[ARM] Add ACLE 2.0 predefined marco __ARM_FEATURE_IDIV
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "langhooks.h"
29 #include "basic-block.h"
30 #include "hashtab.h"
31 #include "hash-set.h"
32 #include "vec.h"
33 #include "machmode.h"
34 #include "hard-reg-set.h"
35 #include "input.h"
36 #include "function.h"
37 #include "gimple-pretty-print.h"
38 #include "hash-table.h"
39 #include "tree-ssa-alias.h"
40 #include "internal-fn.h"
41 #include "gimple-expr.h"
42 #include "is-a.h"
43 #include "gimple.h"
44 #include "gimple-iterator.h"
45 #include "gimple-ssa.h"
46 #include "tree-cfg.h"
47 #include "tree-phinodes.h"
48 #include "ssa-iterators.h"
49 #include "stringpool.h"
50 #include "tree-ssanames.h"
51 #include "tree-into-ssa.h"
52 #include "expr.h"
53 #include "tree-dfa.h"
54 #include "tree-ssa.h"
55 #include "tree-inline.h"
56 #include "tree-pass.h"
57 #include "cfgloop.h"
58 #include "domwalk.h"
59 #include "params.h"
60 #include "diagnostic-core.h"
61 #include "tree-into-ssa.h"
62
63 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
64
65 /* This file builds the SSA form for a function as described in:
66 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
67 Computing Static Single Assignment Form and the Control Dependence
68 Graph. ACM Transactions on Programming Languages and Systems,
69 13(4):451-490, October 1991. */
70
71 /* Structure to map a variable VAR to the set of blocks that contain
72 definitions for VAR. */
73 struct def_blocks_d
74 {
75 /* Blocks that contain definitions of VAR. Bit I will be set if the
76 Ith block contains a definition of VAR. */
77 bitmap def_blocks;
78
79 /* Blocks that contain a PHI node for VAR. */
80 bitmap phi_blocks;
81
82 /* Blocks where VAR is live-on-entry. Similar semantics as
83 DEF_BLOCKS. */
84 bitmap livein_blocks;
85 };
86
87 typedef struct def_blocks_d *def_blocks_p;
88
89
90 /* Stack of trees used to restore the global currdefs to its original
91 state after completing rewriting of a block and its dominator
92 children. Its elements have the following properties:
93
94 - An SSA_NAME (N) indicates that the current definition of the
95 underlying variable should be set to the given SSA_NAME. If the
96 symbol associated with the SSA_NAME is not a GIMPLE register, the
97 next slot in the stack must be a _DECL node (SYM). In this case,
98 the name N in the previous slot is the current reaching
99 definition for SYM.
100
101 - A _DECL node indicates that the underlying variable has no
102 current definition.
103
104 - A NULL node at the top entry is used to mark the last slot
105 associated with the current block. */
106 static vec<tree> block_defs_stack;
107
108
109 /* Set of existing SSA names being replaced by update_ssa. */
110 static sbitmap old_ssa_names;
111
112 /* Set of new SSA names being added by update_ssa. Note that both
113 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
114 the operations done on them are presence tests. */
115 static sbitmap new_ssa_names;
116
117 static sbitmap interesting_blocks;
118
119 /* Set of SSA names that have been marked to be released after they
120 were registered in the replacement table. They will be finally
121 released after we finish updating the SSA web. */
122 static bitmap names_to_release;
123
124 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
125 the to basic block with index I. Allocated once per compilation, *not*
126 released between different functions. */
127 static vec<gimple_vec> phis_to_rewrite;
128
129 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
130 static bitmap blocks_with_phis_to_rewrite;
131
132 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
133 to grow as the callers to create_new_def_for will create new names on
134 the fly.
135 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
136 need to find a reasonable growth strategy. */
137 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
138
139
140 /* The function the SSA updating data structures have been initialized for.
141 NULL if they need to be initialized by create_new_def_for. */
142 static struct function *update_ssa_initialized_fn = NULL;
143
144 /* Global data to attach to the main dominator walk structure. */
145 struct mark_def_sites_global_data
146 {
147 /* This bitmap contains the variables which are set before they
148 are used in a basic block. */
149 bitmap kills;
150 };
151
152 /* It is advantageous to avoid things like life analysis for variables which
153 do not need PHI nodes. This enum describes whether or not a particular
154 variable may need a PHI node. */
155
156 enum need_phi_state {
157 /* This is the default. If we are still in this state after finding
158 all the definition and use sites, then we will assume the variable
159 needs PHI nodes. This is probably an overly conservative assumption. */
160 NEED_PHI_STATE_UNKNOWN,
161
162 /* This state indicates that we have seen one or more sets of the
163 variable in a single basic block and that the sets dominate all
164 uses seen so far. If after finding all definition and use sites
165 we are still in this state, then the variable does not need any
166 PHI nodes. */
167 NEED_PHI_STATE_NO,
168
169 /* This state indicates that we have either seen multiple definitions of
170 the variable in multiple blocks, or that we encountered a use in a
171 block that was not dominated by the block containing the set(s) of
172 this variable. This variable is assumed to need PHI nodes. */
173 NEED_PHI_STATE_MAYBE
174 };
175
176 /* Information stored for both SSA names and decls. */
177 struct common_info_d
178 {
179 /* This field indicates whether or not the variable may need PHI nodes.
180 See the enum's definition for more detailed information about the
181 states. */
182 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
183
184 /* The current reaching definition replacing this var. */
185 tree current_def;
186
187 /* Definitions for this var. */
188 struct def_blocks_d def_blocks;
189 };
190
191 /* The information associated with decls and SSA names. */
192 typedef struct common_info_d *common_info_p;
193
194 /* Information stored for decls. */
195 struct var_info_d
196 {
197 /* The variable. */
198 tree var;
199
200 /* Information stored for both SSA names and decls. */
201 struct common_info_d info;
202 };
203
204 /* The information associated with decls. */
205 typedef struct var_info_d *var_info_p;
206
207
208 /* VAR_INFOS hashtable helpers. */
209
210 struct var_info_hasher : typed_free_remove <var_info_d>
211 {
212 typedef var_info_d *value_type;
213 typedef var_info_d *compare_type;
214 typedef int store_values_directly;
215 static inline hashval_t hash (const value_type &);
216 static inline bool equal (const value_type &, const compare_type &);
217 };
218
219 inline hashval_t
220 var_info_hasher::hash (const value_type &p)
221 {
222 return DECL_UID (p->var);
223 }
224
225 inline bool
226 var_info_hasher::equal (const value_type &p1, const compare_type &p2)
227 {
228 return p1->var == p2->var;
229 }
230
231
232 /* Each entry in VAR_INFOS contains an element of type STRUCT
233 VAR_INFO_D. */
234 static hash_table<var_info_hasher> *var_infos;
235
236
237 /* Information stored for SSA names. */
238 struct ssa_name_info
239 {
240 /* Age of this record (so that info_for_ssa_name table can be cleared
241 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
242 are assumed to be null. */
243 unsigned age;
244
245 /* Replacement mappings, allocated from update_ssa_obstack. */
246 bitmap repl_set;
247
248 /* Information stored for both SSA names and decls. */
249 struct common_info_d info;
250 };
251
252 /* The information associated with names. */
253 typedef struct ssa_name_info *ssa_name_info_p;
254
255 static vec<ssa_name_info_p> info_for_ssa_name;
256 static unsigned current_info_for_ssa_name_age;
257
258 static bitmap_obstack update_ssa_obstack;
259
260 /* The set of blocks affected by update_ssa. */
261 static bitmap blocks_to_update;
262
263 /* The main entry point to the SSA renamer (rewrite_blocks) may be
264 called several times to do different, but related, tasks.
265 Initially, we need it to rename the whole program into SSA form.
266 At other times, we may need it to only rename into SSA newly
267 exposed symbols. Finally, we can also call it to incrementally fix
268 an already built SSA web. */
269 enum rewrite_mode {
270 /* Convert the whole function into SSA form. */
271 REWRITE_ALL,
272
273 /* Incrementally update the SSA web by replacing existing SSA
274 names with new ones. See update_ssa for details. */
275 REWRITE_UPDATE
276 };
277
278 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
279 static bitmap symbols_to_rename_set;
280 static vec<tree> symbols_to_rename;
281
282 /* Mark SYM for renaming. */
283
284 static void
285 mark_for_renaming (tree sym)
286 {
287 if (!symbols_to_rename_set)
288 symbols_to_rename_set = BITMAP_ALLOC (NULL);
289 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
290 symbols_to_rename.safe_push (sym);
291 }
292
293 /* Return true if SYM is marked for renaming. */
294
295 static bool
296 marked_for_renaming (tree sym)
297 {
298 if (!symbols_to_rename_set || sym == NULL_TREE)
299 return false;
300 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
301 }
302
303
304 /* Return true if STMT needs to be rewritten. When renaming a subset
305 of the variables, not all statements will be processed. This is
306 decided in mark_def_sites. */
307
308 static inline bool
309 rewrite_uses_p (gimple stmt)
310 {
311 return gimple_visited_p (stmt);
312 }
313
314
315 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
316
317 static inline void
318 set_rewrite_uses (gimple stmt, bool rewrite_p)
319 {
320 gimple_set_visited (stmt, rewrite_p);
321 }
322
323
324 /* Return true if the DEFs created by statement STMT should be
325 registered when marking new definition sites. This is slightly
326 different than rewrite_uses_p: it's used by update_ssa to
327 distinguish statements that need to have both uses and defs
328 processed from those that only need to have their defs processed.
329 Statements that define new SSA names only need to have their defs
330 registered, but they don't need to have their uses renamed. */
331
332 static inline bool
333 register_defs_p (gimple stmt)
334 {
335 return gimple_plf (stmt, GF_PLF_1) != 0;
336 }
337
338
339 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
340
341 static inline void
342 set_register_defs (gimple stmt, bool register_defs_p)
343 {
344 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
345 }
346
347
348 /* Get the information associated with NAME. */
349
350 static inline ssa_name_info_p
351 get_ssa_name_ann (tree name)
352 {
353 unsigned ver = SSA_NAME_VERSION (name);
354 unsigned len = info_for_ssa_name.length ();
355 struct ssa_name_info *info;
356
357 /* Re-allocate the vector at most once per update/into-SSA. */
358 if (ver >= len)
359 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
360
361 /* But allocate infos lazily. */
362 info = info_for_ssa_name[ver];
363 if (!info)
364 {
365 info = XCNEW (struct ssa_name_info);
366 info->age = current_info_for_ssa_name_age;
367 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
368 info_for_ssa_name[ver] = info;
369 }
370
371 if (info->age < current_info_for_ssa_name_age)
372 {
373 info->age = current_info_for_ssa_name_age;
374 info->repl_set = NULL;
375 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
376 info->info.current_def = NULL_TREE;
377 info->info.def_blocks.def_blocks = NULL;
378 info->info.def_blocks.phi_blocks = NULL;
379 info->info.def_blocks.livein_blocks = NULL;
380 }
381
382 return info;
383 }
384
385 /* Return and allocate the auxiliar information for DECL. */
386
387 static inline var_info_p
388 get_var_info (tree decl)
389 {
390 struct var_info_d vi;
391 var_info_d **slot;
392 vi.var = decl;
393 slot = var_infos->find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
394 if (*slot == NULL)
395 {
396 var_info_p v = XCNEW (struct var_info_d);
397 v->var = decl;
398 *slot = v;
399 return v;
400 }
401 return *slot;
402 }
403
404
405 /* Clears info for SSA names. */
406
407 static void
408 clear_ssa_name_info (void)
409 {
410 current_info_for_ssa_name_age++;
411
412 /* If current_info_for_ssa_name_age wraps we use stale information.
413 Asser that this does not happen. */
414 gcc_assert (current_info_for_ssa_name_age != 0);
415 }
416
417
418 /* Get access to the auxiliar information stored per SSA name or decl. */
419
420 static inline common_info_p
421 get_common_info (tree var)
422 {
423 if (TREE_CODE (var) == SSA_NAME)
424 return &get_ssa_name_ann (var)->info;
425 else
426 return &get_var_info (var)->info;
427 }
428
429
430 /* Return the current definition for VAR. */
431
432 tree
433 get_current_def (tree var)
434 {
435 return get_common_info (var)->current_def;
436 }
437
438
439 /* Sets current definition of VAR to DEF. */
440
441 void
442 set_current_def (tree var, tree def)
443 {
444 get_common_info (var)->current_def = def;
445 }
446
447 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
448 all statements in basic block BB. */
449
450 static void
451 initialize_flags_in_bb (basic_block bb)
452 {
453 gimple stmt;
454 gimple_stmt_iterator gsi;
455
456 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
457 {
458 gimple phi = gsi_stmt (gsi);
459 set_rewrite_uses (phi, false);
460 set_register_defs (phi, false);
461 }
462
463 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
464 {
465 stmt = gsi_stmt (gsi);
466
467 /* We are going to use the operand cache API, such as
468 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
469 cache for each statement should be up-to-date. */
470 gcc_checking_assert (!gimple_modified_p (stmt));
471 set_rewrite_uses (stmt, false);
472 set_register_defs (stmt, false);
473 }
474 }
475
476 /* Mark block BB as interesting for update_ssa. */
477
478 static void
479 mark_block_for_update (basic_block bb)
480 {
481 gcc_checking_assert (blocks_to_update != NULL);
482 if (!bitmap_set_bit (blocks_to_update, bb->index))
483 return;
484 initialize_flags_in_bb (bb);
485 }
486
487 /* Return the set of blocks where variable VAR is defined and the blocks
488 where VAR is live on entry (livein). If no entry is found in
489 DEF_BLOCKS, a new one is created and returned. */
490
491 static inline struct def_blocks_d *
492 get_def_blocks_for (common_info_p info)
493 {
494 struct def_blocks_d *db_p = &info->def_blocks;
495 if (!db_p->def_blocks)
496 {
497 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
498 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
499 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
500 }
501
502 return db_p;
503 }
504
505
506 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
507 VAR is defined by a PHI node. */
508
509 static void
510 set_def_block (tree var, basic_block bb, bool phi_p)
511 {
512 struct def_blocks_d *db_p;
513 common_info_p info;
514
515 info = get_common_info (var);
516 db_p = get_def_blocks_for (info);
517
518 /* Set the bit corresponding to the block where VAR is defined. */
519 bitmap_set_bit (db_p->def_blocks, bb->index);
520 if (phi_p)
521 bitmap_set_bit (db_p->phi_blocks, bb->index);
522
523 /* Keep track of whether or not we may need to insert PHI nodes.
524
525 If we are in the UNKNOWN state, then this is the first definition
526 of VAR. Additionally, we have not seen any uses of VAR yet, so
527 we do not need a PHI node for this variable at this time (i.e.,
528 transition to NEED_PHI_STATE_NO).
529
530 If we are in any other state, then we either have multiple definitions
531 of this variable occurring in different blocks or we saw a use of the
532 variable which was not dominated by the block containing the
533 definition(s). In this case we may need a PHI node, so enter
534 state NEED_PHI_STATE_MAYBE. */
535 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
536 info->need_phi_state = NEED_PHI_STATE_NO;
537 else
538 info->need_phi_state = NEED_PHI_STATE_MAYBE;
539 }
540
541
542 /* Mark block BB as having VAR live at the entry to BB. */
543
544 static void
545 set_livein_block (tree var, basic_block bb)
546 {
547 common_info_p info;
548 struct def_blocks_d *db_p;
549
550 info = get_common_info (var);
551 db_p = get_def_blocks_for (info);
552
553 /* Set the bit corresponding to the block where VAR is live in. */
554 bitmap_set_bit (db_p->livein_blocks, bb->index);
555
556 /* Keep track of whether or not we may need to insert PHI nodes.
557
558 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
559 by the single block containing the definition(s) of this variable. If
560 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
561 NEED_PHI_STATE_MAYBE. */
562 if (info->need_phi_state == NEED_PHI_STATE_NO)
563 {
564 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
565
566 if (def_block_index == -1
567 || ! dominated_by_p (CDI_DOMINATORS, bb,
568 BASIC_BLOCK_FOR_FN (cfun, def_block_index)))
569 info->need_phi_state = NEED_PHI_STATE_MAYBE;
570 }
571 else
572 info->need_phi_state = NEED_PHI_STATE_MAYBE;
573 }
574
575
576 /* Return true if NAME is in OLD_SSA_NAMES. */
577
578 static inline bool
579 is_old_name (tree name)
580 {
581 unsigned ver = SSA_NAME_VERSION (name);
582 if (!old_ssa_names)
583 return false;
584 return (ver < SBITMAP_SIZE (old_ssa_names)
585 && bitmap_bit_p (old_ssa_names, ver));
586 }
587
588
589 /* Return true if NAME is in NEW_SSA_NAMES. */
590
591 static inline bool
592 is_new_name (tree name)
593 {
594 unsigned ver = SSA_NAME_VERSION (name);
595 if (!new_ssa_names)
596 return false;
597 return (ver < SBITMAP_SIZE (new_ssa_names)
598 && bitmap_bit_p (new_ssa_names, ver));
599 }
600
601
602 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
603
604 static inline bitmap
605 names_replaced_by (tree new_tree)
606 {
607 return get_ssa_name_ann (new_tree)->repl_set;
608 }
609
610
611 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
612
613 static inline void
614 add_to_repl_tbl (tree new_tree, tree old)
615 {
616 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
617 if (!*set)
618 *set = BITMAP_ALLOC (&update_ssa_obstack);
619 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
620 }
621
622
623 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
624 represents the set of names O_1 ... O_j replaced by N_i. This is
625 used by update_ssa and its helpers to introduce new SSA names in an
626 already formed SSA web. */
627
628 static void
629 add_new_name_mapping (tree new_tree, tree old)
630 {
631 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
632 gcc_checking_assert (new_tree != old
633 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
634
635 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
636 caller may have created new names since the set was created. */
637 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
638 {
639 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
640 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
641 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
642 }
643
644 /* Update the REPL_TBL table. */
645 add_to_repl_tbl (new_tree, old);
646
647 /* If OLD had already been registered as a new name, then all the
648 names that OLD replaces should also be replaced by NEW_TREE. */
649 if (is_new_name (old))
650 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
651
652 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
653 respectively. */
654 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
655 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
656 }
657
658
659 /* Call back for walk_dominator_tree used to collect definition sites
660 for every variable in the function. For every statement S in block
661 BB:
662
663 1- Variables defined by S in the DEFS of S are marked in the bitmap
664 KILLS.
665
666 2- If S uses a variable VAR and there is no preceding kill of VAR,
667 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
668
669 This information is used to determine which variables are live
670 across block boundaries to reduce the number of PHI nodes
671 we create. */
672
673 static void
674 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
675 {
676 tree def;
677 use_operand_p use_p;
678 ssa_op_iter iter;
679
680 /* Since this is the first time that we rewrite the program into SSA
681 form, force an operand scan on every statement. */
682 update_stmt (stmt);
683
684 gcc_checking_assert (blocks_to_update == NULL);
685 set_register_defs (stmt, false);
686 set_rewrite_uses (stmt, false);
687
688 if (is_gimple_debug (stmt))
689 {
690 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
691 {
692 tree sym = USE_FROM_PTR (use_p);
693 gcc_checking_assert (DECL_P (sym));
694 set_rewrite_uses (stmt, true);
695 }
696 if (rewrite_uses_p (stmt))
697 bitmap_set_bit (interesting_blocks, bb->index);
698 return;
699 }
700
701 /* If a variable is used before being set, then the variable is live
702 across a block boundary, so mark it live-on-entry to BB. */
703 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
704 {
705 tree sym = USE_FROM_PTR (use_p);
706 gcc_checking_assert (DECL_P (sym));
707 if (!bitmap_bit_p (kills, DECL_UID (sym)))
708 set_livein_block (sym, bb);
709 set_rewrite_uses (stmt, true);
710 }
711
712 /* Now process the defs. Mark BB as the definition block and add
713 each def to the set of killed symbols. */
714 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
715 {
716 gcc_checking_assert (DECL_P (def));
717 set_def_block (def, bb, false);
718 bitmap_set_bit (kills, DECL_UID (def));
719 set_register_defs (stmt, true);
720 }
721
722 /* If we found the statement interesting then also mark the block BB
723 as interesting. */
724 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
725 bitmap_set_bit (interesting_blocks, bb->index);
726 }
727
728 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
729 in the dfs numbering of the dominance tree. */
730
731 struct dom_dfsnum
732 {
733 /* Basic block whose index this entry corresponds to. */
734 unsigned bb_index;
735
736 /* The dfs number of this node. */
737 unsigned dfs_num;
738 };
739
740 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
741 for qsort. */
742
743 static int
744 cmp_dfsnum (const void *a, const void *b)
745 {
746 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
747 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
748
749 return (int) da->dfs_num - (int) db->dfs_num;
750 }
751
752 /* Among the intervals starting at the N points specified in DEFS, find
753 the one that contains S, and return its bb_index. */
754
755 static unsigned
756 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
757 {
758 unsigned f = 0, t = n, m;
759
760 while (t > f + 1)
761 {
762 m = (f + t) / 2;
763 if (defs[m].dfs_num <= s)
764 f = m;
765 else
766 t = m;
767 }
768
769 return defs[f].bb_index;
770 }
771
772 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
773 KILLS is a bitmap of blocks where the value is defined before any use. */
774
775 static void
776 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
777 {
778 bitmap_iterator bi;
779 unsigned i, b, p, u, top;
780 bitmap live_phis;
781 basic_block def_bb, use_bb;
782 edge e;
783 edge_iterator ei;
784 bitmap to_remove;
785 struct dom_dfsnum *defs;
786 unsigned n_defs, adef;
787
788 if (bitmap_empty_p (uses))
789 {
790 bitmap_clear (phis);
791 return;
792 }
793
794 /* The phi must dominate a use, or an argument of a live phi. Also, we
795 do not create any phi nodes in def blocks, unless they are also livein. */
796 to_remove = BITMAP_ALLOC (NULL);
797 bitmap_and_compl (to_remove, kills, uses);
798 bitmap_and_compl_into (phis, to_remove);
799 if (bitmap_empty_p (phis))
800 {
801 BITMAP_FREE (to_remove);
802 return;
803 }
804
805 /* We want to remove the unnecessary phi nodes, but we do not want to compute
806 liveness information, as that may be linear in the size of CFG, and if
807 there are lot of different variables to rewrite, this may lead to quadratic
808 behavior.
809
810 Instead, we basically emulate standard dce. We put all uses to worklist,
811 then for each of them find the nearest def that dominates them. If this
812 def is a phi node, we mark it live, and if it was not live before, we
813 add the predecessors of its basic block to the worklist.
814
815 To quickly locate the nearest def that dominates use, we use dfs numbering
816 of the dominance tree (that is already available in order to speed up
817 queries). For each def, we have the interval given by the dfs number on
818 entry to and on exit from the corresponding subtree in the dominance tree.
819 The nearest dominator for a given use is the smallest of these intervals
820 that contains entry and exit dfs numbers for the basic block with the use.
821 If we store the bounds for all the uses to an array and sort it, we can
822 locate the nearest dominating def in logarithmic time by binary search.*/
823 bitmap_ior (to_remove, kills, phis);
824 n_defs = bitmap_count_bits (to_remove);
825 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
826 defs[0].bb_index = 1;
827 defs[0].dfs_num = 0;
828 adef = 1;
829 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
830 {
831 def_bb = BASIC_BLOCK_FOR_FN (cfun, i);
832 defs[adef].bb_index = i;
833 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
834 defs[adef + 1].bb_index = i;
835 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
836 adef += 2;
837 }
838 BITMAP_FREE (to_remove);
839 gcc_assert (adef == 2 * n_defs + 1);
840 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
841 gcc_assert (defs[0].bb_index == 1);
842
843 /* Now each DEFS entry contains the number of the basic block to that the
844 dfs number corresponds. Change them to the number of basic block that
845 corresponds to the interval following the dfs number. Also, for the
846 dfs_out numbers, increase the dfs number by one (so that it corresponds
847 to the start of the following interval, not to the end of the current
848 one). We use WORKLIST as a stack. */
849 auto_vec<int> worklist (n_defs + 1);
850 worklist.quick_push (1);
851 top = 1;
852 n_defs = 1;
853 for (i = 1; i < adef; i++)
854 {
855 b = defs[i].bb_index;
856 if (b == top)
857 {
858 /* This is a closing element. Interval corresponding to the top
859 of the stack after removing it follows. */
860 worklist.pop ();
861 top = worklist[worklist.length () - 1];
862 defs[n_defs].bb_index = top;
863 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
864 }
865 else
866 {
867 /* Opening element. Nothing to do, just push it to the stack and move
868 it to the correct position. */
869 defs[n_defs].bb_index = defs[i].bb_index;
870 defs[n_defs].dfs_num = defs[i].dfs_num;
871 worklist.quick_push (b);
872 top = b;
873 }
874
875 /* If this interval starts at the same point as the previous one, cancel
876 the previous one. */
877 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
878 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
879 else
880 n_defs++;
881 }
882 worklist.pop ();
883 gcc_assert (worklist.is_empty ());
884
885 /* Now process the uses. */
886 live_phis = BITMAP_ALLOC (NULL);
887 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
888 {
889 worklist.safe_push (i);
890 }
891
892 while (!worklist.is_empty ())
893 {
894 b = worklist.pop ();
895 if (b == ENTRY_BLOCK)
896 continue;
897
898 /* If there is a phi node in USE_BB, it is made live. Otherwise,
899 find the def that dominates the immediate dominator of USE_BB
900 (the kill in USE_BB does not dominate the use). */
901 if (bitmap_bit_p (phis, b))
902 p = b;
903 else
904 {
905 use_bb = get_immediate_dominator (CDI_DOMINATORS,
906 BASIC_BLOCK_FOR_FN (cfun, b));
907 p = find_dfsnum_interval (defs, n_defs,
908 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
909 if (!bitmap_bit_p (phis, p))
910 continue;
911 }
912
913 /* If the phi node is already live, there is nothing to do. */
914 if (!bitmap_set_bit (live_phis, p))
915 continue;
916
917 /* Add the new uses to the worklist. */
918 def_bb = BASIC_BLOCK_FOR_FN (cfun, p);
919 FOR_EACH_EDGE (e, ei, def_bb->preds)
920 {
921 u = e->src->index;
922 if (bitmap_bit_p (uses, u))
923 continue;
924
925 /* In case there is a kill directly in the use block, do not record
926 the use (this is also necessary for correctness, as we assume that
927 uses dominated by a def directly in their block have been filtered
928 out before). */
929 if (bitmap_bit_p (kills, u))
930 continue;
931
932 bitmap_set_bit (uses, u);
933 worklist.safe_push (u);
934 }
935 }
936
937 bitmap_copy (phis, live_phis);
938 BITMAP_FREE (live_phis);
939 free (defs);
940 }
941
942 /* Return the set of blocks where variable VAR is defined and the blocks
943 where VAR is live on entry (livein). Return NULL, if no entry is
944 found in DEF_BLOCKS. */
945
946 static inline struct def_blocks_d *
947 find_def_blocks_for (tree var)
948 {
949 def_blocks_p p = &get_common_info (var)->def_blocks;
950 if (!p->def_blocks)
951 return NULL;
952 return p;
953 }
954
955
956 /* Marks phi node PHI in basic block BB for rewrite. */
957
958 static void
959 mark_phi_for_rewrite (basic_block bb, gimple phi)
960 {
961 gimple_vec phis;
962 unsigned n, idx = bb->index;
963
964 if (rewrite_uses_p (phi))
965 return;
966
967 set_rewrite_uses (phi, true);
968
969 if (!blocks_with_phis_to_rewrite)
970 return;
971
972 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
973
974 n = (unsigned) last_basic_block_for_fn (cfun) + 1;
975 if (phis_to_rewrite.length () < n)
976 phis_to_rewrite.safe_grow_cleared (n);
977
978 phis = phis_to_rewrite[idx];
979 phis.reserve (10);
980
981 phis.safe_push (phi);
982 phis_to_rewrite[idx] = phis;
983 }
984
985 /* Insert PHI nodes for variable VAR using the iterated dominance
986 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
987 function assumes that the caller is incrementally updating the
988 existing SSA form, in which case VAR may be an SSA name instead of
989 a symbol.
990
991 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
992 PHI node for VAR. On exit, only the nodes that received a PHI node
993 for VAR will be present in PHI_INSERTION_POINTS. */
994
995 static void
996 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
997 {
998 unsigned bb_index;
999 edge e;
1000 gimple phi;
1001 basic_block bb;
1002 bitmap_iterator bi;
1003 struct def_blocks_d *def_map = find_def_blocks_for (var);
1004
1005 /* Remove the blocks where we already have PHI nodes for VAR. */
1006 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1007
1008 /* Remove obviously useless phi nodes. */
1009 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1010 def_map->livein_blocks);
1011
1012 /* And insert the PHI nodes. */
1013 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1014 {
1015 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1016 if (update_p)
1017 mark_block_for_update (bb);
1018
1019 if (dump_file && (dump_flags & TDF_DETAILS))
1020 {
1021 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1022 print_generic_expr (dump_file, var, TDF_SLIM);
1023 fprintf (dump_file, "\n");
1024 }
1025 phi = NULL;
1026
1027 if (TREE_CODE (var) == SSA_NAME)
1028 {
1029 /* If we are rewriting SSA names, create the LHS of the PHI
1030 node by duplicating VAR. This is useful in the case of
1031 pointers, to also duplicate pointer attributes (alias
1032 information, in particular). */
1033 edge_iterator ei;
1034 tree new_lhs;
1035
1036 gcc_checking_assert (update_p);
1037 new_lhs = duplicate_ssa_name (var, NULL);
1038 phi = create_phi_node (new_lhs, bb);
1039 add_new_name_mapping (new_lhs, var);
1040
1041 /* Add VAR to every argument slot of PHI. We need VAR in
1042 every argument so that rewrite_update_phi_arguments knows
1043 which name is this PHI node replacing. If VAR is a
1044 symbol marked for renaming, this is not necessary, the
1045 renamer will use the symbol on the LHS to get its
1046 reaching definition. */
1047 FOR_EACH_EDGE (e, ei, bb->preds)
1048 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1049 }
1050 else
1051 {
1052 tree tracked_var;
1053
1054 gcc_checking_assert (DECL_P (var));
1055 phi = create_phi_node (var, bb);
1056
1057 tracked_var = target_for_debug_bind (var);
1058 if (tracked_var)
1059 {
1060 gimple note = gimple_build_debug_bind (tracked_var,
1061 PHI_RESULT (phi),
1062 phi);
1063 gimple_stmt_iterator si = gsi_after_labels (bb);
1064 gsi_insert_before (&si, note, GSI_SAME_STMT);
1065 }
1066 }
1067
1068 /* Mark this PHI node as interesting for update_ssa. */
1069 set_register_defs (phi, true);
1070 mark_phi_for_rewrite (bb, phi);
1071 }
1072 }
1073
1074 /* Sort var_infos after DECL_UID of their var. */
1075
1076 static int
1077 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1078 {
1079 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1080 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1081 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1082 return -1;
1083 else
1084 return 1;
1085 }
1086
1087 /* Insert PHI nodes at the dominance frontier of blocks with variable
1088 definitions. DFS contains the dominance frontier information for
1089 the flowgraph. */
1090
1091 static void
1092 insert_phi_nodes (bitmap_head *dfs)
1093 {
1094 hash_table<var_info_hasher>::iterator hi;
1095 unsigned i;
1096 var_info_p info;
1097
1098 timevar_push (TV_TREE_INSERT_PHI_NODES);
1099
1100 auto_vec<var_info_p> vars (var_infos->elements ());
1101 FOR_EACH_HASH_TABLE_ELEMENT (*var_infos, info, var_info_p, hi)
1102 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1103 vars.quick_push (info);
1104
1105 /* Do two stages to avoid code generation differences for UID
1106 differences but no UID ordering differences. */
1107 vars.qsort (insert_phi_nodes_compare_var_infos);
1108
1109 FOR_EACH_VEC_ELT (vars, i, info)
1110 {
1111 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1112 insert_phi_nodes_for (info->var, idf, false);
1113 BITMAP_FREE (idf);
1114 }
1115
1116 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1117 }
1118
1119
1120 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1121 register DEF (an SSA_NAME) to be a new definition for SYM. */
1122
1123 static void
1124 register_new_def (tree def, tree sym)
1125 {
1126 common_info_p info = get_common_info (sym);
1127 tree currdef;
1128
1129 /* If this variable is set in a single basic block and all uses are
1130 dominated by the set(s) in that single basic block, then there is
1131 no reason to record anything for this variable in the block local
1132 definition stacks. Doing so just wastes time and memory.
1133
1134 This is the same test to prune the set of variables which may
1135 need PHI nodes. So we just use that information since it's already
1136 computed and available for us to use. */
1137 if (info->need_phi_state == NEED_PHI_STATE_NO)
1138 {
1139 info->current_def = def;
1140 return;
1141 }
1142
1143 currdef = info->current_def;
1144
1145 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1146 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1147 in the stack so that we know which symbol is being defined by
1148 this SSA name when we unwind the stack. */
1149 if (currdef && !is_gimple_reg (sym))
1150 block_defs_stack.safe_push (sym);
1151
1152 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1153 stack is later used by the dominator tree callbacks to restore
1154 the reaching definitions for all the variables defined in the
1155 block after a recursive visit to all its immediately dominated
1156 blocks. If there is no current reaching definition, then just
1157 record the underlying _DECL node. */
1158 block_defs_stack.safe_push (currdef ? currdef : sym);
1159
1160 /* Set the current reaching definition for SYM to be DEF. */
1161 info->current_def = def;
1162 }
1163
1164
1165 /* Perform a depth-first traversal of the dominator tree looking for
1166 variables to rename. BB is the block where to start searching.
1167 Renaming is a five step process:
1168
1169 1- Every definition made by PHI nodes at the start of the blocks is
1170 registered as the current definition for the corresponding variable.
1171
1172 2- Every statement in BB is rewritten. USE and VUSE operands are
1173 rewritten with their corresponding reaching definition. DEF and
1174 VDEF targets are registered as new definitions.
1175
1176 3- All the PHI nodes in successor blocks of BB are visited. The
1177 argument corresponding to BB is replaced with its current reaching
1178 definition.
1179
1180 4- Recursively rewrite every dominator child block of BB.
1181
1182 5- Restore (in reverse order) the current reaching definition for every
1183 new definition introduced in this block. This is done so that when
1184 we return from the recursive call, all the current reaching
1185 definitions are restored to the names that were valid in the
1186 dominator parent of BB. */
1187
1188 /* Return the current definition for variable VAR. If none is found,
1189 create a new SSA name to act as the zeroth definition for VAR. */
1190
1191 static tree
1192 get_reaching_def (tree var)
1193 {
1194 common_info_p info = get_common_info (var);
1195 tree currdef;
1196
1197 /* Lookup the current reaching definition for VAR. */
1198 currdef = info->current_def;
1199
1200 /* If there is no reaching definition for VAR, create and register a
1201 default definition for it (if needed). */
1202 if (currdef == NULL_TREE)
1203 {
1204 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1205 currdef = get_or_create_ssa_default_def (cfun, sym);
1206 }
1207
1208 /* Return the current reaching definition for VAR, or the default
1209 definition, if we had to create one. */
1210 return currdef;
1211 }
1212
1213
1214 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1215
1216 static void
1217 rewrite_debug_stmt_uses (gimple stmt)
1218 {
1219 use_operand_p use_p;
1220 ssa_op_iter iter;
1221 bool update = false;
1222
1223 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1224 {
1225 tree var = USE_FROM_PTR (use_p), def;
1226 common_info_p info = get_common_info (var);
1227 gcc_checking_assert (DECL_P (var));
1228 def = info->current_def;
1229 if (!def)
1230 {
1231 if (TREE_CODE (var) == PARM_DECL
1232 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
1233 {
1234 gimple_stmt_iterator gsi
1235 =
1236 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1237 int lim;
1238 /* Search a few source bind stmts at the start of first bb to
1239 see if a DEBUG_EXPR_DECL can't be reused. */
1240 for (lim = 32;
1241 !gsi_end_p (gsi) && lim > 0;
1242 gsi_next (&gsi), lim--)
1243 {
1244 gimple gstmt = gsi_stmt (gsi);
1245 if (!gimple_debug_source_bind_p (gstmt))
1246 break;
1247 if (gimple_debug_source_bind_get_value (gstmt) == var)
1248 {
1249 def = gimple_debug_source_bind_get_var (gstmt);
1250 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1251 break;
1252 else
1253 def = NULL_TREE;
1254 }
1255 }
1256 /* If not, add a new source bind stmt. */
1257 if (def == NULL_TREE)
1258 {
1259 gimple def_temp;
1260 def = make_node (DEBUG_EXPR_DECL);
1261 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1262 DECL_ARTIFICIAL (def) = 1;
1263 TREE_TYPE (def) = TREE_TYPE (var);
1264 DECL_MODE (def) = DECL_MODE (var);
1265 gsi =
1266 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1267 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1268 }
1269 update = true;
1270 }
1271 }
1272 else
1273 {
1274 /* Check if info->current_def can be trusted. */
1275 basic_block bb = gimple_bb (stmt);
1276 basic_block def_bb
1277 = SSA_NAME_IS_DEFAULT_DEF (def)
1278 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1279
1280 /* If definition is in current bb, it is fine. */
1281 if (bb == def_bb)
1282 ;
1283 /* If definition bb doesn't dominate the current bb,
1284 it can't be used. */
1285 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1286 def = NULL;
1287 /* If there is just one definition and dominates the current
1288 bb, it is fine. */
1289 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1290 ;
1291 else
1292 {
1293 struct def_blocks_d *db_p = get_def_blocks_for (info);
1294
1295 /* If there are some non-debug uses in the current bb,
1296 it is fine. */
1297 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1298 ;
1299 /* Otherwise give up for now. */
1300 else
1301 def = NULL;
1302 }
1303 }
1304 if (def == NULL)
1305 {
1306 gimple_debug_bind_reset_value (stmt);
1307 update_stmt (stmt);
1308 return;
1309 }
1310 SET_USE (use_p, def);
1311 }
1312 if (update)
1313 update_stmt (stmt);
1314 }
1315
1316 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1317 the block with its immediate reaching definitions. Update the current
1318 definition of a variable when a new real or virtual definition is found. */
1319
1320 static void
1321 rewrite_stmt (gimple_stmt_iterator *si)
1322 {
1323 use_operand_p use_p;
1324 def_operand_p def_p;
1325 ssa_op_iter iter;
1326 gimple stmt = gsi_stmt (*si);
1327
1328 /* If mark_def_sites decided that we don't need to rewrite this
1329 statement, ignore it. */
1330 gcc_assert (blocks_to_update == NULL);
1331 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1332 return;
1333
1334 if (dump_file && (dump_flags & TDF_DETAILS))
1335 {
1336 fprintf (dump_file, "Renaming statement ");
1337 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1338 fprintf (dump_file, "\n");
1339 }
1340
1341 /* Step 1. Rewrite USES in the statement. */
1342 if (rewrite_uses_p (stmt))
1343 {
1344 if (is_gimple_debug (stmt))
1345 rewrite_debug_stmt_uses (stmt);
1346 else
1347 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1348 {
1349 tree var = USE_FROM_PTR (use_p);
1350 gcc_checking_assert (DECL_P (var));
1351 SET_USE (use_p, get_reaching_def (var));
1352 }
1353 }
1354
1355 /* Step 2. Register the statement's DEF operands. */
1356 if (register_defs_p (stmt))
1357 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1358 {
1359 tree var = DEF_FROM_PTR (def_p);
1360 tree name;
1361 tree tracked_var;
1362
1363 gcc_checking_assert (DECL_P (var));
1364
1365 if (gimple_clobber_p (stmt)
1366 && is_gimple_reg (var))
1367 {
1368 /* If we rewrite a DECL into SSA form then drop its
1369 clobber stmts and replace uses with a new default def. */
1370 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1371 && !gimple_vdef (stmt));
1372 gsi_replace (si, gimple_build_nop (), true);
1373 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1374 break;
1375 }
1376
1377 name = make_ssa_name (var, stmt);
1378 SET_DEF (def_p, name);
1379 register_new_def (DEF_FROM_PTR (def_p), var);
1380
1381 tracked_var = target_for_debug_bind (var);
1382 if (tracked_var)
1383 {
1384 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1385 gsi_insert_after (si, note, GSI_SAME_STMT);
1386 }
1387 }
1388 }
1389
1390
1391 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1392 PHI nodes. For every PHI node found, add a new argument containing the
1393 current reaching definition for the variable and the edge through which
1394 that definition is reaching the PHI node. */
1395
1396 static void
1397 rewrite_add_phi_arguments (basic_block bb)
1398 {
1399 edge e;
1400 edge_iterator ei;
1401
1402 FOR_EACH_EDGE (e, ei, bb->succs)
1403 {
1404 gimple phi;
1405 gimple_stmt_iterator gsi;
1406
1407 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1408 gsi_next (&gsi))
1409 {
1410 tree currdef, res;
1411 location_t loc;
1412
1413 phi = gsi_stmt (gsi);
1414 res = gimple_phi_result (phi);
1415 currdef = get_reaching_def (SSA_NAME_VAR (res));
1416 /* Virtual operand PHI args do not need a location. */
1417 if (virtual_operand_p (res))
1418 loc = UNKNOWN_LOCATION;
1419 else
1420 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1421 add_phi_arg (phi, currdef, e, loc);
1422 }
1423 }
1424 }
1425
1426 class rewrite_dom_walker : public dom_walker
1427 {
1428 public:
1429 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1430
1431 virtual void before_dom_children (basic_block);
1432 virtual void after_dom_children (basic_block);
1433 };
1434
1435 /* SSA Rewriting Step 1. Initialization, create a block local stack
1436 of reaching definitions for new SSA names produced in this block
1437 (BLOCK_DEFS). Register new definitions for every PHI node in the
1438 block. */
1439
1440 void
1441 rewrite_dom_walker::before_dom_children (basic_block bb)
1442 {
1443 gimple_stmt_iterator gsi;
1444
1445 if (dump_file && (dump_flags & TDF_DETAILS))
1446 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1447
1448 /* Mark the unwind point for this block. */
1449 block_defs_stack.safe_push (NULL_TREE);
1450
1451 /* Step 1. Register new definitions for every PHI node in the block.
1452 Conceptually, all the PHI nodes are executed in parallel and each PHI
1453 node introduces a new version for the associated variable. */
1454 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1455 {
1456 tree result = gimple_phi_result (gsi_stmt (gsi));
1457 register_new_def (result, SSA_NAME_VAR (result));
1458 }
1459
1460 /* Step 2. Rewrite every variable used in each statement in the block
1461 with its immediate reaching definitions. Update the current definition
1462 of a variable when a new real or virtual definition is found. */
1463 if (bitmap_bit_p (interesting_blocks, bb->index))
1464 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1465 rewrite_stmt (&gsi);
1466
1467 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1468 For every PHI node found, add a new argument containing the current
1469 reaching definition for the variable and the edge through which that
1470 definition is reaching the PHI node. */
1471 rewrite_add_phi_arguments (bb);
1472 }
1473
1474
1475
1476 /* Called after visiting all the statements in basic block BB and all
1477 of its dominator children. Restore CURRDEFS to its original value. */
1478
1479 void
1480 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1481 {
1482 /* Restore CURRDEFS to its original state. */
1483 while (block_defs_stack.length () > 0)
1484 {
1485 tree tmp = block_defs_stack.pop ();
1486 tree saved_def, var;
1487
1488 if (tmp == NULL_TREE)
1489 break;
1490
1491 if (TREE_CODE (tmp) == SSA_NAME)
1492 {
1493 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1494 current definition of its underlying variable. Note that
1495 if the SSA_NAME is not for a GIMPLE register, the symbol
1496 being defined is stored in the next slot in the stack.
1497 This mechanism is needed because an SSA name for a
1498 non-register symbol may be the definition for more than
1499 one symbol (e.g., SFTs, aliased variables, etc). */
1500 saved_def = tmp;
1501 var = SSA_NAME_VAR (saved_def);
1502 if (!is_gimple_reg (var))
1503 var = block_defs_stack.pop ();
1504 }
1505 else
1506 {
1507 /* If we recorded anything else, it must have been a _DECL
1508 node and its current reaching definition must have been
1509 NULL. */
1510 saved_def = NULL;
1511 var = tmp;
1512 }
1513
1514 get_common_info (var)->current_def = saved_def;
1515 }
1516 }
1517
1518
1519 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1520
1521 DEBUG_FUNCTION void
1522 debug_decl_set (bitmap set)
1523 {
1524 dump_decl_set (stderr, set);
1525 fprintf (stderr, "\n");
1526 }
1527
1528
1529 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1530 stack up to a maximum of N levels. If N is -1, the whole stack is
1531 dumped. New levels are created when the dominator tree traversal
1532 used for renaming enters a new sub-tree. */
1533
1534 void
1535 dump_defs_stack (FILE *file, int n)
1536 {
1537 int i, j;
1538
1539 fprintf (file, "\n\nRenaming stack");
1540 if (n > 0)
1541 fprintf (file, " (up to %d levels)", n);
1542 fprintf (file, "\n\n");
1543
1544 i = 1;
1545 fprintf (file, "Level %d (current level)\n", i);
1546 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1547 {
1548 tree name, var;
1549
1550 name = block_defs_stack[j];
1551 if (name == NULL_TREE)
1552 {
1553 i++;
1554 if (n > 0 && i > n)
1555 break;
1556 fprintf (file, "\nLevel %d\n", i);
1557 continue;
1558 }
1559
1560 if (DECL_P (name))
1561 {
1562 var = name;
1563 name = NULL_TREE;
1564 }
1565 else
1566 {
1567 var = SSA_NAME_VAR (name);
1568 if (!is_gimple_reg (var))
1569 {
1570 j--;
1571 var = block_defs_stack[j];
1572 }
1573 }
1574
1575 fprintf (file, " Previous CURRDEF (");
1576 print_generic_expr (file, var, 0);
1577 fprintf (file, ") = ");
1578 if (name)
1579 print_generic_expr (file, name, 0);
1580 else
1581 fprintf (file, "<NIL>");
1582 fprintf (file, "\n");
1583 }
1584 }
1585
1586
1587 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1588 stack up to a maximum of N levels. If N is -1, the whole stack is
1589 dumped. New levels are created when the dominator tree traversal
1590 used for renaming enters a new sub-tree. */
1591
1592 DEBUG_FUNCTION void
1593 debug_defs_stack (int n)
1594 {
1595 dump_defs_stack (stderr, n);
1596 }
1597
1598
1599 /* Dump the current reaching definition of every symbol to FILE. */
1600
1601 void
1602 dump_currdefs (FILE *file)
1603 {
1604 unsigned i;
1605 tree var;
1606
1607 if (symbols_to_rename.is_empty ())
1608 return;
1609
1610 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1611 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1612 {
1613 common_info_p info = get_common_info (var);
1614 fprintf (file, "CURRDEF (");
1615 print_generic_expr (file, var, 0);
1616 fprintf (file, ") = ");
1617 if (info->current_def)
1618 print_generic_expr (file, info->current_def, 0);
1619 else
1620 fprintf (file, "<NIL>");
1621 fprintf (file, "\n");
1622 }
1623 }
1624
1625
1626 /* Dump the current reaching definition of every symbol to stderr. */
1627
1628 DEBUG_FUNCTION void
1629 debug_currdefs (void)
1630 {
1631 dump_currdefs (stderr);
1632 }
1633
1634
1635 /* Dump SSA information to FILE. */
1636
1637 void
1638 dump_tree_ssa (FILE *file)
1639 {
1640 const char *funcname
1641 = lang_hooks.decl_printable_name (current_function_decl, 2);
1642
1643 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1644
1645 dump_var_infos (file);
1646 dump_defs_stack (file, -1);
1647 dump_currdefs (file);
1648 dump_tree_ssa_stats (file);
1649 }
1650
1651
1652 /* Dump SSA information to stderr. */
1653
1654 DEBUG_FUNCTION void
1655 debug_tree_ssa (void)
1656 {
1657 dump_tree_ssa (stderr);
1658 }
1659
1660
1661 /* Dump statistics for the hash table HTAB. */
1662
1663 static void
1664 htab_statistics (FILE *file, const hash_table<var_info_hasher> &htab)
1665 {
1666 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1667 (long) htab.size (),
1668 (long) htab.elements (),
1669 htab.collisions ());
1670 }
1671
1672
1673 /* Dump SSA statistics on FILE. */
1674
1675 void
1676 dump_tree_ssa_stats (FILE *file)
1677 {
1678 if (var_infos)
1679 {
1680 fprintf (file, "\nHash table statistics:\n");
1681 fprintf (file, " var_infos: ");
1682 htab_statistics (file, *var_infos);
1683 fprintf (file, "\n");
1684 }
1685 }
1686
1687
1688 /* Dump SSA statistics on stderr. */
1689
1690 DEBUG_FUNCTION void
1691 debug_tree_ssa_stats (void)
1692 {
1693 dump_tree_ssa_stats (stderr);
1694 }
1695
1696
1697 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1698
1699 int
1700 debug_var_infos_r (var_info_d **slot, FILE *file)
1701 {
1702 struct var_info_d *info = *slot;
1703
1704 fprintf (file, "VAR: ");
1705 print_generic_expr (file, info->var, dump_flags);
1706 bitmap_print (file, info->info.def_blocks.def_blocks,
1707 ", DEF_BLOCKS: { ", "}");
1708 bitmap_print (file, info->info.def_blocks.livein_blocks,
1709 ", LIVEIN_BLOCKS: { ", "}");
1710 bitmap_print (file, info->info.def_blocks.phi_blocks,
1711 ", PHI_BLOCKS: { ", "}\n");
1712
1713 return 1;
1714 }
1715
1716
1717 /* Dump the VAR_INFOS hash table on FILE. */
1718
1719 void
1720 dump_var_infos (FILE *file)
1721 {
1722 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1723 if (var_infos)
1724 var_infos->traverse <FILE *, debug_var_infos_r> (file);
1725 }
1726
1727
1728 /* Dump the VAR_INFOS hash table on stderr. */
1729
1730 DEBUG_FUNCTION void
1731 debug_var_infos (void)
1732 {
1733 dump_var_infos (stderr);
1734 }
1735
1736
1737 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1738
1739 static inline void
1740 register_new_update_single (tree new_name, tree old_name)
1741 {
1742 common_info_p info = get_common_info (old_name);
1743 tree currdef = info->current_def;
1744
1745 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1746 This stack is later used by the dominator tree callbacks to
1747 restore the reaching definitions for all the variables
1748 defined in the block after a recursive visit to all its
1749 immediately dominated blocks. */
1750 block_defs_stack.reserve (2);
1751 block_defs_stack.quick_push (currdef);
1752 block_defs_stack.quick_push (old_name);
1753
1754 /* Set the current reaching definition for OLD_NAME to be
1755 NEW_NAME. */
1756 info->current_def = new_name;
1757 }
1758
1759
1760 /* Register NEW_NAME to be the new reaching definition for all the
1761 names in OLD_NAMES. Used by the incremental SSA update routines to
1762 replace old SSA names with new ones. */
1763
1764 static inline void
1765 register_new_update_set (tree new_name, bitmap old_names)
1766 {
1767 bitmap_iterator bi;
1768 unsigned i;
1769
1770 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1771 register_new_update_single (new_name, ssa_name (i));
1772 }
1773
1774
1775
1776 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1777 it is a symbol marked for renaming, replace it with USE_P's current
1778 reaching definition. */
1779
1780 static inline void
1781 maybe_replace_use (use_operand_p use_p)
1782 {
1783 tree rdef = NULL_TREE;
1784 tree use = USE_FROM_PTR (use_p);
1785 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1786
1787 if (marked_for_renaming (sym))
1788 rdef = get_reaching_def (sym);
1789 else if (is_old_name (use))
1790 rdef = get_reaching_def (use);
1791
1792 if (rdef && rdef != use)
1793 SET_USE (use_p, rdef);
1794 }
1795
1796
1797 /* Same as maybe_replace_use, but without introducing default stmts,
1798 returning false to indicate a need to do so. */
1799
1800 static inline bool
1801 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1802 {
1803 tree rdef = NULL_TREE;
1804 tree use = USE_FROM_PTR (use_p);
1805 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1806
1807 if (marked_for_renaming (sym))
1808 rdef = get_var_info (sym)->info.current_def;
1809 else if (is_old_name (use))
1810 {
1811 rdef = get_ssa_name_ann (use)->info.current_def;
1812 /* We can't assume that, if there's no current definition, the
1813 default one should be used. It could be the case that we've
1814 rearranged blocks so that the earlier definition no longer
1815 dominates the use. */
1816 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1817 rdef = use;
1818 }
1819 else
1820 rdef = use;
1821
1822 if (rdef && rdef != use)
1823 SET_USE (use_p, rdef);
1824
1825 return rdef != NULL_TREE;
1826 }
1827
1828
1829 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1830 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1831 register it as the current definition for the names replaced by
1832 DEF_P. */
1833
1834 static inline void
1835 maybe_register_def (def_operand_p def_p, gimple stmt,
1836 gimple_stmt_iterator gsi)
1837 {
1838 tree def = DEF_FROM_PTR (def_p);
1839 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1840
1841 /* If DEF is a naked symbol that needs renaming, create a new
1842 name for it. */
1843 if (marked_for_renaming (sym))
1844 {
1845 if (DECL_P (def))
1846 {
1847 tree tracked_var;
1848
1849 def = make_ssa_name (def, stmt);
1850 SET_DEF (def_p, def);
1851
1852 tracked_var = target_for_debug_bind (sym);
1853 if (tracked_var)
1854 {
1855 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1856 /* If stmt ends the bb, insert the debug stmt on the single
1857 non-EH edge from the stmt. */
1858 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1859 {
1860 basic_block bb = gsi_bb (gsi);
1861 edge_iterator ei;
1862 edge e, ef = NULL;
1863 FOR_EACH_EDGE (e, ei, bb->succs)
1864 if (!(e->flags & EDGE_EH))
1865 {
1866 gcc_checking_assert (!ef);
1867 ef = e;
1868 }
1869 /* If there are other predecessors to ef->dest, then
1870 there must be PHI nodes for the modified
1871 variable, and therefore there will be debug bind
1872 stmts after the PHI nodes. The debug bind notes
1873 we'd insert would force the creation of a new
1874 block (diverging codegen) and be redundant with
1875 the post-PHI bind stmts, so don't add them.
1876
1877 As for the exit edge, there wouldn't be redundant
1878 bind stmts, but there wouldn't be a PC to bind
1879 them to either, so avoid diverging the CFG. */
1880 if (ef && single_pred_p (ef->dest)
1881 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1882 {
1883 /* If there were PHI nodes in the node, we'd
1884 have to make sure the value we're binding
1885 doesn't need rewriting. But there shouldn't
1886 be PHI nodes in a single-predecessor block,
1887 so we just add the note. */
1888 gsi_insert_on_edge_immediate (ef, note);
1889 }
1890 }
1891 else
1892 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1893 }
1894 }
1895
1896 register_new_update_single (def, sym);
1897 }
1898 else
1899 {
1900 /* If DEF is a new name, register it as a new definition
1901 for all the names replaced by DEF. */
1902 if (is_new_name (def))
1903 register_new_update_set (def, names_replaced_by (def));
1904
1905 /* If DEF is an old name, register DEF as a new
1906 definition for itself. */
1907 if (is_old_name (def))
1908 register_new_update_single (def, def);
1909 }
1910 }
1911
1912
1913 /* Update every variable used in the statement pointed-to by SI. The
1914 statement is assumed to be in SSA form already. Names in
1915 OLD_SSA_NAMES used by SI will be updated to their current reaching
1916 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1917 will be registered as a new definition for their corresponding name
1918 in OLD_SSA_NAMES. */
1919
1920 static void
1921 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1922 {
1923 use_operand_p use_p;
1924 def_operand_p def_p;
1925 ssa_op_iter iter;
1926
1927 /* Only update marked statements. */
1928 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1929 return;
1930
1931 if (dump_file && (dump_flags & TDF_DETAILS))
1932 {
1933 fprintf (dump_file, "Updating SSA information for statement ");
1934 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1935 }
1936
1937 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1938 symbol is marked for renaming. */
1939 if (rewrite_uses_p (stmt))
1940 {
1941 if (is_gimple_debug (stmt))
1942 {
1943 bool failed = false;
1944
1945 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1946 if (!maybe_replace_use_in_debug_stmt (use_p))
1947 {
1948 failed = true;
1949 break;
1950 }
1951
1952 if (failed)
1953 {
1954 /* DOM sometimes threads jumps in such a way that a
1955 debug stmt ends up referencing a SSA variable that no
1956 longer dominates the debug stmt, but such that all
1957 incoming definitions refer to the same definition in
1958 an earlier dominator. We could try to recover that
1959 definition somehow, but this will have to do for now.
1960
1961 Introducing a default definition, which is what
1962 maybe_replace_use() would do in such cases, may
1963 modify code generation, for the otherwise-unused
1964 default definition would never go away, modifying SSA
1965 version numbers all over. */
1966 gimple_debug_bind_reset_value (stmt);
1967 update_stmt (stmt);
1968 }
1969 }
1970 else
1971 {
1972 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1973 maybe_replace_use (use_p);
1974 }
1975 }
1976
1977 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1978 Also register definitions for names whose underlying symbol is
1979 marked for renaming. */
1980 if (register_defs_p (stmt))
1981 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1982 maybe_register_def (def_p, stmt, gsi);
1983 }
1984
1985
1986 /* Visit all the successor blocks of BB looking for PHI nodes. For
1987 every PHI node found, check if any of its arguments is in
1988 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1989 definition, replace it. */
1990
1991 static void
1992 rewrite_update_phi_arguments (basic_block bb)
1993 {
1994 edge e;
1995 edge_iterator ei;
1996 unsigned i;
1997
1998 FOR_EACH_EDGE (e, ei, bb->succs)
1999 {
2000 gimple phi;
2001 gimple_vec phis;
2002
2003 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2004 continue;
2005
2006 phis = phis_to_rewrite[e->dest->index];
2007 FOR_EACH_VEC_ELT (phis, i, phi)
2008 {
2009 tree arg, lhs_sym, reaching_def = NULL;
2010 use_operand_p arg_p;
2011
2012 gcc_checking_assert (rewrite_uses_p (phi));
2013
2014 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2015 arg = USE_FROM_PTR (arg_p);
2016
2017 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2018 continue;
2019
2020 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2021
2022 if (arg == NULL_TREE)
2023 {
2024 /* When updating a PHI node for a recently introduced
2025 symbol we may find NULL arguments. That's why we
2026 take the symbol from the LHS of the PHI node. */
2027 reaching_def = get_reaching_def (lhs_sym);
2028
2029 }
2030 else
2031 {
2032 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2033
2034 if (marked_for_renaming (sym))
2035 reaching_def = get_reaching_def (sym);
2036 else if (is_old_name (arg))
2037 reaching_def = get_reaching_def (arg);
2038 }
2039
2040 /* Update the argument if there is a reaching def. */
2041 if (reaching_def)
2042 {
2043 source_location locus;
2044 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2045
2046 SET_USE (arg_p, reaching_def);
2047
2048 /* Virtual operands do not need a location. */
2049 if (virtual_operand_p (reaching_def))
2050 locus = UNKNOWN_LOCATION;
2051 else
2052 {
2053 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2054
2055 /* Single element PHI nodes behave like copies, so get the
2056 location from the phi argument. */
2057 if (gimple_code (stmt) == GIMPLE_PHI
2058 && gimple_phi_num_args (stmt) == 1)
2059 locus = gimple_phi_arg_location (stmt, 0);
2060 else
2061 locus = gimple_location (stmt);
2062 }
2063
2064 gimple_phi_arg_set_location (phi, arg_i, locus);
2065 }
2066
2067
2068 if (e->flags & EDGE_ABNORMAL)
2069 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2070 }
2071 }
2072 }
2073
2074 class rewrite_update_dom_walker : public dom_walker
2075 {
2076 public:
2077 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2078
2079 virtual void before_dom_children (basic_block);
2080 virtual void after_dom_children (basic_block);
2081 };
2082
2083 /* Initialization of block data structures for the incremental SSA
2084 update pass. Create a block local stack of reaching definitions
2085 for new SSA names produced in this block (BLOCK_DEFS). Register
2086 new definitions for every PHI node in the block. */
2087
2088 void
2089 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2090 {
2091 bool is_abnormal_phi;
2092 gimple_stmt_iterator gsi;
2093
2094 if (dump_file && (dump_flags & TDF_DETAILS))
2095 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2096 bb->index);
2097
2098 /* Mark the unwind point for this block. */
2099 block_defs_stack.safe_push (NULL_TREE);
2100
2101 if (!bitmap_bit_p (blocks_to_update, bb->index))
2102 return;
2103
2104 /* Mark the LHS if any of the arguments flows through an abnormal
2105 edge. */
2106 is_abnormal_phi = bb_has_abnormal_pred (bb);
2107
2108 /* If any of the PHI nodes is a replacement for a name in
2109 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2110 register it as a new definition for its corresponding name. Also
2111 register definitions for names whose underlying symbols are
2112 marked for renaming. */
2113 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2114 {
2115 tree lhs, lhs_sym;
2116 gimple phi = gsi_stmt (gsi);
2117
2118 if (!register_defs_p (phi))
2119 continue;
2120
2121 lhs = gimple_phi_result (phi);
2122 lhs_sym = SSA_NAME_VAR (lhs);
2123
2124 if (marked_for_renaming (lhs_sym))
2125 register_new_update_single (lhs, lhs_sym);
2126 else
2127 {
2128
2129 /* If LHS is a new name, register a new definition for all
2130 the names replaced by LHS. */
2131 if (is_new_name (lhs))
2132 register_new_update_set (lhs, names_replaced_by (lhs));
2133
2134 /* If LHS is an OLD name, register it as a new definition
2135 for itself. */
2136 if (is_old_name (lhs))
2137 register_new_update_single (lhs, lhs);
2138 }
2139
2140 if (is_abnormal_phi)
2141 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2142 }
2143
2144 /* Step 2. Rewrite every variable used in each statement in the block. */
2145 if (bitmap_bit_p (interesting_blocks, bb->index))
2146 {
2147 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2148 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2149 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2150 }
2151
2152 /* Step 3. Update PHI nodes. */
2153 rewrite_update_phi_arguments (bb);
2154 }
2155
2156 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2157 the current reaching definition of every name re-written in BB to
2158 the original reaching definition before visiting BB. This
2159 unwinding must be done in the opposite order to what is done in
2160 register_new_update_set. */
2161
2162 void
2163 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2164 {
2165 while (block_defs_stack.length () > 0)
2166 {
2167 tree var = block_defs_stack.pop ();
2168 tree saved_def;
2169
2170 /* NULL indicates the unwind stop point for this block (see
2171 rewrite_update_enter_block). */
2172 if (var == NULL)
2173 return;
2174
2175 saved_def = block_defs_stack.pop ();
2176 get_common_info (var)->current_def = saved_def;
2177 }
2178 }
2179
2180
2181 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2182 form.
2183
2184 ENTRY indicates the block where to start. Every block dominated by
2185 ENTRY will be rewritten.
2186
2187 WHAT indicates what actions will be taken by the renamer (see enum
2188 rewrite_mode).
2189
2190 BLOCKS are the set of interesting blocks for the dominator walker
2191 to process. If this set is NULL, then all the nodes dominated
2192 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2193 are not present in BLOCKS are ignored. */
2194
2195 static void
2196 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2197 {
2198 /* Rewrite all the basic blocks in the program. */
2199 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2200
2201 block_defs_stack.create (10);
2202
2203 /* Recursively walk the dominator tree rewriting each statement in
2204 each basic block. */
2205 if (what == REWRITE_ALL)
2206 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2207 else if (what == REWRITE_UPDATE)
2208 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2209 else
2210 gcc_unreachable ();
2211
2212 /* Debugging dumps. */
2213 if (dump_file && (dump_flags & TDF_STATS))
2214 {
2215 dump_dfa_stats (dump_file);
2216 if (var_infos)
2217 dump_tree_ssa_stats (dump_file);
2218 }
2219
2220 block_defs_stack.release ();
2221
2222 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2223 }
2224
2225 class mark_def_dom_walker : public dom_walker
2226 {
2227 public:
2228 mark_def_dom_walker (cdi_direction direction);
2229 ~mark_def_dom_walker ();
2230
2231 virtual void before_dom_children (basic_block);
2232
2233 private:
2234 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2235 large enough to accommodate all the variables referenced in the
2236 function, not just the ones we are renaming. */
2237 bitmap m_kills;
2238 };
2239
2240 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2241 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2242 {
2243 }
2244
2245 mark_def_dom_walker::~mark_def_dom_walker ()
2246 {
2247 BITMAP_FREE (m_kills);
2248 }
2249
2250 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2251 at the start of each block, and call mark_def_sites for each statement. */
2252
2253 void
2254 mark_def_dom_walker::before_dom_children (basic_block bb)
2255 {
2256 gimple_stmt_iterator gsi;
2257
2258 bitmap_clear (m_kills);
2259 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2260 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2261 }
2262
2263 /* Initialize internal data needed during renaming. */
2264
2265 static void
2266 init_ssa_renamer (void)
2267 {
2268 cfun->gimple_df->in_ssa_p = false;
2269
2270 /* Allocate memory for the DEF_BLOCKS hash table. */
2271 gcc_assert (!var_infos);
2272 var_infos = new hash_table<var_info_hasher>
2273 (vec_safe_length (cfun->local_decls));
2274
2275 bitmap_obstack_initialize (&update_ssa_obstack);
2276 }
2277
2278
2279 /* Deallocate internal data structures used by the renamer. */
2280
2281 static void
2282 fini_ssa_renamer (void)
2283 {
2284 delete var_infos;
2285 var_infos = NULL;
2286
2287 bitmap_obstack_release (&update_ssa_obstack);
2288
2289 cfun->gimple_df->ssa_renaming_needed = 0;
2290 cfun->gimple_df->rename_vops = 0;
2291 cfun->gimple_df->in_ssa_p = true;
2292 }
2293
2294 /* Main entry point into the SSA builder. The renaming process
2295 proceeds in four main phases:
2296
2297 1- Compute dominance frontier and immediate dominators, needed to
2298 insert PHI nodes and rename the function in dominator tree
2299 order.
2300
2301 2- Find and mark all the blocks that define variables.
2302
2303 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2304
2305 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2306
2307 Steps 3 and 4 are done using the dominator tree walker
2308 (walk_dominator_tree). */
2309
2310 namespace {
2311
2312 const pass_data pass_data_build_ssa =
2313 {
2314 GIMPLE_PASS, /* type */
2315 "ssa", /* name */
2316 OPTGROUP_NONE, /* optinfo_flags */
2317 TV_TREE_SSA_OTHER, /* tv_id */
2318 PROP_cfg, /* properties_required */
2319 PROP_ssa, /* properties_provided */
2320 0, /* properties_destroyed */
2321 0, /* todo_flags_start */
2322 TODO_remove_unused_locals, /* todo_flags_finish */
2323 };
2324
2325 class pass_build_ssa : public gimple_opt_pass
2326 {
2327 public:
2328 pass_build_ssa (gcc::context *ctxt)
2329 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2330 {}
2331
2332 /* opt_pass methods: */
2333 virtual bool gate (function *fun)
2334 {
2335 /* Do nothing for funcions that was produced already in SSA form. */
2336 return !(fun->curr_properties & PROP_ssa);
2337 }
2338
2339 virtual unsigned int execute (function *);
2340
2341 }; // class pass_build_ssa
2342
2343 unsigned int
2344 pass_build_ssa::execute (function *fun)
2345 {
2346 bitmap_head *dfs;
2347 basic_block bb;
2348 unsigned i;
2349
2350 /* Initialize operand data structures. */
2351 init_ssa_operands (fun);
2352
2353 /* Initialize internal data needed by the renamer. */
2354 init_ssa_renamer ();
2355
2356 /* Initialize the set of interesting blocks. The callback
2357 mark_def_sites will add to this set those blocks that the renamer
2358 should process. */
2359 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (fun));
2360 bitmap_clear (interesting_blocks);
2361
2362 /* Initialize dominance frontier. */
2363 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (fun));
2364 FOR_EACH_BB_FN (bb, fun)
2365 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2366
2367 /* 1- Compute dominance frontiers. */
2368 calculate_dominance_info (CDI_DOMINATORS);
2369 compute_dominance_frontiers (dfs);
2370
2371 /* 2- Find and mark definition sites. */
2372 mark_def_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
2373
2374 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2375 insert_phi_nodes (dfs);
2376
2377 /* 4- Rename all the blocks. */
2378 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (fun), REWRITE_ALL);
2379
2380 /* Free allocated memory. */
2381 FOR_EACH_BB_FN (bb, fun)
2382 bitmap_clear (&dfs[bb->index]);
2383 free (dfs);
2384
2385 sbitmap_free (interesting_blocks);
2386
2387 fini_ssa_renamer ();
2388
2389 /* Try to get rid of all gimplifier generated temporaries by making
2390 its SSA names anonymous. This way we can garbage collect them
2391 all after removing unused locals which we do in our TODO. */
2392 for (i = 1; i < num_ssa_names; ++i)
2393 {
2394 tree decl, name = ssa_name (i);
2395 if (!name
2396 || SSA_NAME_IS_DEFAULT_DEF (name))
2397 continue;
2398 decl = SSA_NAME_VAR (name);
2399 if (decl
2400 && TREE_CODE (decl) == VAR_DECL
2401 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2402 && DECL_IGNORED_P (decl))
2403 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2404 }
2405
2406 return 0;
2407 }
2408
2409 } // anon namespace
2410
2411 gimple_opt_pass *
2412 make_pass_build_ssa (gcc::context *ctxt)
2413 {
2414 return new pass_build_ssa (ctxt);
2415 }
2416
2417
2418 /* Mark the definition of VAR at STMT and BB as interesting for the
2419 renamer. BLOCKS is the set of blocks that need updating. */
2420
2421 static void
2422 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2423 {
2424 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2425 set_register_defs (stmt, true);
2426
2427 if (insert_phi_p)
2428 {
2429 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2430
2431 set_def_block (var, bb, is_phi_p);
2432
2433 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2434 site for both itself and all the old names replaced by it. */
2435 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2436 {
2437 bitmap_iterator bi;
2438 unsigned i;
2439 bitmap set = names_replaced_by (var);
2440 if (set)
2441 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2442 set_def_block (ssa_name (i), bb, is_phi_p);
2443 }
2444 }
2445 }
2446
2447
2448 /* Mark the use of VAR at STMT and BB as interesting for the
2449 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2450 nodes. */
2451
2452 static inline void
2453 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2454 {
2455 basic_block def_bb = gimple_bb (stmt);
2456
2457 mark_block_for_update (def_bb);
2458 mark_block_for_update (bb);
2459
2460 if (gimple_code (stmt) == GIMPLE_PHI)
2461 mark_phi_for_rewrite (def_bb, stmt);
2462 else
2463 {
2464 set_rewrite_uses (stmt, true);
2465
2466 if (is_gimple_debug (stmt))
2467 return;
2468 }
2469
2470 /* If VAR has not been defined in BB, then it is live-on-entry
2471 to BB. Note that we cannot just use the block holding VAR's
2472 definition because if VAR is one of the names in OLD_SSA_NAMES,
2473 it will have several definitions (itself and all the names that
2474 replace it). */
2475 if (insert_phi_p)
2476 {
2477 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2478 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2479 set_livein_block (var, bb);
2480 }
2481 }
2482
2483
2484 /* Do a dominator walk starting at BB processing statements that
2485 reference symbols in SSA operands. This is very similar to
2486 mark_def_sites, but the scan handles statements whose operands may
2487 already be SSA names.
2488
2489 If INSERT_PHI_P is true, mark those uses as live in the
2490 corresponding block. This is later used by the PHI placement
2491 algorithm to make PHI pruning decisions.
2492
2493 FIXME. Most of this would be unnecessary if we could associate a
2494 symbol to all the SSA names that reference it. But that
2495 sounds like it would be expensive to maintain. Still, it
2496 would be interesting to see if it makes better sense to do
2497 that. */
2498
2499 static void
2500 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2501 {
2502 basic_block son;
2503 gimple_stmt_iterator si;
2504 edge e;
2505 edge_iterator ei;
2506
2507 mark_block_for_update (bb);
2508
2509 /* Process PHI nodes marking interesting those that define or use
2510 the symbols that we are interested in. */
2511 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2512 {
2513 gimple phi = gsi_stmt (si);
2514 tree lhs_sym, lhs = gimple_phi_result (phi);
2515
2516 if (TREE_CODE (lhs) == SSA_NAME
2517 && (! virtual_operand_p (lhs)
2518 || ! cfun->gimple_df->rename_vops))
2519 continue;
2520
2521 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2522 mark_for_renaming (lhs_sym);
2523 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2524
2525 /* Mark the uses in phi nodes as interesting. It would be more correct
2526 to process the arguments of the phi nodes of the successor edges of
2527 BB at the end of prepare_block_for_update, however, that turns out
2528 to be significantly more expensive. Doing it here is conservatively
2529 correct -- it may only cause us to believe a value to be live in a
2530 block that also contains its definition, and thus insert a few more
2531 phi nodes for it. */
2532 FOR_EACH_EDGE (e, ei, bb->preds)
2533 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2534 }
2535
2536 /* Process the statements. */
2537 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2538 {
2539 gimple stmt;
2540 ssa_op_iter i;
2541 use_operand_p use_p;
2542 def_operand_p def_p;
2543
2544 stmt = gsi_stmt (si);
2545
2546 if (cfun->gimple_df->rename_vops
2547 && gimple_vuse (stmt))
2548 {
2549 tree use = gimple_vuse (stmt);
2550 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2551 mark_for_renaming (sym);
2552 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2553 }
2554
2555 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2556 {
2557 tree use = USE_FROM_PTR (use_p);
2558 if (!DECL_P (use))
2559 continue;
2560 mark_for_renaming (use);
2561 mark_use_interesting (use, stmt, bb, insert_phi_p);
2562 }
2563
2564 if (cfun->gimple_df->rename_vops
2565 && gimple_vdef (stmt))
2566 {
2567 tree def = gimple_vdef (stmt);
2568 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2569 mark_for_renaming (sym);
2570 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2571 }
2572
2573 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2574 {
2575 tree def = DEF_FROM_PTR (def_p);
2576 if (!DECL_P (def))
2577 continue;
2578 mark_for_renaming (def);
2579 mark_def_interesting (def, stmt, bb, insert_phi_p);
2580 }
2581 }
2582
2583 /* Now visit all the blocks dominated by BB. */
2584 for (son = first_dom_son (CDI_DOMINATORS, bb);
2585 son;
2586 son = next_dom_son (CDI_DOMINATORS, son))
2587 prepare_block_for_update (son, insert_phi_p);
2588 }
2589
2590
2591 /* Helper for prepare_names_to_update. Mark all the use sites for
2592 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2593 prepare_names_to_update. */
2594
2595 static void
2596 prepare_use_sites_for (tree name, bool insert_phi_p)
2597 {
2598 use_operand_p use_p;
2599 imm_use_iterator iter;
2600
2601 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2602 {
2603 gimple stmt = USE_STMT (use_p);
2604 basic_block bb = gimple_bb (stmt);
2605
2606 if (gimple_code (stmt) == GIMPLE_PHI)
2607 {
2608 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2609 edge e = gimple_phi_arg_edge (stmt, ix);
2610 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2611 }
2612 else
2613 {
2614 /* For regular statements, mark this as an interesting use
2615 for NAME. */
2616 mark_use_interesting (name, stmt, bb, insert_phi_p);
2617 }
2618 }
2619 }
2620
2621
2622 /* Helper for prepare_names_to_update. Mark the definition site for
2623 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2624 prepare_names_to_update. */
2625
2626 static void
2627 prepare_def_site_for (tree name, bool insert_phi_p)
2628 {
2629 gimple stmt;
2630 basic_block bb;
2631
2632 gcc_checking_assert (names_to_release == NULL
2633 || !bitmap_bit_p (names_to_release,
2634 SSA_NAME_VERSION (name)));
2635
2636 stmt = SSA_NAME_DEF_STMT (name);
2637 bb = gimple_bb (stmt);
2638 if (bb)
2639 {
2640 gcc_checking_assert (bb->index < last_basic_block_for_fn (cfun));
2641 mark_block_for_update (bb);
2642 mark_def_interesting (name, stmt, bb, insert_phi_p);
2643 }
2644 }
2645
2646
2647 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2648 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2649 PHI nodes for newly created names. */
2650
2651 static void
2652 prepare_names_to_update (bool insert_phi_p)
2653 {
2654 unsigned i = 0;
2655 bitmap_iterator bi;
2656 sbitmap_iterator sbi;
2657
2658 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2659 remove it from NEW_SSA_NAMES so that we don't try to visit its
2660 defining basic block (which most likely doesn't exist). Notice
2661 that we cannot do the same with names in OLD_SSA_NAMES because we
2662 want to replace existing instances. */
2663 if (names_to_release)
2664 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2665 bitmap_clear_bit (new_ssa_names, i);
2666
2667 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2668 names may be considered to be live-in on blocks that contain
2669 definitions for their replacements. */
2670 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2671 prepare_def_site_for (ssa_name (i), insert_phi_p);
2672
2673 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2674 OLD_SSA_NAMES, but we have to ignore its definition site. */
2675 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2676 {
2677 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2678 prepare_def_site_for (ssa_name (i), insert_phi_p);
2679 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2680 }
2681 }
2682
2683
2684 /* Dump all the names replaced by NAME to FILE. */
2685
2686 void
2687 dump_names_replaced_by (FILE *file, tree name)
2688 {
2689 unsigned i;
2690 bitmap old_set;
2691 bitmap_iterator bi;
2692
2693 print_generic_expr (file, name, 0);
2694 fprintf (file, " -> { ");
2695
2696 old_set = names_replaced_by (name);
2697 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2698 {
2699 print_generic_expr (file, ssa_name (i), 0);
2700 fprintf (file, " ");
2701 }
2702
2703 fprintf (file, "}\n");
2704 }
2705
2706
2707 /* Dump all the names replaced by NAME to stderr. */
2708
2709 DEBUG_FUNCTION void
2710 debug_names_replaced_by (tree name)
2711 {
2712 dump_names_replaced_by (stderr, name);
2713 }
2714
2715
2716 /* Dump SSA update information to FILE. */
2717
2718 void
2719 dump_update_ssa (FILE *file)
2720 {
2721 unsigned i = 0;
2722 bitmap_iterator bi;
2723
2724 if (!need_ssa_update_p (cfun))
2725 return;
2726
2727 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2728 {
2729 sbitmap_iterator sbi;
2730
2731 fprintf (file, "\nSSA replacement table\n");
2732 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2733 "O_1, ..., O_j\n\n");
2734
2735 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2736 dump_names_replaced_by (file, ssa_name (i));
2737 }
2738
2739 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2740 {
2741 fprintf (file, "\nSymbols to be put in SSA form\n");
2742 dump_decl_set (file, symbols_to_rename_set);
2743 fprintf (file, "\n");
2744 }
2745
2746 if (names_to_release && !bitmap_empty_p (names_to_release))
2747 {
2748 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2749 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2750 {
2751 print_generic_expr (file, ssa_name (i), 0);
2752 fprintf (file, " ");
2753 }
2754 fprintf (file, "\n");
2755 }
2756 }
2757
2758
2759 /* Dump SSA update information to stderr. */
2760
2761 DEBUG_FUNCTION void
2762 debug_update_ssa (void)
2763 {
2764 dump_update_ssa (stderr);
2765 }
2766
2767
2768 /* Initialize data structures used for incremental SSA updates. */
2769
2770 static void
2771 init_update_ssa (struct function *fn)
2772 {
2773 /* Reserve more space than the current number of names. The calls to
2774 add_new_name_mapping are typically done after creating new SSA
2775 names, so we'll need to reallocate these arrays. */
2776 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2777 bitmap_clear (old_ssa_names);
2778
2779 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2780 bitmap_clear (new_ssa_names);
2781
2782 bitmap_obstack_initialize (&update_ssa_obstack);
2783
2784 names_to_release = NULL;
2785 update_ssa_initialized_fn = fn;
2786 }
2787
2788
2789 /* Deallocate data structures used for incremental SSA updates. */
2790
2791 void
2792 delete_update_ssa (void)
2793 {
2794 unsigned i;
2795 bitmap_iterator bi;
2796
2797 sbitmap_free (old_ssa_names);
2798 old_ssa_names = NULL;
2799
2800 sbitmap_free (new_ssa_names);
2801 new_ssa_names = NULL;
2802
2803 BITMAP_FREE (symbols_to_rename_set);
2804 symbols_to_rename_set = NULL;
2805 symbols_to_rename.release ();
2806
2807 if (names_to_release)
2808 {
2809 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2810 release_ssa_name (ssa_name (i));
2811 BITMAP_FREE (names_to_release);
2812 }
2813
2814 clear_ssa_name_info ();
2815
2816 fini_ssa_renamer ();
2817
2818 if (blocks_with_phis_to_rewrite)
2819 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2820 {
2821 gimple_vec phis = phis_to_rewrite[i];
2822 phis.release ();
2823 phis_to_rewrite[i].create (0);
2824 }
2825
2826 BITMAP_FREE (blocks_with_phis_to_rewrite);
2827 BITMAP_FREE (blocks_to_update);
2828
2829 update_ssa_initialized_fn = NULL;
2830 }
2831
2832
2833 /* Create a new name for OLD_NAME in statement STMT and replace the
2834 operand pointed to by DEF_P with the newly created name. If DEF_P
2835 is NULL then STMT should be a GIMPLE assignment.
2836 Return the new name and register the replacement mapping <NEW, OLD> in
2837 update_ssa's tables. */
2838
2839 tree
2840 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2841 {
2842 tree new_name;
2843
2844 timevar_push (TV_TREE_SSA_INCREMENTAL);
2845
2846 if (!update_ssa_initialized_fn)
2847 init_update_ssa (cfun);
2848
2849 gcc_assert (update_ssa_initialized_fn == cfun);
2850
2851 new_name = duplicate_ssa_name (old_name, stmt);
2852 if (def)
2853 SET_DEF (def, new_name);
2854 else
2855 gimple_assign_set_lhs (stmt, new_name);
2856
2857 if (gimple_code (stmt) == GIMPLE_PHI)
2858 {
2859 basic_block bb = gimple_bb (stmt);
2860
2861 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2862 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2863 }
2864
2865 add_new_name_mapping (new_name, old_name);
2866
2867 /* For the benefit of passes that will be updating the SSA form on
2868 their own, set the current reaching definition of OLD_NAME to be
2869 NEW_NAME. */
2870 get_ssa_name_ann (old_name)->info.current_def = new_name;
2871
2872 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2873
2874 return new_name;
2875 }
2876
2877
2878 /* Mark virtual operands of FN for renaming by update_ssa. */
2879
2880 void
2881 mark_virtual_operands_for_renaming (struct function *fn)
2882 {
2883 fn->gimple_df->ssa_renaming_needed = 1;
2884 fn->gimple_df->rename_vops = 1;
2885 }
2886
2887 /* Replace all uses of NAME by underlying variable and mark it
2888 for renaming. This assumes the defining statement of NAME is
2889 going to be removed. */
2890
2891 void
2892 mark_virtual_operand_for_renaming (tree name)
2893 {
2894 tree name_var = SSA_NAME_VAR (name);
2895 bool used = false;
2896 imm_use_iterator iter;
2897 use_operand_p use_p;
2898 gimple stmt;
2899
2900 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2901 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2902 {
2903 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2904 SET_USE (use_p, name_var);
2905 used = true;
2906 }
2907 if (used)
2908 mark_virtual_operands_for_renaming (cfun);
2909 }
2910
2911 /* Replace all uses of the virtual PHI result by its underlying variable
2912 and mark it for renaming. This assumes the PHI node is going to be
2913 removed. */
2914
2915 void
2916 mark_virtual_phi_result_for_renaming (gimple phi)
2917 {
2918 if (dump_file && (dump_flags & TDF_DETAILS))
2919 {
2920 fprintf (dump_file, "Marking result for renaming : ");
2921 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2922 fprintf (dump_file, "\n");
2923 }
2924
2925 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2926 }
2927
2928 /* Return true if there is any work to be done by update_ssa
2929 for function FN. */
2930
2931 bool
2932 need_ssa_update_p (struct function *fn)
2933 {
2934 gcc_assert (fn != NULL);
2935 return (update_ssa_initialized_fn == fn
2936 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2937 }
2938
2939 /* Return true if name N has been registered in the replacement table. */
2940
2941 bool
2942 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2943 {
2944 if (!update_ssa_initialized_fn)
2945 return false;
2946
2947 gcc_assert (update_ssa_initialized_fn == cfun);
2948
2949 return is_new_name (n) || is_old_name (n);
2950 }
2951
2952
2953 /* Mark NAME to be released after update_ssa has finished. */
2954
2955 void
2956 release_ssa_name_after_update_ssa (tree name)
2957 {
2958 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2959
2960 if (names_to_release == NULL)
2961 names_to_release = BITMAP_ALLOC (NULL);
2962
2963 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2964 }
2965
2966
2967 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2968 frontier information. BLOCKS is the set of blocks to be updated.
2969
2970 This is slightly different than the regular PHI insertion
2971 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2972 real names (i.e., GIMPLE registers) are inserted:
2973
2974 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2975 nodes inside the region affected by the block that defines VAR
2976 and the blocks that define all its replacements. All these
2977 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2978
2979 First, we compute the entry point to the region (ENTRY). This is
2980 given by the nearest common dominator to all the definition
2981 blocks. When computing the iterated dominance frontier (IDF), any
2982 block not strictly dominated by ENTRY is ignored.
2983
2984 We then call the standard PHI insertion algorithm with the pruned
2985 IDF.
2986
2987 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2988 names is not pruned. PHI nodes are inserted at every IDF block. */
2989
2990 static void
2991 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2992 unsigned update_flags)
2993 {
2994 basic_block entry;
2995 struct def_blocks_d *db;
2996 bitmap idf, pruned_idf;
2997 bitmap_iterator bi;
2998 unsigned i;
2999
3000 if (TREE_CODE (var) == SSA_NAME)
3001 gcc_checking_assert (is_old_name (var));
3002 else
3003 gcc_checking_assert (marked_for_renaming (var));
3004
3005 /* Get all the definition sites for VAR. */
3006 db = find_def_blocks_for (var);
3007
3008 /* No need to do anything if there were no definitions to VAR. */
3009 if (db == NULL || bitmap_empty_p (db->def_blocks))
3010 return;
3011
3012 /* Compute the initial iterated dominance frontier. */
3013 idf = compute_idf (db->def_blocks, dfs);
3014 pruned_idf = BITMAP_ALLOC (NULL);
3015
3016 if (TREE_CODE (var) == SSA_NAME)
3017 {
3018 if (update_flags == TODO_update_ssa)
3019 {
3020 /* If doing regular SSA updates for GIMPLE registers, we are
3021 only interested in IDF blocks dominated by the nearest
3022 common dominator of all the definition blocks. */
3023 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3024 db->def_blocks);
3025 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3026 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3027 if (BASIC_BLOCK_FOR_FN (cfun, i) != entry
3028 && dominated_by_p (CDI_DOMINATORS,
3029 BASIC_BLOCK_FOR_FN (cfun, i), entry))
3030 bitmap_set_bit (pruned_idf, i);
3031 }
3032 else
3033 {
3034 /* Otherwise, do not prune the IDF for VAR. */
3035 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3036 bitmap_copy (pruned_idf, idf);
3037 }
3038 }
3039 else
3040 {
3041 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3042 for the first time, so we need to compute the full IDF for
3043 it. */
3044 bitmap_copy (pruned_idf, idf);
3045 }
3046
3047 if (!bitmap_empty_p (pruned_idf))
3048 {
3049 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3050 are included in the region to be updated. The feeding blocks
3051 are important to guarantee that the PHI arguments are renamed
3052 properly. */
3053
3054 /* FIXME, this is not needed if we are updating symbols. We are
3055 already starting at the ENTRY block anyway. */
3056 bitmap_ior_into (blocks, pruned_idf);
3057 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3058 {
3059 edge e;
3060 edge_iterator ei;
3061 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
3062
3063 FOR_EACH_EDGE (e, ei, bb->preds)
3064 if (e->src->index >= 0)
3065 bitmap_set_bit (blocks, e->src->index);
3066 }
3067
3068 insert_phi_nodes_for (var, pruned_idf, true);
3069 }
3070
3071 BITMAP_FREE (pruned_idf);
3072 BITMAP_FREE (idf);
3073 }
3074
3075 /* Sort symbols_to_rename after their DECL_UID. */
3076
3077 static int
3078 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3079 {
3080 const_tree syma = *(const const_tree *)a;
3081 const_tree symb = *(const const_tree *)b;
3082 if (DECL_UID (syma) == DECL_UID (symb))
3083 return 0;
3084 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3085 }
3086
3087 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3088 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3089
3090 1- The names in OLD_SSA_NAMES dominated by the definitions of
3091 NEW_SSA_NAMES are all re-written to be reached by the
3092 appropriate definition from NEW_SSA_NAMES.
3093
3094 2- If needed, new PHI nodes are added to the iterated dominance
3095 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3096
3097 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3098 calling create_new_def_for to create new defs for names that the
3099 caller wants to replace.
3100
3101 The caller cretaes the new names to be inserted and the names that need
3102 to be replaced by calling create_new_def_for for each old definition
3103 to be replaced. Note that the function assumes that the
3104 new defining statement has already been inserted in the IL.
3105
3106 For instance, given the following code:
3107
3108 1 L0:
3109 2 x_1 = PHI (0, x_5)
3110 3 if (x_1 < 10)
3111 4 if (x_1 > 7)
3112 5 y_2 = 0
3113 6 else
3114 7 y_3 = x_1 + x_7
3115 8 endif
3116 9 x_5 = x_1 + 1
3117 10 goto L0;
3118 11 endif
3119
3120 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3121
3122 1 L0:
3123 2 x_1 = PHI (0, x_5)
3124 3 if (x_1 < 10)
3125 4 x_10 = ...
3126 5 if (x_1 > 7)
3127 6 y_2 = 0
3128 7 else
3129 8 x_11 = ...
3130 9 y_3 = x_1 + x_7
3131 10 endif
3132 11 x_5 = x_1 + 1
3133 12 goto L0;
3134 13 endif
3135
3136 We want to replace all the uses of x_1 with the new definitions of
3137 x_10 and x_11. Note that the only uses that should be replaced are
3138 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3139 *not* be replaced (this is why we cannot just mark symbol 'x' for
3140 renaming).
3141
3142 Additionally, we may need to insert a PHI node at line 11 because
3143 that is a merge point for x_10 and x_11. So the use of x_1 at line
3144 11 will be replaced with the new PHI node. The insertion of PHI
3145 nodes is optional. They are not strictly necessary to preserve the
3146 SSA form, and depending on what the caller inserted, they may not
3147 even be useful for the optimizers. UPDATE_FLAGS controls various
3148 aspects of how update_ssa operates, see the documentation for
3149 TODO_update_ssa*. */
3150
3151 void
3152 update_ssa (unsigned update_flags)
3153 {
3154 basic_block bb, start_bb;
3155 bitmap_iterator bi;
3156 unsigned i = 0;
3157 bool insert_phi_p;
3158 sbitmap_iterator sbi;
3159 tree sym;
3160
3161 /* Only one update flag should be set. */
3162 gcc_assert (update_flags == TODO_update_ssa
3163 || update_flags == TODO_update_ssa_no_phi
3164 || update_flags == TODO_update_ssa_full_phi
3165 || update_flags == TODO_update_ssa_only_virtuals);
3166
3167 if (!need_ssa_update_p (cfun))
3168 return;
3169
3170 #ifdef ENABLE_CHECKING
3171 timevar_push (TV_TREE_STMT_VERIFY);
3172
3173 bool err = false;
3174
3175 FOR_EACH_BB_FN (bb, cfun)
3176 {
3177 gimple_stmt_iterator gsi;
3178 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3179 {
3180 gimple stmt = gsi_stmt (gsi);
3181
3182 ssa_op_iter i;
3183 use_operand_p use_p;
3184 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
3185 {
3186 tree use = USE_FROM_PTR (use_p);
3187 if (TREE_CODE (use) != SSA_NAME)
3188 continue;
3189
3190 if (SSA_NAME_IN_FREE_LIST (use))
3191 {
3192 error ("statement uses released SSA name:");
3193 debug_gimple_stmt (stmt);
3194 fprintf (stderr, "The use of ");
3195 print_generic_expr (stderr, use, 0);
3196 fprintf (stderr," should have been replaced\n");
3197 err = true;
3198 }
3199 }
3200 }
3201 }
3202
3203 if (err)
3204 internal_error ("cannot update SSA form");
3205
3206 timevar_pop (TV_TREE_STMT_VERIFY);
3207 #endif
3208
3209 timevar_push (TV_TREE_SSA_INCREMENTAL);
3210
3211 if (dump_file && (dump_flags & TDF_DETAILS))
3212 fprintf (dump_file, "\nUpdating SSA:\n");
3213
3214 if (!update_ssa_initialized_fn)
3215 init_update_ssa (cfun);
3216 else if (update_flags == TODO_update_ssa_only_virtuals)
3217 {
3218 /* If we only need to update virtuals, remove all the mappings for
3219 real names before proceeding. The caller is responsible for
3220 having dealt with the name mappings before calling update_ssa. */
3221 bitmap_clear (old_ssa_names);
3222 bitmap_clear (new_ssa_names);
3223 }
3224
3225 gcc_assert (update_ssa_initialized_fn == cfun);
3226
3227 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3228 if (!phis_to_rewrite.exists ())
3229 phis_to_rewrite.create (last_basic_block_for_fn (cfun) + 1);
3230 blocks_to_update = BITMAP_ALLOC (NULL);
3231
3232 /* Ensure that the dominance information is up-to-date. */
3233 calculate_dominance_info (CDI_DOMINATORS);
3234
3235 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3236
3237 /* If there are names defined in the replacement table, prepare
3238 definition and use sites for all the names in NEW_SSA_NAMES and
3239 OLD_SSA_NAMES. */
3240 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3241 {
3242 prepare_names_to_update (insert_phi_p);
3243
3244 /* If all the names in NEW_SSA_NAMES had been marked for
3245 removal, and there are no symbols to rename, then there's
3246 nothing else to do. */
3247 if (bitmap_first_set_bit (new_ssa_names) < 0
3248 && !cfun->gimple_df->ssa_renaming_needed)
3249 goto done;
3250 }
3251
3252 /* Next, determine the block at which to start the renaming process. */
3253 if (cfun->gimple_df->ssa_renaming_needed)
3254 {
3255 /* If we rename bare symbols initialize the mapping to
3256 auxiliar info we need to keep track of. */
3257 var_infos = new hash_table<var_info_hasher> (47);
3258
3259 /* If we have to rename some symbols from scratch, we need to
3260 start the process at the root of the CFG. FIXME, it should
3261 be possible to determine the nearest block that had a
3262 definition for each of the symbols that are marked for
3263 updating. For now this seems more work than it's worth. */
3264 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3265
3266 /* Traverse the CFG looking for existing definitions and uses of
3267 symbols in SSA operands. Mark interesting blocks and
3268 statements and set local live-in information for the PHI
3269 placement heuristics. */
3270 prepare_block_for_update (start_bb, insert_phi_p);
3271
3272 #ifdef ENABLE_CHECKING
3273 for (i = 1; i < num_ssa_names; ++i)
3274 {
3275 tree name = ssa_name (i);
3276 if (!name
3277 || virtual_operand_p (name))
3278 continue;
3279
3280 /* For all but virtual operands, which do not have SSA names
3281 with overlapping life ranges, ensure that symbols marked
3282 for renaming do not have existing SSA names associated with
3283 them as we do not re-write them out-of-SSA before going
3284 into SSA for the remaining symbol uses. */
3285 if (marked_for_renaming (SSA_NAME_VAR (name)))
3286 {
3287 fprintf (stderr, "Existing SSA name for symbol marked for "
3288 "renaming: ");
3289 print_generic_expr (stderr, name, TDF_SLIM);
3290 fprintf (stderr, "\n");
3291 internal_error ("SSA corruption");
3292 }
3293 }
3294 #endif
3295 }
3296 else
3297 {
3298 /* Otherwise, the entry block to the region is the nearest
3299 common dominator for the blocks in BLOCKS. */
3300 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3301 blocks_to_update);
3302 }
3303
3304 /* If requested, insert PHI nodes at the iterated dominance frontier
3305 of every block, creating new definitions for names in OLD_SSA_NAMES
3306 and for symbols found. */
3307 if (insert_phi_p)
3308 {
3309 bitmap_head *dfs;
3310
3311 /* If the caller requested PHI nodes to be added, compute
3312 dominance frontiers. */
3313 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
3314 FOR_EACH_BB_FN (bb, cfun)
3315 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3316 compute_dominance_frontiers (dfs);
3317
3318 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3319 {
3320 sbitmap_iterator sbi;
3321
3322 /* insert_update_phi_nodes_for will call add_new_name_mapping
3323 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3324 will grow while we are traversing it (but it will not
3325 gain any new members). Copy OLD_SSA_NAMES to a temporary
3326 for traversal. */
3327 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3328 bitmap_copy (tmp, old_ssa_names);
3329 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3330 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3331 update_flags);
3332 sbitmap_free (tmp);
3333 }
3334
3335 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3336 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3337 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3338 update_flags);
3339
3340 FOR_EACH_BB_FN (bb, cfun)
3341 bitmap_clear (&dfs[bb->index]);
3342 free (dfs);
3343
3344 /* Insertion of PHI nodes may have added blocks to the region.
3345 We need to re-compute START_BB to include the newly added
3346 blocks. */
3347 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3348 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3349 blocks_to_update);
3350 }
3351
3352 /* Reset the current definition for name and symbol before renaming
3353 the sub-graph. */
3354 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3355 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3356
3357 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3358 get_var_info (sym)->info.current_def = NULL_TREE;
3359
3360 /* Now start the renaming process at START_BB. */
3361 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3362 bitmap_clear (interesting_blocks);
3363 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3364 bitmap_set_bit (interesting_blocks, i);
3365
3366 rewrite_blocks (start_bb, REWRITE_UPDATE);
3367
3368 sbitmap_free (interesting_blocks);
3369
3370 /* Debugging dumps. */
3371 if (dump_file)
3372 {
3373 int c;
3374 unsigned i;
3375
3376 dump_update_ssa (dump_file);
3377
3378 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3379 start_bb->index);
3380
3381 c = 0;
3382 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3383 c++;
3384 fprintf (dump_file, "Number of blocks in CFG: %d\n",
3385 last_basic_block_for_fn (cfun));
3386 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3387 c, PERCENT (c, last_basic_block_for_fn (cfun)));
3388
3389 if (dump_flags & TDF_DETAILS)
3390 {
3391 fprintf (dump_file, "Affected blocks:");
3392 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3393 fprintf (dump_file, " %u", i);
3394 fprintf (dump_file, "\n");
3395 }
3396
3397 fprintf (dump_file, "\n\n");
3398 }
3399
3400 /* Free allocated memory. */
3401 done:
3402 delete_update_ssa ();
3403
3404 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3405 }