);
223 extern void debug_tree_ssa_stats (void);
224 extern void dump_update_ssa (FILE *);
225 extern void debug_update_ssa (void);
226 extern void dump_names_replaced_by (FILE *, tree);
227 extern void debug_names_replaced_by (tree);
228 extern void dump_var_infos (FILE *);
229 extern void debug_var_infos (void);
230 extern void dump_defs_stack (FILE *, int);
231 extern void debug_defs_stack (int);
232 extern void dump_currdefs (FILE *);
233 extern void debug_currdefs (void);
234
235
236 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
237 static bitmap symbols_to_rename_set;
238 static VEC(tree,heap) *symbols_to_rename;
239
240 /* Mark SYM for renaming. */
241
242 static void
243 mark_for_renaming (tree sym)
244 {
245 if (!symbols_to_rename_set)
246 symbols_to_rename_set = BITMAP_ALLOC (NULL);
247 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
248 VEC_safe_push (tree, heap, symbols_to_rename, sym);
249 }
250
251 /* Return true if SYM is marked for renaming. */
252
253 static bool
254 marked_for_renaming (tree sym)
255 {
256 if (!symbols_to_rename_set || sym == NULL_TREE)
257 return false;
258 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
259 }
260
261
262 /* Return true if STMT needs to be rewritten. When renaming a subset
263 of the variables, not all statements will be processed. This is
264 decided in mark_def_sites. */
265
266 static inline bool
267 rewrite_uses_p (gimple stmt)
268 {
269 return gimple_visited_p (stmt);
270 }
271
272
273 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
274
275 static inline void
276 set_rewrite_uses (gimple stmt, bool rewrite_p)
277 {
278 gimple_set_visited (stmt, rewrite_p);
279 }
280
281
282 /* Return true if the DEFs created by statement STMT should be
283 registered when marking new definition sites. This is slightly
284 different than rewrite_uses_p: it's used by update_ssa to
285 distinguish statements that need to have both uses and defs
286 processed from those that only need to have their defs processed.
287 Statements that define new SSA names only need to have their defs
288 registered, but they don't need to have their uses renamed. */
289
290 static inline bool
291 register_defs_p (gimple stmt)
292 {
293 return gimple_plf (stmt, GF_PLF_1) != 0;
294 }
295
296
297 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
298
299 static inline void
300 set_register_defs (gimple stmt, bool register_defs_p)
301 {
302 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
303 }
304
305
306 /* Get the information associated with NAME. */
307
308 static inline ssa_name_info_p
309 get_ssa_name_ann (tree name)
310 {
311 unsigned ver = SSA_NAME_VERSION (name);
312 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
313 struct ssa_name_info *info;
314
315 /* Re-allocate the vector at most once per update/into-SSA. */
316 if (ver >= len)
317 VEC_safe_grow_cleared (ssa_name_info_p, heap,
318 info_for_ssa_name, num_ssa_names);
319
320 /* But allocate infos lazily. */
321 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
322 if (!info)
323 {
324 info = XCNEW (struct ssa_name_info);
325 info->age = current_info_for_ssa_name_age;
326 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
327 VEC_replace (ssa_name_info_p, info_for_ssa_name, ver, info);
328 }
329
330 if (info->age < current_info_for_ssa_name_age)
331 {
332 info->age = current_info_for_ssa_name_age;
333 info->repl_set = NULL;
334 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
335 info->info.current_def = NULL_TREE;
336 info->info.def_blocks.def_blocks = NULL;
337 info->info.def_blocks.phi_blocks = NULL;
338 info->info.def_blocks.livein_blocks = NULL;
339 }
340
341 return info;
342 }
343
344 /* Return and allocate the auxiliar information for DECL. */
345
346 static inline var_info_p
347 get_var_info (tree decl)
348 {
349 struct var_info_d vi;
350 void **slot;
351 vi.var = decl;
352 slot = htab_find_slot_with_hash (var_infos, &vi, DECL_UID (decl), INSERT);
353 if (*slot == NULL)
354 {
355 var_info_p v = XCNEW (struct var_info_d);
356 v->var = decl;
357 *slot = (void *)v;
358 return v;
359 }
360 return (var_info_p) *slot;
361 }
362
363
364 /* Clears info for SSA names. */
365
366 static void
367 clear_ssa_name_info (void)
368 {
369 current_info_for_ssa_name_age++;
370
371 /* If current_info_for_ssa_name_age wraps we use stale information.
372 Asser that this does not happen. */
373 gcc_assert (current_info_for_ssa_name_age != 0);
374 }
375
376
377 /* Get access to the auxiliar information stored per SSA name or decl. */
378
379 static inline common_info_p
380 get_common_info (tree var)
381 {
382 if (TREE_CODE (var) == SSA_NAME)
383 return &get_ssa_name_ann (var)->info;
384 else
385 return &get_var_info (var)->info;
386 }
387
388
389 /* Return the current definition for VAR. */
390
391 tree
392 get_current_def (tree var)
393 {
394 return get_common_info (var)->current_def;
395 }
396
397
398 /* Sets current definition of VAR to DEF. */
399
400 void
401 set_current_def (tree var, tree def)
402 {
403 get_common_info (var)->current_def = def;
404 }
405
406 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
407 all statements in basic block BB. */
408
409 static void
410 initialize_flags_in_bb (basic_block bb)
411 {
412 gimple stmt;
413 gimple_stmt_iterator gsi;
414
415 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
416 {
417 gimple phi = gsi_stmt (gsi);
418 set_rewrite_uses (phi, false);
419 set_register_defs (phi, false);
420 }
421
422 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
423 {
424 stmt = gsi_stmt (gsi);
425
426 /* We are going to use the operand cache API, such as
427 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
428 cache for each statement should be up-to-date. */
429 gcc_assert (!gimple_modified_p (stmt));
430 set_rewrite_uses (stmt, false);
431 set_register_defs (stmt, false);
432 }
433 }
434
435 /* Mark block BB as interesting for update_ssa. */
436
437 static void
438 mark_block_for_update (basic_block bb)
439 {
440 gcc_assert (blocks_to_update != NULL);
441 if (!bitmap_set_bit (blocks_to_update, bb->index))
442 return;
443 initialize_flags_in_bb (bb);
444 }
445
446 /* Return the set of blocks where variable VAR is defined and the blocks
447 where VAR is live on entry (livein). If no entry is found in
448 DEF_BLOCKS, a new one is created and returned. */
449
450 static inline struct def_blocks_d *
451 get_def_blocks_for (common_info_p info)
452 {
453 struct def_blocks_d *db_p = &info->def_blocks;
454 if (!db_p->def_blocks)
455 {
456 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
457 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
458 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
459 }
460
461 return db_p;
462 }
463
464
465 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
466 VAR is defined by a PHI node. */
467
468 static void
469 set_def_block (tree var, basic_block bb, bool phi_p)
470 {
471 struct def_blocks_d *db_p;
472 common_info_p info;
473
474 info = get_common_info (var);
475 db_p = get_def_blocks_for (info);
476
477 /* Set the bit corresponding to the block where VAR is defined. */
478 bitmap_set_bit (db_p->def_blocks, bb->index);
479 if (phi_p)
480 bitmap_set_bit (db_p->phi_blocks, bb->index);
481
482 /* Keep track of whether or not we may need to insert PHI nodes.
483
484 If we are in the UNKNOWN state, then this is the first definition
485 of VAR. Additionally, we have not seen any uses of VAR yet, so
486 we do not need a PHI node for this variable at this time (i.e.,
487 transition to NEED_PHI_STATE_NO).
488
489 If we are in any other state, then we either have multiple definitions
490 of this variable occurring in different blocks or we saw a use of the
491 variable which was not dominated by the block containing the
492 definition(s). In this case we may need a PHI node, so enter
493 state NEED_PHI_STATE_MAYBE. */
494 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
495 info->need_phi_state = NEED_PHI_STATE_NO;
496 else
497 info->need_phi_state = NEED_PHI_STATE_MAYBE;
498 }
499
500
501 /* Mark block BB as having VAR live at the entry to BB. */
502
503 static void
504 set_livein_block (tree var, basic_block bb)
505 {
506 common_info_p info;
507 struct def_blocks_d *db_p;
508
509 info = get_common_info (var);
510 db_p = get_def_blocks_for (info);
511
512 /* Set the bit corresponding to the block where VAR is live in. */
513 bitmap_set_bit (db_p->livein_blocks, bb->index);
514
515 /* Keep track of whether or not we may need to insert PHI nodes.
516
517 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
518 by the single block containing the definition(s) of this variable. If
519 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
520 NEED_PHI_STATE_MAYBE. */
521 if (info->need_phi_state == NEED_PHI_STATE_NO)
522 {
523 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
524
525 if (def_block_index == -1
526 || ! dominated_by_p (CDI_DOMINATORS, bb,
527 BASIC_BLOCK (def_block_index)))
528 info->need_phi_state = NEED_PHI_STATE_MAYBE;
529 }
530 else
531 info->need_phi_state = NEED_PHI_STATE_MAYBE;
532 }
533
534
535 /* Return true if NAME is in OLD_SSA_NAMES. */
536
537 static inline bool
538 is_old_name (tree name)
539 {
540 unsigned ver = SSA_NAME_VERSION (name);
541 if (!new_ssa_names)
542 return false;
543 return (ver < SBITMAP_SIZE (new_ssa_names)
544 && TEST_BIT (old_ssa_names, ver));
545 }
546
547
548 /* Return true if NAME is in NEW_SSA_NAMES. */
549
550 static inline bool
551 is_new_name (tree name)
552 {
553 unsigned ver = SSA_NAME_VERSION (name);
554 if (!new_ssa_names)
555 return false;
556 return (ver < SBITMAP_SIZE (new_ssa_names)
557 && TEST_BIT (new_ssa_names, ver));
558 }
559
560
561 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
562
563 static inline bitmap
564 names_replaced_by (tree new_tree)
565 {
566 return get_ssa_name_ann (new_tree)->repl_set;
567 }
568
569
570 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
571
572 static inline void
573 add_to_repl_tbl (tree new_tree, tree old)
574 {
575 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
576 if (!*set)
577 *set = BITMAP_ALLOC (&update_ssa_obstack);
578 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
579 }
580
581
582 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
583 represents the set of names O_1 ... O_j replaced by N_i. This is
584 used by update_ssa and its helpers to introduce new SSA names in an
585 already formed SSA web. */
586
587 static void
588 add_new_name_mapping (tree new_tree, tree old)
589 {
590 timevar_push (TV_TREE_SSA_INCREMENTAL);
591
592 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
593 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
594
595 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
596 caller may have created new names since the set was created. */
597 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
598 {
599 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
600 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
601 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
602 }
603
604 /* Update the REPL_TBL table. */
605 add_to_repl_tbl (new_tree, old);
606
607 /* If OLD had already been registered as a new name, then all the
608 names that OLD replaces should also be replaced by NEW_TREE. */
609 if (is_new_name (old))
610 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
611
612 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
613 respectively. */
614 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
615 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
616
617 timevar_pop (TV_TREE_SSA_INCREMENTAL);
618 }
619
620
621 /* Call back for walk_dominator_tree used to collect definition sites
622 for every variable in the function. For every statement S in block
623 BB:
624
625 1- Variables defined by S in the DEFS of S are marked in the bitmap
626 KILLS.
627
628 2- If S uses a variable VAR and there is no preceding kill of VAR,
629 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
630
631 This information is used to determine which variables are live
632 across block boundaries to reduce the number of PHI nodes
633 we create. */
634
635 static void
636 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
637 {
638 tree def;
639 use_operand_p use_p;
640 ssa_op_iter iter;
641
642 /* Since this is the first time that we rewrite the program into SSA
643 form, force an operand scan on every statement. */
644 update_stmt (stmt);
645
646 gcc_assert (blocks_to_update == NULL);
647 set_register_defs (stmt, false);
648 set_rewrite_uses (stmt, false);
649
650 if (is_gimple_debug (stmt))
651 {
652 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
653 {
654 tree sym = USE_FROM_PTR (use_p);
655 gcc_assert (DECL_P (sym));
656 set_rewrite_uses (stmt, true);
657 }
658 if (rewrite_uses_p (stmt))
659 SET_BIT (interesting_blocks, bb->index);
660 return;
661 }
662
663 /* If a variable is used before being set, then the variable is live
664 across a block boundary, so mark it live-on-entry to BB. */
665 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
666 {
667 tree sym = USE_FROM_PTR (use_p);
668 gcc_assert (DECL_P (sym));
669 if (!bitmap_bit_p (kills, DECL_UID (sym)))
670 set_livein_block (sym, bb);
671 set_rewrite_uses (stmt, true);
672 }
673
674 /* Now process the defs. Mark BB as the definition block and add
675 each def to the set of killed symbols. */
676 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
677 {
678 gcc_assert (DECL_P (def));
679 set_def_block (def, bb, false);
680 bitmap_set_bit (kills, DECL_UID (def));
681 set_register_defs (stmt, true);
682 }
683
684 /* If we found the statement interesting then also mark the block BB
685 as interesting. */
686 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
687 SET_BIT (interesting_blocks, bb->index);
688 }
689
690 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
691 in the dfs numbering of the dominance tree. */
692
693 struct dom_dfsnum
694 {
695 /* Basic block whose index this entry corresponds to. */
696 unsigned bb_index;
697
698 /* The dfs number of this node. */
699 unsigned dfs_num;
700 };
701
702 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
703 for qsort. */
704
705 static int
706 cmp_dfsnum (const void *a, const void *b)
707 {
708 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
709 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
710
711 return (int) da->dfs_num - (int) db->dfs_num;
712 }
713
714 /* Among the intervals starting at the N points specified in DEFS, find
715 the one that contains S, and return its bb_index. */
716
717 static unsigned
718 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
719 {
720 unsigned f = 0, t = n, m;
721
722 while (t > f + 1)
723 {
724 m = (f + t) / 2;
725 if (defs[m].dfs_num <= s)
726 f = m;
727 else
728 t = m;
729 }
730
731 return defs[f].bb_index;
732 }
733
734 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
735 KILLS is a bitmap of blocks where the value is defined before any use. */
736
737 static void
738 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
739 {
740 VEC(int, heap) *worklist;
741 bitmap_iterator bi;
742 unsigned i, b, p, u, top;
743 bitmap live_phis;
744 basic_block def_bb, use_bb;
745 edge e;
746 edge_iterator ei;
747 bitmap to_remove;
748 struct dom_dfsnum *defs;
749 unsigned n_defs, adef;
750
751 if (bitmap_empty_p (uses))
752 {
753 bitmap_clear (phis);
754 return;
755 }
756
757 /* The phi must dominate a use, or an argument of a live phi. Also, we
758 do not create any phi nodes in def blocks, unless they are also livein. */
759 to_remove = BITMAP_ALLOC (NULL);
760 bitmap_and_compl (to_remove, kills, uses);
761 bitmap_and_compl_into (phis, to_remove);
762 if (bitmap_empty_p (phis))
763 {
764 BITMAP_FREE (to_remove);
765 return;
766 }
767
768 /* We want to remove the unnecessary phi nodes, but we do not want to compute
769 liveness information, as that may be linear in the size of CFG, and if
770 there are lot of different variables to rewrite, this may lead to quadratic
771 behavior.
772
773 Instead, we basically emulate standard dce. We put all uses to worklist,
774 then for each of them find the nearest def that dominates them. If this
775 def is a phi node, we mark it live, and if it was not live before, we
776 add the predecessors of its basic block to the worklist.
777
778 To quickly locate the nearest def that dominates use, we use dfs numbering
779 of the dominance tree (that is already available in order to speed up
780 queries). For each def, we have the interval given by the dfs number on
781 entry to and on exit from the corresponding subtree in the dominance tree.
782 The nearest dominator for a given use is the smallest of these intervals
783 that contains entry and exit dfs numbers for the basic block with the use.
784 If we store the bounds for all the uses to an array and sort it, we can
785 locate the nearest dominating def in logarithmic time by binary search.*/
786 bitmap_ior (to_remove, kills, phis);
787 n_defs = bitmap_count_bits (to_remove);
788 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
789 defs[0].bb_index = 1;
790 defs[0].dfs_num = 0;
791 adef = 1;
792 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
793 {
794 def_bb = BASIC_BLOCK (i);
795 defs[adef].bb_index = i;
796 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
797 defs[adef + 1].bb_index = i;
798 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
799 adef += 2;
800 }
801 BITMAP_FREE (to_remove);
802 gcc_assert (adef == 2 * n_defs + 1);
803 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
804 gcc_assert (defs[0].bb_index == 1);
805
806 /* Now each DEFS entry contains the number of the basic block to that the
807 dfs number corresponds. Change them to the number of basic block that
808 corresponds to the interval following the dfs number. Also, for the
809 dfs_out numbers, increase the dfs number by one (so that it corresponds
810 to the start of the following interval, not to the end of the current
811 one). We use WORKLIST as a stack. */
812 worklist = VEC_alloc (int, heap, n_defs + 1);
813 VEC_quick_push (int, worklist, 1);
814 top = 1;
815 n_defs = 1;
816 for (i = 1; i < adef; i++)
817 {
818 b = defs[i].bb_index;
819 if (b == top)
820 {
821 /* This is a closing element. Interval corresponding to the top
822 of the stack after removing it follows. */
823 VEC_pop (int, worklist);
824 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
825 defs[n_defs].bb_index = top;
826 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
827 }
828 else
829 {
830 /* Opening element. Nothing to do, just push it to the stack and move
831 it to the correct position. */
832 defs[n_defs].bb_index = defs[i].bb_index;
833 defs[n_defs].dfs_num = defs[i].dfs_num;
834 VEC_quick_push (int, worklist, b);
835 top = b;
836 }
837
838 /* If this interval starts at the same point as the previous one, cancel
839 the previous one. */
840 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
841 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
842 else
843 n_defs++;
844 }
845 VEC_pop (int, worklist);
846 gcc_assert (VEC_empty (int, worklist));
847
848 /* Now process the uses. */
849 live_phis = BITMAP_ALLOC (NULL);
850 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
851 {
852 VEC_safe_push (int, heap, worklist, i);
853 }
854
855 while (!VEC_empty (int, worklist))
856 {
857 b = VEC_pop (int, worklist);
858 if (b == ENTRY_BLOCK)
859 continue;
860
861 /* If there is a phi node in USE_BB, it is made live. Otherwise,
862 find the def that dominates the immediate dominator of USE_BB
863 (the kill in USE_BB does not dominate the use). */
864 if (bitmap_bit_p (phis, b))
865 p = b;
866 else
867 {
868 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
869 p = find_dfsnum_interval (defs, n_defs,
870 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
871 if (!bitmap_bit_p (phis, p))
872 continue;
873 }
874
875 /* If the phi node is already live, there is nothing to do. */
876 if (!bitmap_set_bit (live_phis, p))
877 continue;
878
879 /* Add the new uses to the worklist. */
880 def_bb = BASIC_BLOCK (p);
881 FOR_EACH_EDGE (e, ei, def_bb->preds)
882 {
883 u = e->src->index;
884 if (bitmap_bit_p (uses, u))
885 continue;
886
887 /* In case there is a kill directly in the use block, do not record
888 the use (this is also necessary for correctness, as we assume that
889 uses dominated by a def directly in their block have been filtered
890 out before). */
891 if (bitmap_bit_p (kills, u))
892 continue;
893
894 bitmap_set_bit (uses, u);
895 VEC_safe_push (int, heap, worklist, u);
896 }
897 }
898
899 VEC_free (int, heap, worklist);
900 bitmap_copy (phis, live_phis);
901 BITMAP_FREE (live_phis);
902 free (defs);
903 }
904
905 /* Return the set of blocks where variable VAR is defined and the blocks
906 where VAR is live on entry (livein). Return NULL, if no entry is
907 found in DEF_BLOCKS. */
908
909 static inline struct def_blocks_d *
910 find_def_blocks_for (tree var)
911 {
912 def_blocks_p p = &get_common_info (var)->def_blocks;
913 if (!p->def_blocks)
914 return NULL;
915 return p;
916 }
917
918
919 /* Marks phi node PHI in basic block BB for rewrite. */
920
921 static void
922 mark_phi_for_rewrite (basic_block bb, gimple phi)
923 {
924 gimple_vec phis;
925 unsigned n, idx = bb->index;
926
927 if (rewrite_uses_p (phi))
928 return;
929
930 set_rewrite_uses (phi, true);
931
932 if (!blocks_with_phis_to_rewrite)
933 return;
934
935 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
936
937 n = (unsigned) last_basic_block + 1;
938 if (VEC_length (gimple_vec, phis_to_rewrite) < n)
939 VEC_safe_grow_cleared (gimple_vec, heap, phis_to_rewrite, n);
940
941 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
942 if (!phis)
943 phis = VEC_alloc (gimple, heap, 10);
944
945 VEC_safe_push (gimple, heap, phis, phi);
946 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
947 }
948
949 /* Insert PHI nodes for variable VAR using the iterated dominance
950 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
951 function assumes that the caller is incrementally updating the
952 existing SSA form, in which case VAR may be an SSA name instead of
953 a symbol.
954
955 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
956 PHI node for VAR. On exit, only the nodes that received a PHI node
957 for VAR will be present in PHI_INSERTION_POINTS. */
958
959 static void
960 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
961 {
962 unsigned bb_index;
963 edge e;
964 gimple phi;
965 basic_block bb;
966 bitmap_iterator bi;
967 struct def_blocks_d *def_map;
968
969 def_map = find_def_blocks_for (var);
970 gcc_assert (def_map);
971
972 /* Remove the blocks where we already have PHI nodes for VAR. */
973 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
974
975 /* Remove obviously useless phi nodes. */
976 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
977 def_map->livein_blocks);
978
979 /* And insert the PHI nodes. */
980 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
981 {
982 bb = BASIC_BLOCK (bb_index);
983 if (update_p)
984 mark_block_for_update (bb);
985
986 phi = NULL;
987
988 if (TREE_CODE (var) == SSA_NAME)
989 {
990 /* If we are rewriting SSA names, create the LHS of the PHI
991 node by duplicating VAR. This is useful in the case of
992 pointers, to also duplicate pointer attributes (alias
993 information, in particular). */
994 edge_iterator ei;
995 tree new_lhs;
996
997 gcc_assert (update_p);
998 new_lhs = duplicate_ssa_name (var, NULL);
999 phi = create_phi_node (new_lhs, bb);
1000 add_new_name_mapping (new_lhs, var);
1001
1002 /* Add VAR to every argument slot of PHI. We need VAR in
1003 every argument so that rewrite_update_phi_arguments knows
1004 which name is this PHI node replacing. If VAR is a
1005 symbol marked for renaming, this is not necessary, the
1006 renamer will use the symbol on the LHS to get its
1007 reaching definition. */
1008 FOR_EACH_EDGE (e, ei, bb->preds)
1009 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1010 }
1011 else
1012 {
1013 tree tracked_var;
1014
1015 gcc_assert (DECL_P (var));
1016 phi = create_phi_node (var, bb);
1017
1018 tracked_var = target_for_debug_bind (var);
1019 if (tracked_var)
1020 {
1021 gimple note = gimple_build_debug_bind (tracked_var,
1022 PHI_RESULT (phi),
1023 phi);
1024 gimple_stmt_iterator si = gsi_after_labels (bb);
1025 gsi_insert_before (&si, note, GSI_SAME_STMT);
1026 }
1027 }
1028
1029 /* Mark this PHI node as interesting for update_ssa. */
1030 set_register_defs (phi, true);
1031 mark_phi_for_rewrite (bb, phi);
1032 }
1033 }
1034
1035 /* Sort var_infos after DECL_UID of their var. */
1036
1037 static int
1038 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1039 {
1040 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1041 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1042 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1043 return -1;
1044 else
1045 return 1;
1046 }
1047
1048 /* Insert PHI nodes at the dominance frontier of blocks with variable
1049 definitions. DFS contains the dominance frontier information for
1050 the flowgraph. */
1051
1052 static void
1053 insert_phi_nodes (bitmap_head *dfs)
1054 {
1055 htab_iterator hi;
1056 unsigned i;
1057 var_info_p info;
1058 VEC(var_info_p,heap) *vars;
1059
1060 timevar_push (TV_TREE_INSERT_PHI_NODES);
1061
1062 vars = VEC_alloc (var_info_p, heap, htab_elements (var_infos));
1063 FOR_EACH_HTAB_ELEMENT (var_infos, info, var_info_p, hi)
1064 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1065 VEC_quick_push (var_info_p, vars, info);
1066
1067 /* Do two stages to avoid code generation differences for UID
1068 differences but no UID ordering differences. */
1069 VEC_qsort (var_info_p, vars, insert_phi_nodes_compare_var_infos);
1070
1071 FOR_EACH_VEC_ELT (var_info_p, vars, i, info)
1072 {
1073 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1074 insert_phi_nodes_for (info->var, idf, false);
1075 BITMAP_FREE (idf);
1076 }
1077
1078 VEC_free(var_info_p, heap, vars);
1079
1080 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1081 }
1082
1083
1084 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1085 register DEF (an SSA_NAME) to be a new definition for SYM. */
1086
1087 static void
1088 register_new_def (tree def, tree sym)
1089 {
1090 common_info_p info = get_common_info (sym);
1091 tree currdef;
1092
1093 /* If this variable is set in a single basic block and all uses are
1094 dominated by the set(s) in that single basic block, then there is
1095 no reason to record anything for this variable in the block local
1096 definition stacks. Doing so just wastes time and memory.
1097
1098 This is the same test to prune the set of variables which may
1099 need PHI nodes. So we just use that information since it's already
1100 computed and available for us to use. */
1101 if (info->need_phi_state == NEED_PHI_STATE_NO)
1102 {
1103 info->current_def = def;
1104 return;
1105 }
1106
1107 currdef = info->current_def;
1108
1109 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1110 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1111 in the stack so that we know which symbol is being defined by
1112 this SSA name when we unwind the stack. */
1113 if (currdef && !is_gimple_reg (sym))
1114 VEC_safe_push (tree, heap, block_defs_stack, sym);
1115
1116 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1117 stack is later used by the dominator tree callbacks to restore
1118 the reaching definitions for all the variables defined in the
1119 block after a recursive visit to all its immediately dominated
1120 blocks. If there is no current reaching definition, then just
1121 record the underlying _DECL node. */
1122 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1123
1124 /* Set the current reaching definition for SYM to be DEF. */
1125 info->current_def = def;
1126 }
1127
1128
1129 /* Perform a depth-first traversal of the dominator tree looking for
1130 variables to rename. BB is the block where to start searching.
1131 Renaming is a five step process:
1132
1133 1- Every definition made by PHI nodes at the start of the blocks is
1134 registered as the current definition for the corresponding variable.
1135
1136 2- Every statement in BB is rewritten. USE and VUSE operands are
1137 rewritten with their corresponding reaching definition. DEF and
1138 VDEF targets are registered as new definitions.
1139
1140 3- All the PHI nodes in successor blocks of BB are visited. The
1141 argument corresponding to BB is replaced with its current reaching
1142 definition.
1143
1144 4- Recursively rewrite every dominator child block of BB.
1145
1146 5- Restore (in reverse order) the current reaching definition for every
1147 new definition introduced in this block. This is done so that when
1148 we return from the recursive call, all the current reaching
1149 definitions are restored to the names that were valid in the
1150 dominator parent of BB. */
1151
1152 /* Return the current definition for variable VAR. If none is found,
1153 create a new SSA name to act as the zeroth definition for VAR. */
1154
1155 static tree
1156 get_reaching_def (tree var)
1157 {
1158 common_info_p info = get_common_info (var);
1159 tree currdef;
1160
1161 /* Lookup the current reaching definition for VAR. */
1162 currdef = info->current_def;
1163
1164 /* If there is no reaching definition for VAR, create and register a
1165 default definition for it (if needed). */
1166 if (currdef == NULL_TREE)
1167 {
1168 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1169 currdef = get_or_create_ssa_default_def (cfun, sym);
1170 }
1171
1172 /* Return the current reaching definition for VAR, or the default
1173 definition, if we had to create one. */
1174 return currdef;
1175 }
1176
1177
1178 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1179
1180 static void
1181 rewrite_debug_stmt_uses (gimple stmt)
1182 {
1183 use_operand_p use_p;
1184 ssa_op_iter iter;
1185 bool update = false;
1186
1187 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1188 {
1189 tree var = USE_FROM_PTR (use_p), def;
1190 common_info_p info = get_common_info (var);
1191 gcc_assert (DECL_P (var));
1192 def = info->current_def;
1193 if (!def)
1194 {
1195 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1196 {
1197 gimple_stmt_iterator gsi
1198 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1199 int lim;
1200 /* Search a few source bind stmts at the start of first bb to
1201 see if a DEBUG_EXPR_DECL can't be reused. */
1202 for (lim = 32;
1203 !gsi_end_p (gsi) && lim > 0;
1204 gsi_next (&gsi), lim--)
1205 {
1206 gimple gstmt = gsi_stmt (gsi);
1207 if (!gimple_debug_source_bind_p (gstmt))
1208 break;
1209 if (gimple_debug_source_bind_get_value (gstmt) == var)
1210 {
1211 def = gimple_debug_source_bind_get_var (gstmt);
1212 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1213 break;
1214 else
1215 def = NULL_TREE;
1216 }
1217 }
1218 /* If not, add a new source bind stmt. */
1219 if (def == NULL_TREE)
1220 {
1221 gimple def_temp;
1222 def = make_node (DEBUG_EXPR_DECL);
1223 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1224 DECL_ARTIFICIAL (def) = 1;
1225 TREE_TYPE (def) = TREE_TYPE (var);
1226 DECL_MODE (def) = DECL_MODE (var);
1227 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1228 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1229 }
1230 update = true;
1231 }
1232 }
1233 else
1234 {
1235 /* Check if info->current_def can be trusted. */
1236 basic_block bb = gimple_bb (stmt);
1237 basic_block def_bb
1238 = SSA_NAME_IS_DEFAULT_DEF (def)
1239 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1240
1241 /* If definition is in current bb, it is fine. */
1242 if (bb == def_bb)
1243 ;
1244 /* If definition bb doesn't dominate the current bb,
1245 it can't be used. */
1246 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1247 def = NULL;
1248 /* If there is just one definition and dominates the current
1249 bb, it is fine. */
1250 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1251 ;
1252 else
1253 {
1254 struct def_blocks_d *db_p = get_def_blocks_for (info);
1255
1256 /* If there are some non-debug uses in the current bb,
1257 it is fine. */
1258 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1259 ;
1260 /* Otherwise give up for now. */
1261 else
1262 def = NULL;
1263 }
1264 }
1265 if (def == NULL)
1266 {
1267 gimple_debug_bind_reset_value (stmt);
1268 update_stmt (stmt);
1269 return;
1270 }
1271 SET_USE (use_p, def);
1272 }
1273 if (update)
1274 update_stmt (stmt);
1275 }
1276
1277 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1278 the block with its immediate reaching definitions. Update the current
1279 definition of a variable when a new real or virtual definition is found. */
1280
1281 static void
1282 rewrite_stmt (gimple_stmt_iterator *si)
1283 {
1284 use_operand_p use_p;
1285 def_operand_p def_p;
1286 ssa_op_iter iter;
1287 gimple stmt = gsi_stmt (*si);
1288
1289 /* If mark_def_sites decided that we don't need to rewrite this
1290 statement, ignore it. */
1291 gcc_assert (blocks_to_update == NULL);
1292 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1293 return;
1294
1295 if (dump_file && (dump_flags & TDF_DETAILS))
1296 {
1297 fprintf (dump_file, "Renaming statement ");
1298 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1299 fprintf (dump_file, "\n");
1300 }
1301
1302 /* Step 1. Rewrite USES in the statement. */
1303 if (rewrite_uses_p (stmt))
1304 {
1305 if (is_gimple_debug (stmt))
1306 rewrite_debug_stmt_uses (stmt);
1307 else
1308 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1309 {
1310 tree var = USE_FROM_PTR (use_p);
1311 gcc_assert (DECL_P (var));
1312 SET_USE (use_p, get_reaching_def (var));
1313 }
1314 }
1315
1316 /* Step 2. Register the statement's DEF operands. */
1317 if (register_defs_p (stmt))
1318 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1319 {
1320 tree var = DEF_FROM_PTR (def_p);
1321 tree name;
1322 tree tracked_var;
1323
1324 gcc_assert (DECL_P (var));
1325
1326 if (gimple_clobber_p (stmt)
1327 && is_gimple_reg (var))
1328 {
1329 /* If we rewrite a DECL into SSA form then drop its
1330 clobber stmts and replace uses with a new default def. */
1331 gcc_assert (TREE_CODE (var) == VAR_DECL
1332 && !gimple_vdef (stmt));
1333 gsi_replace (si, gimple_build_nop (), true);
1334 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1335 break;
1336 }
1337
1338 name = make_ssa_name (var, stmt);
1339 SET_DEF (def_p, name);
1340 register_new_def (DEF_FROM_PTR (def_p), var);
1341
1342 tracked_var = target_for_debug_bind (var);
1343 if (tracked_var)
1344 {
1345 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1346 gsi_insert_after (si, note, GSI_SAME_STMT);
1347 }
1348 }
1349 }
1350
1351
1352 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1353 PHI nodes. For every PHI node found, add a new argument containing the
1354 current reaching definition for the variable and the edge through which
1355 that definition is reaching the PHI node. */
1356
1357 static void
1358 rewrite_add_phi_arguments (basic_block bb)
1359 {
1360 edge e;
1361 edge_iterator ei;
1362
1363 FOR_EACH_EDGE (e, ei, bb->succs)
1364 {
1365 gimple phi;
1366 gimple_stmt_iterator gsi;
1367
1368 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1369 gsi_next (&gsi))
1370 {
1371 tree currdef;
1372 gimple stmt;
1373
1374 phi = gsi_stmt (gsi);
1375 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1376 stmt = SSA_NAME_DEF_STMT (currdef);
1377 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1378 }
1379 }
1380 }
1381
1382 /* SSA Rewriting Step 1. Initialization, create a block local stack
1383 of reaching definitions for new SSA names produced in this block
1384 (BLOCK_DEFS). Register new definitions for every PHI node in the
1385 block. */
1386
1387 static void
1388 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1389 basic_block bb)
1390 {
1391 gimple_stmt_iterator gsi;
1392
1393 if (dump_file && (dump_flags & TDF_DETAILS))
1394 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1395
1396 /* Mark the unwind point for this block. */
1397 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1398
1399 /* Step 1. Register new definitions for every PHI node in the block.
1400 Conceptually, all the PHI nodes are executed in parallel and each PHI
1401 node introduces a new version for the associated variable. */
1402 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1403 {
1404 tree result = gimple_phi_result (gsi_stmt (gsi));
1405 register_new_def (result, SSA_NAME_VAR (result));
1406 }
1407
1408 /* Step 2. Rewrite every variable used in each statement in the block
1409 with its immediate reaching definitions. Update the current definition
1410 of a variable when a new real or virtual definition is found. */
1411 if (TEST_BIT (interesting_blocks, bb->index))
1412 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1413 rewrite_stmt (&gsi);
1414
1415 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1416 For every PHI node found, add a new argument containing the current
1417 reaching definition for the variable and the edge through which that
1418 definition is reaching the PHI node. */
1419 rewrite_add_phi_arguments (bb);
1420 }
1421
1422
1423
1424 /* Called after visiting all the statements in basic block BB and all
1425 of its dominator children. Restore CURRDEFS to its original value. */
1426
1427 static void
1428 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1429 basic_block bb ATTRIBUTE_UNUSED)
1430 {
1431 /* Restore CURRDEFS to its original state. */
1432 while (VEC_length (tree, block_defs_stack) > 0)
1433 {
1434 tree tmp = VEC_pop (tree, block_defs_stack);
1435 tree saved_def, var;
1436
1437 if (tmp == NULL_TREE)
1438 break;
1439
1440 if (TREE_CODE (tmp) == SSA_NAME)
1441 {
1442 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1443 current definition of its underlying variable. Note that
1444 if the SSA_NAME is not for a GIMPLE register, the symbol
1445 being defined is stored in the next slot in the stack.
1446 This mechanism is needed because an SSA name for a
1447 non-register symbol may be the definition for more than
1448 one symbol (e.g., SFTs, aliased variables, etc). */
1449 saved_def = tmp;
1450 var = SSA_NAME_VAR (saved_def);
1451 if (!is_gimple_reg (var))
1452 var = VEC_pop (tree, block_defs_stack);
1453 }
1454 else
1455 {
1456 /* If we recorded anything else, it must have been a _DECL
1457 node and its current reaching definition must have been
1458 NULL. */
1459 saved_def = NULL;
1460 var = tmp;
1461 }
1462
1463 get_common_info (var)->current_def = saved_def;
1464 }
1465 }
1466
1467
1468 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1469
1470 void
1471 dump_decl_set (FILE *file, bitmap set)
1472 {
1473 if (set)
1474 {
1475 bitmap_iterator bi;
1476 unsigned i;
1477
1478 fprintf (file, "{ ");
1479
1480 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1481 {
1482 fprintf (file, "D.%u", i);
1483 fprintf (file, " ");
1484 }
1485
1486 fprintf (file, "}");
1487 }
1488 else
1489 fprintf (file, "NIL");
1490 }
1491
1492
1493 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1494
1495 DEBUG_FUNCTION void
1496 debug_decl_set (bitmap set)
1497 {
1498 dump_decl_set (stderr, set);
1499 fprintf (stderr, "\n");
1500 }
1501
1502
1503 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1504 stack up to a maximum of N levels. If N is -1, the whole stack is
1505 dumped. New levels are created when the dominator tree traversal
1506 used for renaming enters a new sub-tree. */
1507
1508 void
1509 dump_defs_stack (FILE *file, int n)
1510 {
1511 int i, j;
1512
1513 fprintf (file, "\n\nRenaming stack");
1514 if (n > 0)
1515 fprintf (file, " (up to %d levels)", n);
1516 fprintf (file, "\n\n");
1517
1518 i = 1;
1519 fprintf (file, "Level %d (current level)\n", i);
1520 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1521 {
1522 tree name, var;
1523
1524 name = VEC_index (tree, block_defs_stack, j);
1525 if (name == NULL_TREE)
1526 {
1527 i++;
1528 if (n > 0 && i > n)
1529 break;
1530 fprintf (file, "\nLevel %d\n", i);
1531 continue;
1532 }
1533
1534 if (DECL_P (name))
1535 {
1536 var = name;
1537 name = NULL_TREE;
1538 }
1539 else
1540 {
1541 var = SSA_NAME_VAR (name);
1542 if (!is_gimple_reg (var))
1543 {
1544 j--;
1545 var = VEC_index (tree, block_defs_stack, j);
1546 }
1547 }
1548
1549 fprintf (file, " Previous CURRDEF (");
1550 print_generic_expr (file, var, 0);
1551 fprintf (file, ") = ");
1552 if (name)
1553 print_generic_expr (file, name, 0);
1554 else
1555 fprintf (file, "<NIL>");
1556 fprintf (file, "\n");
1557 }
1558 }
1559
1560
1561 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1562 stack up to a maximum of N levels. If N is -1, the whole stack is
1563 dumped. New levels are created when the dominator tree traversal
1564 used for renaming enters a new sub-tree. */
1565
1566 DEBUG_FUNCTION void
1567 debug_defs_stack (int n)
1568 {
1569 dump_defs_stack (stderr, n);
1570 }
1571
1572
1573 /* Dump the current reaching definition of every symbol to FILE. */
1574
1575 void
1576 dump_currdefs (FILE *file)
1577 {
1578 unsigned i;
1579 tree var;
1580
1581 if (VEC_empty (tree, symbols_to_rename))
1582 return;
1583
1584 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1585 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, var)
1586 {
1587 common_info_p info = get_common_info (var);
1588 fprintf (file, "CURRDEF (");
1589 print_generic_expr (file, var, 0);
1590 fprintf (file, ") = ");
1591 if (info->current_def)
1592 print_generic_expr (file, info->current_def, 0);
1593 else
1594 fprintf (file, "<NIL>");
1595 fprintf (file, "\n");
1596 }
1597 }
1598
1599
1600 /* Dump the current reaching definition of every symbol to stderr. */
1601
1602 DEBUG_FUNCTION void
1603 debug_currdefs (void)
1604 {
1605 dump_currdefs (stderr);
1606 }
1607
1608
1609 /* Dump SSA information to FILE. */
1610
1611 void
1612 dump_tree_ssa (FILE *file)
1613 {
1614 const char *funcname
1615 = lang_hooks.decl_printable_name (current_function_decl, 2);
1616
1617 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1618
1619 dump_var_infos (file);
1620 dump_defs_stack (file, -1);
1621 dump_currdefs (file);
1622 dump_tree_ssa_stats (file);
1623 }
1624
1625
1626 /* Dump SSA information to stderr. */
1627
1628 DEBUG_FUNCTION void
1629 debug_tree_ssa (void)
1630 {
1631 dump_tree_ssa (stderr);
1632 }
1633
1634
1635 /* Dump statistics for the hash table HTAB. */
1636
1637 static void
1638 htab_statistics (FILE *file, htab_t htab)
1639 {
1640 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1641 (long) htab_size (htab),
1642 (long) htab_elements (htab),
1643 htab_collisions (htab));
1644 }
1645
1646
1647 /* Dump SSA statistics on FILE. */
1648
1649 void
1650 dump_tree_ssa_stats (FILE *file)
1651 {
1652 if (var_infos)
1653 {
1654 fprintf (file, "\nHash table statistics:\n");
1655 fprintf (file, " var_infos: ");
1656 htab_statistics (file, var_infos);
1657 fprintf (file, "\n");
1658 }
1659 }
1660
1661
1662 /* Dump SSA statistics on stderr. */
1663
1664 DEBUG_FUNCTION void
1665 debug_tree_ssa_stats (void)
1666 {
1667 dump_tree_ssa_stats (stderr);
1668 }
1669
1670
1671 /* Hashing and equality functions for VAR_INFOS. */
1672
1673 static hashval_t
1674 var_info_hash (const void *p)
1675 {
1676 return DECL_UID (((const struct var_info_d *)p)->var);
1677 }
1678
1679 static int
1680 var_info_eq (const void *p1, const void *p2)
1681 {
1682 return ((const struct var_info_d *)p1)->var
1683 == ((const struct var_info_d *)p2)->var;
1684 }
1685
1686
1687 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1688
1689 static int
1690 debug_var_infos_r (void **slot, void *data)
1691 {
1692 FILE *file = (FILE *) data;
1693 struct var_info_d *info = (struct var_info_d *) *slot;
1694
1695 fprintf (file, "VAR: ");
1696 print_generic_expr (file, info->var, dump_flags);
1697 bitmap_print (file, info->info.def_blocks.def_blocks,
1698 ", DEF_BLOCKS: { ", "}");
1699 bitmap_print (file, info->info.def_blocks.livein_blocks,
1700 ", LIVEIN_BLOCKS: { ", "}");
1701 bitmap_print (file, info->info.def_blocks.phi_blocks,
1702 ", PHI_BLOCKS: { ", "}\n");
1703
1704 return 1;
1705 }
1706
1707
1708 /* Dump the VAR_INFOS hash table on FILE. */
1709
1710 void
1711 dump_var_infos (FILE *file)
1712 {
1713 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1714 if (var_infos)
1715 htab_traverse (var_infos, debug_var_infos_r, file);
1716 }
1717
1718
1719 /* Dump the VAR_INFOS hash table on stderr. */
1720
1721 DEBUG_FUNCTION void
1722 debug_var_infos (void)
1723 {
1724 dump_var_infos (stderr);
1725 }
1726
1727
1728 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1729
1730 static inline void
1731 register_new_update_single (tree new_name, tree old_name)
1732 {
1733 common_info_p info = get_common_info (old_name);
1734 tree currdef = info->current_def;
1735
1736 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1737 This stack is later used by the dominator tree callbacks to
1738 restore the reaching definitions for all the variables
1739 defined in the block after a recursive visit to all its
1740 immediately dominated blocks. */
1741 VEC_reserve (tree, heap, block_defs_stack, 2);
1742 VEC_quick_push (tree, block_defs_stack, currdef);
1743 VEC_quick_push (tree, block_defs_stack, old_name);
1744
1745 /* Set the current reaching definition for OLD_NAME to be
1746 NEW_NAME. */
1747 info->current_def = new_name;
1748 }
1749
1750
1751 /* Register NEW_NAME to be the new reaching definition for all the
1752 names in OLD_NAMES. Used by the incremental SSA update routines to
1753 replace old SSA names with new ones. */
1754
1755 static inline void
1756 register_new_update_set (tree new_name, bitmap old_names)
1757 {
1758 bitmap_iterator bi;
1759 unsigned i;
1760
1761 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1762 register_new_update_single (new_name, ssa_name (i));
1763 }
1764
1765
1766
1767 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1768 it is a symbol marked for renaming, replace it with USE_P's current
1769 reaching definition. */
1770
1771 static inline void
1772 maybe_replace_use (use_operand_p use_p)
1773 {
1774 tree rdef = NULL_TREE;
1775 tree use = USE_FROM_PTR (use_p);
1776 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1777
1778 if (marked_for_renaming (sym))
1779 rdef = get_reaching_def (sym);
1780 else if (is_old_name (use))
1781 rdef = get_reaching_def (use);
1782
1783 if (rdef && rdef != use)
1784 SET_USE (use_p, rdef);
1785 }
1786
1787
1788 /* Same as maybe_replace_use, but without introducing default stmts,
1789 returning false to indicate a need to do so. */
1790
1791 static inline bool
1792 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1793 {
1794 tree rdef = NULL_TREE;
1795 tree use = USE_FROM_PTR (use_p);
1796 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1797
1798 if (marked_for_renaming (sym))
1799 rdef = get_var_info (sym)->info.current_def;
1800 else if (is_old_name (use))
1801 {
1802 rdef = get_ssa_name_ann (use)->info.current_def;
1803 /* We can't assume that, if there's no current definition, the
1804 default one should be used. It could be the case that we've
1805 rearranged blocks so that the earlier definition no longer
1806 dominates the use. */
1807 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1808 rdef = use;
1809 }
1810 else
1811 rdef = use;
1812
1813 if (rdef && rdef != use)
1814 SET_USE (use_p, rdef);
1815
1816 return rdef != NULL_TREE;
1817 }
1818
1819
1820 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1821 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1822 register it as the current definition for the names replaced by
1823 DEF_P. */
1824
1825 static inline void
1826 maybe_register_def (def_operand_p def_p, gimple stmt,
1827 gimple_stmt_iterator gsi)
1828 {
1829 tree def = DEF_FROM_PTR (def_p);
1830 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1831
1832 /* If DEF is a naked symbol that needs renaming, create a new
1833 name for it. */
1834 if (marked_for_renaming (sym))
1835 {
1836 if (DECL_P (def))
1837 {
1838 tree tracked_var;
1839
1840 def = make_ssa_name (def, stmt);
1841 SET_DEF (def_p, def);
1842
1843 tracked_var = target_for_debug_bind (sym);
1844 if (tracked_var)
1845 {
1846 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1847 /* If stmt ends the bb, insert the debug stmt on the single
1848 non-EH edge from the stmt. */
1849 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1850 {
1851 basic_block bb = gsi_bb (gsi);
1852 edge_iterator ei;
1853 edge e, ef = NULL;
1854 FOR_EACH_EDGE (e, ei, bb->succs)
1855 if (!(e->flags & EDGE_EH))
1856 {
1857 gcc_assert (!ef);
1858 ef = e;
1859 }
1860 /* If there are other predecessors to ef->dest, then
1861 there must be PHI nodes for the modified
1862 variable, and therefore there will be debug bind
1863 stmts after the PHI nodes. The debug bind notes
1864 we'd insert would force the creation of a new
1865 block (diverging codegen) and be redundant with
1866 the post-PHI bind stmts, so don't add them.
1867
1868 As for the exit edge, there wouldn't be redundant
1869 bind stmts, but there wouldn't be a PC to bind
1870 them to either, so avoid diverging the CFG. */
1871 if (ef && single_pred_p (ef->dest)
1872 && ef->dest != EXIT_BLOCK_PTR)
1873 {
1874 /* If there were PHI nodes in the node, we'd
1875 have to make sure the value we're binding
1876 doesn't need rewriting. But there shouldn't
1877 be PHI nodes in a single-predecessor block,
1878 so we just add the note. */
1879 gsi_insert_on_edge_immediate (ef, note);
1880 }
1881 }
1882 else
1883 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1884 }
1885 }
1886
1887 register_new_update_single (def, sym);
1888 }
1889 else
1890 {
1891 /* If DEF is a new name, register it as a new definition
1892 for all the names replaced by DEF. */
1893 if (is_new_name (def))
1894 register_new_update_set (def, names_replaced_by (def));
1895
1896 /* If DEF is an old name, register DEF as a new
1897 definition for itself. */
1898 if (is_old_name (def))
1899 register_new_update_single (def, def);
1900 }
1901 }
1902
1903
1904 /* Update every variable used in the statement pointed-to by SI. The
1905 statement is assumed to be in SSA form already. Names in
1906 OLD_SSA_NAMES used by SI will be updated to their current reaching
1907 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1908 will be registered as a new definition for their corresponding name
1909 in OLD_SSA_NAMES. */
1910
1911 static void
1912 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1913 {
1914 use_operand_p use_p;
1915 def_operand_p def_p;
1916 ssa_op_iter iter;
1917
1918 /* Only update marked statements. */
1919 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1920 return;
1921
1922 if (dump_file && (dump_flags & TDF_DETAILS))
1923 {
1924 fprintf (dump_file, "Updating SSA information for statement ");
1925 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1926 }
1927
1928 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1929 symbol is marked for renaming. */
1930 if (rewrite_uses_p (stmt))
1931 {
1932 if (is_gimple_debug (stmt))
1933 {
1934 bool failed = false;
1935
1936 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1937 if (!maybe_replace_use_in_debug_stmt (use_p))
1938 {
1939 failed = true;
1940 break;
1941 }
1942
1943 if (failed)
1944 {
1945 /* DOM sometimes threads jumps in such a way that a
1946 debug stmt ends up referencing a SSA variable that no
1947 longer dominates the debug stmt, but such that all
1948 incoming definitions refer to the same definition in
1949 an earlier dominator. We could try to recover that
1950 definition somehow, but this will have to do for now.
1951
1952 Introducing a default definition, which is what
1953 maybe_replace_use() would do in such cases, may
1954 modify code generation, for the otherwise-unused
1955 default definition would never go away, modifying SSA
1956 version numbers all over. */
1957 gimple_debug_bind_reset_value (stmt);
1958 update_stmt (stmt);
1959 }
1960 }
1961 else
1962 {
1963 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1964 maybe_replace_use (use_p);
1965 }
1966 }
1967
1968 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1969 Also register definitions for names whose underlying symbol is
1970 marked for renaming. */
1971 if (register_defs_p (stmt))
1972 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1973 maybe_register_def (def_p, stmt, gsi);
1974 }
1975
1976
1977 /* Visit all the successor blocks of BB looking for PHI nodes. For
1978 every PHI node found, check if any of its arguments is in
1979 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1980 definition, replace it. */
1981
1982 static void
1983 rewrite_update_phi_arguments (basic_block bb)
1984 {
1985 edge e;
1986 edge_iterator ei;
1987 unsigned i;
1988
1989 FOR_EACH_EDGE (e, ei, bb->succs)
1990 {
1991 gimple phi;
1992 gimple_vec phis;
1993
1994 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1995 continue;
1996
1997 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
1998 FOR_EACH_VEC_ELT (gimple, phis, i, phi)
1999 {
2000 tree arg, lhs_sym, reaching_def = NULL;
2001 use_operand_p arg_p;
2002
2003 gcc_assert (rewrite_uses_p (phi));
2004
2005 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2006 arg = USE_FROM_PTR (arg_p);
2007
2008 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2009 continue;
2010
2011 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2012
2013 if (arg == NULL_TREE)
2014 {
2015 /* When updating a PHI node for a recently introduced
2016 symbol we may find NULL arguments. That's why we
2017 take the symbol from the LHS of the PHI node. */
2018 reaching_def = get_reaching_def (lhs_sym);
2019
2020 }
2021 else
2022 {
2023 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2024
2025 if (marked_for_renaming (sym))
2026 reaching_def = get_reaching_def (sym);
2027 else if (is_old_name (arg))
2028 reaching_def = get_reaching_def (arg);
2029 }
2030
2031 /* Update the argument if there is a reaching def. */
2032 if (reaching_def)
2033 {
2034 gimple stmt;
2035 source_location locus;
2036 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2037
2038 SET_USE (arg_p, reaching_def);
2039 stmt = SSA_NAME_DEF_STMT (reaching_def);
2040
2041 /* Single element PHI nodes behave like copies, so get the
2042 location from the phi argument. */
2043 if (gimple_code (stmt) == GIMPLE_PHI &&
2044 gimple_phi_num_args (stmt) == 1)
2045 locus = gimple_phi_arg_location (stmt, 0);
2046 else
2047 locus = gimple_location (stmt);
2048
2049 gimple_phi_arg_set_location (phi, arg_i, locus);
2050 }
2051
2052
2053 if (e->flags & EDGE_ABNORMAL)
2054 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2055 }
2056 }
2057 }
2058
2059
2060 /* Initialization of block data structures for the incremental SSA
2061 update pass. Create a block local stack of reaching definitions
2062 for new SSA names produced in this block (BLOCK_DEFS). Register
2063 new definitions for every PHI node in the block. */
2064
2065 static void
2066 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2067 basic_block bb)
2068 {
2069 bool is_abnormal_phi;
2070 gimple_stmt_iterator gsi;
2071
2072 if (dump_file && (dump_flags & TDF_DETAILS))
2073 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2074 bb->index);
2075
2076 /* Mark the unwind point for this block. */
2077 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2078
2079 if (!bitmap_bit_p (blocks_to_update, bb->index))
2080 return;
2081
2082 /* Mark the LHS if any of the arguments flows through an abnormal
2083 edge. */
2084 is_abnormal_phi = bb_has_abnormal_pred (bb);
2085
2086 /* If any of the PHI nodes is a replacement for a name in
2087 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2088 register it as a new definition for its corresponding name. Also
2089 register definitions for names whose underlying symbols are
2090 marked for renaming. */
2091 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2092 {
2093 tree lhs, lhs_sym;
2094 gimple phi = gsi_stmt (gsi);
2095
2096 if (!register_defs_p (phi))
2097 continue;
2098
2099 lhs = gimple_phi_result (phi);
2100 lhs_sym = SSA_NAME_VAR (lhs);
2101
2102 if (marked_for_renaming (lhs_sym))
2103 register_new_update_single (lhs, lhs_sym);
2104 else
2105 {
2106
2107 /* If LHS is a new name, register a new definition for all
2108 the names replaced by LHS. */
2109 if (is_new_name (lhs))
2110 register_new_update_set (lhs, names_replaced_by (lhs));
2111
2112 /* If LHS is an OLD name, register it as a new definition
2113 for itself. */
2114 if (is_old_name (lhs))
2115 register_new_update_single (lhs, lhs);
2116 }
2117
2118 if (is_abnormal_phi)
2119 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2120 }
2121
2122 /* Step 2. Rewrite every variable used in each statement in the block. */
2123 if (TEST_BIT (interesting_blocks, bb->index))
2124 {
2125 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2126 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2127 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2128 }
2129
2130 /* Step 3. Update PHI nodes. */
2131 rewrite_update_phi_arguments (bb);
2132 }
2133
2134 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2135 the current reaching definition of every name re-written in BB to
2136 the original reaching definition before visiting BB. This
2137 unwinding must be done in the opposite order to what is done in
2138 register_new_update_set. */
2139
2140 static void
2141 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2142 basic_block bb ATTRIBUTE_UNUSED)
2143 {
2144 while (VEC_length (tree, block_defs_stack) > 0)
2145 {
2146 tree var = VEC_pop (tree, block_defs_stack);
2147 tree saved_def;
2148
2149 /* NULL indicates the unwind stop point for this block (see
2150 rewrite_update_enter_block). */
2151 if (var == NULL)
2152 return;
2153
2154 saved_def = VEC_pop (tree, block_defs_stack);
2155 get_common_info (var)->current_def = saved_def;
2156 }
2157 }
2158
2159
2160 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2161 form.
2162
2163 ENTRY indicates the block where to start. Every block dominated by
2164 ENTRY will be rewritten.
2165
2166 WHAT indicates what actions will be taken by the renamer (see enum
2167 rewrite_mode).
2168
2169 BLOCKS are the set of interesting blocks for the dominator walker
2170 to process. If this set is NULL, then all the nodes dominated
2171 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2172 are not present in BLOCKS are ignored. */
2173
2174 static void
2175 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2176 {
2177 struct dom_walk_data walk_data;
2178
2179 /* Rewrite all the basic blocks in the program. */
2180 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2181
2182 /* Setup callbacks for the generic dominator tree walker. */
2183 memset (&walk_data, 0, sizeof (walk_data));
2184
2185 walk_data.dom_direction = CDI_DOMINATORS;
2186
2187 if (what == REWRITE_ALL)
2188 {
2189 walk_data.before_dom_children = rewrite_enter_block;
2190 walk_data.after_dom_children = rewrite_leave_block;
2191 }
2192 else if (what == REWRITE_UPDATE)
2193 {
2194 walk_data.before_dom_children = rewrite_update_enter_block;
2195 walk_data.after_dom_children = rewrite_update_leave_block;
2196 }
2197 else
2198 gcc_unreachable ();
2199
2200 block_defs_stack = VEC_alloc (tree, heap, 10);
2201
2202 /* Initialize the dominator walker. */
2203 init_walk_dominator_tree (&walk_data);
2204
2205 /* Recursively walk the dominator tree rewriting each statement in
2206 each basic block. */
2207 walk_dominator_tree (&walk_data, entry);
2208
2209 /* Finalize the dominator walker. */
2210 fini_walk_dominator_tree (&walk_data);
2211
2212 /* Debugging dumps. */
2213 if (dump_file && (dump_flags & TDF_STATS))
2214 {
2215 dump_dfa_stats (dump_file);
2216 if (var_infos)
2217 dump_tree_ssa_stats (dump_file);
2218 }
2219
2220 VEC_free (tree, heap, block_defs_stack);
2221
2222 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2223 }
2224
2225
2226 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2227 at the start of each block, and call mark_def_sites for each statement. */
2228
2229 static void
2230 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2231 {
2232 struct mark_def_sites_global_data *gd;
2233 bitmap kills;
2234 gimple_stmt_iterator gsi;
2235
2236 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2237 kills = gd->kills;
2238
2239 bitmap_clear (kills);
2240 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2241 mark_def_sites (bb, gsi_stmt (gsi), kills);
2242 }
2243
2244
2245 /* Mark the definition site blocks for each variable, so that we know
2246 where the variable is actually live.
2247
2248 The INTERESTING_BLOCKS global will be filled in with all the blocks
2249 that should be processed by the renamer. It is assumed that the
2250 caller has already initialized and zeroed it. */
2251
2252 static void
2253 mark_def_site_blocks (void)
2254 {
2255 struct dom_walk_data walk_data;
2256 struct mark_def_sites_global_data mark_def_sites_global_data;
2257
2258 /* Setup callbacks for the generic dominator tree walker to find and
2259 mark definition sites. */
2260 walk_data.dom_direction = CDI_DOMINATORS;
2261 walk_data.initialize_block_local_data = NULL;
2262 walk_data.before_dom_children = mark_def_sites_block;
2263 walk_data.after_dom_children = NULL;
2264
2265 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2266 large enough to accommodate all the variables referenced in the
2267 function, not just the ones we are renaming. */
2268 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2269 walk_data.global_data = &mark_def_sites_global_data;
2270
2271 /* We do not have any local data. */
2272 walk_data.block_local_data_size = 0;
2273
2274 /* Initialize the dominator walker. */
2275 init_walk_dominator_tree (&walk_data);
2276
2277 /* Recursively walk the dominator tree. */
2278 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2279
2280 /* Finalize the dominator walker. */
2281 fini_walk_dominator_tree (&walk_data);
2282
2283 /* We no longer need this bitmap, clear and free it. */
2284 BITMAP_FREE (mark_def_sites_global_data.kills);
2285 }
2286
2287
2288 /* Initialize internal data needed during renaming. */
2289
2290 static void
2291 init_ssa_renamer (void)
2292 {
2293 cfun->gimple_df->in_ssa_p = false;
2294
2295 /* Allocate memory for the DEF_BLOCKS hash table. */
2296 gcc_assert (var_infos == NULL);
2297 var_infos = htab_create (VEC_length (tree, cfun->local_decls),
2298 var_info_hash, var_info_eq, NULL);
2299
2300 bitmap_obstack_initialize (&update_ssa_obstack);
2301 }
2302
2303
2304 /* Deallocate internal data structures used by the renamer. */
2305
2306 static void
2307 fini_ssa_renamer (void)
2308 {
2309 if (var_infos)
2310 {
2311 htab_delete (var_infos);
2312 var_infos = NULL;
2313 }
2314
2315 bitmap_obstack_release (&update_ssa_obstack);
2316
2317 cfun->gimple_df->ssa_renaming_needed = 0;
2318 cfun->gimple_df->rename_vops = 0;
2319 cfun->gimple_df->in_ssa_p = true;
2320 }
2321
2322 /* Main entry point into the SSA builder. The renaming process
2323 proceeds in four main phases:
2324
2325 1- Compute dominance frontier and immediate dominators, needed to
2326 insert PHI nodes and rename the function in dominator tree
2327 order.
2328
2329 2- Find and mark all the blocks that define variables
2330 (mark_def_site_blocks).
2331
2332 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2333
2334 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2335
2336 Steps 3 and 4 are done using the dominator tree walker
2337 (walk_dominator_tree). */
2338
2339 static unsigned int
2340 rewrite_into_ssa (void)
2341 {
2342 bitmap_head *dfs;
2343 basic_block bb;
2344 unsigned i;
2345
2346 /* Initialize operand data structures. */
2347 init_ssa_operands (cfun);
2348
2349 /* Initialize internal data needed by the renamer. */
2350 init_ssa_renamer ();
2351
2352 /* Initialize the set of interesting blocks. The callback
2353 mark_def_sites will add to this set those blocks that the renamer
2354 should process. */
2355 interesting_blocks = sbitmap_alloc (last_basic_block);
2356 sbitmap_zero (interesting_blocks);
2357
2358 /* Initialize dominance frontier. */
2359 dfs = XNEWVEC (bitmap_head, last_basic_block);
2360 FOR_EACH_BB (bb)
2361 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2362
2363 /* 1- Compute dominance frontiers. */
2364 calculate_dominance_info (CDI_DOMINATORS);
2365 compute_dominance_frontiers (dfs);
2366
2367 /* 2- Find and mark definition sites. */
2368 mark_def_site_blocks ();
2369
2370 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2371 insert_phi_nodes (dfs);
2372
2373 /* 4- Rename all the blocks. */
2374 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2375
2376 /* Free allocated memory. */
2377 FOR_EACH_BB (bb)
2378 bitmap_clear (&dfs[bb->index]);
2379 free (dfs);
2380
2381 sbitmap_free (interesting_blocks);
2382
2383 fini_ssa_renamer ();
2384
2385 /* Try to get rid of all gimplifier generated temporaries by making
2386 its SSA names anonymous. This way we can garbage collect them
2387 all after removing unused locals which we do in our TODO. */
2388 for (i = 1; i < num_ssa_names; ++i)
2389 {
2390 tree decl, name = ssa_name (i);
2391 if (!name
2392 || SSA_NAME_IS_DEFAULT_DEF (name))
2393 continue;
2394 decl = SSA_NAME_VAR (name);
2395 if (decl
2396 && TREE_CODE (decl) == VAR_DECL
2397 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2398 && DECL_ARTIFICIAL (decl)
2399 && DECL_IGNORED_P (decl)
2400 && !DECL_NAME (decl))
2401 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, NULL_TREE);
2402 }
2403
2404 return 0;
2405 }
2406
2407
2408 struct gimple_opt_pass pass_build_ssa =
2409 {
2410 {
2411 GIMPLE_PASS,
2412 "ssa", /* name */
2413 NULL, /* gate */
2414 rewrite_into_ssa, /* execute */
2415 NULL, /* sub */
2416 NULL, /* next */
2417 0, /* static_pass_number */
2418 TV_TREE_SSA_OTHER, /* tv_id */
2419 PROP_cfg, /* properties_required */
2420 PROP_ssa, /* properties_provided */
2421 0, /* properties_destroyed */
2422 0, /* todo_flags_start */
2423 TODO_verify_ssa
2424 | TODO_remove_unused_locals /* todo_flags_finish */
2425 }
2426 };
2427
2428
2429 /* Mark the definition of VAR at STMT and BB as interesting for the
2430 renamer. BLOCKS is the set of blocks that need updating. */
2431
2432 static void
2433 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2434 {
2435 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2436 set_register_defs (stmt, true);
2437
2438 if (insert_phi_p)
2439 {
2440 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2441
2442 set_def_block (var, bb, is_phi_p);
2443
2444 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2445 site for both itself and all the old names replaced by it. */
2446 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2447 {
2448 bitmap_iterator bi;
2449 unsigned i;
2450 bitmap set = names_replaced_by (var);
2451 if (set)
2452 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2453 set_def_block (ssa_name (i), bb, is_phi_p);
2454 }
2455 }
2456 }
2457
2458
2459 /* Mark the use of VAR at STMT and BB as interesting for the
2460 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2461 nodes. */
2462
2463 static inline void
2464 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2465 {
2466 basic_block def_bb = gimple_bb (stmt);
2467
2468 mark_block_for_update (def_bb);
2469 mark_block_for_update (bb);
2470
2471 if (gimple_code (stmt) == GIMPLE_PHI)
2472 mark_phi_for_rewrite (def_bb, stmt);
2473 else
2474 {
2475 set_rewrite_uses (stmt, true);
2476
2477 if (is_gimple_debug (stmt))
2478 return;
2479 }
2480
2481 /* If VAR has not been defined in BB, then it is live-on-entry
2482 to BB. Note that we cannot just use the block holding VAR's
2483 definition because if VAR is one of the names in OLD_SSA_NAMES,
2484 it will have several definitions (itself and all the names that
2485 replace it). */
2486 if (insert_phi_p)
2487 {
2488 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2489 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2490 set_livein_block (var, bb);
2491 }
2492 }
2493
2494
2495 /* Do a dominator walk starting at BB processing statements that
2496 reference symbols in SSA operands. This is very similar to
2497 mark_def_sites, but the scan handles statements whose operands may
2498 already be SSA names.
2499
2500 If INSERT_PHI_P is true, mark those uses as live in the
2501 corresponding block. This is later used by the PHI placement
2502 algorithm to make PHI pruning decisions.
2503
2504 FIXME. Most of this would be unnecessary if we could associate a
2505 symbol to all the SSA names that reference it. But that
2506 sounds like it would be expensive to maintain. Still, it
2507 would be interesting to see if it makes better sense to do
2508 that. */
2509
2510 static void
2511 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2512 {
2513 basic_block son;
2514 gimple_stmt_iterator si;
2515 edge e;
2516 edge_iterator ei;
2517
2518 mark_block_for_update (bb);
2519
2520 /* Process PHI nodes marking interesting those that define or use
2521 the symbols that we are interested in. */
2522 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2523 {
2524 gimple phi = gsi_stmt (si);
2525 tree lhs_sym, lhs = gimple_phi_result (phi);
2526
2527 if (TREE_CODE (lhs) == SSA_NAME
2528 && (! virtual_operand_p (lhs)
2529 || ! cfun->gimple_df->rename_vops))
2530 continue;
2531
2532 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2533 mark_for_renaming (lhs_sym);
2534 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2535
2536 /* Mark the uses in phi nodes as interesting. It would be more correct
2537 to process the arguments of the phi nodes of the successor edges of
2538 BB at the end of prepare_block_for_update, however, that turns out
2539 to be significantly more expensive. Doing it here is conservatively
2540 correct -- it may only cause us to believe a value to be live in a
2541 block that also contains its definition, and thus insert a few more
2542 phi nodes for it. */
2543 FOR_EACH_EDGE (e, ei, bb->preds)
2544 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2545 }
2546
2547 /* Process the statements. */
2548 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2549 {
2550 gimple stmt;
2551 ssa_op_iter i;
2552 use_operand_p use_p;
2553 def_operand_p def_p;
2554
2555 stmt = gsi_stmt (si);
2556
2557 if (cfun->gimple_df->rename_vops
2558 && gimple_vuse (stmt))
2559 {
2560 tree use = gimple_vuse (stmt);
2561 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2562 mark_for_renaming (sym);
2563 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2564 }
2565
2566 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2567 {
2568 tree use = USE_FROM_PTR (use_p);
2569 if (!DECL_P (use))
2570 continue;
2571 mark_for_renaming (use);
2572 mark_use_interesting (use, stmt, bb, insert_phi_p);
2573 }
2574
2575 if (cfun->gimple_df->rename_vops
2576 && gimple_vdef (stmt))
2577 {
2578 tree def = gimple_vdef (stmt);
2579 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2580 mark_for_renaming (sym);
2581 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2582 }
2583
2584 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2585 {
2586 tree def = DEF_FROM_PTR (def_p);
2587 if (!DECL_P (def))
2588 continue;
2589 mark_for_renaming (def);
2590 mark_def_interesting (def, stmt, bb, insert_phi_p);
2591 }
2592 }
2593
2594 /* Now visit all the blocks dominated by BB. */
2595 for (son = first_dom_son (CDI_DOMINATORS, bb);
2596 son;
2597 son = next_dom_son (CDI_DOMINATORS, son))
2598 prepare_block_for_update (son, insert_phi_p);
2599 }
2600
2601
2602 /* Helper for prepare_names_to_update. Mark all the use sites for
2603 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2604 prepare_names_to_update. */
2605
2606 static void
2607 prepare_use_sites_for (tree name, bool insert_phi_p)
2608 {
2609 use_operand_p use_p;
2610 imm_use_iterator iter;
2611
2612 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2613 {
2614 gimple stmt = USE_STMT (use_p);
2615 basic_block bb = gimple_bb (stmt);
2616
2617 if (gimple_code (stmt) == GIMPLE_PHI)
2618 {
2619 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2620 edge e = gimple_phi_arg_edge (stmt, ix);
2621 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2622 }
2623 else
2624 {
2625 /* For regular statements, mark this as an interesting use
2626 for NAME. */
2627 mark_use_interesting (name, stmt, bb, insert_phi_p);
2628 }
2629 }
2630 }
2631
2632
2633 /* Helper for prepare_names_to_update. Mark the definition site for
2634 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2635 prepare_names_to_update. */
2636
2637 static void
2638 prepare_def_site_for (tree name, bool insert_phi_p)
2639 {
2640 gimple stmt;
2641 basic_block bb;
2642
2643 gcc_assert (names_to_release == NULL
2644 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2645
2646 stmt = SSA_NAME_DEF_STMT (name);
2647 bb = gimple_bb (stmt);
2648 if (bb)
2649 {
2650 gcc_assert (bb->index < last_basic_block);
2651 mark_block_for_update (bb);
2652 mark_def_interesting (name, stmt, bb, insert_phi_p);
2653 }
2654 }
2655
2656
2657 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2658 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2659 PHI nodes for newly created names. */
2660
2661 static void
2662 prepare_names_to_update (bool insert_phi_p)
2663 {
2664 unsigned i = 0;
2665 bitmap_iterator bi;
2666 sbitmap_iterator sbi;
2667
2668 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2669 remove it from NEW_SSA_NAMES so that we don't try to visit its
2670 defining basic block (which most likely doesn't exist). Notice
2671 that we cannot do the same with names in OLD_SSA_NAMES because we
2672 want to replace existing instances. */
2673 if (names_to_release)
2674 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2675 RESET_BIT (new_ssa_names, i);
2676
2677 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2678 names may be considered to be live-in on blocks that contain
2679 definitions for their replacements. */
2680 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2681 prepare_def_site_for (ssa_name (i), insert_phi_p);
2682
2683 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2684 OLD_SSA_NAMES, but we have to ignore its definition site. */
2685 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2686 {
2687 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2688 prepare_def_site_for (ssa_name (i), insert_phi_p);
2689 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2690 }
2691 }
2692
2693
2694 /* Dump all the names replaced by NAME to FILE. */
2695
2696 void
2697 dump_names_replaced_by (FILE *file, tree name)
2698 {
2699 unsigned i;
2700 bitmap old_set;
2701 bitmap_iterator bi;
2702
2703 print_generic_expr (file, name, 0);
2704 fprintf (file, " -> { ");
2705
2706 old_set = names_replaced_by (name);
2707 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2708 {
2709 print_generic_expr (file, ssa_name (i), 0);
2710 fprintf (file, " ");
2711 }
2712
2713 fprintf (file, "}\n");
2714 }
2715
2716
2717 /* Dump all the names replaced by NAME to stderr. */
2718
2719 DEBUG_FUNCTION void
2720 debug_names_replaced_by (tree name)
2721 {
2722 dump_names_replaced_by (stderr, name);
2723 }
2724
2725
2726 /* Dump SSA update information to FILE. */
2727
2728 void
2729 dump_update_ssa (FILE *file)
2730 {
2731 unsigned i = 0;
2732 bitmap_iterator bi;
2733
2734 if (!need_ssa_update_p (cfun))
2735 return;
2736
2737 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2738 {
2739 sbitmap_iterator sbi;
2740
2741 fprintf (file, "\nSSA replacement table\n");
2742 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2743 "O_1, ..., O_j\n\n");
2744
2745 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2746 dump_names_replaced_by (file, ssa_name (i));
2747 }
2748
2749 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2750 {
2751 fprintf (file, "\nSymbols to be put in SSA form\n");
2752 dump_decl_set (file, symbols_to_rename_set);
2753 fprintf (file, "\n");
2754 }
2755
2756 if (names_to_release && !bitmap_empty_p (names_to_release))
2757 {
2758 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2759 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2760 {
2761 print_generic_expr (file, ssa_name (i), 0);
2762 fprintf (file, " ");
2763 }
2764 fprintf (file, "\n");
2765 }
2766 }
2767
2768
2769 /* Dump SSA update information to stderr. */
2770
2771 DEBUG_FUNCTION void
2772 debug_update_ssa (void)
2773 {
2774 dump_update_ssa (stderr);
2775 }
2776
2777
2778 /* Initialize data structures used for incremental SSA updates. */
2779
2780 static void
2781 init_update_ssa (struct function *fn)
2782 {
2783 /* Reserve more space than the current number of names. The calls to
2784 add_new_name_mapping are typically done after creating new SSA
2785 names, so we'll need to reallocate these arrays. */
2786 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2787 sbitmap_zero (old_ssa_names);
2788
2789 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2790 sbitmap_zero (new_ssa_names);
2791
2792 bitmap_obstack_initialize (&update_ssa_obstack);
2793
2794 names_to_release = NULL;
2795 update_ssa_initialized_fn = fn;
2796 }
2797
2798
2799 /* Deallocate data structures used for incremental SSA updates. */
2800
2801 void
2802 delete_update_ssa (void)
2803 {
2804 unsigned i;
2805 bitmap_iterator bi;
2806
2807 sbitmap_free (old_ssa_names);
2808 old_ssa_names = NULL;
2809
2810 sbitmap_free (new_ssa_names);
2811 new_ssa_names = NULL;
2812
2813 BITMAP_FREE (symbols_to_rename_set);
2814 symbols_to_rename_set = NULL;
2815 VEC_free (tree, heap, symbols_to_rename);
2816
2817 if (names_to_release)
2818 {
2819 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2820 release_ssa_name (ssa_name (i));
2821 BITMAP_FREE (names_to_release);
2822 }
2823
2824 clear_ssa_name_info ();
2825
2826 fini_ssa_renamer ();
2827
2828 if (blocks_with_phis_to_rewrite)
2829 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2830 {
2831 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2832
2833 VEC_free (gimple, heap, phis);
2834 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2835 }
2836
2837 BITMAP_FREE (blocks_with_phis_to_rewrite);
2838 BITMAP_FREE (blocks_to_update);
2839
2840 update_ssa_initialized_fn = NULL;
2841 }
2842
2843
2844 /* Create a new name for OLD_NAME in statement STMT and replace the
2845 operand pointed to by DEF_P with the newly created name. Return
2846 the new name and register the replacement mapping <NEW, OLD> in
2847 update_ssa's tables. */
2848
2849 tree
2850 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2851 {
2852 tree new_name = duplicate_ssa_name (old_name, stmt);
2853
2854 SET_DEF (def, new_name);
2855
2856 if (gimple_code (stmt) == GIMPLE_PHI)
2857 {
2858 basic_block bb = gimple_bb (stmt);
2859
2860 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2861 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2862 }
2863
2864 register_new_name_mapping (new_name, old_name);
2865
2866 /* For the benefit of passes that will be updating the SSA form on
2867 their own, set the current reaching definition of OLD_NAME to be
2868 NEW_NAME. */
2869 get_ssa_name_ann (old_name)->info.current_def = new_name;
2870
2871 return new_name;
2872 }
2873
2874
2875 /* Register name NEW to be a replacement for name OLD. This function
2876 must be called for every replacement that should be performed by
2877 update_ssa. */
2878
2879 void
2880 register_new_name_mapping (tree new_tree, tree old)
2881 {
2882 if (!update_ssa_initialized_fn)
2883 init_update_ssa (cfun);
2884
2885 gcc_assert (update_ssa_initialized_fn == cfun);
2886
2887 add_new_name_mapping (new_tree, old);
2888 }
2889
2890
2891 /* Mark virtual operands of FN for renaming by update_ssa. */
2892
2893 void
2894 mark_virtual_operands_for_renaming (struct function *fn)
2895 {
2896 fn->gimple_df->ssa_renaming_needed = 1;
2897 fn->gimple_df->rename_vops = 1;
2898 }
2899
2900
2901 /* Return true if there is any work to be done by update_ssa
2902 for function FN. */
2903
2904 bool
2905 need_ssa_update_p (struct function *fn)
2906 {
2907 gcc_assert (fn != NULL);
2908 return (update_ssa_initialized_fn == fn
2909 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2910 }
2911
2912 /* Return true if name N has been registered in the replacement table. */
2913
2914 bool
2915 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2916 {
2917 if (!update_ssa_initialized_fn)
2918 return false;
2919
2920 gcc_assert (update_ssa_initialized_fn == cfun);
2921
2922 return is_new_name (n) || is_old_name (n);
2923 }
2924
2925
2926 /* Mark NAME to be released after update_ssa has finished. */
2927
2928 void
2929 release_ssa_name_after_update_ssa (tree name)
2930 {
2931 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2932
2933 if (names_to_release == NULL)
2934 names_to_release = BITMAP_ALLOC (NULL);
2935
2936 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2937 }
2938
2939
2940 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2941 frontier information. BLOCKS is the set of blocks to be updated.
2942
2943 This is slightly different than the regular PHI insertion
2944 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2945 real names (i.e., GIMPLE registers) are inserted:
2946
2947 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2948 nodes inside the region affected by the block that defines VAR
2949 and the blocks that define all its replacements. All these
2950 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2951
2952 First, we compute the entry point to the region (ENTRY). This is
2953 given by the nearest common dominator to all the definition
2954 blocks. When computing the iterated dominance frontier (IDF), any
2955 block not strictly dominated by ENTRY is ignored.
2956
2957 We then call the standard PHI insertion algorithm with the pruned
2958 IDF.
2959
2960 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2961 names is not pruned. PHI nodes are inserted at every IDF block. */
2962
2963 static void
2964 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2965 unsigned update_flags)
2966 {
2967 basic_block entry;
2968 struct def_blocks_d *db;
2969 bitmap idf, pruned_idf;
2970 bitmap_iterator bi;
2971 unsigned i;
2972
2973 if (TREE_CODE (var) == SSA_NAME)
2974 gcc_checking_assert (is_old_name (var));
2975 else
2976 gcc_checking_assert (marked_for_renaming (var));
2977
2978 /* Get all the definition sites for VAR. */
2979 db = find_def_blocks_for (var);
2980
2981 /* No need to do anything if there were no definitions to VAR. */
2982 if (db == NULL || bitmap_empty_p (db->def_blocks))
2983 return;
2984
2985 /* Compute the initial iterated dominance frontier. */
2986 idf = compute_idf (db->def_blocks, dfs);
2987 pruned_idf = BITMAP_ALLOC (NULL);
2988
2989 if (TREE_CODE (var) == SSA_NAME)
2990 {
2991 if (update_flags == TODO_update_ssa)
2992 {
2993 /* If doing regular SSA updates for GIMPLE registers, we are
2994 only interested in IDF blocks dominated by the nearest
2995 common dominator of all the definition blocks. */
2996 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2997 db->def_blocks);
2998 if (entry != ENTRY_BLOCK_PTR)
2999 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3000 if (BASIC_BLOCK (i) != entry
3001 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3002 bitmap_set_bit (pruned_idf, i);
3003 }
3004 else
3005 {
3006 /* Otherwise, do not prune the IDF for VAR. */
3007 gcc_assert (update_flags == TODO_update_ssa_full_phi);
3008 bitmap_copy (pruned_idf, idf);
3009 }
3010 }
3011 else
3012 {
3013 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3014 for the first time, so we need to compute the full IDF for
3015 it. */
3016 bitmap_copy (pruned_idf, idf);
3017 }
3018
3019 if (!bitmap_empty_p (pruned_idf))
3020 {
3021 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3022 are included in the region to be updated. The feeding blocks
3023 are important to guarantee that the PHI arguments are renamed
3024 properly. */
3025
3026 /* FIXME, this is not needed if we are updating symbols. We are
3027 already starting at the ENTRY block anyway. */
3028 bitmap_ior_into (blocks, pruned_idf);
3029 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3030 {
3031 edge e;
3032 edge_iterator ei;
3033 basic_block bb = BASIC_BLOCK (i);
3034
3035 FOR_EACH_EDGE (e, ei, bb->preds)
3036 if (e->src->index >= 0)
3037 bitmap_set_bit (blocks, e->src->index);
3038 }
3039
3040 insert_phi_nodes_for (var, pruned_idf, true);
3041 }
3042
3043 BITMAP_FREE (pruned_idf);
3044 BITMAP_FREE (idf);
3045 }
3046
3047
3048 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3049 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3050
3051 1- The names in OLD_SSA_NAMES dominated by the definitions of
3052 NEW_SSA_NAMES are all re-written to be reached by the
3053 appropriate definition from NEW_SSA_NAMES.
3054
3055 2- If needed, new PHI nodes are added to the iterated dominance
3056 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3057
3058 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3059 calling register_new_name_mapping for every pair of names that the
3060 caller wants to replace.
3061
3062 The caller identifies the new names that have been inserted and the
3063 names that need to be replaced by calling register_new_name_mapping
3064 for every pair <NEW, OLD>. Note that the function assumes that the
3065 new names have already been inserted in the IL.
3066
3067 For instance, given the following code:
3068
3069 1 L0:
3070 2 x_1 = PHI (0, x_5)
3071 3 if (x_1 < 10)
3072 4 if (x_1 > 7)
3073 5 y_2 = 0
3074 6 else
3075 7 y_3 = x_1 + x_7
3076 8 endif
3077 9 x_5 = x_1 + 1
3078 10 goto L0;
3079 11 endif
3080
3081 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3082
3083 1 L0:
3084 2 x_1 = PHI (0, x_5)
3085 3 if (x_1 < 10)
3086 4 x_10 = ...
3087 5 if (x_1 > 7)
3088 6 y_2 = 0
3089 7 else
3090 8 x_11 = ...
3091 9 y_3 = x_1 + x_7
3092 10 endif
3093 11 x_5 = x_1 + 1
3094 12 goto L0;
3095 13 endif
3096
3097 We want to replace all the uses of x_1 with the new definitions of
3098 x_10 and x_11. Note that the only uses that should be replaced are
3099 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3100 *not* be replaced (this is why we cannot just mark symbol 'x' for
3101 renaming).
3102
3103 Additionally, we may need to insert a PHI node at line 11 because
3104 that is a merge point for x_10 and x_11. So the use of x_1 at line
3105 11 will be replaced with the new PHI node. The insertion of PHI
3106 nodes is optional. They are not strictly necessary to preserve the
3107 SSA form, and depending on what the caller inserted, they may not
3108 even be useful for the optimizers. UPDATE_FLAGS controls various
3109 aspects of how update_ssa operates, see the documentation for
3110 TODO_update_ssa*. */
3111
3112 void
3113 update_ssa (unsigned update_flags)
3114 {
3115 basic_block bb, start_bb;
3116 bitmap_iterator bi;
3117 unsigned i = 0;
3118 bool insert_phi_p;
3119 sbitmap_iterator sbi;
3120 tree sym;
3121
3122 /* Only one update flag should be set. */
3123 gcc_assert (update_flags == TODO_update_ssa
3124 || update_flags == TODO_update_ssa_no_phi
3125 || update_flags == TODO_update_ssa_full_phi
3126 || update_flags == TODO_update_ssa_only_virtuals);
3127
3128 if (!need_ssa_update_p (cfun))
3129 return;
3130
3131 timevar_push (TV_TREE_SSA_INCREMENTAL);
3132
3133 if (dump_file && (dump_flags & TDF_DETAILS))
3134 fprintf (dump_file, "\nUpdating SSA:\n");
3135
3136 if (!update_ssa_initialized_fn)
3137 init_update_ssa (cfun);
3138 else if (update_flags == TODO_update_ssa_only_virtuals)
3139 {
3140 /* If we only need to update virtuals, remove all the mappings for
3141 real names before proceeding. The caller is responsible for
3142 having dealt with the name mappings before calling update_ssa. */
3143 sbitmap_zero (old_ssa_names);
3144 sbitmap_zero (new_ssa_names);
3145 }
3146
3147 gcc_assert (update_ssa_initialized_fn == cfun);
3148
3149 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3150 if (!phis_to_rewrite)
3151 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block + 1);
3152 blocks_to_update = BITMAP_ALLOC (NULL);
3153
3154 /* Ensure that the dominance information is up-to-date. */
3155 calculate_dominance_info (CDI_DOMINATORS);
3156
3157 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3158
3159 /* If there are names defined in the replacement table, prepare
3160 definition and use sites for all the names in NEW_SSA_NAMES and
3161 OLD_SSA_NAMES. */
3162 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3163 {
3164 prepare_names_to_update (insert_phi_p);
3165
3166 /* If all the names in NEW_SSA_NAMES had been marked for
3167 removal, and there are no symbols to rename, then there's
3168 nothing else to do. */
3169 if (sbitmap_first_set_bit (new_ssa_names) < 0
3170 && !cfun->gimple_df->ssa_renaming_needed)
3171 goto done;
3172 }
3173
3174 /* Next, determine the block at which to start the renaming process. */
3175 if (cfun->gimple_df->ssa_renaming_needed)
3176 {
3177 /* If we rename bare symbols initialize the mapping to
3178 auxiliar info we need to keep track of. */
3179 var_infos = htab_create (47, var_info_hash, var_info_eq, NULL);
3180
3181 /* If we have to rename some symbols from scratch, we need to
3182 start the process at the root of the CFG. FIXME, it should
3183 be possible to determine the nearest block that had a
3184 definition for each of the symbols that are marked for
3185 updating. For now this seems more work than it's worth. */
3186 start_bb = ENTRY_BLOCK_PTR;
3187
3188 /* Traverse the CFG looking for existing definitions and uses of
3189 symbols in SSA operands. Mark interesting blocks and
3190 statements and set local live-in information for the PHI
3191 placement heuristics. */
3192 prepare_block_for_update (start_bb, insert_phi_p);
3193
3194 #ifdef ENABLE_CHECKING
3195 for (i = 1; i < num_ssa_names; ++i)
3196 {
3197 tree name = ssa_name (i);
3198 if (!name
3199 || virtual_operand_p (name))
3200 continue;
3201
3202 /* For all but virtual operands, which do not have SSA names
3203 with overlapping life ranges, ensure that symbols marked
3204 for renaming do not have existing SSA names associated with
3205 them as we do not re-write them out-of-SSA before going
3206 into SSA for the remaining symbol uses. */
3207 if (marked_for_renaming (SSA_NAME_VAR (name)))
3208 {
3209 fprintf (stderr, "Existing SSA name for symbol marked for "
3210 "renaming: ");
3211 print_generic_expr (stderr, name, TDF_SLIM);
3212 fprintf (stderr, "\n");
3213 internal_error ("SSA corruption");
3214 }
3215 }
3216 #endif
3217 }
3218 else
3219 {
3220 /* Otherwise, the entry block to the region is the nearest
3221 common dominator for the blocks in BLOCKS. */
3222 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3223 blocks_to_update);
3224 }
3225
3226 /* If requested, insert PHI nodes at the iterated dominance frontier
3227 of every block, creating new definitions for names in OLD_SSA_NAMES
3228 and for symbols found. */
3229 if (insert_phi_p)
3230 {
3231 bitmap_head *dfs;
3232
3233 /* If the caller requested PHI nodes to be added, compute
3234 dominance frontiers. */
3235 dfs = XNEWVEC (bitmap_head, last_basic_block);
3236 FOR_EACH_BB (bb)
3237 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3238 compute_dominance_frontiers (dfs);
3239
3240 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3241 {
3242 sbitmap_iterator sbi;
3243
3244 /* insert_update_phi_nodes_for will call add_new_name_mapping
3245 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3246 will grow while we are traversing it (but it will not
3247 gain any new members). Copy OLD_SSA_NAMES to a temporary
3248 for traversal. */
3249 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3250 sbitmap_copy (tmp, old_ssa_names);
3251 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3252 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3253 update_flags);
3254 sbitmap_free (tmp);
3255 }
3256
3257 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, sym)
3258 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3259 update_flags);
3260
3261 FOR_EACH_BB (bb)
3262 bitmap_clear (&dfs[bb->index]);
3263 free (dfs);
3264
3265 /* Insertion of PHI nodes may have added blocks to the region.
3266 We need to re-compute START_BB to include the newly added
3267 blocks. */
3268 if (start_bb != ENTRY_BLOCK_PTR)
3269 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3270 blocks_to_update);
3271 }
3272
3273 /* Reset the current definition for name and symbol before renaming
3274 the sub-graph. */
3275 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3276 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3277
3278 FOR_EACH_VEC_ELT (tree, symbols_to_rename, i, sym)
3279 get_var_info (sym)->info.current_def = NULL_TREE;
3280
3281 /* Now start the renaming process at START_BB. */
3282 interesting_blocks = sbitmap_alloc (last_basic_block);
3283 sbitmap_zero (interesting_blocks);
3284 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3285 SET_BIT (interesting_blocks, i);
3286
3287 rewrite_blocks (start_bb, REWRITE_UPDATE);
3288
3289 sbitmap_free (interesting_blocks);
3290
3291 /* Debugging dumps. */
3292 if (dump_file)
3293 {
3294 int c;
3295 unsigned i;
3296
3297 dump_update_ssa (dump_file);
3298
3299 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3300 start_bb->index);
3301
3302 c = 0;
3303 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3304 c++;
3305 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3306 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3307 c, PERCENT (c, last_basic_block));
3308
3309 if (dump_flags & TDF_DETAILS)
3310 {
3311 fprintf (dump_file, "Affected blocks:");
3312 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3313 fprintf (dump_file, " %u", i);
3314 fprintf (dump_file, "\n");
3315 }
3316
3317 fprintf (dump_file, "\n\n");
3318 }
3319
3320 /* Free allocated memory. */
3321 done:
3322 delete_update_ssa ();
3323
3324 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3325 }