a836aa2cab81fcd097da4e584f8ebcfdb37fdf8a
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "errors.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "bitmap.h"
39 #include "tree-flow.h"
40 #include "tree-gimple.h"
41 #include "tree-inline.h"
42 #include "varray.h"
43 #include "timevar.h"
44 #include "hashtab.h"
45 #include "tree-dump.h"
46 #include "tree-pass.h"
47 #include "cfgloop.h"
48 #include "domwalk.h"
49 #include "ggc.h"
50
51 /* This file builds the SSA form for a function as described in:
52 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
53 Computing Static Single Assignment Form and the Control Dependence
54 Graph. ACM Transactions on Programming Languages and Systems,
55 13(4):451-490, October 1991. */
56
57 /* Structure to map a variable VAR to the set of blocks that contain
58 definitions for VAR. */
59 struct def_blocks_d
60 {
61 /* The variable. */
62 tree var;
63
64 /* Blocks that contain definitions of VAR. Bit I will be set if the
65 Ith block contains a definition of VAR. */
66 bitmap def_blocks;
67
68 /* Blocks that contain a PHI node for VAR. */
69 bitmap phi_blocks;
70
71 /* Blocks where VAR is live-on-entry. Similar semantics as
72 DEF_BLOCKS. */
73 bitmap livein_blocks;
74 };
75
76
77 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
78 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
79 basic blocks where VAR is defined (assigned a new value). It also
80 contains a bitmap of all the blocks where VAR is live-on-entry
81 (i.e., there is a use of VAR in block B without a preceding
82 definition in B). The live-on-entry information is used when
83 computing PHI pruning heuristics. */
84 static htab_t def_blocks;
85
86 /* Stack of trees used to restore the global currdefs to its original
87 state after completing rewriting of a block and its dominator
88 children. Its elements have the following properties:
89
90 - An SSA_NAME indicates that the current definition of the
91 underlying variable should be set to the given SSA_NAME.
92
93 - A _DECL node indicates that the underlying variable has no
94 current definition.
95
96 - A NULL node is used to mark the last node associated with the
97 current block.
98
99 - A NULL node at the top entry is used to mark the last node
100 associated with the current block. */
101 static VEC(tree_on_heap) *block_defs_stack;
102
103 /* Basic block vectors used in this file ought to be allocated in the heap. */
104 DEF_VEC_MALLOC_P(int);
105
106 /* Set of existing SSA names being replaced by update_ssa. */
107 static sbitmap old_ssa_names;
108
109 /* Set of new SSA names being added by update_ssa. Note that both
110 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
111 the operations done on them are presence tests. */
112 static sbitmap new_ssa_names;
113
114 /* Set of virtual SSA names to be updated. Since virtuals are always
115 in FUD chain form, these names are not used as a mapping mechanism
116 like OLD_SSA_NAMES and NEW_SSA_NAMES. Instead, the names in this
117 set are used by ssa_names_to_replace to inform its caller which
118 names are going to be updated. */
119 static bitmap old_virtual_ssa_names;
120
121 /* Symbols whose SSA form needs to be updated or created for the first
122 time. */
123 static bitmap syms_to_rename;
124
125 /* Set of SSA names that have been marked to be released after they
126 were registered in the replacement table. They will be finally
127 released after we finish updating the SSA web. */
128 static bitmap names_to_release;
129
130 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
131 to grow as the callers to register_new_name_mapping will typically
132 create new names on the fly. FIXME. Currently set to 1/3 to avoid
133 frequent reallocations but still need to find a reasonable growth
134 strategy. */
135 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
136
137 /* Tuple used to represent replacement mappings. */
138 struct repl_map_d
139 {
140 tree name;
141 bitmap set;
142 };
143
144 /* NEW -> OLD_SET replacement table. If we are replacing several
145 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
146 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
147 static htab_t repl_tbl;
148
149 /* true if register_new_name_mapping needs to initialize the data
150 structures needed by update_ssa. */
151 static bool need_to_initialize_update_ssa_p = true;
152
153 /* true if update_ssa needs to update virtual operands. */
154 static bool need_to_update_vops_p = false;
155
156 /* true if update_ssa is replacing existing SSA names. */
157 static bool need_to_replace_names_p = false;
158
159 /* Global data to attach to the main dominator walk structure. */
160 struct mark_def_sites_global_data
161 {
162 /* This bitmap contains the variables which are set before they
163 are used in a basic block. */
164 bitmap kills;
165
166 /* Bitmap of names to rename. */
167 sbitmap names_to_rename;
168
169 /* Set of blocks that mark_def_sites deems interesting for the
170 renamer to process. */
171 sbitmap interesting_blocks;
172 };
173
174
175 /* Information stored for SSA names. */
176 struct ssa_name_info
177 {
178 /* This field indicates whether or not the variable may need PHI nodes.
179 See the enum's definition for more detailed information about the
180 states. */
181 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
182
183 /* The actual definition of the ssa name. */
184 tree current_def;
185 };
186
187
188 /* The main entry point to the SSA renamer (rewrite_blocks) may be
189 called several times to do different, but related, tasks.
190 Initially, we need it to rename the whole program into SSA form.
191 At other times, we may need it to only rename into SSA newly
192 exposed symbols. Finally, we can also call it to incrementally fix
193 an already built SSA web. */
194 enum rewrite_mode {
195 /* Convert the whole function into SSA form. */
196 REWRITE_ALL,
197
198 /* Incrementally update the SSA web by replacing existing SSA
199 names with new ones. See update_ssa for details. */
200 REWRITE_UPDATE
201 };
202
203
204 /* Use TREE_VISITED to keep track of which statements we want to
205 rename. When renaming a subset of the variables, not all
206 statements will be processed. This is decided in mark_def_sites. */
207 #define REWRITE_THIS_STMT(T) TREE_VISITED (T)
208
209 /* Use the unsigned flag to keep track of which statements we want to
210 visit when marking new definition sites. This is slightly
211 different than REWRITE_THIS_STMT: it's used by update_ssa to
212 distinguish statements that need to have both uses and defs
213 processed from those that only need to have their defs processed.
214 Statements that define new SSA names only need to have their defs
215 registered, but they don't need to have their uses renamed. */
216 #define REGISTER_DEFS_IN_THIS_STMT(T) (T)->common.unsigned_flag
217
218
219 /* Get the information associated with NAME. */
220
221 static inline struct ssa_name_info *
222 get_ssa_name_ann (tree name)
223 {
224 if (!SSA_NAME_AUX (name))
225 SSA_NAME_AUX (name) = xcalloc (1, sizeof (struct ssa_name_info));
226
227 return SSA_NAME_AUX (name);
228 }
229
230
231 /* Gets phi_state field for VAR. */
232
233 static inline enum need_phi_state
234 get_phi_state (tree var)
235 {
236 if (TREE_CODE (var) == SSA_NAME)
237 return get_ssa_name_ann (var)->need_phi_state;
238 else
239 return var_ann (var)->need_phi_state;
240 }
241
242
243 /* Sets phi_state field for VAR to STATE. */
244
245 static inline void
246 set_phi_state (tree var, enum need_phi_state state)
247 {
248 if (TREE_CODE (var) == SSA_NAME)
249 get_ssa_name_ann (var)->need_phi_state = state;
250 else
251 var_ann (var)->need_phi_state = state;
252 }
253
254
255 /* Return the current definition for VAR. */
256
257 static inline tree
258 get_current_def (tree var)
259 {
260 if (TREE_CODE (var) == SSA_NAME)
261 return get_ssa_name_ann (var)->current_def;
262 else
263 return var_ann (var)->current_def;
264 }
265
266
267 /* Sets current definition of VAR to DEF. */
268
269 static inline void
270 set_current_def (tree var, tree def)
271 {
272 if (TREE_CODE (var) == SSA_NAME)
273 get_ssa_name_ann (var)->current_def = def;
274 else
275 var_ann (var)->current_def = def;
276 }
277
278
279 /* Compute global livein information given the set of blockx where
280 an object is locally live at the start of the block (LIVEIN)
281 and the set of blocks where the object is defined (DEF_BLOCKS).
282
283 Note: This routine augments the existing local livein information
284 to include global livein (i.e., it modifies the underlying bitmap
285 for LIVEIN). */
286
287 void
288 compute_global_livein (bitmap livein, bitmap def_blocks)
289 {
290 basic_block bb, *worklist, *tos;
291 unsigned i;
292 bitmap_iterator bi;
293
294 tos = worklist
295 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
296
297 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
298 {
299 *tos++ = BASIC_BLOCK (i);
300 }
301
302 /* Iterate until the worklist is empty. */
303 while (tos != worklist)
304 {
305 edge e;
306 edge_iterator ei;
307
308 /* Pull a block off the worklist. */
309 bb = *--tos;
310
311 /* For each predecessor block. */
312 FOR_EACH_EDGE (e, ei, bb->preds)
313 {
314 basic_block pred = e->src;
315 int pred_index = pred->index;
316
317 /* None of this is necessary for the entry block. */
318 if (pred != ENTRY_BLOCK_PTR
319 && ! bitmap_bit_p (livein, pred_index)
320 && ! bitmap_bit_p (def_blocks, pred_index))
321 {
322 *tos++ = pred;
323 bitmap_set_bit (livein, pred_index);
324 }
325 }
326 }
327
328 free (worklist);
329 }
330
331
332 /* Return the set of blocks where variable VAR is defined and the blocks
333 where VAR is live on entry (livein). If no entry is found in
334 DEF_BLOCKS, a new one is created and returned. */
335
336 static inline struct def_blocks_d *
337 get_def_blocks_for (tree var)
338 {
339 struct def_blocks_d db, *db_p;
340 void **slot;
341
342 db.var = var;
343 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
344 if (*slot == NULL)
345 {
346 db_p = xmalloc (sizeof (*db_p));
347 db_p->var = var;
348 db_p->def_blocks = BITMAP_ALLOC (NULL);
349 db_p->phi_blocks = BITMAP_ALLOC (NULL);
350 db_p->livein_blocks = BITMAP_ALLOC (NULL);
351 *slot = (void *) db_p;
352 }
353 else
354 db_p = (struct def_blocks_d *) *slot;
355
356 return db_p;
357 }
358
359
360 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
361 VAR is defined by a PHI node. */
362
363 static void
364 set_def_block (tree var, basic_block bb, bool phi_p)
365 {
366 struct def_blocks_d *db_p;
367 enum need_phi_state state;
368
369 state = get_phi_state (var);
370 db_p = get_def_blocks_for (var);
371
372 /* Set the bit corresponding to the block where VAR is defined. */
373 bitmap_set_bit (db_p->def_blocks, bb->index);
374 if (phi_p)
375 bitmap_set_bit (db_p->phi_blocks, bb->index);
376
377 /* Keep track of whether or not we may need to insert PHI nodes.
378
379 If we are in the UNKNOWN state, then this is the first definition
380 of VAR. Additionally, we have not seen any uses of VAR yet, so
381 we do not need a PHI node for this variable at this time (i.e.,
382 transition to NEED_PHI_STATE_NO).
383
384 If we are in any other state, then we either have multiple definitions
385 of this variable occurring in different blocks or we saw a use of the
386 variable which was not dominated by the block containing the
387 definition(s). In this case we may need a PHI node, so enter
388 state NEED_PHI_STATE_MAYBE. */
389 if (state == NEED_PHI_STATE_UNKNOWN)
390 set_phi_state (var, NEED_PHI_STATE_NO);
391 else
392 set_phi_state (var, NEED_PHI_STATE_MAYBE);
393 }
394
395
396 /* Mark block BB as having VAR live at the entry to BB. */
397
398 static void
399 set_livein_block (tree var, basic_block bb)
400 {
401 struct def_blocks_d *db_p;
402 enum need_phi_state state = get_phi_state (var);
403
404 db_p = get_def_blocks_for (var);
405
406 /* Set the bit corresponding to the block where VAR is live in. */
407 bitmap_set_bit (db_p->livein_blocks, bb->index);
408
409 /* Keep track of whether or not we may need to insert PHI nodes.
410
411 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
412 by the single block containing the definition(s) of this variable. If
413 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
414 NEED_PHI_STATE_MAYBE. */
415 if (state == NEED_PHI_STATE_NO)
416 {
417 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
418
419 if (def_block_index == -1
420 || ! dominated_by_p (CDI_DOMINATORS, bb,
421 BASIC_BLOCK (def_block_index)))
422 set_phi_state (var, NEED_PHI_STATE_MAYBE);
423 }
424 else
425 set_phi_state (var, NEED_PHI_STATE_MAYBE);
426 }
427
428
429 /* Return true if symbol SYM is marked for renaming. */
430
431 static inline bool
432 symbol_marked_for_renaming (tree sym)
433 {
434 gcc_assert (DECL_P (sym));
435 return bitmap_bit_p (syms_to_rename, var_ann (sym)->uid);
436 }
437
438
439 /* Return true if NAME is in OLD_SSA_NAMES. */
440
441 static inline bool
442 is_old_name (tree name)
443 {
444 if (!need_to_replace_names_p)
445 return false;
446
447 return TEST_BIT (old_ssa_names, SSA_NAME_VERSION (name));
448 }
449
450
451 /* Return true if NAME is in NEW_SSA_NAMES. */
452
453 static inline bool
454 is_new_name (tree name)
455 {
456 if (!need_to_replace_names_p)
457 return false;
458
459 return TEST_BIT (new_ssa_names, SSA_NAME_VERSION (name));
460 }
461
462
463 /* Hashing and equality functions for REPL_TBL. */
464
465 static hashval_t
466 repl_map_hash (const void *p)
467 {
468 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
469 }
470
471 static int
472 repl_map_eq (const void *p1, const void *p2)
473 {
474 return ((const struct repl_map_d *)p1)->name
475 == ((const struct repl_map_d *)p2)->name;
476 }
477
478 static void
479 repl_map_free (void *p)
480 {
481 BITMAP_FREE (((struct repl_map_d *)p)->set);
482 free (p);
483 }
484
485
486 /* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
487
488 static inline bitmap
489 names_replaced_by (tree new)
490 {
491 struct repl_map_d m;
492 void **slot;
493
494 m.name = new;
495 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
496
497 /* If N was not registered in the replacement table, return NULL. */
498 if (slot == NULL || *slot == NULL)
499 return NULL;
500
501 return ((struct repl_map_d *) *slot)->set;
502 }
503
504
505 /* Add OLD to REPL_TBL[NEW].SET. */
506
507 static inline void
508 add_to_repl_tbl (tree new, tree old)
509 {
510 struct repl_map_d m, *mp;
511 void **slot;
512
513 m.name = new;
514 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
515 if (*slot == NULL)
516 {
517 mp = xmalloc (sizeof (*mp));
518 mp->name = new;
519 mp->set = BITMAP_ALLOC (NULL);
520 *slot = (void *) mp;
521 }
522 else
523 mp = (struct repl_map_d *) *slot;
524
525 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
526 }
527
528
529 /* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
530 represents the set of names O_1 ... O_j replaced by N_i. This is
531 used by update_ssa and its helpers to introduce new SSA names in an
532 already formed SSA web. */
533
534 static void
535 add_new_name_mapping (tree new, tree old)
536 {
537 timevar_push (TV_TREE_SSA_INCREMENTAL);
538
539 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
540 caller may have created new names since the set was created. */
541 if (new_ssa_names->n_bits <= num_ssa_names - 1)
542 {
543 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
544 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
545 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
546 }
547
548 /* We don't need to keep replacement mappings for virtual names.
549 Since these names are kept in FUD-chain form, we need to traverse
550 the CFG from ENTRY to repair FUD chains. */
551 if (!is_gimple_reg (new))
552 {
553 tree sym;
554
555 gcc_assert (!is_gimple_reg (old));
556
557 if (DECL_P (old))
558 sym = new;
559 else
560 {
561 sym = SSA_NAME_VAR (old);
562 bitmap_set_bit (old_virtual_ssa_names, SSA_NAME_VERSION (old));
563 }
564
565 mark_sym_for_renaming (sym);
566 need_to_update_vops_p = true;
567
568 timevar_pop (TV_TREE_SSA_INCREMENTAL);
569
570 return;
571 }
572
573 /* Assume that OLD and NEW are different GIMPLE register names. */
574 gcc_assert (new != old && is_gimple_reg (old));
575
576 /* Update the REPL_TBL table. */
577 add_to_repl_tbl (new, old);
578
579 /* If OLD had already been registered as a new name, then all the
580 names that OLD replaces should also be replaced by NEW. */
581 if (is_new_name (old))
582 bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
583
584 /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
585 respectively. */
586 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
587 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
588
589 /* Indicate that we are going to be replacing existing names. */
590 need_to_replace_names_p = true;
591
592 timevar_pop (TV_TREE_SSA_INCREMENTAL);
593 }
594
595
596 /* Call back for walk_dominator_tree used to collect definition sites
597 for every variable in the function. For every statement S in block
598 BB:
599
600 1- Variables defined by S in DEF_OPS(S) are marked in the bitmap
601 WALK_DATA->GLOBAL_DATA->KILLS.
602
603 2- If S uses a variable VAR and there is no preceding kill of VAR,
604 then it is marked in marked in the LIVEIN_BLOCKS bitmap
605 associated with VAR.
606
607 This information is used to determine which variables are live
608 across block boundaries to reduce the number of PHI nodes
609 we create. */
610
611 static void
612 mark_def_sites (struct dom_walk_data *walk_data,
613 basic_block bb,
614 block_stmt_iterator bsi)
615 {
616 struct mark_def_sites_global_data *gd = walk_data->global_data;
617 bitmap kills = gd->kills;
618 tree stmt, def;
619 use_operand_p use_p;
620 def_operand_p def_p;
621 ssa_op_iter iter;
622
623 stmt = bsi_stmt (bsi);
624 update_stmt_if_modified (stmt);
625
626 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
627 REWRITE_THIS_STMT (stmt) = 0;
628
629 /* If a variable is used before being set, then the variable is live
630 across a block boundary, so mark it live-on-entry to BB. */
631 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
632 SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTDEFKILL)
633 {
634 tree sym = USE_FROM_PTR (use_p);
635 gcc_assert (DECL_P (sym));
636 if (!bitmap_bit_p (kills, var_ann (sym)->uid))
637 set_livein_block (sym, bb);
638 REWRITE_THIS_STMT (stmt) = 1;
639 }
640
641 /* Note that virtual definitions are irrelevant for computing KILLS
642 because a V_MAY_DEF does not constitute a killing definition of the
643 variable. However, the operand of a virtual definitions is a use
644 of the variable, so it may cause the variable to be considered
645 live-on-entry. */
646 FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
647 {
648 tree sym = USE_FROM_PTR (use_p);
649 gcc_assert (DECL_P (sym));
650 set_livein_block (sym, bb);
651 set_def_block (sym, bb, false);
652 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
653 REWRITE_THIS_STMT (stmt) = 1;
654 }
655
656 /* Now process the defs and must-defs made by this statement. */
657 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
658 {
659 gcc_assert (DECL_P (def));
660 set_def_block (def, bb, false);
661 bitmap_set_bit (kills, var_ann (def)->uid);
662 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
663 }
664
665 /* If we found the statement interesting then also mark the block BB
666 as interesting. */
667 if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
668 SET_BIT (gd->interesting_blocks, bb->index);
669 }
670
671
672 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
673 return a bitmap with all the blocks in the iterated dominance
674 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
675 frontier information as returned by compute_dominance_frontiers.
676
677 The resulting set of blocks are the potential sites where PHI nodes
678 are needed. The caller is responsible from freeing the memory
679 allocated for the return value. */
680
681 static bitmap
682 find_idf (bitmap def_blocks, bitmap *dfs)
683 {
684 bitmap_iterator bi;
685 unsigned bb_index;
686 VEC(int) *work_stack;
687 bitmap phi_insertion_points;
688
689 work_stack = VEC_alloc (int, n_basic_blocks);
690 phi_insertion_points = BITMAP_ALLOC (NULL);
691
692 /* Seed the work list with all the blocks in DEF_BLOCKS. */
693 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
694 /* We use VEC_quick_push here for speed. This is safe because we
695 know that the number of definition blocks is no greater than
696 the number of basic blocks, which is the initial capacity of
697 WORK_STACK. */
698 VEC_quick_push (int, work_stack, bb_index);
699
700 /* Pop a block off the worklist, add every block that appears in
701 the original block's DF that we have not already processed to
702 the worklist. Iterate until the worklist is empty. Blocks
703 which are added to the worklist are potential sites for
704 PHI nodes. */
705 while (VEC_length (int, work_stack) > 0)
706 {
707 bb_index = VEC_pop (int, work_stack);
708
709 /* Since the registration of NEW -> OLD name mappings is done
710 separately from the call to update_ssa, when updating the SSA
711 form, the basic blocks where new and/or old names are defined
712 may have disappeared by CFG cleanup calls. In this case,
713 we may pull a non-existing block from the work stack. */
714 gcc_assert (bb_index < (unsigned) last_basic_block);
715
716 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
717 0, bb_index, bi)
718 {
719 /* Use a safe push because if there is a definition of VAR
720 in every basic block, then WORK_STACK may eventually have
721 more than N_BASIC_BLOCK entries. */
722 VEC_safe_push (int, work_stack, bb_index);
723 bitmap_set_bit (phi_insertion_points, bb_index);
724 }
725 }
726
727 VEC_free (int, work_stack);
728
729 return phi_insertion_points;
730 }
731
732
733 /* Return the set of blocks where variable VAR is defined and the blocks
734 where VAR is live on entry (livein). Return NULL, if no entry is
735 found in DEF_BLOCKS. */
736
737 static inline struct def_blocks_d *
738 find_def_blocks_for (tree var)
739 {
740 struct def_blocks_d dm;
741 dm.var = var;
742 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
743 }
744
745
746 /* Retrieve or create a default definition for symbol SYM. */
747
748 static inline tree
749 get_default_def_for (tree sym)
750 {
751 tree ddef = default_def (sym);
752
753 if (ddef == NULL_TREE)
754 {
755 ddef = make_ssa_name (sym, build_empty_stmt ());
756 set_default_def (sym, ddef);
757 }
758
759 return ddef;
760 }
761
762
763 /* Insert PHI nodes for variable VAR using the iterated dominance
764 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
765 function assumes that the caller is incrementally updating the SSA
766 form, in which case (1) VAR is assumed to be an SSA name, (2) a new
767 SSA name is created for VAR's symbol, and, (3) all the arguments
768 for the newly created PHI node are set to VAR.
769
770 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
771 PHI node for VAR. On exit, only the nodes that received a PHI node
772 for VAR will be present in PHI_INSERTION_POINTS. */
773
774 static void
775 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
776 {
777 unsigned bb_index;
778 edge e;
779 tree phi;
780 basic_block bb;
781 bitmap_iterator bi;
782 struct def_blocks_d *def_map;
783
784 def_map = find_def_blocks_for (var);
785 gcc_assert (def_map);
786
787 /* Remove the blocks where we already have PHI nodes for VAR. */
788 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
789
790 /* Now compute global livein for this variable. Note this modifies
791 def_map->livein_blocks. */
792 compute_global_livein (def_map->livein_blocks, def_map->def_blocks);
793
794 /* And insert the PHI nodes. */
795 EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks,
796 0, bb_index, bi)
797 {
798 bb = BASIC_BLOCK (bb_index);
799 phi = create_phi_node (var, bb);
800
801 if (TREE_CODE (var) == SSA_NAME)
802 {
803 edge_iterator ei;
804
805 /* FIXME. After removing rewrite_ssa_into_ssa, change this
806 if() to gcc_assert(). */
807 if (update_p)
808 {
809 /* If we are rewriting SSA names, create the LHS of the
810 PHI node by duplicating VAR. This is useful in the
811 case of pointers, to also duplicate pointer
812 attributes (alias information, in particular). */
813 tree new_lhs = duplicate_ssa_name (var, phi);
814 SET_PHI_RESULT (phi, new_lhs);
815 add_new_name_mapping (new_lhs, var);
816 }
817
818 /* Add VAR to every argument slot of PHI. We need VAR in
819 every argument so that rewrite_update_phi_arguments knows
820 which name is this PHI node replacing. If VAR is a
821 symbol marked for renaming, this is not necessary, the
822 renamer will use the symbol on the LHS to get its
823 reaching definition. */
824 FOR_EACH_EDGE (e, ei, bb->preds)
825 add_phi_arg (phi, var, e);
826 }
827
828 /* Mark this PHI node as interesting for update_ssa. */
829 REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
830 REWRITE_THIS_STMT (phi) = 1;
831 }
832 }
833
834
835 /* Helper for insert_phi_nodes. If VAR needs PHI nodes, insert them
836 at the dominance frontier (DFS) of blocks defining VAR. */
837
838 static inline void
839 insert_phi_nodes_1 (tree var, bitmap *dfs)
840 {
841 struct def_blocks_d *def_map;
842 bitmap idf;
843
844 def_map = find_def_blocks_for (var);
845 if (def_map == NULL)
846 return;
847
848 if (get_phi_state (var) != NEED_PHI_STATE_NO)
849 {
850 idf = find_idf (def_map->def_blocks, dfs);
851 insert_phi_nodes_for (var, idf, false);
852 BITMAP_FREE (idf);
853 }
854 }
855
856
857 /* Insert PHI nodes at the dominance frontier of blocks with variable
858 definitions. DFS contains the dominance frontier information for
859 the flowgraph. PHI nodes will only be inserted at the dominance
860 frontier of definition blocks for variables whose NEED_PHI_STATE
861 annotation is marked as ``maybe'' or ``unknown'' (computed by
862 mark_def_sites). If NAMES_TO_RENAME is not NULL, do the same but
863 for ssa name rewriting. */
864
865 static void
866 insert_phi_nodes (bitmap *dfs, bitmap names_to_rename)
867 {
868 unsigned i;
869
870 timevar_push (TV_TREE_INSERT_PHI_NODES);
871
872 if (names_to_rename)
873 {
874 bitmap_iterator bi;
875
876 EXECUTE_IF_SET_IN_BITMAP (names_to_rename, 0, i, bi)
877 if (ssa_name (i))
878 insert_phi_nodes_1 (ssa_name (i), dfs);
879 }
880 else
881 {
882 for (i = 0; i < num_referenced_vars; i++)
883 insert_phi_nodes_1 (referenced_var (i), dfs);
884 }
885
886 timevar_pop (TV_TREE_INSERT_PHI_NODES);
887 }
888
889
890 /* Register DEF (an SSA_NAME) to be a new definition for its underlying
891 variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
892 into the stack pointed by BLOCK_DEFS_P. */
893
894 void
895 register_new_def (tree def, VEC (tree_on_heap) **block_defs_p)
896 {
897 tree var = SSA_NAME_VAR (def);
898 tree currdef;
899
900 /* If this variable is set in a single basic block and all uses are
901 dominated by the set(s) in that single basic block, then there is
902 no reason to record anything for this variable in the block local
903 definition stacks. Doing so just wastes time and memory.
904
905 This is the same test to prune the set of variables which may
906 need PHI nodes. So we just use that information since it's already
907 computed and available for us to use. */
908 if (get_phi_state (var) == NEED_PHI_STATE_NO)
909 {
910 set_current_def (var, def);
911 return;
912 }
913
914 currdef = get_current_def (var);
915
916 /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
917 later used by the dominator tree callbacks to restore the reaching
918 definitions for all the variables defined in the block after a recursive
919 visit to all its immediately dominated blocks. If there is no current
920 reaching definition, then just record the underlying _DECL node. */
921 VEC_safe_push (tree_on_heap, *block_defs_p, currdef ? currdef : var);
922
923 /* Set the current reaching definition for VAR to be DEF. */
924 set_current_def (var, def);
925 }
926
927
928 /* Perform a depth-first traversal of the dominator tree looking for
929 variables to rename. BB is the block where to start searching.
930 Renaming is a five step process:
931
932 1- Every definition made by PHI nodes at the start of the blocks is
933 registered as the current definition for the corresponding variable.
934
935 2- Every statement in BB is rewritten. USE and VUSE operands are
936 rewritten with their corresponding reaching definition. DEF and
937 VDEF targets are registered as new definitions.
938
939 3- All the PHI nodes in successor blocks of BB are visited. The
940 argument corresponding to BB is replaced with its current reaching
941 definition.
942
943 4- Recursively rewrite every dominator child block of BB.
944
945 5- Restore (in reverse order) the current reaching definition for every
946 new definition introduced in this block. This is done so that when
947 we return from the recursive call, all the current reaching
948 definitions are restored to the names that were valid in the
949 dominator parent of BB. */
950
951 /* SSA Rewriting Step 1. Initialization, create a block local stack
952 of reaching definitions for new SSA names produced in this block
953 (BLOCK_DEFS). Register new definitions for every PHI node in the
954 block. */
955
956 static void
957 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
958 basic_block bb)
959 {
960 tree phi;
961
962 if (dump_file && (dump_flags & TDF_DETAILS))
963 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
964
965 /* Mark the unwind point for this block. */
966 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
967
968 /* Step 1. Register new definitions for every PHI node in the block.
969 Conceptually, all the PHI nodes are executed in parallel and each PHI
970 node introduces a new version for the associated variable. */
971 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
972 {
973 tree result = PHI_RESULT (phi);
974 register_new_def (result, &block_defs_stack);
975 }
976 }
977
978
979 /* Return the current definition for variable VAR. If none is found,
980 create a new SSA name to act as the zeroth definition for VAR. If VAR
981 is call clobbered and there exists a more recent definition of
982 GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
983 has been clobbered by a function call since its last assignment. */
984
985 static tree
986 get_reaching_def (tree var)
987 {
988 tree currdef_var, avar;
989
990 /* Lookup the current reaching definition for VAR. */
991 currdef_var = get_current_def (var);
992
993 /* If there is no reaching definition for VAR, create and register a
994 default definition for it (if needed). */
995 if (currdef_var == NULL_TREE)
996 {
997 avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
998 currdef_var = get_default_def_for (avar);
999 set_current_def (var, currdef_var);
1000 }
1001
1002 /* Return the current reaching definition for VAR, or the default
1003 definition, if we had to create one. */
1004 return currdef_var;
1005 }
1006
1007
1008 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1009 the block with its immediate reaching definitions. Update the current
1010 definition of a variable when a new real or virtual definition is found. */
1011
1012 static void
1013 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1014 basic_block bb ATTRIBUTE_UNUSED,
1015 block_stmt_iterator si)
1016 {
1017 tree stmt;
1018 use_operand_p use_p;
1019 def_operand_p def_p;
1020 ssa_op_iter iter;
1021
1022 stmt = bsi_stmt (si);
1023
1024 /* If mark_def_sites decided that we don't need to rewrite this
1025 statement, ignore it. */
1026 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1027 return;
1028
1029 if (dump_file && (dump_flags & TDF_DETAILS))
1030 {
1031 fprintf (dump_file, "Renaming statement ");
1032 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1033 fprintf (dump_file, "\n");
1034 }
1035
1036 /* Step 1. Rewrite USES and VUSES in the statement. */
1037 if (REWRITE_THIS_STMT (stmt))
1038 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1039 SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
1040 {
1041 tree var = USE_FROM_PTR (use_p);
1042 gcc_assert (DECL_P (var));
1043 SET_USE (use_p, get_reaching_def (var));
1044 }
1045
1046 /* Step 2. Register the statement's DEF and VDEF operands. */
1047 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1048 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1049 {
1050 tree var = DEF_FROM_PTR (def_p);
1051 gcc_assert (DECL_P (var));
1052 SET_DEF (def_p, make_ssa_name (var, stmt));
1053 register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
1054 }
1055 }
1056
1057
1058 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1059 PHI nodes. For every PHI node found, add a new argument containing the
1060 current reaching definition for the variable and the edge through which
1061 that definition is reaching the PHI node. */
1062
1063 static void
1064 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1065 basic_block bb)
1066 {
1067 edge e;
1068 edge_iterator ei;
1069
1070 FOR_EACH_EDGE (e, ei, bb->succs)
1071 {
1072 tree phi;
1073
1074 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1075 {
1076 tree currdef;
1077 currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
1078 add_phi_arg (phi, currdef, e);
1079 }
1080 }
1081 }
1082
1083
1084 /* Called after visiting basic block BB. Restore CURRDEFS to its
1085 original value. */
1086
1087 static void
1088 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1089 basic_block bb ATTRIBUTE_UNUSED)
1090 {
1091 /* Restore CURRDEFS to its original state. */
1092 while (VEC_length (tree_on_heap, block_defs_stack) > 0)
1093 {
1094 tree tmp = VEC_pop (tree_on_heap, block_defs_stack);
1095 tree saved_def, var;
1096
1097 if (tmp == NULL_TREE)
1098 break;
1099
1100 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
1101 definition of its underlying variable. If we recorded anything
1102 else, it must have been an _DECL node and its current reaching
1103 definition must have been NULL. */
1104 if (TREE_CODE (tmp) == SSA_NAME)
1105 {
1106 saved_def = tmp;
1107 var = SSA_NAME_VAR (saved_def);
1108 }
1109 else
1110 {
1111 saved_def = NULL;
1112 var = tmp;
1113 }
1114
1115 set_current_def (var, saved_def);
1116 }
1117 }
1118
1119
1120 /* Dump SSA information to FILE. */
1121
1122 void
1123 dump_tree_ssa (FILE *file)
1124 {
1125 basic_block bb;
1126 const char *funcname
1127 = lang_hooks.decl_printable_name (current_function_decl, 2);
1128
1129 fprintf (file, "SSA information for %s\n\n", funcname);
1130
1131 FOR_EACH_BB (bb)
1132 {
1133 dump_bb (bb, file, 0);
1134 fputs (" ", file);
1135 print_generic_stmt (file, phi_nodes (bb), dump_flags);
1136 fputs ("\n\n", file);
1137 }
1138 }
1139
1140
1141 /* Dump SSA information to stderr. */
1142
1143 void
1144 debug_tree_ssa (void)
1145 {
1146 dump_tree_ssa (stderr);
1147 }
1148
1149
1150 /* Dump statistics for the hash table HTAB. */
1151
1152 static void
1153 htab_statistics (FILE *file, htab_t htab)
1154 {
1155 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1156 (long) htab_size (htab),
1157 (long) htab_elements (htab),
1158 htab_collisions (htab));
1159 }
1160
1161
1162 /* Dump SSA statistics on FILE. */
1163
1164 void
1165 dump_tree_ssa_stats (FILE *file)
1166 {
1167 fprintf (file, "\nHash table statistics:\n");
1168
1169 fprintf (file, " def_blocks: ");
1170 htab_statistics (file, def_blocks);
1171
1172 fprintf (file, "\n");
1173 }
1174
1175
1176 /* Dump SSA statistics on stderr. */
1177
1178 void
1179 debug_tree_ssa_stats (void)
1180 {
1181 dump_tree_ssa_stats (stderr);
1182 }
1183
1184
1185 /* Hashing and equality functions for DEF_BLOCKS. */
1186
1187 static hashval_t
1188 def_blocks_hash (const void *p)
1189 {
1190 return htab_hash_pointer
1191 ((const void *)((const struct def_blocks_d *)p)->var);
1192 }
1193
1194 static int
1195 def_blocks_eq (const void *p1, const void *p2)
1196 {
1197 return ((const struct def_blocks_d *)p1)->var
1198 == ((const struct def_blocks_d *)p2)->var;
1199 }
1200
1201
1202 /* Free memory allocated by one entry in DEF_BLOCKS. */
1203
1204 static void
1205 def_blocks_free (void *p)
1206 {
1207 struct def_blocks_d *entry = p;
1208 BITMAP_FREE (entry->def_blocks);
1209 BITMAP_FREE (entry->phi_blocks);
1210 BITMAP_FREE (entry->livein_blocks);
1211 free (entry);
1212 }
1213
1214
1215 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1216
1217 static int
1218 debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
1219 {
1220 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1221
1222 fprintf (stderr, "VAR: ");
1223 print_generic_expr (stderr, db_p->var, dump_flags);
1224 bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1225 bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");
1226
1227 return 1;
1228 }
1229
1230
1231 /* Dump the DEF_BLOCKS hash table on stderr. */
1232
1233 void
1234 debug_def_blocks (void)
1235 {
1236 htab_traverse (def_blocks, debug_def_blocks_r, NULL);
1237 }
1238
1239
1240 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1241
1242 static inline void
1243 register_new_update_single (tree new_name, tree old_name)
1244 {
1245 tree currdef = get_current_def (old_name);
1246
1247 /* Push the current reaching definition into *BLOCK_DEFS_P.
1248 This stack is later used by the dominator tree callbacks to
1249 restore the reaching definitions for all the variables
1250 defined in the block after a recursive visit to all its
1251 immediately dominated blocks. */
1252 VEC_safe_push (tree_on_heap, block_defs_stack, currdef);
1253 VEC_safe_push (tree_on_heap, block_defs_stack, old_name);
1254
1255 /* Set the current reaching definition for OLD_NAME to be
1256 NEW_NAME. */
1257 set_current_def (old_name, new_name);
1258 }
1259
1260
1261 /* Register NEW_NAME to be the new reaching definition for all the
1262 names in OLD_NAMES. Used by the incremental SSA update routines to
1263 replace old SSA names with new ones. */
1264
1265 static inline void
1266 register_new_update_set (tree new_name, bitmap old_names)
1267 {
1268 bitmap_iterator bi;
1269 unsigned i;
1270
1271 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1272 register_new_update_single (new_name, ssa_name (i));
1273 }
1274
1275
1276 /* Initialization of block data structures for the incremental SSA
1277 update pass. Create a block local stack of reaching definitions
1278 for new SSA names produced in this block (BLOCK_DEFS). Register
1279 new definitions for every PHI node in the block. */
1280
1281 static void
1282 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1283 basic_block bb)
1284 {
1285 edge e;
1286 edge_iterator ei;
1287 tree phi;
1288 bool is_abnormal_phi;
1289
1290 if (dump_file && (dump_flags & TDF_DETAILS))
1291 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1292 bb->index);
1293
1294 /* Mark the unwind point for this block. */
1295 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
1296
1297 /* Mark the LHS if any of the arguments flows through an abnormal
1298 edge. */
1299 is_abnormal_phi = false;
1300 FOR_EACH_EDGE (e, ei, bb->preds)
1301 if (e->flags & EDGE_ABNORMAL)
1302 {
1303 is_abnormal_phi = true;
1304 break;
1305 }
1306
1307 /* If any of the PHI nodes is a replacement for a name in
1308 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1309 register it as a new definition for its corresponding name. Also
1310 register definitions for names whose underlying symbols are
1311 marked for renaming. */
1312 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1313 {
1314 tree lhs, lhs_sym;
1315
1316 if (!REGISTER_DEFS_IN_THIS_STMT (phi))
1317 continue;
1318
1319 lhs = PHI_RESULT (phi);
1320 lhs_sym = SSA_NAME_VAR (lhs);
1321
1322 if (symbol_marked_for_renaming (lhs_sym))
1323 register_new_update_single (lhs, lhs_sym);
1324 else
1325 {
1326 /* If LHS is a new name, register a new definition for all
1327 the names replaced by LHS. */
1328 if (is_new_name (lhs))
1329 register_new_update_set (lhs, names_replaced_by (lhs));
1330
1331 /* If LHS is an OLD name, register it as a new definition
1332 for itself. */
1333 if (is_old_name (lhs))
1334 register_new_update_single (lhs, lhs);
1335 }
1336
1337 if (is_abnormal_phi)
1338 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1339 }
1340 }
1341
1342
1343 /* Replace the operand pointed by USE_P with USE's current reaching
1344 definition. */
1345
1346 static inline void
1347 replace_use (use_operand_p use_p, tree use)
1348 {
1349 tree rdef = get_reaching_def (use);
1350 if (rdef != use)
1351 SET_USE (use_p, rdef);
1352 }
1353
1354
1355 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1356 the current reaching definition of every name re-written in BB to
1357 the original reaching definition before visiting BB. This
1358 unwinding must be done in the opposite order to what is done in
1359 register_new_update_set. */
1360
1361 static void
1362 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1363 basic_block bb ATTRIBUTE_UNUSED)
1364 {
1365 while (VEC_length (tree_on_heap, block_defs_stack) > 0)
1366 {
1367 tree var = VEC_pop (tree_on_heap, block_defs_stack);
1368 tree saved_def;
1369
1370 /* NULL indicates the unwind stop point for this block (see
1371 rewrite_update_init_block). */
1372 if (var == NULL)
1373 return;
1374
1375 saved_def = VEC_pop (tree_on_heap, block_defs_stack);
1376 set_current_def (var, saved_def);
1377 }
1378 }
1379
1380
1381 /* Update every variable used in the statement pointed-to by SI. The
1382 statement is assumed to be in SSA form already. Names in
1383 OLD_SSA_NAMES used by SI will be updated to their current reaching
1384 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1385 will be registered as a new definition for their corresponding name
1386 in OLD_SSA_NAMES. */
1387
1388 static void
1389 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1390 basic_block bb ATTRIBUTE_UNUSED,
1391 block_stmt_iterator si)
1392 {
1393 stmt_ann_t ann;
1394 tree stmt;
1395 use_operand_p use_p;
1396 def_operand_p def_p;
1397 ssa_op_iter iter;
1398
1399 stmt = bsi_stmt (si);
1400 ann = stmt_ann (stmt);
1401
1402 /* Only update marked statements. */
1403 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1404 return;
1405
1406 if (dump_file && (dump_flags & TDF_DETAILS))
1407 {
1408 fprintf (dump_file, "Updating SSA information for statement ");
1409 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1410 fprintf (dump_file, "\n");
1411 }
1412
1413 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1414 symbol is marked for renaming. */
1415 if (REWRITE_THIS_STMT (stmt))
1416 {
1417 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1418 {
1419 tree use = USE_FROM_PTR (use_p);
1420 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1421
1422 if (symbol_marked_for_renaming (sym))
1423 replace_use (use_p, sym);
1424 else if (is_old_name (use))
1425 replace_use (use_p, use);
1426 }
1427
1428 if (need_to_update_vops_p)
1429 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1430 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
1431 {
1432 tree use = USE_FROM_PTR (use_p);
1433 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1434
1435 if (symbol_marked_for_renaming (sym))
1436 replace_use (use_p, sym);
1437 }
1438 }
1439
1440 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1441 Also register definitions for names whose underlying symbol is
1442 marked for renaming. */
1443 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1444 {
1445 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1446 {
1447 tree def = DEF_FROM_PTR (def_p);
1448 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1449
1450 /* If DEF is a naked symbol that needs renaming, create a
1451 new name for it. */
1452 if (symbol_marked_for_renaming (sym))
1453 {
1454 if (DECL_P (def))
1455 {
1456 def = make_ssa_name (def, stmt);
1457 SET_DEF (def_p, def);
1458 }
1459
1460 register_new_update_single (def, sym);
1461 }
1462 else
1463 {
1464 /* If DEF is a new name, register it as a new definition
1465 for all the names replaced by DEF. */
1466 if (is_new_name (def))
1467 register_new_update_set (def, names_replaced_by (def));
1468
1469 /* If DEF is an old name, register DEF as a new
1470 definition for itself. */
1471 if (is_old_name (def))
1472 register_new_update_single (def, def);
1473 }
1474 }
1475
1476 if (need_to_update_vops_p)
1477 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1478 {
1479 tree def = DEF_FROM_PTR (def_p);
1480 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1481
1482 if (symbol_marked_for_renaming (sym))
1483 {
1484 if (DECL_P (def))
1485 {
1486 def = make_ssa_name (def, stmt);
1487 SET_DEF (def_p, def);
1488 }
1489
1490 register_new_update_single (def, sym);
1491 }
1492 }
1493 }
1494 }
1495
1496
1497 /* Visit all the successor blocks of BB looking for PHI nodes. For
1498 every PHI node found, check if any of its arguments is in
1499 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1500 definition, replace it. */
1501
1502 static void
1503 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1504 basic_block bb)
1505 {
1506 edge e;
1507 edge_iterator ei;
1508
1509 FOR_EACH_EDGE (e, ei, bb->succs)
1510 {
1511 tree phi;
1512
1513 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1514 {
1515 tree arg;
1516 use_operand_p arg_p;
1517
1518 /* Skip PHI nodes that are not marked for rewrite. */
1519 if (!REWRITE_THIS_STMT (phi))
1520 continue;
1521
1522 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1523 arg = USE_FROM_PTR (arg_p);
1524
1525 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1526 continue;
1527
1528 if (arg == NULL_TREE)
1529 {
1530 /* When updating a PHI node for a recently introduced
1531 symbol we may find NULL arguments. That's why we
1532 take the symbol from the LHS of the PHI node. */
1533 replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
1534 }
1535 else
1536 {
1537 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
1538
1539 if (symbol_marked_for_renaming (sym))
1540 replace_use (arg_p, sym);
1541 else if (is_old_name (arg))
1542 replace_use (arg_p, arg);
1543 }
1544
1545 if (e->flags & EDGE_ABNORMAL)
1546 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
1547 }
1548 }
1549 }
1550
1551
1552 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
1553 form.
1554
1555 ENTRY indicates the block where to start. Every block dominated by
1556 ENTRY will be rewritten.
1557
1558 WHAT indicates what actions will be taken by the renamer (see enum
1559 rewrite_mode).
1560
1561 BLOCKS are the set of interesting blocks for the dominator walker
1562 to process. If this set is NULL, then all the nodes dominated
1563 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
1564 are not present in BLOCKS are ignored. */
1565
1566 static void
1567 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
1568 {
1569 struct dom_walk_data walk_data;
1570
1571 /* Rewrite all the basic blocks in the program. */
1572 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
1573
1574 /* Setup callbacks for the generic dominator tree walker. */
1575 memset (&walk_data, 0, sizeof (walk_data));
1576
1577 walk_data.dom_direction = CDI_DOMINATORS;
1578 walk_data.interesting_blocks = blocks;
1579
1580 if (what == REWRITE_UPDATE)
1581 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
1582 else
1583 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
1584
1585 if (what == REWRITE_ALL)
1586 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
1587 else if (what == REWRITE_UPDATE)
1588 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
1589 else
1590 gcc_unreachable ();
1591
1592 if (what == REWRITE_ALL)
1593 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
1594 else if (what == REWRITE_UPDATE)
1595 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
1596 else
1597 gcc_unreachable ();
1598
1599 if (what == REWRITE_ALL)
1600 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
1601 else if (what == REWRITE_UPDATE)
1602 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
1603 else
1604 gcc_unreachable ();
1605
1606 block_defs_stack = VEC_alloc (tree_on_heap, 10);
1607
1608 /* Initialize the dominator walker. */
1609 init_walk_dominator_tree (&walk_data);
1610
1611 /* Recursively walk the dominator tree rewriting each statement in
1612 each basic block. */
1613 walk_dominator_tree (&walk_data, entry);
1614
1615 /* Finalize the dominator walker. */
1616 fini_walk_dominator_tree (&walk_data);
1617
1618 /* Debugging dumps. */
1619 if (dump_file && (dump_flags & TDF_STATS))
1620 {
1621 dump_dfa_stats (dump_file);
1622 if (def_blocks)
1623 dump_tree_ssa_stats (dump_file);
1624 }
1625
1626 if (def_blocks)
1627 {
1628 htab_delete (def_blocks);
1629 def_blocks = NULL;
1630 }
1631
1632 VEC_free (tree_on_heap, block_defs_stack);
1633 block_defs_stack = NULL;
1634
1635 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
1636 }
1637
1638
1639 /* Block initialization routine for mark_def_sites. Clear the
1640 KILLS bitmap at the start of each block. */
1641
1642 static void
1643 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
1644 basic_block bb ATTRIBUTE_UNUSED)
1645 {
1646 struct mark_def_sites_global_data *gd = walk_data->global_data;
1647 bitmap kills = gd->kills;
1648 bitmap_clear (kills);
1649 }
1650
1651
1652 /* Mark the definition site blocks for each variable, so that we know
1653 where the variable is actually live.
1654
1655 INTERESTING_BLOCKS will be filled in with all the blocks that
1656 should be processed by the renamer. It is assumed to be
1657 initialized and zeroed by the caller. */
1658
1659 static void
1660 mark_def_site_blocks (sbitmap interesting_blocks)
1661 {
1662 size_t i;
1663 struct dom_walk_data walk_data;
1664 struct mark_def_sites_global_data mark_def_sites_global_data;
1665
1666 /* Allocate memory for the DEF_BLOCKS hash table. */
1667 def_blocks = htab_create (VARRAY_ACTIVE_SIZE (referenced_vars),
1668 def_blocks_hash, def_blocks_eq, def_blocks_free);
1669
1670 for (i = 0; i < num_referenced_vars; i++)
1671 set_current_def (referenced_var (i), NULL_TREE);
1672
1673 /* Setup callbacks for the generic dominator tree walker to find and
1674 mark definition sites. */
1675 walk_data.walk_stmts_backward = false;
1676 walk_data.dom_direction = CDI_DOMINATORS;
1677 walk_data.initialize_block_local_data = NULL;
1678 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
1679 walk_data.before_dom_children_walk_stmts = mark_def_sites;
1680 walk_data.before_dom_children_after_stmts = NULL;
1681 walk_data.after_dom_children_before_stmts = NULL;
1682 walk_data.after_dom_children_walk_stmts = NULL;
1683 walk_data.after_dom_children_after_stmts = NULL;
1684 walk_data.interesting_blocks = NULL;
1685
1686 /* Notice that this bitmap is indexed using variable UIDs, so it must be
1687 large enough to accommodate all the variables referenced in the
1688 function, not just the ones we are renaming. */
1689 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
1690
1691 /* Create the set of interesting blocks that will be filled by
1692 mark_def_sites. */
1693 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
1694 walk_data.global_data = &mark_def_sites_global_data;
1695
1696 /* We do not have any local data. */
1697 walk_data.block_local_data_size = 0;
1698
1699 /* Initialize the dominator walker. */
1700 init_walk_dominator_tree (&walk_data);
1701
1702 /* Recursively walk the dominator tree. */
1703 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1704
1705 /* Finalize the dominator walker. */
1706 fini_walk_dominator_tree (&walk_data);
1707
1708 /* We no longer need this bitmap, clear and free it. */
1709 BITMAP_FREE (mark_def_sites_global_data.kills);
1710 }
1711
1712
1713 /* Main entry point into the SSA builder. The renaming process
1714 proceeds in four main phases:
1715
1716 1- Compute dominance frontier and immediate dominators, needed to
1717 insert PHI nodes and rename the function in dominator tree
1718 order.
1719
1720 2- Find and mark all the blocks that define variables
1721 (mark_def_site_blocks).
1722
1723 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
1724
1725 4- Rename all the blocks (rewrite_blocks) and statements in the program.
1726
1727 Steps 3 and 5 are done using the dominator tree walker
1728 (walk_dominator_tree). */
1729
1730 static void
1731 rewrite_into_ssa (void)
1732 {
1733 bitmap *dfs;
1734 basic_block bb;
1735 sbitmap interesting_blocks;
1736
1737 timevar_push (TV_TREE_SSA_OTHER);
1738
1739 /* Initialize operand data structures. */
1740 init_ssa_operands ();
1741
1742 /* Initialize the set of interesting blocks. The callback
1743 mark_def_sites will add to this set those blocks that the renamer
1744 should process. */
1745 interesting_blocks = sbitmap_alloc (last_basic_block);
1746 sbitmap_zero (interesting_blocks);
1747
1748 /* Initialize dominance frontier. */
1749 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap *));
1750 FOR_EACH_BB (bb)
1751 dfs[bb->index] = BITMAP_ALLOC (NULL);
1752
1753 /* 1- Compute dominance frontiers. */
1754 calculate_dominance_info (CDI_DOMINATORS);
1755 compute_dominance_frontiers (dfs);
1756
1757 /* 2- Find and mark definition sites. */
1758 mark_def_site_blocks (interesting_blocks);
1759
1760 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
1761 insert_phi_nodes (dfs, NULL);
1762
1763 /* 4- Rename all the blocks. */
1764 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
1765
1766 /* Free allocated memory. */
1767 FOR_EACH_BB (bb)
1768 BITMAP_FREE (dfs[bb->index]);
1769 free (dfs);
1770 sbitmap_free (interesting_blocks);
1771
1772 timevar_pop (TV_TREE_SSA_OTHER);
1773 }
1774
1775
1776 struct tree_opt_pass pass_build_ssa =
1777 {
1778 "ssa", /* name */
1779 NULL, /* gate */
1780 rewrite_into_ssa, /* execute */
1781 NULL, /* sub */
1782 NULL, /* next */
1783 0, /* static_pass_number */
1784 0, /* tv_id */
1785 PROP_cfg | PROP_referenced_vars, /* properties_required */
1786 PROP_ssa, /* properties_provided */
1787 0, /* properties_destroyed */
1788 0, /* todo_flags_start */
1789 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
1790 0 /* letter */
1791 };
1792
1793
1794 /* Mark the definition of VAR at STMT and BB as interesting for the
1795 renamer. BLOCKS is the set of blocks that need updating. */
1796
1797 static void
1798 mark_def_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1799 bool insert_phi_p)
1800 {
1801 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
1802 bitmap_set_bit (blocks, bb->index);
1803
1804 if (insert_phi_p)
1805 {
1806 bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;
1807
1808 #if defined ENABLE_CHECKING
1809 /* If VAR is a virtual, then it had better be a symbol.
1810 Virtuals are in FUD-chain form, so we are interested in the
1811 definition and use sites of the symbol, not the individual
1812 SSA names. */
1813 if (!is_gimple_reg (var))
1814 gcc_assert (DECL_P (var));
1815 #endif
1816
1817 set_def_block (var, bb, is_phi_p);
1818
1819 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
1820 site for both itself and all the old names replaced by it. */
1821 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
1822 {
1823 bitmap_iterator bi;
1824 unsigned i;
1825 bitmap set = names_replaced_by (var);
1826 if (set)
1827 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1828 set_def_block (ssa_name (i), bb, is_phi_p);
1829 }
1830 }
1831 }
1832
1833
1834 /* Mark the use of VAR at STMT and BB as interesting for the
1835 renamer. INSERT_PHI_P is true if we are going to insert new PHI
1836 nodes. BLOCKS is the set of blocks that need updating. */
1837
1838 static inline void
1839 mark_use_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1840 bool insert_phi_p)
1841 {
1842 REWRITE_THIS_STMT (stmt) = 1;
1843 bitmap_set_bit (blocks, bb->index);
1844
1845 /* If VAR has not been defined in BB, then it is live-on-entry
1846 to BB. Note that we cannot just use the block holding VAR's
1847 definition because if VAR is one of the names in OLD_SSA_NAMES,
1848 it will have several definitions (itself and all the names that
1849 replace it). */
1850 if (insert_phi_p)
1851 {
1852 struct def_blocks_d *db_p;
1853
1854 #if defined ENABLE_CHECKING
1855 /* If VAR is a virtual, then it had better be a symbol.
1856 Virtuals are in FUD-chain form, so we are interested in the
1857 definition and use sites of the symbol, not the individual
1858 SSA names. */
1859 if (!is_gimple_reg (var))
1860 gcc_assert (DECL_P (var));
1861 #endif
1862
1863 db_p = get_def_blocks_for (var);
1864 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
1865 set_livein_block (var, bb);
1866 }
1867 }
1868
1869
1870 /* If any of the arguments of PHI is in OLD_SSA_NAMES, mark PHI to
1871 be rewritten. BB is the block where PHI resides, BLOCKS is the
1872 region to be renamed and INSERT_PHI_P is true if the updating
1873 process should insert new PHI nodes. */
1874
1875 static void
1876 prepare_phi_args_for_update (tree phi, basic_block bb, bitmap blocks,
1877 bool insert_phi_p)
1878 {
1879 int i;
1880
1881 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1882 {
1883 tree arg = PHI_ARG_DEF (phi, i);
1884
1885 if (TREE_CODE (arg) == SSA_NAME && is_old_name (arg))
1886 {
1887 /* Mark this use of ARG interesting for the renamer. Notice
1888 that we explicitly call mark_use_interesting with
1889 INSERT_PHI_P == false.
1890
1891 This is to avoid marking ARG as live-in in this block BB.
1892 If we were to mark ARG live-in to BB, then ARG would be
1893 considered live-in through ALL incoming edges to BB which
1894 is not what we want. Since we are updating the SSA form
1895 for ARG, we don't really know what other names of ARG are
1896 coming in through other edges into BB.
1897
1898 If we considered ARG live-in at BB, then the PHI
1899 placement algorithm may try to insert PHI nodes in blocks
1900 that are not only unnecessary but also the renamer would
1901 not know how to fill in. */
1902 mark_use_interesting (arg, phi, bb, blocks, false);
1903
1904 /* As discussed above, we only want to mark ARG live-in
1905 through the edge corresponding to its slot inside the PHI
1906 argument list. So, we look for the block BB1 where ARG is
1907 flowing through. If BB1 does not contain a definition of
1908 ARG, then consider ARG live-in at BB1. */
1909 if (insert_phi_p)
1910 {
1911 edge e = PHI_ARG_EDGE (phi, i);
1912 basic_block bb1 = e->src;
1913 struct def_blocks_d *db = get_def_blocks_for (arg);
1914
1915 if (!bitmap_bit_p (db->def_blocks, bb1->index))
1916 set_livein_block (arg, bb1);
1917 }
1918 }
1919 }
1920 }
1921
1922
1923 /* Do a dominator walk starting at BB processing statements that
1924 reference variables in OLD_SSA_NAMES and NEW_SSA_NAMES.
1925
1926 1- Mark in BLOCKS the defining block of every name N in
1927 NEW_SSA_NAMES.
1928
1929 2- Mark in BLOCKS the defining block of every name O in
1930 OLD_SSA_NAMES.
1931
1932 3- For every statement or PHI node that uses a name O in
1933 OLD_SSA_NAMES. If INSERT_PHI_P is true, mark those uses as live
1934 in the corresponding block. This is later used by the PHI
1935 placement algorithm to make PHI pruning decisions.
1936
1937 If VISIT_DOM_P is true, all the dominator children of BB are also
1938 visited.
1939
1940 FIXME. This process is slower than necessary. Once we have
1941 immediate uses merged in, we should be able to just visit the
1942 immediate uses of all the names that we are about to replace,
1943 instead of visiting the whole block. */
1944
1945 static void
1946 prepare_block_for_update (basic_block bb, bool insert_phi_p,
1947 bitmap blocks, bool visit_dom_p)
1948 {
1949 basic_block son;
1950 block_stmt_iterator si;
1951 tree phi;
1952
1953 /* Process PHI nodes marking interesting those that define or use
1954 the names that we are interested in. */
1955 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1956 {
1957 tree lhs_sym, lhs = PHI_RESULT (phi);
1958
1959 REWRITE_THIS_STMT (phi) = 0;
1960 REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
1961
1962 /* Ignore virtual PHIs if we are not updating virtual operands.
1963 Note that even if NEED_TO_REPLACE_NAMES_P is false, we need
1964 to process real PHIs because we may be rewriting GIMPLE regs
1965 into SSA for the first time. Therefore, we cannot do a
1966 similar shortcut for real PHIs. */
1967 if (!need_to_update_vops_p && !is_gimple_reg (lhs))
1968 continue;
1969
1970 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
1971
1972 if (symbol_marked_for_renaming (lhs_sym))
1973 {
1974 /* If the LHS is a virtual symbol marked for renaming, then
1975 we don't need to scan the argument list. Since virtual
1976 operands are in FUD-chain form, all the arguments of this
1977 PHI must be the same symbol as the LHS. So, we just need
1978 to mark this site as both an interesting use and an
1979 interesting def for the symbol. */
1980 mark_use_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1981 mark_def_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1982 }
1983 else if (need_to_replace_names_p)
1984 {
1985 /* If the LHS is in OLD_SSA_NAMES or NEW_SSA_NAMES, this is
1986 a definition site for it. */
1987 if (is_old_name (lhs) || is_new_name (lhs))
1988 mark_def_interesting (lhs, phi, bb, blocks, insert_phi_p);
1989
1990 prepare_phi_args_for_update (phi, bb, blocks, insert_phi_p);
1991 }
1992 }
1993
1994 /* Process the statements. */
1995 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1996 {
1997 tree stmt;
1998 ssa_op_iter i;
1999 use_operand_p use_p;
2000 def_operand_p def_p;
2001
2002 stmt = bsi_stmt (si);
2003
2004 REWRITE_THIS_STMT (stmt) = 0;
2005 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
2006
2007 /* Note, even if NEED_TO_REPLACE_NAMES_P is false, we need to
2008 scan real uses and defs, as we may be renaming a GIMPLE
2009 register for the first time. */
2010 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2011 {
2012 tree use = USE_FROM_PTR (use_p);
2013 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2014 if (symbol_marked_for_renaming (sym) || is_old_name (use))
2015 mark_use_interesting (use, stmt, bb, blocks, insert_phi_p);
2016 }
2017
2018 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2019 {
2020 tree def = DEF_FROM_PTR (def_p);
2021 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2022
2023 if (symbol_marked_for_renaming (sym)
2024 || is_new_name (def)
2025 || is_old_name (def))
2026 mark_def_interesting (def, stmt, bb, blocks, insert_phi_p);
2027 }
2028
2029 /* If we don't need to update virtual operands, continue to the
2030 next statement. */
2031 if (!need_to_update_vops_p)
2032 continue;
2033
2034 /* For every interesting N_i = V_MAY_DEF <N_j> and
2035 N_i = V_MUST_DEF <N_j>, mark the statement as interesting.
2036 Notice that N_j may in fact be a naked symbol (if this
2037 statement is the result of basic block duplication). The
2038 rename process will later fill in the appropriate reaching
2039 definition for the symbol. */
2040 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
2041 {
2042 tree def = DEF_FROM_PTR (def_p);
2043 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2044
2045 if (symbol_marked_for_renaming (sym))
2046 {
2047 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
2048 mark_def_interesting (sym, stmt, bb, blocks, insert_phi_p);
2049 }
2050 }
2051
2052 /* Similarly, for V_USE <N_i>. */
2053 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
2054 {
2055 tree use = USE_FROM_PTR (use_p);
2056 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2057
2058 if (symbol_marked_for_renaming (sym))
2059 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
2060 }
2061 }
2062
2063 /* Now visit all the blocks dominated by BB. */
2064 if (visit_dom_p)
2065 for (son = first_dom_son (CDI_DOMINATORS, bb);
2066 son;
2067 son = next_dom_son (CDI_DOMINATORS, son))
2068 prepare_block_for_update (son, insert_phi_p, blocks, true);
2069 }
2070
2071
2072 /* Helper for prepare_def_sites. Mark the definition site for NAME as
2073 interesting. BLOCKS and INSERT_PHI_P are as in prepare_def_sites. */
2074
2075 static void
2076 prepare_def_site_for (tree name, bitmap blocks, bool insert_phi_p)
2077 {
2078 tree stmt;
2079 basic_block bb;
2080
2081 gcc_assert (name && is_gimple_reg (name));
2082 gcc_assert (names_to_release == NULL
2083 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2084
2085 stmt = SSA_NAME_DEF_STMT (name);
2086 bb = bb_for_stmt (stmt);
2087 if (bb)
2088 {
2089 gcc_assert (bb->index < last_basic_block);
2090 mark_def_interesting (name, stmt, bb, blocks, insert_phi_p);
2091 }
2092 }
2093
2094
2095 /* Mark definition sites of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
2096 Add each definition block to BLOCKS. INSERT_PHI_P is true if the
2097 caller wants to insert PHI nodes for newly created names. */
2098
2099 static void
2100 prepare_def_sites (bitmap blocks, bool insert_phi_p)
2101 {
2102 unsigned i;
2103 bitmap_iterator bi;
2104
2105 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2106 remove it from NEW_SSA_NAMES so that we don't try to visit its
2107 defining basic block (which most likely doesn't exist). Notice
2108 that we cannot do the same with names in OLD_SSA_NAMES because we
2109 want to replace existing instances. */
2110 if (names_to_release)
2111 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2112 RESET_BIT (new_ssa_names, i);
2113
2114 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2115 OLD_SSA_NAMES, but we have to ignore its definition site. */
2116 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i,
2117 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2118 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p));
2119
2120 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i,
2121 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p));
2122 }
2123
2124
2125 /* Dump all the names replaced by NAME to FILE. */
2126
2127 void
2128 dump_names_replaced_by (FILE *file, tree name)
2129 {
2130 unsigned i;
2131 bitmap old_set;
2132 bitmap_iterator bi;
2133
2134 print_generic_expr (file, name, 0);
2135 fprintf (file, " -> { ");
2136
2137 old_set = names_replaced_by (name);
2138 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2139 {
2140 print_generic_expr (file, ssa_name (i), 0);
2141 fprintf (file, " ");
2142 }
2143
2144 fprintf (file, "}\n");
2145 }
2146
2147
2148 /* Dump all the names replaced by NAME to stderr. */
2149
2150 void
2151 debug_names_replaced_by (tree name)
2152 {
2153 dump_names_replaced_by (stderr, name);
2154 }
2155
2156
2157 /* Dump the SSA name replacement table to FILE. */
2158
2159 void
2160 dump_repl_tbl (FILE *file)
2161 {
2162 unsigned i;
2163 bitmap_iterator bi;
2164
2165 if (!need_ssa_update_p ())
2166 return;
2167
2168 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2169 {
2170 fprintf (file, "\nSSA replacement table\n");
2171 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2172 "O_1, ..., O_j\n\n");
2173
2174 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i,
2175 dump_names_replaced_by (file, ssa_name (i)));
2176 }
2177
2178 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2179 {
2180 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2181 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2182 {
2183 print_generic_expr (file, referenced_var (i), 0);
2184 fprintf (file, " ");
2185 }
2186 }
2187
2188 if (old_virtual_ssa_names && !bitmap_empty_p (old_virtual_ssa_names))
2189 {
2190 fprintf (file, "\n\nVirtual SSA names to be updated\n\n");
2191 EXECUTE_IF_SET_IN_BITMAP (old_virtual_ssa_names, 0, i, bi)
2192 {
2193 print_generic_expr (file, ssa_name (i), 0);
2194 fprintf (file, " ");
2195 }
2196 }
2197
2198 if (names_to_release && !bitmap_empty_p (names_to_release))
2199 {
2200 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2201 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2202 {
2203 print_generic_expr (file, ssa_name (i), 0);
2204 fprintf (file, " ");
2205 }
2206 }
2207
2208 fprintf (file, "\n\n");
2209 }
2210
2211
2212 /* Dump the SSA name replacement table to stderr. */
2213
2214 void
2215 debug_repl_tbl (void)
2216 {
2217 dump_repl_tbl (stderr);
2218 }
2219
2220
2221 /* Initialize data structures used for incremental SSA updates. */
2222
2223 static void
2224 init_update_ssa (void)
2225 {
2226 /* Reserve 1/3 more than the current number of names. The calls to
2227 add_new_name_mapping are typically done after creating new SSA
2228 names, so we'll need to reallocate these arrays. */
2229 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2230 sbitmap_zero (old_ssa_names);
2231
2232 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2233 sbitmap_zero (new_ssa_names);
2234
2235 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2236 need_to_initialize_update_ssa_p = false;
2237 need_to_update_vops_p = false;
2238 need_to_replace_names_p = false;
2239 syms_to_rename = BITMAP_ALLOC (NULL);
2240 old_virtual_ssa_names = BITMAP_ALLOC (NULL);
2241 names_to_release = NULL;
2242 }
2243
2244
2245 /* Deallocate data structures used for incremental SSA updates. */
2246
2247 static void
2248 delete_update_ssa (void)
2249 {
2250 unsigned i;
2251 bitmap_iterator bi;
2252
2253 sbitmap_free (old_ssa_names);
2254 old_ssa_names = NULL;
2255
2256 sbitmap_free (new_ssa_names);
2257 new_ssa_names = NULL;
2258
2259 htab_delete (repl_tbl);
2260 repl_tbl = NULL;
2261
2262 need_to_initialize_update_ssa_p = true;
2263 need_to_update_vops_p = false;
2264 need_to_replace_names_p = false;
2265 BITMAP_FREE (syms_to_rename);
2266 BITMAP_FREE (old_virtual_ssa_names);
2267
2268 if (names_to_release)
2269 {
2270 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2271 release_ssa_name (ssa_name (i));
2272 BITMAP_FREE (names_to_release);
2273 }
2274
2275 for (i = 1; i < num_ssa_names; i++)
2276 {
2277 tree n = ssa_name (i);
2278
2279 if (n)
2280 {
2281 free (SSA_NAME_AUX (n));
2282 SSA_NAME_AUX (n) = NULL;
2283 }
2284 }
2285
2286 /* Unmark all the names we may have protected from being released in
2287 insert_updated_phi_nodes_for. */
2288 unmark_all_for_rewrite ();
2289 }
2290
2291
2292 /* Create a new name for OLD_NAME in statement STMT and replace the
2293 operand pointed to by DEF_P with the newly created name. Return
2294 the new name and register the replacement mapping <NEW, OLD> in
2295 update_ssa's tables. */
2296
2297 tree
2298 create_new_def_for (tree old_name, tree stmt, def_operand_p def)
2299 {
2300 tree new_name = duplicate_ssa_name (old_name, stmt);
2301
2302 SET_DEF (def, new_name);
2303
2304 if (TREE_CODE (stmt) == PHI_NODE)
2305 {
2306 edge e;
2307 edge_iterator ei;
2308 basic_block bb = bb_for_stmt (stmt);
2309
2310 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2311 FOR_EACH_EDGE (e, ei, bb->preds)
2312 if (e->flags & EDGE_ABNORMAL)
2313 {
2314 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2315 break;
2316 }
2317 }
2318
2319 register_new_name_mapping (new_name, old_name);
2320
2321 /* For the benefit of passes that will be updating the SSA form on
2322 their own, set the current reaching definition of OLD_NAME to be
2323 NEW_NAME. */
2324 set_current_def (old_name, new_name);
2325
2326 return new_name;
2327 }
2328
2329
2330 /* Register name NEW to be a replacement for name OLD. This function
2331 must be called for every replacement that should be performed by
2332 update_ssa. */
2333
2334 void
2335 register_new_name_mapping (tree new, tree old)
2336 {
2337 if (need_to_initialize_update_ssa_p)
2338 init_update_ssa ();
2339
2340 add_new_name_mapping (new, old);
2341 }
2342
2343
2344 /* Register symbol SYM to be renamed by update_ssa. */
2345
2346 void
2347 mark_sym_for_renaming (tree sym)
2348 {
2349 if (need_to_initialize_update_ssa_p)
2350 init_update_ssa ();
2351
2352 bitmap_set_bit (syms_to_rename, var_ann (sym)->uid);
2353
2354 if (!is_gimple_reg (sym))
2355 need_to_update_vops_p = true;
2356 }
2357
2358
2359 /* Register all the symbols in SET to be renamed by update_ssa. */
2360
2361 void
2362 mark_set_for_renaming (bitmap set)
2363 {
2364 bitmap_iterator bi;
2365 unsigned i;
2366
2367 if (need_to_initialize_update_ssa_p)
2368 init_update_ssa ();
2369
2370 bitmap_ior_into (syms_to_rename, set);
2371
2372 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2373 if (!is_gimple_reg (referenced_var (i)))
2374 {
2375 need_to_update_vops_p = true;
2376 break;
2377 }
2378 }
2379
2380
2381 /* Return true if there is any work to be done by update_ssa. */
2382
2383 bool
2384 need_ssa_update_p (void)
2385 {
2386 return syms_to_rename || old_ssa_names || new_ssa_names;
2387 }
2388
2389
2390 /* Return true if name N has been registered in the replacement table. */
2391
2392 bool
2393 name_registered_for_update_p (tree n)
2394 {
2395 if (!need_ssa_update_p ())
2396 return false;
2397
2398 return is_new_name (n)
2399 || is_old_name (n)
2400 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2401 }
2402
2403
2404 /* Return the set of all the SSA names marked to be replaced. */
2405
2406 bitmap
2407 ssa_names_to_replace (void)
2408 {
2409 unsigned i;
2410 bitmap ret;
2411
2412 ret = BITMAP_ALLOC (NULL);
2413 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i,
2414 bitmap_set_bit (ret, i));
2415
2416 bitmap_ior_into (ret, old_virtual_ssa_names);
2417
2418 return ret;
2419 }
2420
2421
2422 /* Mark NAME to be released after update_ssa has finished. */
2423
2424 void
2425 release_ssa_name_after_update_ssa (tree name)
2426 {
2427 gcc_assert (!need_to_initialize_update_ssa_p);
2428
2429 if (names_to_release == NULL)
2430 names_to_release = BITMAP_ALLOC (NULL);
2431
2432 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2433 }
2434
2435
2436 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2437 frontier information. BLOCKS is the set of blocks to be updated.
2438
2439 This is slightly different than the regular PHI insertion
2440 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2441 real names (i.e., GIMPLE registers) are inserted:
2442
2443 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2444 nodes inside the region affected by the block that defines VAR
2445 and the blocks that define all its replacements. All these
2446 definition blocks have been gathered by prepare_block_for_update
2447 and they are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2448
2449 First, we compute the entry point to the region (ENTRY). This is
2450 given by the nearest common dominator to all the definition
2451 blocks. When computing the iterated dominance frontier (IDF), any
2452 block not strictly dominated by ENTRY is ignored.
2453
2454 We then call the standard PHI insertion algorithm with the pruned
2455 IDF.
2456
2457 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2458 names is not pruned. PHI nodes are inserted at every IDF block. */
2459
2460 static void
2461 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2462 unsigned update_flags)
2463 {
2464 basic_block entry;
2465 struct def_blocks_d *db;
2466 bitmap idf, pruned_idf;
2467 bitmap_iterator bi;
2468 unsigned i;
2469
2470 #if defined ENABLE_CHECKING
2471 if (TREE_CODE (var) == SSA_NAME)
2472 gcc_assert (is_old_name (var));
2473 else
2474 gcc_assert (symbol_marked_for_renaming (var));
2475 #endif
2476
2477 /* Get all the definition sites for VAR. */
2478 db = find_def_blocks_for (var);
2479
2480 /* No need to do anything if there were no definitions to VAR. */
2481 if (db == NULL || bitmap_empty_p (db->def_blocks))
2482 return;
2483
2484 /* Compute the initial iterated dominance frontier. */
2485 idf = find_idf (db->def_blocks, dfs);
2486 pruned_idf = BITMAP_ALLOC (NULL);
2487
2488 if (TREE_CODE (var) == SSA_NAME)
2489 {
2490 if (update_flags == TODO_update_ssa)
2491 {
2492 /* If doing regular SSA updates for GIMPLE registers, we are
2493 only interested in IDF blocks dominated by the nearest
2494 common dominator of all the definition blocks. */
2495 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2496 db->def_blocks);
2497
2498 if (entry != ENTRY_BLOCK_PTR)
2499 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2500 if (BASIC_BLOCK (i) != entry
2501 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2502 bitmap_set_bit (pruned_idf, i);
2503 }
2504 else
2505 {
2506 /* Otherwise, do not prune the IDF for VAR. */
2507 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2508 bitmap_copy (pruned_idf, idf);
2509 }
2510 }
2511 else
2512 {
2513 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2514 for the first time, so we need to compute the full IDF for
2515 it. */
2516 bitmap_copy (pruned_idf, idf);
2517
2518 /* There may already be PHI nodes for VAR in the flowgraph.
2519 Some of them are no longer necessary. PRUNED_IDF is
2520 the set of blocks that need PHI nodes for VAR and
2521 DB.PHI_BLOCKS is the set of blocks that already contain a PHI
2522 node for VAR. Therefore, the set DB.PHI_BLOCKS - PRUNED_IDF
2523 gives us the set of blocks that contain PHI nodes which are
2524 no longer needed. */
2525 if (!bitmap_empty_p (db->phi_blocks) && !bitmap_empty_p (pruned_idf))
2526 EXECUTE_IF_AND_COMPL_IN_BITMAP (db->phi_blocks, pruned_idf, 0, i, bi)
2527 {
2528 tree phi, prev;
2529 unsigned ver;
2530
2531 phi = find_phi_node_for (BASIC_BLOCK (i), var, &prev);
2532
2533 /* Protect the name on PHI's LHS from being released into
2534 the SSA name free list. Since we have still not
2535 updated the SSA form of the program, there may be
2536 instances of PHI's LHS in the IL. */
2537 ver = SSA_NAME_VERSION (PHI_RESULT (phi));
2538 mark_for_rewrite (PHI_RESULT (phi));
2539 release_ssa_name_after_update_ssa (PHI_RESULT (phi));
2540 remove_phi_node (phi, prev);
2541 }
2542 }
2543
2544 if (!bitmap_empty_p (pruned_idf))
2545 {
2546 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2547 are included in the region to be updated. The feeding blocks
2548 are important to guarantee that the PHI arguments are renamed
2549 properly. */
2550 bitmap_ior_into (blocks, pruned_idf);
2551 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2552 {
2553 edge e;
2554 edge_iterator ei;
2555 basic_block bb = BASIC_BLOCK (i);
2556
2557 FOR_EACH_EDGE (e, ei, bb->preds)
2558 if (e->src->index >= 0)
2559 bitmap_set_bit (blocks, e->src->index);
2560 }
2561
2562 insert_phi_nodes_for (var, pruned_idf, true);
2563 }
2564
2565 BITMAP_FREE (pruned_idf);
2566 BITMAP_FREE (idf);
2567 }
2568
2569
2570 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
2571 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
2572
2573 1- The names in OLD_SSA_NAMES dominated by the definitions of
2574 NEW_SSA_NAMES are all re-written to be reached by the
2575 appropriate definition from NEW_SSA_NAMES.
2576
2577 2- If needed, new PHI nodes are added to the iterated dominance
2578 frontier of the blocks where each of NEW_SSA_NAMES are defined.
2579
2580 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
2581 calling register_new_name_mapping for every pair of names that the
2582 caller wants to replace.
2583
2584 The caller identifies the new names that have been inserted and the
2585 names that need to be replaced by calling register_new_name_mapping
2586 for every pair <NEW, OLD>. Note that the function assumes that the
2587 new names have already been inserted in the IL.
2588
2589 For instance, given the following code:
2590
2591 1 L0:
2592 2 x_1 = PHI (0, x_5)
2593 3 if (x_1 < 10)
2594 4 if (x_1 > 7)
2595 5 y_2 = 0
2596 6 else
2597 7 y_3 = x_1 + x_7
2598 8 endif
2599 9 x_5 = x_1 + 1
2600 10 goto L0;
2601 11 endif
2602
2603 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
2604
2605 1 L0:
2606 2 x_1 = PHI (0, x_5)
2607 3 if (x_1 < 10)
2608 4 x_10 = ...
2609 5 if (x_1 > 7)
2610 6 y_2 = 0
2611 7 else
2612 8 x_11 = ...
2613 9 y_3 = x_1 + x_7
2614 10 endif
2615 11 x_5 = x_1 + 1
2616 12 goto L0;
2617 13 endif
2618
2619 We want to replace all the uses of x_1 with the new definitions of
2620 x_10 and x_11. Note that the only uses that should be replaced are
2621 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
2622 *not* be replaced (this is why we cannot just mark symbol 'x' for
2623 renaming).
2624
2625 Additionally, we may need to insert a PHI node at line 11 because
2626 that is a merge point for x_10 and x_11. So the use of x_1 at line
2627 11 will be replaced with the new PHI node. The insertion of PHI
2628 nodes is optional. They are not strictly necessary to preserve the
2629 SSA form, and depending on what the caller inserted, they may not
2630 even be useful for the optimizers. UPDATE_FLAGS controls various
2631 aspects of how update_ssa operates, see the documentation for
2632 TODO_update_ssa*. */
2633
2634 void
2635 update_ssa (unsigned update_flags)
2636 {
2637 bitmap *dfs, blocks;
2638 basic_block bb, start_bb;
2639 bitmap_iterator bi;
2640 unsigned i;
2641 sbitmap tmp;
2642 bool insert_phi_p;
2643
2644 if (!need_ssa_update_p ())
2645 return;
2646
2647 timevar_push (TV_TREE_SSA_INCREMENTAL);
2648
2649 /* Ensure that the dominance information is up-to-date. */
2650 calculate_dominance_info (CDI_DOMINATORS);
2651
2652 /* Only one update flag should be set. */
2653 gcc_assert (update_flags == TODO_update_ssa
2654 || update_flags == TODO_update_ssa_no_phi
2655 || update_flags == TODO_update_ssa_full_phi
2656 || update_flags == TODO_update_ssa_only_virtuals);
2657
2658 /* If we only need to update virtuals, remove all the mappings for
2659 real names before proceeding. */
2660 if (update_flags == TODO_update_ssa_only_virtuals)
2661 {
2662 sbitmap_zero (old_ssa_names);
2663 sbitmap_zero (new_ssa_names);
2664 htab_empty (repl_tbl);
2665 need_to_replace_names_p = false;
2666 }
2667
2668 if (update_flags == TODO_update_ssa
2669 || update_flags == TODO_update_ssa_full_phi
2670 || update_flags == TODO_update_ssa_only_virtuals)
2671 insert_phi_p = true;
2672 else
2673 insert_phi_p = false;
2674
2675 if (insert_phi_p)
2676 {
2677 /* If the caller requested PHI nodes to be added, compute
2678 dominance frontiers and initialize live-in information data
2679 structures (DEF_BLOCKS). */
2680 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap *));
2681 FOR_EACH_BB (bb)
2682 dfs[bb->index] = BITMAP_ALLOC (NULL);
2683 compute_dominance_frontiers (dfs);
2684
2685 /* For each SSA name N, the DEF_BLOCKS table describes where the
2686 name is defined, which blocks have PHI nodes for N, and which
2687 blocks have uses of N (i.e., N is live-on-entry in those
2688 blocks). */
2689 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
2690 def_blocks_eq, def_blocks_free);
2691 }
2692 else
2693 {
2694 dfs = NULL;
2695 def_blocks = NULL;
2696 }
2697
2698 blocks = BITMAP_ALLOC (NULL);
2699
2700 /* Determine the CFG region that we are going to update. First add
2701 all the blocks that define each of the names in NEW_SSA_NAMES
2702 and OLD_SSA_NAMES. */
2703 prepare_def_sites (blocks, insert_phi_p);
2704
2705 /* Next, determine the nearest common dominator START_BB for all the
2706 blocks in the region. */
2707 if (!bitmap_empty_p (syms_to_rename) || bitmap_empty_p (blocks))
2708 {
2709 /* If the region to update is seemingly empty, or if we have to
2710 rename some symbols from scratch, we need to start the
2711 process at the root of the CFG.
2712
2713 FIXME, it should be possible to determine the nearest block
2714 that had a definition for each of the symbols that are marked
2715 for updating. For now this seems more work than it's worth. */
2716 start_bb = ENTRY_BLOCK_PTR;
2717 }
2718 else
2719 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2720
2721 /* Traverse all the blocks dominated by START_BB. Mark interesting
2722 blocks and statements and set local live-in information for the
2723 PHI placement heuristics. */
2724 prepare_block_for_update (start_bb, insert_phi_p, blocks, true);
2725
2726 /* If are going to insert PHI nodes, blocks in the dominance
2727 frontier of START_BB may be affected. Note that we don't need to
2728 visit the dominator children of blocks in the dominance frontier
2729 of START_BB. None of the changes inside this region can affect
2730 blocks on the outside. */
2731 if (insert_phi_p && start_bb->index >= 0)
2732 EXECUTE_IF_SET_IN_BITMAP (dfs[start_bb->index], 0, i, bi)
2733 prepare_block_for_update (BASIC_BLOCK (i), insert_phi_p,
2734 blocks, false);
2735
2736 /* If requested, insert PHI nodes at the iterated dominance frontier
2737 of every block making new definitions for names in OLD_SSA_NAMES
2738 and for symbols in SYMS_TO_RENAME. */
2739 if (insert_phi_p)
2740 {
2741 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
2742 {
2743 /* insert_updated_phi_nodes_for will call
2744 add_new_name_mapping when inserting new PHI nodes, so the
2745 set OLD_SSA_NAMES will grow while we are traversing it
2746 (but it will not gain any new members). Copy
2747 OLD_SSA_NAMES to a temporary for traversal. */
2748 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
2749 sbitmap_copy (tmp, old_ssa_names);
2750 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i,
2751 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks,
2752 update_flags));
2753 sbitmap_free (tmp);
2754 }
2755
2756 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2757 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks,
2758 update_flags);
2759
2760 /* Insertion of PHI nodes may have added blocks to the region.
2761 We need to re-compute START_BB to include the newly added
2762 blocks. */
2763 if (start_bb != ENTRY_BLOCK_PTR)
2764 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2765 }
2766
2767 /* Reset the current definition for name and symbol before renaming
2768 the sub-graph. */
2769 if (update_flags == TODO_update_ssa_full_phi)
2770 {
2771 /* If we are not prunning the IDF for new PHI nodes, set the
2772 current name of every GIMPLE register to NULL. This way, PHI
2773 arguments coming from edges with uninitialized values will be
2774 renamed to use the symbol's default definition. */
2775 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i,
2776 set_current_def (ssa_name (i), NULL_TREE));
2777 }
2778 else
2779 {
2780 /* Otherwise, set each old name to be its current reaching
2781 definition. */
2782 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i,
2783 set_current_def (ssa_name (i), NULL_TREE));
2784 }
2785
2786 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2787 set_current_def (referenced_var (i), NULL_TREE);
2788
2789 /* Now start the renaming process at START_BB. */
2790 tmp = sbitmap_alloc (last_basic_block);
2791 sbitmap_zero (tmp);
2792 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2793 SET_BIT (tmp, i);
2794
2795 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
2796
2797 sbitmap_free (tmp);
2798
2799 /* Debugging dumps. */
2800 if (dump_file)
2801 {
2802 int c;
2803 unsigned i;
2804
2805 dump_repl_tbl (dump_file);
2806
2807 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
2808 start_bb->index);
2809
2810 c = 0;
2811 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2812 c++;
2813 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
2814 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
2815 c, PERCENT (c, last_basic_block));
2816
2817 if (dump_flags & TDF_DETAILS)
2818 {
2819 fprintf (dump_file, "Affected blocks: ");
2820 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2821 fprintf (dump_file, "%u ", i);
2822 fprintf (dump_file, "\n");
2823 }
2824
2825 fprintf (dump_file, "\n\n");
2826 }
2827
2828 /* Free allocated memory. */
2829 if (insert_phi_p)
2830 {
2831 FOR_EACH_BB (bb)
2832 BITMAP_FREE (dfs[bb->index]);
2833 free (dfs);
2834 }
2835
2836 BITMAP_FREE (blocks);
2837 delete_update_ssa ();
2838
2839 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2840 }
2841
2842
2843 /*---------------------------------------------------------------------------
2844 Functions to fix a program in invalid SSA form into valid SSA
2845 form. The main entry point here is rewrite_ssa_into_ssa.
2846 ---------------------------------------------------------------------------*/
2847
2848 /* Called after visiting basic block BB. Restore CURRDEFS to its
2849 original value. */
2850
2851 static void
2852 ssa_rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2853 basic_block bb ATTRIBUTE_UNUSED)
2854 {
2855
2856 /* Step 5. Restore the current reaching definition for each variable
2857 referenced in the block (in reverse order). */
2858 while (VEC_length (tree_on_heap, block_defs_stack) > 0)
2859 {
2860 tree var = VEC_pop (tree_on_heap, block_defs_stack);
2861 tree saved_def;
2862
2863 if (var == NULL)
2864 break;
2865
2866 saved_def = VEC_pop (tree_on_heap, block_defs_stack);
2867 set_current_def (var, saved_def);
2868 }
2869 }
2870
2871
2872 /* Register DEF (an SSA_NAME) to be a new definition for the original
2873 ssa name VAR and push VAR's current reaching definition
2874 into the stack pointed by BLOCK_DEFS_P. */
2875
2876 static void
2877 ssa_register_new_def (tree var, tree def)
2878 {
2879 tree currdef;
2880
2881 /* If this variable is set in a single basic block and all uses are
2882 dominated by the set(s) in that single basic block, then there is
2883 nothing to do. TODO we should not be called at all, and just
2884 keep the original name. */
2885 if (get_phi_state (var) == NEED_PHI_STATE_NO)
2886 {
2887 set_current_def (var, def);
2888 return;
2889 }
2890
2891 currdef = get_current_def (var);
2892
2893 /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
2894 later used by the dominator tree callbacks to restore the reaching
2895 definitions for all the variables defined in the block after a recursive
2896 visit to all its immediately dominated blocks. */
2897 VEC_safe_push (tree_on_heap, block_defs_stack, currdef);
2898 VEC_safe_push (tree_on_heap, block_defs_stack, var);
2899
2900 /* Set the current reaching definition for VAR to be DEF. */
2901 set_current_def (var, def);
2902 }
2903
2904
2905 /* Same as rewrite_stmt, for rewriting ssa names. */
2906
2907 static void
2908 ssa_rewrite_stmt (struct dom_walk_data *walk_data,
2909 basic_block bb ATTRIBUTE_UNUSED,
2910 block_stmt_iterator si)
2911 {
2912 stmt_ann_t ann;
2913 tree stmt, var;
2914 ssa_op_iter iter;
2915 use_operand_p use_p;
2916 def_operand_p def_p;
2917 sbitmap names_to_rename = walk_data->global_data;
2918
2919 stmt = bsi_stmt (si);
2920 ann = stmt_ann (stmt);
2921
2922 if (dump_file && (dump_flags & TDF_DETAILS))
2923 {
2924 fprintf (dump_file, "Renaming statement ");
2925 print_generic_stmt (dump_file, stmt, TDF_SLIM);
2926 fprintf (dump_file, "\n");
2927 }
2928
2929 /* We have just scanned the code for operands. No statement should
2930 be modified. */
2931 gcc_assert (!ann->modified);
2932
2933 /* Step 1. Rewrite USES and VUSES in the statement. */
2934 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)
2935 {
2936 if (TEST_BIT (names_to_rename, SSA_NAME_VERSION (USE_FROM_PTR (use_p))))
2937 SET_USE (use_p, get_reaching_def (USE_FROM_PTR (use_p)));
2938 }
2939
2940 /* Step 2. Register the statement's DEF and VDEF operands. */
2941 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
2942 {
2943 var = DEF_FROM_PTR (def_p);
2944
2945 if (!TEST_BIT (names_to_rename, SSA_NAME_VERSION (var)))
2946 continue;
2947
2948 SET_DEF (def_p, duplicate_ssa_name (var, stmt));
2949 ssa_register_new_def (var, DEF_FROM_PTR (def_p));
2950 }
2951 }
2952
2953
2954 /* Ditto, for ssa name rewriting. */
2955
2956 static void
2957 ssa_rewrite_phi_arguments (struct dom_walk_data *walk_data, basic_block bb)
2958 {
2959 edge e;
2960 sbitmap names_to_rename = walk_data->global_data;
2961 use_operand_p op;
2962 edge_iterator ei;
2963
2964 FOR_EACH_EDGE (e, ei, bb->succs)
2965 {
2966 tree phi;
2967
2968 if (e->dest == EXIT_BLOCK_PTR)
2969 continue;
2970
2971 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
2972 {
2973 op = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2974 if (TREE_CODE (USE_FROM_PTR (op)) != SSA_NAME)
2975 continue;
2976
2977 if (!TEST_BIT (names_to_rename, SSA_NAME_VERSION (USE_FROM_PTR (op))))
2978 continue;
2979
2980 SET_USE (op, get_reaching_def (USE_FROM_PTR (op)));
2981 if (e->flags & EDGE_ABNORMAL)
2982 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (op)) = 1;
2983 }
2984 }
2985 }
2986
2987 /* Ditto, for rewriting ssa names. */
2988
2989 static void
2990 ssa_rewrite_initialize_block (struct dom_walk_data *walk_data, basic_block bb)
2991 {
2992 tree phi, new_name;
2993 sbitmap names_to_rename = walk_data->global_data;
2994 edge e;
2995 bool abnormal_phi;
2996 edge_iterator ei;
2997
2998 if (dump_file && (dump_flags & TDF_DETAILS))
2999 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
3000
3001 /* Mark the unwind point for this block. */
3002 VEC_safe_push (tree_on_heap, block_defs_stack, NULL_TREE);
3003
3004 FOR_EACH_EDGE (e, ei, bb->preds)
3005 if (e->flags & EDGE_ABNORMAL)
3006 break;
3007 abnormal_phi = (e != NULL);
3008
3009 /* Step 1. Register new definitions for every PHI node in the block.
3010 Conceptually, all the PHI nodes are executed in parallel and each PHI
3011 node introduces a new version for the associated variable. */
3012 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3013 {
3014 tree result = PHI_RESULT (phi);
3015
3016 if (TEST_BIT (names_to_rename, SSA_NAME_VERSION (result)))
3017 {
3018 new_name = duplicate_ssa_name (result, phi);
3019 SET_PHI_RESULT (phi, new_name);
3020
3021 if (abnormal_phi)
3022 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
3023 ssa_register_new_def (result, new_name);
3024 }
3025 }
3026 }
3027
3028
3029 /* Same as mark_def_sites, but works over SSA names. */
3030
3031 static void
3032 ssa_mark_def_sites (struct dom_walk_data *walk_data,
3033 basic_block bb,
3034 block_stmt_iterator bsi)
3035 {
3036 struct mark_def_sites_global_data *gd = walk_data->global_data;
3037 bitmap kills = gd->kills;
3038 size_t uid, def_uid;
3039 tree stmt, use, def;
3040 ssa_op_iter iter;
3041
3042 /* Mark all the blocks that have definitions for each variable in the
3043 names_to_rename bitmap. */
3044 stmt = bsi_stmt (bsi);
3045 update_stmt_if_modified (stmt);
3046
3047 /* If a variable is used before being set, then the variable is live
3048 across a block boundary, so mark it live-on-entry to BB. */
3049 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_ALL_USES | SSA_OP_ALL_KILLS)
3050 {
3051 uid = SSA_NAME_VERSION (use);
3052
3053 if (TEST_BIT (gd->names_to_rename, uid)
3054 && !bitmap_bit_p (kills, uid))
3055 set_livein_block (use, bb);
3056 }
3057
3058 /* Now process the definition made by this statement. Mark the
3059 variables in KILLS. */
3060 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
3061 {
3062 def_uid = SSA_NAME_VERSION (def);
3063
3064 if (TEST_BIT (gd->names_to_rename, def_uid))
3065 {
3066 set_def_block (def, bb, false);
3067 bitmap_set_bit (kills, def_uid);
3068 }
3069 }
3070 }
3071
3072
3073 /* Block initialization routine for mark_def_sites. Clear the
3074 KILLS bitmap at the start of each block. */
3075
3076 static void
3077 ssa_mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
3078 basic_block bb)
3079 {
3080 struct mark_def_sites_global_data *gd = walk_data->global_data;
3081 bitmap kills = gd->kills;
3082 tree phi, def;
3083 unsigned def_uid;
3084
3085 bitmap_clear (kills);
3086
3087 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3088 {
3089 def = PHI_RESULT (phi);
3090 def_uid = SSA_NAME_VERSION (def);
3091
3092 if (!TEST_BIT (gd->names_to_rename, def_uid))
3093 continue;
3094
3095 set_def_block (def, bb, true);
3096 bitmap_set_bit (kills, def_uid);
3097 }
3098 }
3099
3100 /* Marks ssa names used as arguments of phis at the end of BB. */
3101
3102 static void
3103 ssa_mark_phi_uses (struct dom_walk_data *walk_data, basic_block bb)
3104 {
3105 struct mark_def_sites_global_data *gd = walk_data->global_data;
3106 bitmap kills = gd->kills;
3107 edge e;
3108 tree phi, use;
3109 unsigned uid;
3110 edge_iterator ei;
3111
3112 FOR_EACH_EDGE (e, ei, bb->succs)
3113 {
3114 if (e->dest == EXIT_BLOCK_PTR)
3115 continue;
3116
3117 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
3118 {
3119 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
3120 if (TREE_CODE (use) != SSA_NAME)
3121 continue;
3122
3123 uid = SSA_NAME_VERSION (use);
3124
3125 if (TEST_BIT (gd->names_to_rename, uid)
3126 && !bitmap_bit_p (kills, uid))
3127 set_livein_block (use, bb);
3128 }
3129 }
3130 }
3131
3132
3133 /* The marked ssa names may have more than one definition;
3134 add PHI nodes and rewrite them to fix this. */
3135
3136 void
3137 rewrite_ssa_into_ssa (void)
3138 {
3139 bitmap *dfs;
3140 basic_block bb;
3141 struct dom_walk_data walk_data;
3142 struct mark_def_sites_global_data mark_def_sites_global_data;
3143 unsigned i;
3144 sbitmap snames_to_rename;
3145 bitmap to_rename;
3146 bitmap_iterator bi;
3147
3148 if (!any_marked_for_rewrite_p ())
3149 return;
3150 to_rename = marked_ssa_names ();
3151
3152 timevar_push (TV_TREE_SSA_OTHER);
3153
3154 /* Allocate memory for the DEF_BLOCKS hash table. */
3155 def_blocks = htab_create (num_ssa_names,
3156 def_blocks_hash, def_blocks_eq, def_blocks_free);
3157
3158 /* Initialize dominance frontier and immediate dominator bitmaps.
3159 Also count the number of predecessors for each block. Doing so
3160 can save significant time during PHI insertion for large graphs. */
3161 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap *));
3162 FOR_EACH_BB (bb)
3163 dfs[bb->index] = BITMAP_ALLOC (NULL);
3164
3165 /* Ensure that the dominance information is OK. */
3166 calculate_dominance_info (CDI_DOMINATORS);
3167
3168 /* Compute dominance frontiers. */
3169 compute_dominance_frontiers (dfs);
3170
3171 /* Setup callbacks for the generic dominator tree walker to find and
3172 mark definition sites. */
3173 walk_data.walk_stmts_backward = false;
3174 walk_data.dom_direction = CDI_DOMINATORS;
3175 walk_data.interesting_blocks = NULL;
3176 walk_data.initialize_block_local_data = NULL;
3177 walk_data.before_dom_children_before_stmts
3178 = ssa_mark_def_sites_initialize_block;
3179 walk_data.before_dom_children_walk_stmts = ssa_mark_def_sites;
3180 walk_data.before_dom_children_after_stmts = ssa_mark_phi_uses;
3181 walk_data.after_dom_children_before_stmts = NULL;
3182 walk_data.after_dom_children_walk_stmts = NULL;
3183 walk_data.after_dom_children_after_stmts = NULL;
3184
3185 snames_to_rename = sbitmap_alloc (num_ssa_names);
3186 sbitmap_zero (snames_to_rename);
3187 EXECUTE_IF_SET_IN_BITMAP (to_rename, 0, i, bi)
3188 {
3189 SET_BIT (snames_to_rename, i);
3190 set_current_def (ssa_name (i), NULL_TREE);
3191 }
3192
3193 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
3194 mark_def_sites_global_data.names_to_rename = snames_to_rename;
3195 walk_data.global_data = &mark_def_sites_global_data;
3196
3197 block_defs_stack = VEC_alloc (tree_on_heap, 10);
3198
3199 /* We do not have any local data. */
3200 walk_data.block_local_data_size = 0;
3201
3202 /* Initialize the dominator walker. */
3203 init_walk_dominator_tree (&walk_data);
3204
3205 /* Recursively walk the dominator tree. */
3206 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
3207
3208 /* Finalize the dominator walker. */
3209 fini_walk_dominator_tree (&walk_data);
3210
3211 /* We no longer need this bitmap, clear and free it. */
3212 BITMAP_FREE (mark_def_sites_global_data.kills);
3213
3214 /* Insert PHI nodes at dominance frontiers of definition blocks. */
3215 insert_phi_nodes (dfs, to_rename);
3216
3217 /* Rewrite all the basic blocks in the program. */
3218 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
3219
3220 /* Setup callbacks for the generic dominator tree walker. */
3221 walk_data.walk_stmts_backward = false;
3222 walk_data.dom_direction = CDI_DOMINATORS;
3223 walk_data.interesting_blocks = NULL;
3224 walk_data.initialize_block_local_data = NULL;
3225 walk_data.before_dom_children_before_stmts = ssa_rewrite_initialize_block;
3226 walk_data.before_dom_children_walk_stmts = ssa_rewrite_stmt;
3227 walk_data.before_dom_children_after_stmts = ssa_rewrite_phi_arguments;
3228 walk_data.after_dom_children_before_stmts = NULL;
3229 walk_data.after_dom_children_walk_stmts = NULL;
3230 walk_data.after_dom_children_after_stmts = ssa_rewrite_finalize_block;
3231 walk_data.global_data = snames_to_rename;
3232 walk_data.block_local_data_size = 0;
3233
3234 /* Initialize the dominator walker. */
3235 init_walk_dominator_tree (&walk_data);
3236
3237 /* Recursively walk the dominator tree rewriting each statement in
3238 each basic block. */
3239 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
3240
3241 /* Finalize the dominator walker. */
3242 fini_walk_dominator_tree (&walk_data);
3243
3244 unmark_all_for_rewrite ();
3245
3246 EXECUTE_IF_SET_IN_BITMAP (to_rename, 0, i, bi)
3247 {
3248 /* Free SSA_NAME_AUX. We don't have to zero it because
3249 release_ssa_name will. */
3250 if (SSA_NAME_AUX (ssa_name (i)))
3251 free (SSA_NAME_AUX (ssa_name (i)));
3252
3253 release_ssa_name (ssa_name (i));
3254 }
3255
3256 sbitmap_free (snames_to_rename);
3257
3258 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
3259
3260 /* Debugging dumps. */
3261 if (dump_file && (dump_flags & TDF_STATS))
3262 {
3263 dump_dfa_stats (dump_file);
3264 dump_tree_ssa_stats (dump_file);
3265 }
3266
3267 /* Free allocated memory. */
3268 FOR_EACH_BB (bb)
3269 BITMAP_FREE (dfs[bb->index]);
3270 free (dfs);
3271
3272 htab_delete (def_blocks);
3273
3274 #ifdef ENABLE_CHECKING
3275 for (i = 1; i < num_ssa_names; i++)
3276 {
3277 tree name = ssa_name (i);
3278 if (!name)
3279 continue;
3280
3281 gcc_assert (SSA_NAME_AUX (name) == NULL);
3282 }
3283 #endif
3284
3285 BITMAP_FREE (to_rename);
3286
3287 VEC_free (tree_on_heap, block_defs_stack);
3288 block_defs_stack = NULL;
3289 timevar_pop (TV_TREE_SSA_OTHER);
3290 }