re PR target/44942 (Bug in argument passing of long double)
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "langhooks.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "function.h"
33 #include "tree-pretty-print.h"
34 #include "gimple-pretty-print.h"
35 #include "bitmap.h"
36 #include "tree-flow.h"
37 #include "gimple.h"
38 #include "tree-inline.h"
39 #include "timevar.h"
40 #include "hashtab.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "cfgloop.h"
44 #include "domwalk.h"
45 #include "params.h"
46 #include "vecprim.h"
47
48
49 /* This file builds the SSA form for a function as described in:
50 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
51 Computing Static Single Assignment Form and the Control Dependence
52 Graph. ACM Transactions on Programming Languages and Systems,
53 13(4):451-490, October 1991. */
54
55 /* Structure to map a variable VAR to the set of blocks that contain
56 definitions for VAR. */
57 struct def_blocks_d
58 {
59 /* The variable. */
60 tree var;
61
62 /* Blocks that contain definitions of VAR. Bit I will be set if the
63 Ith block contains a definition of VAR. */
64 bitmap def_blocks;
65
66 /* Blocks that contain a PHI node for VAR. */
67 bitmap phi_blocks;
68
69 /* Blocks where VAR is live-on-entry. Similar semantics as
70 DEF_BLOCKS. */
71 bitmap livein_blocks;
72 };
73
74
75 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
76 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
77 basic blocks where VAR is defined (assigned a new value). It also
78 contains a bitmap of all the blocks where VAR is live-on-entry
79 (i.e., there is a use of VAR in block B without a preceding
80 definition in B). The live-on-entry information is used when
81 computing PHI pruning heuristics. */
82 static htab_t def_blocks;
83
84 /* Stack of trees used to restore the global currdefs to its original
85 state after completing rewriting of a block and its dominator
86 children. Its elements have the following properties:
87
88 - An SSA_NAME (N) indicates that the current definition of the
89 underlying variable should be set to the given SSA_NAME. If the
90 symbol associated with the SSA_NAME is not a GIMPLE register, the
91 next slot in the stack must be a _DECL node (SYM). In this case,
92 the name N in the previous slot is the current reaching
93 definition for SYM.
94
95 - A _DECL node indicates that the underlying variable has no
96 current definition.
97
98 - A NULL node at the top entry is used to mark the last slot
99 associated with the current block. */
100 static VEC(tree,heap) *block_defs_stack;
101
102
103 /* Set of existing SSA names being replaced by update_ssa. */
104 static sbitmap old_ssa_names;
105
106 /* Set of new SSA names being added by update_ssa. Note that both
107 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
108 the operations done on them are presence tests. */
109 static sbitmap new_ssa_names;
110
111 sbitmap interesting_blocks;
112
113 /* Set of SSA names that have been marked to be released after they
114 were registered in the replacement table. They will be finally
115 released after we finish updating the SSA web. */
116 static bitmap names_to_release;
117
118 static VEC(gimple_vec, heap) *phis_to_rewrite;
119
120 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
121 static bitmap blocks_with_phis_to_rewrite;
122
123 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
124 to grow as the callers to register_new_name_mapping will typically
125 create new names on the fly. FIXME. Currently set to 1/3 to avoid
126 frequent reallocations but still need to find a reasonable growth
127 strategy. */
128 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
129
130 /* Tuple used to represent replacement mappings. */
131 struct repl_map_d
132 {
133 tree name;
134 bitmap set;
135 };
136
137
138 /* NEW -> OLD_SET replacement table. If we are replacing several
139 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
140 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
141 static htab_t repl_tbl;
142
143 /* The function the SSA updating data structures have been initialized for.
144 NULL if they need to be initialized by register_new_name_mapping. */
145 static struct function *update_ssa_initialized_fn = NULL;
146
147 /* Statistics kept by update_ssa to use in the virtual mapping
148 heuristic. If the number of virtual mappings is beyond certain
149 threshold, the updater will switch from using the mappings into
150 renaming the virtual symbols from scratch. In some cases, the
151 large number of name mappings for virtual names causes significant
152 slowdowns in the PHI insertion code. */
153 struct update_ssa_stats_d
154 {
155 unsigned num_virtual_mappings;
156 unsigned num_total_mappings;
157 bitmap virtual_symbols;
158 unsigned num_virtual_symbols;
159 };
160 static struct update_ssa_stats_d update_ssa_stats;
161
162 /* Global data to attach to the main dominator walk structure. */
163 struct mark_def_sites_global_data
164 {
165 /* This bitmap contains the variables which are set before they
166 are used in a basic block. */
167 bitmap kills;
168 };
169
170
171 /* Information stored for SSA names. */
172 struct ssa_name_info
173 {
174 /* The current reaching definition replacing this SSA name. */
175 tree current_def;
176
177 /* This field indicates whether or not the variable may need PHI nodes.
178 See the enum's definition for more detailed information about the
179 states. */
180 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
181
182 /* Age of this record (so that info_for_ssa_name table can be cleared
183 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
184 are assumed to be null. */
185 unsigned age;
186 };
187
188 /* The information associated with names. */
189 typedef struct ssa_name_info *ssa_name_info_p;
190 DEF_VEC_P (ssa_name_info_p);
191 DEF_VEC_ALLOC_P (ssa_name_info_p, heap);
192
193 static VEC(ssa_name_info_p, heap) *info_for_ssa_name;
194 static unsigned current_info_for_ssa_name_age;
195
196 /* The set of blocks affected by update_ssa. */
197 static bitmap blocks_to_update;
198
199 /* The main entry point to the SSA renamer (rewrite_blocks) may be
200 called several times to do different, but related, tasks.
201 Initially, we need it to rename the whole program into SSA form.
202 At other times, we may need it to only rename into SSA newly
203 exposed symbols. Finally, we can also call it to incrementally fix
204 an already built SSA web. */
205 enum rewrite_mode {
206 /* Convert the whole function into SSA form. */
207 REWRITE_ALL,
208
209 /* Incrementally update the SSA web by replacing existing SSA
210 names with new ones. See update_ssa for details. */
211 REWRITE_UPDATE
212 };
213
214
215
216
217 /* Prototypes for debugging functions. */
218 extern void dump_tree_ssa (FILE *);
219 extern void debug_tree_ssa (void);
220 extern void debug_def_blocks (void);
221 extern void dump_tree_ssa_stats (FILE *);
222 extern void debug_tree_ssa_stats (void);
223 extern void dump_update_ssa (FILE *);
224 extern void debug_update_ssa (void);
225 extern void dump_names_replaced_by (FILE *, tree);
226 extern void debug_names_replaced_by (tree);
227 extern void dump_def_blocks (FILE *);
228 extern void debug_def_blocks (void);
229 extern void dump_defs_stack (FILE *, int);
230 extern void debug_defs_stack (int);
231 extern void dump_currdefs (FILE *);
232 extern void debug_currdefs (void);
233
234 /* Return true if STMT needs to be rewritten. When renaming a subset
235 of the variables, not all statements will be processed. This is
236 decided in mark_def_sites. */
237
238 static inline bool
239 rewrite_uses_p (gimple stmt)
240 {
241 return gimple_visited_p (stmt);
242 }
243
244
245 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
246
247 static inline void
248 set_rewrite_uses (gimple stmt, bool rewrite_p)
249 {
250 gimple_set_visited (stmt, rewrite_p);
251 }
252
253
254 /* Return true if the DEFs created by statement STMT should be
255 registered when marking new definition sites. This is slightly
256 different than rewrite_uses_p: it's used by update_ssa to
257 distinguish statements that need to have both uses and defs
258 processed from those that only need to have their defs processed.
259 Statements that define new SSA names only need to have their defs
260 registered, but they don't need to have their uses renamed. */
261
262 static inline bool
263 register_defs_p (gimple stmt)
264 {
265 return gimple_plf (stmt, GF_PLF_1) != 0;
266 }
267
268
269 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
270
271 static inline void
272 set_register_defs (gimple stmt, bool register_defs_p)
273 {
274 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
275 }
276
277
278 /* Get the information associated with NAME. */
279
280 static inline ssa_name_info_p
281 get_ssa_name_ann (tree name)
282 {
283 unsigned ver = SSA_NAME_VERSION (name);
284 unsigned len = VEC_length (ssa_name_info_p, info_for_ssa_name);
285 struct ssa_name_info *info;
286
287 if (ver >= len)
288 {
289 unsigned new_len = num_ssa_names;
290
291 VEC_reserve (ssa_name_info_p, heap, info_for_ssa_name, new_len);
292 while (len++ < new_len)
293 {
294 struct ssa_name_info *info = XCNEW (struct ssa_name_info);
295 info->age = current_info_for_ssa_name_age;
296 VEC_quick_push (ssa_name_info_p, info_for_ssa_name, info);
297 }
298 }
299
300 info = VEC_index (ssa_name_info_p, info_for_ssa_name, ver);
301 if (info->age < current_info_for_ssa_name_age)
302 {
303 info->need_phi_state = NEED_PHI_STATE_UNKNOWN;
304 info->current_def = NULL_TREE;
305 info->age = current_info_for_ssa_name_age;
306 }
307
308 return info;
309 }
310
311
312 /* Clears info for SSA names. */
313
314 static void
315 clear_ssa_name_info (void)
316 {
317 current_info_for_ssa_name_age++;
318 }
319
320
321 /* Get phi_state field for VAR. */
322
323 static inline enum need_phi_state
324 get_phi_state (tree var)
325 {
326 if (TREE_CODE (var) == SSA_NAME)
327 return get_ssa_name_ann (var)->need_phi_state;
328 else
329 return var_ann (var)->need_phi_state;
330 }
331
332
333 /* Sets phi_state field for VAR to STATE. */
334
335 static inline void
336 set_phi_state (tree var, enum need_phi_state state)
337 {
338 if (TREE_CODE (var) == SSA_NAME)
339 get_ssa_name_ann (var)->need_phi_state = state;
340 else
341 var_ann (var)->need_phi_state = state;
342 }
343
344
345 /* Return the current definition for VAR. */
346
347 tree
348 get_current_def (tree var)
349 {
350 if (TREE_CODE (var) == SSA_NAME)
351 return get_ssa_name_ann (var)->current_def;
352 else
353 return var_ann (var)->current_def;
354 }
355
356
357 /* Sets current definition of VAR to DEF. */
358
359 void
360 set_current_def (tree var, tree def)
361 {
362 if (TREE_CODE (var) == SSA_NAME)
363 get_ssa_name_ann (var)->current_def = def;
364 else
365 var_ann (var)->current_def = def;
366 }
367
368
369 /* Compute global livein information given the set of blocks where
370 an object is locally live at the start of the block (LIVEIN)
371 and the set of blocks where the object is defined (DEF_BLOCKS).
372
373 Note: This routine augments the existing local livein information
374 to include global livein (i.e., it modifies the underlying bitmap
375 for LIVEIN). */
376
377 void
378 compute_global_livein (bitmap livein ATTRIBUTE_UNUSED, bitmap def_blocks ATTRIBUTE_UNUSED)
379 {
380 basic_block bb, *worklist, *tos;
381 unsigned i;
382 bitmap_iterator bi;
383
384 tos = worklist
385 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
386
387 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
388 *tos++ = BASIC_BLOCK (i);
389
390 /* Iterate until the worklist is empty. */
391 while (tos != worklist)
392 {
393 edge e;
394 edge_iterator ei;
395
396 /* Pull a block off the worklist. */
397 bb = *--tos;
398
399 /* For each predecessor block. */
400 FOR_EACH_EDGE (e, ei, bb->preds)
401 {
402 basic_block pred = e->src;
403 int pred_index = pred->index;
404
405 /* None of this is necessary for the entry block. */
406 if (pred != ENTRY_BLOCK_PTR
407 && ! bitmap_bit_p (livein, pred_index)
408 && ! bitmap_bit_p (def_blocks, pred_index))
409 {
410 *tos++ = pred;
411 bitmap_set_bit (livein, pred_index);
412 }
413 }
414 }
415
416 free (worklist);
417 }
418
419
420 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
421 all statements in basic block BB. */
422
423 static void
424 initialize_flags_in_bb (basic_block bb)
425 {
426 gimple stmt;
427 gimple_stmt_iterator gsi;
428
429 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
430 {
431 gimple phi = gsi_stmt (gsi);
432 set_rewrite_uses (phi, false);
433 set_register_defs (phi, false);
434 }
435
436 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
437 {
438 stmt = gsi_stmt (gsi);
439
440 /* We are going to use the operand cache API, such as
441 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
442 cache for each statement should be up-to-date. */
443 gcc_assert (!gimple_modified_p (stmt));
444 set_rewrite_uses (stmt, false);
445 set_register_defs (stmt, false);
446 }
447 }
448
449 /* Mark block BB as interesting for update_ssa. */
450
451 static void
452 mark_block_for_update (basic_block bb)
453 {
454 gcc_assert (blocks_to_update != NULL);
455 if (!bitmap_set_bit (blocks_to_update, bb->index))
456 return;
457 initialize_flags_in_bb (bb);
458 }
459
460 /* Return the set of blocks where variable VAR is defined and the blocks
461 where VAR is live on entry (livein). If no entry is found in
462 DEF_BLOCKS, a new one is created and returned. */
463
464 static inline struct def_blocks_d *
465 get_def_blocks_for (tree var)
466 {
467 struct def_blocks_d db, *db_p;
468 void **slot;
469
470 db.var = var;
471 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
472 if (*slot == NULL)
473 {
474 db_p = XNEW (struct def_blocks_d);
475 db_p->var = var;
476 db_p->def_blocks = BITMAP_ALLOC (NULL);
477 db_p->phi_blocks = BITMAP_ALLOC (NULL);
478 db_p->livein_blocks = BITMAP_ALLOC (NULL);
479 *slot = (void *) db_p;
480 }
481 else
482 db_p = (struct def_blocks_d *) *slot;
483
484 return db_p;
485 }
486
487
488 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
489 VAR is defined by a PHI node. */
490
491 static void
492 set_def_block (tree var, basic_block bb, bool phi_p)
493 {
494 struct def_blocks_d *db_p;
495 enum need_phi_state state;
496
497 state = get_phi_state (var);
498 db_p = get_def_blocks_for (var);
499
500 /* Set the bit corresponding to the block where VAR is defined. */
501 bitmap_set_bit (db_p->def_blocks, bb->index);
502 if (phi_p)
503 bitmap_set_bit (db_p->phi_blocks, bb->index);
504
505 /* Keep track of whether or not we may need to insert PHI nodes.
506
507 If we are in the UNKNOWN state, then this is the first definition
508 of VAR. Additionally, we have not seen any uses of VAR yet, so
509 we do not need a PHI node for this variable at this time (i.e.,
510 transition to NEED_PHI_STATE_NO).
511
512 If we are in any other state, then we either have multiple definitions
513 of this variable occurring in different blocks or we saw a use of the
514 variable which was not dominated by the block containing the
515 definition(s). In this case we may need a PHI node, so enter
516 state NEED_PHI_STATE_MAYBE. */
517 if (state == NEED_PHI_STATE_UNKNOWN)
518 set_phi_state (var, NEED_PHI_STATE_NO);
519 else
520 set_phi_state (var, NEED_PHI_STATE_MAYBE);
521 }
522
523
524 /* Mark block BB as having VAR live at the entry to BB. */
525
526 static void
527 set_livein_block (tree var, basic_block bb)
528 {
529 struct def_blocks_d *db_p;
530 enum need_phi_state state = get_phi_state (var);
531
532 db_p = get_def_blocks_for (var);
533
534 /* Set the bit corresponding to the block where VAR is live in. */
535 bitmap_set_bit (db_p->livein_blocks, bb->index);
536
537 /* Keep track of whether or not we may need to insert PHI nodes.
538
539 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
540 by the single block containing the definition(s) of this variable. If
541 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
542 NEED_PHI_STATE_MAYBE. */
543 if (state == NEED_PHI_STATE_NO)
544 {
545 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
546
547 if (def_block_index == -1
548 || ! dominated_by_p (CDI_DOMINATORS, bb,
549 BASIC_BLOCK (def_block_index)))
550 set_phi_state (var, NEED_PHI_STATE_MAYBE);
551 }
552 else
553 set_phi_state (var, NEED_PHI_STATE_MAYBE);
554 }
555
556
557 /* Return true if symbol SYM is marked for renaming. */
558
559 bool
560 symbol_marked_for_renaming (tree sym)
561 {
562 return bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (sym));
563 }
564
565
566 /* Return true if NAME is in OLD_SSA_NAMES. */
567
568 static inline bool
569 is_old_name (tree name)
570 {
571 unsigned ver = SSA_NAME_VERSION (name);
572 if (!new_ssa_names)
573 return false;
574 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
575 }
576
577
578 /* Return true if NAME is in NEW_SSA_NAMES. */
579
580 static inline bool
581 is_new_name (tree name)
582 {
583 unsigned ver = SSA_NAME_VERSION (name);
584 if (!new_ssa_names)
585 return false;
586 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
587 }
588
589
590 /* Hashing and equality functions for REPL_TBL. */
591
592 static hashval_t
593 repl_map_hash (const void *p)
594 {
595 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
596 }
597
598 static int
599 repl_map_eq (const void *p1, const void *p2)
600 {
601 return ((const struct repl_map_d *)p1)->name
602 == ((const struct repl_map_d *)p2)->name;
603 }
604
605 static void
606 repl_map_free (void *p)
607 {
608 BITMAP_FREE (((struct repl_map_d *)p)->set);
609 free (p);
610 }
611
612
613 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
614
615 static inline bitmap
616 names_replaced_by (tree new_tree)
617 {
618 struct repl_map_d m;
619 void **slot;
620
621 m.name = new_tree;
622 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
623
624 /* If N was not registered in the replacement table, return NULL. */
625 if (slot == NULL || *slot == NULL)
626 return NULL;
627
628 return ((struct repl_map_d *) *slot)->set;
629 }
630
631
632 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
633
634 static inline void
635 add_to_repl_tbl (tree new_tree, tree old)
636 {
637 struct repl_map_d m, *mp;
638 void **slot;
639
640 m.name = new_tree;
641 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
642 if (*slot == NULL)
643 {
644 mp = XNEW (struct repl_map_d);
645 mp->name = new_tree;
646 mp->set = BITMAP_ALLOC (NULL);
647 *slot = (void *) mp;
648 }
649 else
650 mp = (struct repl_map_d *) *slot;
651
652 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
653 }
654
655
656 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
657 represents the set of names O_1 ... O_j replaced by N_i. This is
658 used by update_ssa and its helpers to introduce new SSA names in an
659 already formed SSA web. */
660
661 static void
662 add_new_name_mapping (tree new_tree, tree old)
663 {
664 timevar_push (TV_TREE_SSA_INCREMENTAL);
665
666 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
667 gcc_assert (new_tree != old && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
668
669 /* If this mapping is for virtual names, we will need to update
670 virtual operands. If this is a mapping for .MEM, then we gather
671 the symbols associated with each name. */
672 if (!is_gimple_reg (new_tree))
673 {
674 tree sym;
675
676 update_ssa_stats.num_virtual_mappings++;
677 update_ssa_stats.num_virtual_symbols++;
678
679 /* Keep counts of virtual mappings and symbols to use in the
680 virtual mapping heuristic. If we have large numbers of
681 virtual mappings for a relatively low number of symbols, it
682 will make more sense to rename the symbols from scratch.
683 Otherwise, the insertion of PHI nodes for each of the old
684 names in these mappings will be very slow. */
685 sym = SSA_NAME_VAR (new_tree);
686 bitmap_set_bit (update_ssa_stats.virtual_symbols, DECL_UID (sym));
687 }
688
689 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
690 caller may have created new names since the set was created. */
691 if (new_ssa_names->n_bits <= num_ssa_names - 1)
692 {
693 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
694 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
695 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
696 }
697
698 /* Update the REPL_TBL table. */
699 add_to_repl_tbl (new_tree, old);
700
701 /* If OLD had already been registered as a new name, then all the
702 names that OLD replaces should also be replaced by NEW_TREE. */
703 if (is_new_name (old))
704 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
705
706 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
707 respectively. */
708 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new_tree));
709 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
710
711 /* Update mapping counter to use in the virtual mapping heuristic. */
712 update_ssa_stats.num_total_mappings++;
713
714 timevar_pop (TV_TREE_SSA_INCREMENTAL);
715 }
716
717
718 /* Call back for walk_dominator_tree used to collect definition sites
719 for every variable in the function. For every statement S in block
720 BB:
721
722 1- Variables defined by S in the DEFS of S are marked in the bitmap
723 KILLS.
724
725 2- If S uses a variable VAR and there is no preceding kill of VAR,
726 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
727
728 This information is used to determine which variables are live
729 across block boundaries to reduce the number of PHI nodes
730 we create. */
731
732 static void
733 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
734 {
735 tree def;
736 use_operand_p use_p;
737 ssa_op_iter iter;
738
739 /* Since this is the first time that we rewrite the program into SSA
740 form, force an operand scan on every statement. */
741 update_stmt (stmt);
742
743 gcc_assert (blocks_to_update == NULL);
744 set_register_defs (stmt, false);
745 set_rewrite_uses (stmt, false);
746
747 if (is_gimple_debug (stmt))
748 return;
749
750 /* If a variable is used before being set, then the variable is live
751 across a block boundary, so mark it live-on-entry to BB. */
752 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
753 {
754 tree sym = USE_FROM_PTR (use_p);
755 gcc_assert (DECL_P (sym));
756 if (!bitmap_bit_p (kills, DECL_UID (sym)))
757 set_livein_block (sym, bb);
758 set_rewrite_uses (stmt, true);
759 }
760
761 /* Now process the defs. Mark BB as the definition block and add
762 each def to the set of killed symbols. */
763 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
764 {
765 gcc_assert (DECL_P (def));
766 set_def_block (def, bb, false);
767 bitmap_set_bit (kills, DECL_UID (def));
768 set_register_defs (stmt, true);
769 }
770
771 /* If we found the statement interesting then also mark the block BB
772 as interesting. */
773 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
774 SET_BIT (interesting_blocks, bb->index);
775 }
776
777 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
778 in the dfs numbering of the dominance tree. */
779
780 struct dom_dfsnum
781 {
782 /* Basic block whose index this entry corresponds to. */
783 unsigned bb_index;
784
785 /* The dfs number of this node. */
786 unsigned dfs_num;
787 };
788
789 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
790 for qsort. */
791
792 static int
793 cmp_dfsnum (const void *a, const void *b)
794 {
795 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
796 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
797
798 return (int) da->dfs_num - (int) db->dfs_num;
799 }
800
801 /* Among the intervals starting at the N points specified in DEFS, find
802 the one that contains S, and return its bb_index. */
803
804 static unsigned
805 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
806 {
807 unsigned f = 0, t = n, m;
808
809 while (t > f + 1)
810 {
811 m = (f + t) / 2;
812 if (defs[m].dfs_num <= s)
813 f = m;
814 else
815 t = m;
816 }
817
818 return defs[f].bb_index;
819 }
820
821 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
822 KILLS is a bitmap of blocks where the value is defined before any use. */
823
824 static void
825 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
826 {
827 VEC(int, heap) *worklist;
828 bitmap_iterator bi;
829 unsigned i, b, p, u, top;
830 bitmap live_phis;
831 basic_block def_bb, use_bb;
832 edge e;
833 edge_iterator ei;
834 bitmap to_remove;
835 struct dom_dfsnum *defs;
836 unsigned n_defs, adef;
837
838 if (bitmap_empty_p (uses))
839 {
840 bitmap_clear (phis);
841 return;
842 }
843
844 /* The phi must dominate a use, or an argument of a live phi. Also, we
845 do not create any phi nodes in def blocks, unless they are also livein. */
846 to_remove = BITMAP_ALLOC (NULL);
847 bitmap_and_compl (to_remove, kills, uses);
848 bitmap_and_compl_into (phis, to_remove);
849 if (bitmap_empty_p (phis))
850 {
851 BITMAP_FREE (to_remove);
852 return;
853 }
854
855 /* We want to remove the unnecessary phi nodes, but we do not want to compute
856 liveness information, as that may be linear in the size of CFG, and if
857 there are lot of different variables to rewrite, this may lead to quadratic
858 behavior.
859
860 Instead, we basically emulate standard dce. We put all uses to worklist,
861 then for each of them find the nearest def that dominates them. If this
862 def is a phi node, we mark it live, and if it was not live before, we
863 add the predecessors of its basic block to the worklist.
864
865 To quickly locate the nearest def that dominates use, we use dfs numbering
866 of the dominance tree (that is already available in order to speed up
867 queries). For each def, we have the interval given by the dfs number on
868 entry to and on exit from the corresponding subtree in the dominance tree.
869 The nearest dominator for a given use is the smallest of these intervals
870 that contains entry and exit dfs numbers for the basic block with the use.
871 If we store the bounds for all the uses to an array and sort it, we can
872 locate the nearest dominating def in logarithmic time by binary search.*/
873 bitmap_ior (to_remove, kills, phis);
874 n_defs = bitmap_count_bits (to_remove);
875 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
876 defs[0].bb_index = 1;
877 defs[0].dfs_num = 0;
878 adef = 1;
879 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
880 {
881 def_bb = BASIC_BLOCK (i);
882 defs[adef].bb_index = i;
883 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
884 defs[adef + 1].bb_index = i;
885 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
886 adef += 2;
887 }
888 BITMAP_FREE (to_remove);
889 gcc_assert (adef == 2 * n_defs + 1);
890 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
891 gcc_assert (defs[0].bb_index == 1);
892
893 /* Now each DEFS entry contains the number of the basic block to that the
894 dfs number corresponds. Change them to the number of basic block that
895 corresponds to the interval following the dfs number. Also, for the
896 dfs_out numbers, increase the dfs number by one (so that it corresponds
897 to the start of the following interval, not to the end of the current
898 one). We use WORKLIST as a stack. */
899 worklist = VEC_alloc (int, heap, n_defs + 1);
900 VEC_quick_push (int, worklist, 1);
901 top = 1;
902 n_defs = 1;
903 for (i = 1; i < adef; i++)
904 {
905 b = defs[i].bb_index;
906 if (b == top)
907 {
908 /* This is a closing element. Interval corresponding to the top
909 of the stack after removing it follows. */
910 VEC_pop (int, worklist);
911 top = VEC_index (int, worklist, VEC_length (int, worklist) - 1);
912 defs[n_defs].bb_index = top;
913 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
914 }
915 else
916 {
917 /* Opening element. Nothing to do, just push it to the stack and move
918 it to the correct position. */
919 defs[n_defs].bb_index = defs[i].bb_index;
920 defs[n_defs].dfs_num = defs[i].dfs_num;
921 VEC_quick_push (int, worklist, b);
922 top = b;
923 }
924
925 /* If this interval starts at the same point as the previous one, cancel
926 the previous one. */
927 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
928 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
929 else
930 n_defs++;
931 }
932 VEC_pop (int, worklist);
933 gcc_assert (VEC_empty (int, worklist));
934
935 /* Now process the uses. */
936 live_phis = BITMAP_ALLOC (NULL);
937 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
938 {
939 VEC_safe_push (int, heap, worklist, i);
940 }
941
942 while (!VEC_empty (int, worklist))
943 {
944 b = VEC_pop (int, worklist);
945 if (b == ENTRY_BLOCK)
946 continue;
947
948 /* If there is a phi node in USE_BB, it is made live. Otherwise,
949 find the def that dominates the immediate dominator of USE_BB
950 (the kill in USE_BB does not dominate the use). */
951 if (bitmap_bit_p (phis, b))
952 p = b;
953 else
954 {
955 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
956 p = find_dfsnum_interval (defs, n_defs,
957 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
958 if (!bitmap_bit_p (phis, p))
959 continue;
960 }
961
962 /* If the phi node is already live, there is nothing to do. */
963 if (bitmap_bit_p (live_phis, p))
964 continue;
965
966 /* Mark the phi as live, and add the new uses to the worklist. */
967 bitmap_set_bit (live_phis, p);
968 def_bb = BASIC_BLOCK (p);
969 FOR_EACH_EDGE (e, ei, def_bb->preds)
970 {
971 u = e->src->index;
972 if (bitmap_bit_p (uses, u))
973 continue;
974
975 /* In case there is a kill directly in the use block, do not record
976 the use (this is also necessary for correctness, as we assume that
977 uses dominated by a def directly in their block have been filtered
978 out before). */
979 if (bitmap_bit_p (kills, u))
980 continue;
981
982 bitmap_set_bit (uses, u);
983 VEC_safe_push (int, heap, worklist, u);
984 }
985 }
986
987 VEC_free (int, heap, worklist);
988 bitmap_copy (phis, live_phis);
989 BITMAP_FREE (live_phis);
990 free (defs);
991 }
992
993 /* Return the set of blocks where variable VAR is defined and the blocks
994 where VAR is live on entry (livein). Return NULL, if no entry is
995 found in DEF_BLOCKS. */
996
997 static inline struct def_blocks_d *
998 find_def_blocks_for (tree var)
999 {
1000 struct def_blocks_d dm;
1001 dm.var = var;
1002 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
1003 }
1004
1005
1006 /* Retrieve or create a default definition for symbol SYM. */
1007
1008 static inline tree
1009 get_default_def_for (tree sym)
1010 {
1011 tree ddef = gimple_default_def (cfun, sym);
1012
1013 if (ddef == NULL_TREE)
1014 {
1015 ddef = make_ssa_name (sym, gimple_build_nop ());
1016 set_default_def (sym, ddef);
1017 }
1018
1019 return ddef;
1020 }
1021
1022
1023 /* Marks phi node PHI in basic block BB for rewrite. */
1024
1025 static void
1026 mark_phi_for_rewrite (basic_block bb, gimple phi)
1027 {
1028 gimple_vec phis;
1029 unsigned i, idx = bb->index;
1030
1031 if (rewrite_uses_p (phi))
1032 return;
1033
1034 set_rewrite_uses (phi, true);
1035
1036 if (!blocks_with_phis_to_rewrite)
1037 return;
1038
1039 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
1040 VEC_reserve (gimple_vec, heap, phis_to_rewrite, last_basic_block + 1);
1041 for (i = VEC_length (gimple_vec, phis_to_rewrite); i <= idx; i++)
1042 VEC_quick_push (gimple_vec, phis_to_rewrite, NULL);
1043
1044 phis = VEC_index (gimple_vec, phis_to_rewrite, idx);
1045 if (!phis)
1046 phis = VEC_alloc (gimple, heap, 10);
1047
1048 VEC_safe_push (gimple, heap, phis, phi);
1049 VEC_replace (gimple_vec, phis_to_rewrite, idx, phis);
1050 }
1051
1052 /* Insert PHI nodes for variable VAR using the iterated dominance
1053 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
1054 function assumes that the caller is incrementally updating the
1055 existing SSA form, in which case VAR may be an SSA name instead of
1056 a symbol.
1057
1058 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1059 PHI node for VAR. On exit, only the nodes that received a PHI node
1060 for VAR will be present in PHI_INSERTION_POINTS. */
1061
1062 static void
1063 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1064 {
1065 unsigned bb_index;
1066 edge e;
1067 gimple phi;
1068 basic_block bb;
1069 bitmap_iterator bi;
1070 struct def_blocks_d *def_map;
1071
1072 def_map = find_def_blocks_for (var);
1073 gcc_assert (def_map);
1074
1075 /* Remove the blocks where we already have PHI nodes for VAR. */
1076 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1077
1078 /* Remove obviously useless phi nodes. */
1079 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1080 def_map->livein_blocks);
1081
1082 /* And insert the PHI nodes. */
1083 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1084 {
1085 bb = BASIC_BLOCK (bb_index);
1086 if (update_p)
1087 mark_block_for_update (bb);
1088
1089 phi = NULL;
1090
1091 if (TREE_CODE (var) == SSA_NAME)
1092 {
1093 /* If we are rewriting SSA names, create the LHS of the PHI
1094 node by duplicating VAR. This is useful in the case of
1095 pointers, to also duplicate pointer attributes (alias
1096 information, in particular). */
1097 edge_iterator ei;
1098 tree new_lhs;
1099
1100 gcc_assert (update_p);
1101 phi = create_phi_node (var, bb);
1102
1103 new_lhs = duplicate_ssa_name (var, phi);
1104 gimple_phi_set_result (phi, new_lhs);
1105 add_new_name_mapping (new_lhs, var);
1106
1107 /* Add VAR to every argument slot of PHI. We need VAR in
1108 every argument so that rewrite_update_phi_arguments knows
1109 which name is this PHI node replacing. If VAR is a
1110 symbol marked for renaming, this is not necessary, the
1111 renamer will use the symbol on the LHS to get its
1112 reaching definition. */
1113 FOR_EACH_EDGE (e, ei, bb->preds)
1114 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1115 }
1116 else
1117 {
1118 tree tracked_var;
1119
1120 gcc_assert (DECL_P (var));
1121 phi = create_phi_node (var, bb);
1122
1123 tracked_var = target_for_debug_bind (var);
1124 if (tracked_var)
1125 {
1126 gimple note = gimple_build_debug_bind (tracked_var,
1127 PHI_RESULT (phi),
1128 phi);
1129 gimple_stmt_iterator si = gsi_after_labels (bb);
1130 gsi_insert_before (&si, note, GSI_SAME_STMT);
1131 }
1132 }
1133
1134 /* Mark this PHI node as interesting for update_ssa. */
1135 set_register_defs (phi, true);
1136 mark_phi_for_rewrite (bb, phi);
1137 }
1138 }
1139
1140
1141 /* Insert PHI nodes at the dominance frontier of blocks with variable
1142 definitions. DFS contains the dominance frontier information for
1143 the flowgraph. */
1144
1145 static void
1146 insert_phi_nodes (bitmap_head *dfs)
1147 {
1148 referenced_var_iterator rvi;
1149 bitmap_iterator bi;
1150 tree var;
1151 bitmap vars;
1152 unsigned uid;
1153
1154 timevar_push (TV_TREE_INSERT_PHI_NODES);
1155
1156 /* Do two stages to avoid code generation differences for UID
1157 differences but no UID ordering differences. */
1158
1159 vars = BITMAP_ALLOC (NULL);
1160 FOR_EACH_REFERENCED_VAR (var, rvi)
1161 {
1162 struct def_blocks_d *def_map;
1163
1164 def_map = find_def_blocks_for (var);
1165 if (def_map == NULL)
1166 continue;
1167
1168 if (get_phi_state (var) != NEED_PHI_STATE_NO)
1169 bitmap_set_bit (vars, DECL_UID (var));
1170 }
1171
1172 EXECUTE_IF_SET_IN_BITMAP (vars, 0, uid, bi)
1173 {
1174 tree var = referenced_var (uid);
1175 struct def_blocks_d *def_map;
1176 bitmap idf;
1177
1178 def_map = find_def_blocks_for (var);
1179 idf = compute_idf (def_map->def_blocks, dfs);
1180 insert_phi_nodes_for (var, idf, false);
1181 BITMAP_FREE (idf);
1182 }
1183
1184 BITMAP_FREE (vars);
1185
1186 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1187 }
1188
1189
1190 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1191 register DEF (an SSA_NAME) to be a new definition for SYM. */
1192
1193 static void
1194 register_new_def (tree def, tree sym)
1195 {
1196 tree currdef;
1197
1198 /* If this variable is set in a single basic block and all uses are
1199 dominated by the set(s) in that single basic block, then there is
1200 no reason to record anything for this variable in the block local
1201 definition stacks. Doing so just wastes time and memory.
1202
1203 This is the same test to prune the set of variables which may
1204 need PHI nodes. So we just use that information since it's already
1205 computed and available for us to use. */
1206 if (get_phi_state (sym) == NEED_PHI_STATE_NO)
1207 {
1208 set_current_def (sym, def);
1209 return;
1210 }
1211
1212 currdef = get_current_def (sym);
1213
1214 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1215 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1216 in the stack so that we know which symbol is being defined by
1217 this SSA name when we unwind the stack. */
1218 if (currdef && !is_gimple_reg (sym))
1219 VEC_safe_push (tree, heap, block_defs_stack, sym);
1220
1221 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1222 stack is later used by the dominator tree callbacks to restore
1223 the reaching definitions for all the variables defined in the
1224 block after a recursive visit to all its immediately dominated
1225 blocks. If there is no current reaching definition, then just
1226 record the underlying _DECL node. */
1227 VEC_safe_push (tree, heap, block_defs_stack, currdef ? currdef : sym);
1228
1229 /* Set the current reaching definition for SYM to be DEF. */
1230 set_current_def (sym, def);
1231 }
1232
1233
1234 /* Perform a depth-first traversal of the dominator tree looking for
1235 variables to rename. BB is the block where to start searching.
1236 Renaming is a five step process:
1237
1238 1- Every definition made by PHI nodes at the start of the blocks is
1239 registered as the current definition for the corresponding variable.
1240
1241 2- Every statement in BB is rewritten. USE and VUSE operands are
1242 rewritten with their corresponding reaching definition. DEF and
1243 VDEF targets are registered as new definitions.
1244
1245 3- All the PHI nodes in successor blocks of BB are visited. The
1246 argument corresponding to BB is replaced with its current reaching
1247 definition.
1248
1249 4- Recursively rewrite every dominator child block of BB.
1250
1251 5- Restore (in reverse order) the current reaching definition for every
1252 new definition introduced in this block. This is done so that when
1253 we return from the recursive call, all the current reaching
1254 definitions are restored to the names that were valid in the
1255 dominator parent of BB. */
1256
1257 /* Return the current definition for variable VAR. If none is found,
1258 create a new SSA name to act as the zeroth definition for VAR. */
1259
1260 static tree
1261 get_reaching_def (tree var)
1262 {
1263 tree currdef;
1264
1265 /* Lookup the current reaching definition for VAR. */
1266 currdef = get_current_def (var);
1267
1268 /* If there is no reaching definition for VAR, create and register a
1269 default definition for it (if needed). */
1270 if (currdef == NULL_TREE)
1271 {
1272 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1273 currdef = get_default_def_for (sym);
1274 set_current_def (var, currdef);
1275 }
1276
1277 /* Return the current reaching definition for VAR, or the default
1278 definition, if we had to create one. */
1279 return currdef;
1280 }
1281
1282
1283 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1284 the block with its immediate reaching definitions. Update the current
1285 definition of a variable when a new real or virtual definition is found. */
1286
1287 static void
1288 rewrite_stmt (gimple_stmt_iterator si)
1289 {
1290 use_operand_p use_p;
1291 def_operand_p def_p;
1292 ssa_op_iter iter;
1293 gimple stmt = gsi_stmt (si);
1294
1295 /* If mark_def_sites decided that we don't need to rewrite this
1296 statement, ignore it. */
1297 gcc_assert (blocks_to_update == NULL);
1298 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1299 return;
1300
1301 if (dump_file && (dump_flags & TDF_DETAILS))
1302 {
1303 fprintf (dump_file, "Renaming statement ");
1304 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1305 fprintf (dump_file, "\n");
1306 }
1307
1308 /* Step 1. Rewrite USES in the statement. */
1309 if (rewrite_uses_p (stmt))
1310 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1311 {
1312 tree var = USE_FROM_PTR (use_p);
1313 gcc_assert (DECL_P (var));
1314 SET_USE (use_p, get_reaching_def (var));
1315 }
1316
1317 /* Step 2. Register the statement's DEF operands. */
1318 if (register_defs_p (stmt))
1319 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1320 {
1321 tree var = DEF_FROM_PTR (def_p);
1322 tree name = make_ssa_name (var, stmt);
1323 tree tracked_var;
1324 gcc_assert (DECL_P (var));
1325 SET_DEF (def_p, name);
1326 register_new_def (DEF_FROM_PTR (def_p), var);
1327
1328 tracked_var = target_for_debug_bind (var);
1329 if (tracked_var)
1330 {
1331 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1332 gsi_insert_after (&si, note, GSI_SAME_STMT);
1333 }
1334 }
1335 }
1336
1337
1338 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1339 PHI nodes. For every PHI node found, add a new argument containing the
1340 current reaching definition for the variable and the edge through which
1341 that definition is reaching the PHI node. */
1342
1343 static void
1344 rewrite_add_phi_arguments (basic_block bb)
1345 {
1346 edge e;
1347 edge_iterator ei;
1348
1349 FOR_EACH_EDGE (e, ei, bb->succs)
1350 {
1351 gimple phi;
1352 gimple_stmt_iterator gsi;
1353
1354 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1355 gsi_next (&gsi))
1356 {
1357 tree currdef;
1358 gimple stmt;
1359
1360 phi = gsi_stmt (gsi);
1361 currdef = get_reaching_def (SSA_NAME_VAR (gimple_phi_result (phi)));
1362 stmt = SSA_NAME_DEF_STMT (currdef);
1363 add_phi_arg (phi, currdef, e, gimple_location (stmt));
1364 }
1365 }
1366 }
1367
1368 /* SSA Rewriting Step 1. Initialization, create a block local stack
1369 of reaching definitions for new SSA names produced in this block
1370 (BLOCK_DEFS). Register new definitions for every PHI node in the
1371 block. */
1372
1373 static void
1374 rewrite_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1375 basic_block bb)
1376 {
1377 gimple phi;
1378 gimple_stmt_iterator gsi;
1379
1380 if (dump_file && (dump_flags & TDF_DETAILS))
1381 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1382
1383 /* Mark the unwind point for this block. */
1384 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1385
1386 /* Step 1. Register new definitions for every PHI node in the block.
1387 Conceptually, all the PHI nodes are executed in parallel and each PHI
1388 node introduces a new version for the associated variable. */
1389 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1390 {
1391 tree result;
1392
1393 phi = gsi_stmt (gsi);
1394 result = gimple_phi_result (phi);
1395 gcc_assert (is_gimple_reg (result));
1396 register_new_def (result, SSA_NAME_VAR (result));
1397 }
1398
1399 /* Step 2. Rewrite every variable used in each statement in the block
1400 with its immediate reaching definitions. Update the current definition
1401 of a variable when a new real or virtual definition is found. */
1402 if (TEST_BIT (interesting_blocks, bb->index))
1403 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1404 rewrite_stmt (gsi);
1405
1406 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1407 For every PHI node found, add a new argument containing the current
1408 reaching definition for the variable and the edge through which that
1409 definition is reaching the PHI node. */
1410 rewrite_add_phi_arguments (bb);
1411 }
1412
1413
1414
1415 /* Called after visiting all the statements in basic block BB and all
1416 of its dominator children. Restore CURRDEFS to its original value. */
1417
1418 static void
1419 rewrite_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1420 basic_block bb ATTRIBUTE_UNUSED)
1421 {
1422 /* Restore CURRDEFS to its original state. */
1423 while (VEC_length (tree, block_defs_stack) > 0)
1424 {
1425 tree tmp = VEC_pop (tree, block_defs_stack);
1426 tree saved_def, var;
1427
1428 if (tmp == NULL_TREE)
1429 break;
1430
1431 if (TREE_CODE (tmp) == SSA_NAME)
1432 {
1433 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1434 current definition of its underlying variable. Note that
1435 if the SSA_NAME is not for a GIMPLE register, the symbol
1436 being defined is stored in the next slot in the stack.
1437 This mechanism is needed because an SSA name for a
1438 non-register symbol may be the definition for more than
1439 one symbol (e.g., SFTs, aliased variables, etc). */
1440 saved_def = tmp;
1441 var = SSA_NAME_VAR (saved_def);
1442 if (!is_gimple_reg (var))
1443 var = VEC_pop (tree, block_defs_stack);
1444 }
1445 else
1446 {
1447 /* If we recorded anything else, it must have been a _DECL
1448 node and its current reaching definition must have been
1449 NULL. */
1450 saved_def = NULL;
1451 var = tmp;
1452 }
1453
1454 set_current_def (var, saved_def);
1455 }
1456 }
1457
1458
1459 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1460
1461 void
1462 dump_decl_set (FILE *file, bitmap set)
1463 {
1464 if (set)
1465 {
1466 bitmap_iterator bi;
1467 unsigned i;
1468
1469 fprintf (file, "{ ");
1470
1471 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1472 {
1473 struct tree_decl_minimal in;
1474 tree var;
1475 in.uid = i;
1476 var = (tree) htab_find_with_hash (gimple_referenced_vars (cfun),
1477 &in, i);
1478 if (var)
1479 print_generic_expr (file, var, 0);
1480 else
1481 fprintf (file, "D.%u", i);
1482 fprintf (file, " ");
1483 }
1484
1485 fprintf (file, "}");
1486 }
1487 else
1488 fprintf (file, "NIL");
1489 }
1490
1491
1492 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1493
1494 DEBUG_FUNCTION void
1495 debug_decl_set (bitmap set)
1496 {
1497 dump_decl_set (stderr, set);
1498 fprintf (stderr, "\n");
1499 }
1500
1501
1502 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1503 stack up to a maximum of N levels. If N is -1, the whole stack is
1504 dumped. New levels are created when the dominator tree traversal
1505 used for renaming enters a new sub-tree. */
1506
1507 void
1508 dump_defs_stack (FILE *file, int n)
1509 {
1510 int i, j;
1511
1512 fprintf (file, "\n\nRenaming stack");
1513 if (n > 0)
1514 fprintf (file, " (up to %d levels)", n);
1515 fprintf (file, "\n\n");
1516
1517 i = 1;
1518 fprintf (file, "Level %d (current level)\n", i);
1519 for (j = (int) VEC_length (tree, block_defs_stack) - 1; j >= 0; j--)
1520 {
1521 tree name, var;
1522
1523 name = VEC_index (tree, block_defs_stack, j);
1524 if (name == NULL_TREE)
1525 {
1526 i++;
1527 if (n > 0 && i > n)
1528 break;
1529 fprintf (file, "\nLevel %d\n", i);
1530 continue;
1531 }
1532
1533 if (DECL_P (name))
1534 {
1535 var = name;
1536 name = NULL_TREE;
1537 }
1538 else
1539 {
1540 var = SSA_NAME_VAR (name);
1541 if (!is_gimple_reg (var))
1542 {
1543 j--;
1544 var = VEC_index (tree, block_defs_stack, j);
1545 }
1546 }
1547
1548 fprintf (file, " Previous CURRDEF (");
1549 print_generic_expr (file, var, 0);
1550 fprintf (file, ") = ");
1551 if (name)
1552 print_generic_expr (file, name, 0);
1553 else
1554 fprintf (file, "<NIL>");
1555 fprintf (file, "\n");
1556 }
1557 }
1558
1559
1560 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1561 stack up to a maximum of N levels. If N is -1, the whole stack is
1562 dumped. New levels are created when the dominator tree traversal
1563 used for renaming enters a new sub-tree. */
1564
1565 DEBUG_FUNCTION void
1566 debug_defs_stack (int n)
1567 {
1568 dump_defs_stack (stderr, n);
1569 }
1570
1571
1572 /* Dump the current reaching definition of every symbol to FILE. */
1573
1574 void
1575 dump_currdefs (FILE *file)
1576 {
1577 referenced_var_iterator i;
1578 tree var;
1579
1580 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1581 FOR_EACH_REFERENCED_VAR (var, i)
1582 if (SYMS_TO_RENAME (cfun) == NULL
1583 || bitmap_bit_p (SYMS_TO_RENAME (cfun), DECL_UID (var)))
1584 {
1585 fprintf (file, "CURRDEF (");
1586 print_generic_expr (file, var, 0);
1587 fprintf (file, ") = ");
1588 if (get_current_def (var))
1589 print_generic_expr (file, get_current_def (var), 0);
1590 else
1591 fprintf (file, "<NIL>");
1592 fprintf (file, "\n");
1593 }
1594 }
1595
1596
1597 /* Dump the current reaching definition of every symbol to stderr. */
1598
1599 DEBUG_FUNCTION void
1600 debug_currdefs (void)
1601 {
1602 dump_currdefs (stderr);
1603 }
1604
1605
1606 /* Dump SSA information to FILE. */
1607
1608 void
1609 dump_tree_ssa (FILE *file)
1610 {
1611 const char *funcname
1612 = lang_hooks.decl_printable_name (current_function_decl, 2);
1613
1614 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1615
1616 dump_def_blocks (file);
1617 dump_defs_stack (file, -1);
1618 dump_currdefs (file);
1619 dump_tree_ssa_stats (file);
1620 }
1621
1622
1623 /* Dump SSA information to stderr. */
1624
1625 DEBUG_FUNCTION void
1626 debug_tree_ssa (void)
1627 {
1628 dump_tree_ssa (stderr);
1629 }
1630
1631
1632 /* Dump statistics for the hash table HTAB. */
1633
1634 static void
1635 htab_statistics (FILE *file, htab_t htab)
1636 {
1637 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1638 (long) htab_size (htab),
1639 (long) htab_elements (htab),
1640 htab_collisions (htab));
1641 }
1642
1643
1644 /* Dump SSA statistics on FILE. */
1645
1646 void
1647 dump_tree_ssa_stats (FILE *file)
1648 {
1649 if (def_blocks || repl_tbl)
1650 fprintf (file, "\nHash table statistics:\n");
1651
1652 if (def_blocks)
1653 {
1654 fprintf (file, " def_blocks: ");
1655 htab_statistics (file, def_blocks);
1656 }
1657
1658 if (repl_tbl)
1659 {
1660 fprintf (file, " repl_tbl: ");
1661 htab_statistics (file, repl_tbl);
1662 }
1663
1664 if (def_blocks || repl_tbl)
1665 fprintf (file, "\n");
1666 }
1667
1668
1669 /* Dump SSA statistics on stderr. */
1670
1671 DEBUG_FUNCTION void
1672 debug_tree_ssa_stats (void)
1673 {
1674 dump_tree_ssa_stats (stderr);
1675 }
1676
1677
1678 /* Hashing and equality functions for DEF_BLOCKS. */
1679
1680 static hashval_t
1681 def_blocks_hash (const void *p)
1682 {
1683 return htab_hash_pointer
1684 ((const void *)((const struct def_blocks_d *)p)->var);
1685 }
1686
1687 static int
1688 def_blocks_eq (const void *p1, const void *p2)
1689 {
1690 return ((const struct def_blocks_d *)p1)->var
1691 == ((const struct def_blocks_d *)p2)->var;
1692 }
1693
1694
1695 /* Free memory allocated by one entry in DEF_BLOCKS. */
1696
1697 static void
1698 def_blocks_free (void *p)
1699 {
1700 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1701 BITMAP_FREE (entry->def_blocks);
1702 BITMAP_FREE (entry->phi_blocks);
1703 BITMAP_FREE (entry->livein_blocks);
1704 free (entry);
1705 }
1706
1707
1708 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1709
1710 static int
1711 debug_def_blocks_r (void **slot, void *data)
1712 {
1713 FILE *file = (FILE *) data;
1714 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1715
1716 fprintf (file, "VAR: ");
1717 print_generic_expr (file, db_p->var, dump_flags);
1718 bitmap_print (file, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1719 bitmap_print (file, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}");
1720 bitmap_print (file, db_p->phi_blocks, ", PHI_BLOCKS: { ", "}\n");
1721
1722 return 1;
1723 }
1724
1725
1726 /* Dump the DEF_BLOCKS hash table on FILE. */
1727
1728 void
1729 dump_def_blocks (FILE *file)
1730 {
1731 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1732 if (def_blocks)
1733 htab_traverse (def_blocks, debug_def_blocks_r, file);
1734 }
1735
1736
1737 /* Dump the DEF_BLOCKS hash table on stderr. */
1738
1739 DEBUG_FUNCTION void
1740 debug_def_blocks (void)
1741 {
1742 dump_def_blocks (stderr);
1743 }
1744
1745
1746 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1747
1748 static inline void
1749 register_new_update_single (tree new_name, tree old_name)
1750 {
1751 tree currdef = get_current_def (old_name);
1752
1753 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1754 This stack is later used by the dominator tree callbacks to
1755 restore the reaching definitions for all the variables
1756 defined in the block after a recursive visit to all its
1757 immediately dominated blocks. */
1758 VEC_reserve (tree, heap, block_defs_stack, 2);
1759 VEC_quick_push (tree, block_defs_stack, currdef);
1760 VEC_quick_push (tree, block_defs_stack, old_name);
1761
1762 /* Set the current reaching definition for OLD_NAME to be
1763 NEW_NAME. */
1764 set_current_def (old_name, new_name);
1765 }
1766
1767
1768 /* Register NEW_NAME to be the new reaching definition for all the
1769 names in OLD_NAMES. Used by the incremental SSA update routines to
1770 replace old SSA names with new ones. */
1771
1772 static inline void
1773 register_new_update_set (tree new_name, bitmap old_names)
1774 {
1775 bitmap_iterator bi;
1776 unsigned i;
1777
1778 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1779 register_new_update_single (new_name, ssa_name (i));
1780 }
1781
1782
1783
1784 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1785 it is a symbol marked for renaming, replace it with USE_P's current
1786 reaching definition. */
1787
1788 static inline void
1789 maybe_replace_use (use_operand_p use_p)
1790 {
1791 tree rdef = NULL_TREE;
1792 tree use = USE_FROM_PTR (use_p);
1793 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1794
1795 if (symbol_marked_for_renaming (sym))
1796 rdef = get_reaching_def (sym);
1797 else if (is_old_name (use))
1798 rdef = get_reaching_def (use);
1799
1800 if (rdef && rdef != use)
1801 SET_USE (use_p, rdef);
1802 }
1803
1804
1805 /* Same as maybe_replace_use, but without introducing default stmts,
1806 returning false to indicate a need to do so. */
1807
1808 static inline bool
1809 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1810 {
1811 tree rdef = NULL_TREE;
1812 tree use = USE_FROM_PTR (use_p);
1813 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1814
1815 if (symbol_marked_for_renaming (sym))
1816 rdef = get_current_def (sym);
1817 else if (is_old_name (use))
1818 {
1819 rdef = get_current_def (use);
1820 /* We can't assume that, if there's no current definition, the
1821 default one should be used. It could be the case that we've
1822 rearranged blocks so that the earlier definition no longer
1823 dominates the use. */
1824 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1825 rdef = use;
1826 }
1827 else
1828 rdef = use;
1829
1830 if (rdef && rdef != use)
1831 SET_USE (use_p, rdef);
1832
1833 return rdef != NULL_TREE;
1834 }
1835
1836
1837 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1838 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1839 register it as the current definition for the names replaced by
1840 DEF_P. */
1841
1842 static inline void
1843 maybe_register_def (def_operand_p def_p, gimple stmt,
1844 gimple_stmt_iterator gsi)
1845 {
1846 tree def = DEF_FROM_PTR (def_p);
1847 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1848
1849 /* If DEF is a naked symbol that needs renaming, create a new
1850 name for it. */
1851 if (symbol_marked_for_renaming (sym))
1852 {
1853 if (DECL_P (def))
1854 {
1855 tree tracked_var;
1856
1857 def = make_ssa_name (def, stmt);
1858 SET_DEF (def_p, def);
1859
1860 tracked_var = target_for_debug_bind (sym);
1861 if (tracked_var)
1862 {
1863 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1864 /* If stmt ends the bb, insert the debug stmt on the single
1865 non-EH edge from the stmt. */
1866 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1867 {
1868 basic_block bb = gsi_bb (gsi);
1869 edge_iterator ei;
1870 edge e, ef = NULL;
1871 FOR_EACH_EDGE (e, ei, bb->succs)
1872 if (!(e->flags & EDGE_EH))
1873 {
1874 gcc_assert (!ef);
1875 ef = e;
1876 }
1877 gcc_assert (ef
1878 && single_pred_p (ef->dest)
1879 && !phi_nodes (ef->dest)
1880 && ef->dest != EXIT_BLOCK_PTR);
1881 gsi_insert_on_edge_immediate (ef, note);
1882 }
1883 else
1884 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1885 }
1886 }
1887
1888 register_new_update_single (def, sym);
1889 }
1890 else
1891 {
1892 /* If DEF is a new name, register it as a new definition
1893 for all the names replaced by DEF. */
1894 if (is_new_name (def))
1895 register_new_update_set (def, names_replaced_by (def));
1896
1897 /* If DEF is an old name, register DEF as a new
1898 definition for itself. */
1899 if (is_old_name (def))
1900 register_new_update_single (def, def);
1901 }
1902 }
1903
1904
1905 /* Update every variable used in the statement pointed-to by SI. The
1906 statement is assumed to be in SSA form already. Names in
1907 OLD_SSA_NAMES used by SI will be updated to their current reaching
1908 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1909 will be registered as a new definition for their corresponding name
1910 in OLD_SSA_NAMES. */
1911
1912 static void
1913 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1914 {
1915 use_operand_p use_p;
1916 def_operand_p def_p;
1917 ssa_op_iter iter;
1918
1919 /* Only update marked statements. */
1920 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1921 return;
1922
1923 if (dump_file && (dump_flags & TDF_DETAILS))
1924 {
1925 fprintf (dump_file, "Updating SSA information for statement ");
1926 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1927 fprintf (dump_file, "\n");
1928 }
1929
1930 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1931 symbol is marked for renaming. */
1932 if (rewrite_uses_p (stmt))
1933 {
1934 if (is_gimple_debug (stmt))
1935 {
1936 bool failed = false;
1937
1938 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1939 if (!maybe_replace_use_in_debug_stmt (use_p))
1940 {
1941 failed = true;
1942 break;
1943 }
1944
1945 if (failed)
1946 {
1947 /* DOM sometimes threads jumps in such a way that a
1948 debug stmt ends up referencing a SSA variable that no
1949 longer dominates the debug stmt, but such that all
1950 incoming definitions refer to the same definition in
1951 an earlier dominator. We could try to recover that
1952 definition somehow, but this will have to do for now.
1953
1954 Introducing a default definition, which is what
1955 maybe_replace_use() would do in such cases, may
1956 modify code generation, for the otherwise-unused
1957 default definition would never go away, modifying SSA
1958 version numbers all over. */
1959 gimple_debug_bind_reset_value (stmt);
1960 update_stmt (stmt);
1961 }
1962 }
1963 else
1964 {
1965 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1966 maybe_replace_use (use_p);
1967 }
1968 }
1969
1970 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1971 Also register definitions for names whose underlying symbol is
1972 marked for renaming. */
1973 if (register_defs_p (stmt))
1974 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1975 maybe_register_def (def_p, stmt, gsi);
1976 }
1977
1978
1979 /* Visit all the successor blocks of BB looking for PHI nodes. For
1980 every PHI node found, check if any of its arguments is in
1981 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1982 definition, replace it. */
1983
1984 static void
1985 rewrite_update_phi_arguments (basic_block bb)
1986 {
1987 edge e;
1988 edge_iterator ei;
1989 unsigned i;
1990
1991 FOR_EACH_EDGE (e, ei, bb->succs)
1992 {
1993 gimple phi;
1994 gimple_vec phis;
1995
1996 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1997 continue;
1998
1999 phis = VEC_index (gimple_vec, phis_to_rewrite, e->dest->index);
2000 for (i = 0; VEC_iterate (gimple, phis, i, phi); i++)
2001 {
2002 tree arg, lhs_sym, reaching_def = NULL;
2003 use_operand_p arg_p;
2004
2005 gcc_assert (rewrite_uses_p (phi));
2006
2007 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2008 arg = USE_FROM_PTR (arg_p);
2009
2010 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2011 continue;
2012
2013 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2014
2015 if (arg == NULL_TREE)
2016 {
2017 /* When updating a PHI node for a recently introduced
2018 symbol we may find NULL arguments. That's why we
2019 take the symbol from the LHS of the PHI node. */
2020 reaching_def = get_reaching_def (lhs_sym);
2021
2022 }
2023 else
2024 {
2025 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2026
2027 if (symbol_marked_for_renaming (sym))
2028 reaching_def = get_reaching_def (sym);
2029 else if (is_old_name (arg))
2030 reaching_def = get_reaching_def (arg);
2031 }
2032
2033 /* Update the argument if there is a reaching def. */
2034 if (reaching_def)
2035 {
2036 gimple stmt;
2037 source_location locus;
2038 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2039
2040 SET_USE (arg_p, reaching_def);
2041 stmt = SSA_NAME_DEF_STMT (reaching_def);
2042
2043 /* Single element PHI nodes behave like copies, so get the
2044 location from the phi argument. */
2045 if (gimple_code (stmt) == GIMPLE_PHI &&
2046 gimple_phi_num_args (stmt) == 1)
2047 locus = gimple_phi_arg_location (stmt, 0);
2048 else
2049 locus = gimple_location (stmt);
2050
2051 gimple_phi_arg_set_location (phi, arg_i, locus);
2052 }
2053
2054
2055 if (e->flags & EDGE_ABNORMAL)
2056 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2057 }
2058 }
2059 }
2060
2061
2062 /* Initialization of block data structures for the incremental SSA
2063 update pass. Create a block local stack of reaching definitions
2064 for new SSA names produced in this block (BLOCK_DEFS). Register
2065 new definitions for every PHI node in the block. */
2066
2067 static void
2068 rewrite_update_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2069 basic_block bb)
2070 {
2071 edge e;
2072 edge_iterator ei;
2073 bool is_abnormal_phi;
2074 gimple_stmt_iterator gsi;
2075
2076 if (dump_file && (dump_flags & TDF_DETAILS))
2077 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
2078 bb->index);
2079
2080 /* Mark the unwind point for this block. */
2081 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
2082
2083 if (!bitmap_bit_p (blocks_to_update, bb->index))
2084 return;
2085
2086 /* Mark the LHS if any of the arguments flows through an abnormal
2087 edge. */
2088 is_abnormal_phi = false;
2089 FOR_EACH_EDGE (e, ei, bb->preds)
2090 if (e->flags & EDGE_ABNORMAL)
2091 {
2092 is_abnormal_phi = true;
2093 break;
2094 }
2095
2096 /* If any of the PHI nodes is a replacement for a name in
2097 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2098 register it as a new definition for its corresponding name. Also
2099 register definitions for names whose underlying symbols are
2100 marked for renaming. */
2101 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2102 {
2103 tree lhs, lhs_sym;
2104 gimple phi = gsi_stmt (gsi);
2105
2106 if (!register_defs_p (phi))
2107 continue;
2108
2109 lhs = gimple_phi_result (phi);
2110 lhs_sym = SSA_NAME_VAR (lhs);
2111
2112 if (symbol_marked_for_renaming (lhs_sym))
2113 register_new_update_single (lhs, lhs_sym);
2114 else
2115 {
2116
2117 /* If LHS is a new name, register a new definition for all
2118 the names replaced by LHS. */
2119 if (is_new_name (lhs))
2120 register_new_update_set (lhs, names_replaced_by (lhs));
2121
2122 /* If LHS is an OLD name, register it as a new definition
2123 for itself. */
2124 if (is_old_name (lhs))
2125 register_new_update_single (lhs, lhs);
2126 }
2127
2128 if (is_abnormal_phi)
2129 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2130 }
2131
2132 /* Step 2. Rewrite every variable used in each statement in the block. */
2133 if (TEST_BIT (interesting_blocks, bb->index))
2134 {
2135 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2136 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2137 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2138 }
2139
2140 /* Step 3. Update PHI nodes. */
2141 rewrite_update_phi_arguments (bb);
2142 }
2143
2144 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2145 the current reaching definition of every name re-written in BB to
2146 the original reaching definition before visiting BB. This
2147 unwinding must be done in the opposite order to what is done in
2148 register_new_update_set. */
2149
2150 static void
2151 rewrite_update_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
2152 basic_block bb ATTRIBUTE_UNUSED)
2153 {
2154 while (VEC_length (tree, block_defs_stack) > 0)
2155 {
2156 tree var = VEC_pop (tree, block_defs_stack);
2157 tree saved_def;
2158
2159 /* NULL indicates the unwind stop point for this block (see
2160 rewrite_update_enter_block). */
2161 if (var == NULL)
2162 return;
2163
2164 saved_def = VEC_pop (tree, block_defs_stack);
2165 set_current_def (var, saved_def);
2166 }
2167 }
2168
2169
2170 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2171 form.
2172
2173 ENTRY indicates the block where to start. Every block dominated by
2174 ENTRY will be rewritten.
2175
2176 WHAT indicates what actions will be taken by the renamer (see enum
2177 rewrite_mode).
2178
2179 BLOCKS are the set of interesting blocks for the dominator walker
2180 to process. If this set is NULL, then all the nodes dominated
2181 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2182 are not present in BLOCKS are ignored. */
2183
2184 static void
2185 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2186 {
2187 struct dom_walk_data walk_data;
2188
2189 /* Rewrite all the basic blocks in the program. */
2190 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2191
2192 /* Setup callbacks for the generic dominator tree walker. */
2193 memset (&walk_data, 0, sizeof (walk_data));
2194
2195 walk_data.dom_direction = CDI_DOMINATORS;
2196
2197 if (what == REWRITE_ALL)
2198 {
2199 walk_data.before_dom_children = rewrite_enter_block;
2200 walk_data.after_dom_children = rewrite_leave_block;
2201 }
2202 else if (what == REWRITE_UPDATE)
2203 {
2204 walk_data.before_dom_children = rewrite_update_enter_block;
2205 walk_data.after_dom_children = rewrite_update_leave_block;
2206 }
2207 else
2208 gcc_unreachable ();
2209
2210 block_defs_stack = VEC_alloc (tree, heap, 10);
2211
2212 /* Initialize the dominator walker. */
2213 init_walk_dominator_tree (&walk_data);
2214
2215 /* Recursively walk the dominator tree rewriting each statement in
2216 each basic block. */
2217 walk_dominator_tree (&walk_data, entry);
2218
2219 /* Finalize the dominator walker. */
2220 fini_walk_dominator_tree (&walk_data);
2221
2222 /* Debugging dumps. */
2223 if (dump_file && (dump_flags & TDF_STATS))
2224 {
2225 dump_dfa_stats (dump_file);
2226 if (def_blocks)
2227 dump_tree_ssa_stats (dump_file);
2228 }
2229
2230 VEC_free (tree, heap, block_defs_stack);
2231
2232 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2233 }
2234
2235
2236 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2237 at the start of each block, and call mark_def_sites for each statement. */
2238
2239 static void
2240 mark_def_sites_block (struct dom_walk_data *walk_data, basic_block bb)
2241 {
2242 struct mark_def_sites_global_data *gd;
2243 bitmap kills;
2244 gimple_stmt_iterator gsi;
2245
2246 gd = (struct mark_def_sites_global_data *) walk_data->global_data;
2247 kills = gd->kills;
2248
2249 bitmap_clear (kills);
2250 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2251 mark_def_sites (bb, gsi_stmt (gsi), kills);
2252 }
2253
2254
2255 /* Mark the definition site blocks for each variable, so that we know
2256 where the variable is actually live.
2257
2258 The INTERESTING_BLOCKS global will be filled in with all the blocks
2259 that should be processed by the renamer. It is assumed that the
2260 caller has already initialized and zeroed it. */
2261
2262 static void
2263 mark_def_site_blocks (void)
2264 {
2265 struct dom_walk_data walk_data;
2266 struct mark_def_sites_global_data mark_def_sites_global_data;
2267
2268 /* Setup callbacks for the generic dominator tree walker to find and
2269 mark definition sites. */
2270 walk_data.dom_direction = CDI_DOMINATORS;
2271 walk_data.initialize_block_local_data = NULL;
2272 walk_data.before_dom_children = mark_def_sites_block;
2273 walk_data.after_dom_children = NULL;
2274
2275 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2276 large enough to accommodate all the variables referenced in the
2277 function, not just the ones we are renaming. */
2278 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
2279 walk_data.global_data = &mark_def_sites_global_data;
2280
2281 /* We do not have any local data. */
2282 walk_data.block_local_data_size = 0;
2283
2284 /* Initialize the dominator walker. */
2285 init_walk_dominator_tree (&walk_data);
2286
2287 /* Recursively walk the dominator tree. */
2288 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
2289
2290 /* Finalize the dominator walker. */
2291 fini_walk_dominator_tree (&walk_data);
2292
2293 /* We no longer need this bitmap, clear and free it. */
2294 BITMAP_FREE (mark_def_sites_global_data.kills);
2295 }
2296
2297
2298 /* Initialize internal data needed during renaming. */
2299
2300 static void
2301 init_ssa_renamer (void)
2302 {
2303 tree var;
2304 referenced_var_iterator rvi;
2305
2306 cfun->gimple_df->in_ssa_p = false;
2307
2308 /* Allocate memory for the DEF_BLOCKS hash table. */
2309 gcc_assert (def_blocks == NULL);
2310 def_blocks = htab_create (num_referenced_vars, def_blocks_hash,
2311 def_blocks_eq, def_blocks_free);
2312
2313 FOR_EACH_REFERENCED_VAR(var, rvi)
2314 set_current_def (var, NULL_TREE);
2315 }
2316
2317
2318 /* Deallocate internal data structures used by the renamer. */
2319
2320 static void
2321 fini_ssa_renamer (void)
2322 {
2323 if (def_blocks)
2324 {
2325 htab_delete (def_blocks);
2326 def_blocks = NULL;
2327 }
2328
2329 cfun->gimple_df->in_ssa_p = true;
2330 }
2331
2332 /* Main entry point into the SSA builder. The renaming process
2333 proceeds in four main phases:
2334
2335 1- Compute dominance frontier and immediate dominators, needed to
2336 insert PHI nodes and rename the function in dominator tree
2337 order.
2338
2339 2- Find and mark all the blocks that define variables
2340 (mark_def_site_blocks).
2341
2342 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2343
2344 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2345
2346 Steps 3 and 4 are done using the dominator tree walker
2347 (walk_dominator_tree). */
2348
2349 static unsigned int
2350 rewrite_into_ssa (void)
2351 {
2352 bitmap_head *dfs;
2353 basic_block bb;
2354
2355 timevar_push (TV_TREE_SSA_OTHER);
2356
2357 /* Initialize operand data structures. */
2358 init_ssa_operands ();
2359
2360 /* Initialize internal data needed by the renamer. */
2361 init_ssa_renamer ();
2362
2363 /* Initialize the set of interesting blocks. The callback
2364 mark_def_sites will add to this set those blocks that the renamer
2365 should process. */
2366 interesting_blocks = sbitmap_alloc (last_basic_block);
2367 sbitmap_zero (interesting_blocks);
2368
2369 /* Initialize dominance frontier. */
2370 dfs = XNEWVEC (bitmap_head, last_basic_block);
2371 FOR_EACH_BB (bb)
2372 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2373
2374 /* 1- Compute dominance frontiers. */
2375 calculate_dominance_info (CDI_DOMINATORS);
2376 compute_dominance_frontiers (dfs);
2377
2378 /* 2- Find and mark definition sites. */
2379 mark_def_site_blocks ();
2380
2381 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2382 insert_phi_nodes (dfs);
2383
2384 /* 4- Rename all the blocks. */
2385 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2386
2387 /* Free allocated memory. */
2388 FOR_EACH_BB (bb)
2389 bitmap_clear (&dfs[bb->index]);
2390 free (dfs);
2391
2392 sbitmap_free (interesting_blocks);
2393
2394 fini_ssa_renamer ();
2395
2396 timevar_pop (TV_TREE_SSA_OTHER);
2397 return 0;
2398 }
2399
2400
2401 struct gimple_opt_pass pass_build_ssa =
2402 {
2403 {
2404 GIMPLE_PASS,
2405 "ssa", /* name */
2406 NULL, /* gate */
2407 rewrite_into_ssa, /* execute */
2408 NULL, /* sub */
2409 NULL, /* next */
2410 0, /* static_pass_number */
2411 TV_NONE, /* tv_id */
2412 PROP_cfg | PROP_referenced_vars, /* properties_required */
2413 PROP_ssa, /* properties_provided */
2414 0, /* properties_destroyed */
2415 0, /* todo_flags_start */
2416 TODO_dump_func
2417 | TODO_update_ssa_only_virtuals
2418 | TODO_verify_ssa
2419 | TODO_remove_unused_locals /* todo_flags_finish */
2420 }
2421 };
2422
2423
2424 /* Mark the definition of VAR at STMT and BB as interesting for the
2425 renamer. BLOCKS is the set of blocks that need updating. */
2426
2427 static void
2428 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2429 {
2430 gcc_assert (bitmap_bit_p (blocks_to_update, bb->index));
2431 set_register_defs (stmt, true);
2432
2433 if (insert_phi_p)
2434 {
2435 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2436
2437 set_def_block (var, bb, is_phi_p);
2438
2439 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2440 site for both itself and all the old names replaced by it. */
2441 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2442 {
2443 bitmap_iterator bi;
2444 unsigned i;
2445 bitmap set = names_replaced_by (var);
2446 if (set)
2447 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2448 set_def_block (ssa_name (i), bb, is_phi_p);
2449 }
2450 }
2451 }
2452
2453
2454 /* Mark the use of VAR at STMT and BB as interesting for the
2455 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2456 nodes. */
2457
2458 static inline void
2459 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2460 {
2461 basic_block def_bb = gimple_bb (stmt);
2462
2463 mark_block_for_update (def_bb);
2464 mark_block_for_update (bb);
2465
2466 if (gimple_code (stmt) == GIMPLE_PHI)
2467 mark_phi_for_rewrite (def_bb, stmt);
2468 else
2469 {
2470 set_rewrite_uses (stmt, true);
2471
2472 if (is_gimple_debug (stmt))
2473 return;
2474 }
2475
2476 /* If VAR has not been defined in BB, then it is live-on-entry
2477 to BB. Note that we cannot just use the block holding VAR's
2478 definition because if VAR is one of the names in OLD_SSA_NAMES,
2479 it will have several definitions (itself and all the names that
2480 replace it). */
2481 if (insert_phi_p)
2482 {
2483 struct def_blocks_d *db_p = get_def_blocks_for (var);
2484 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2485 set_livein_block (var, bb);
2486 }
2487 }
2488
2489
2490 /* Do a dominator walk starting at BB processing statements that
2491 reference symbols in SYMS_TO_RENAME. This is very similar to
2492 mark_def_sites, but the scan handles statements whose operands may
2493 already be SSA names.
2494
2495 If INSERT_PHI_P is true, mark those uses as live in the
2496 corresponding block. This is later used by the PHI placement
2497 algorithm to make PHI pruning decisions.
2498
2499 FIXME. Most of this would be unnecessary if we could associate a
2500 symbol to all the SSA names that reference it. But that
2501 sounds like it would be expensive to maintain. Still, it
2502 would be interesting to see if it makes better sense to do
2503 that. */
2504
2505 static void
2506 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2507 {
2508 basic_block son;
2509 gimple_stmt_iterator si;
2510 edge e;
2511 edge_iterator ei;
2512
2513 mark_block_for_update (bb);
2514
2515 /* Process PHI nodes marking interesting those that define or use
2516 the symbols that we are interested in. */
2517 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2518 {
2519 gimple phi = gsi_stmt (si);
2520 tree lhs_sym, lhs = gimple_phi_result (phi);
2521
2522 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2523
2524 if (!symbol_marked_for_renaming (lhs_sym))
2525 continue;
2526
2527 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2528
2529 /* Mark the uses in phi nodes as interesting. It would be more correct
2530 to process the arguments of the phi nodes of the successor edges of
2531 BB at the end of prepare_block_for_update, however, that turns out
2532 to be significantly more expensive. Doing it here is conservatively
2533 correct -- it may only cause us to believe a value to be live in a
2534 block that also contains its definition, and thus insert a few more
2535 phi nodes for it. */
2536 FOR_EACH_EDGE (e, ei, bb->preds)
2537 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2538 }
2539
2540 /* Process the statements. */
2541 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2542 {
2543 gimple stmt;
2544 ssa_op_iter i;
2545 use_operand_p use_p;
2546 def_operand_p def_p;
2547
2548 stmt = gsi_stmt (si);
2549
2550 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
2551 {
2552 tree use = USE_FROM_PTR (use_p);
2553 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2554 if (symbol_marked_for_renaming (sym))
2555 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2556 }
2557
2558 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_ALL_DEFS)
2559 {
2560 tree def = DEF_FROM_PTR (def_p);
2561 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2562 if (symbol_marked_for_renaming (sym))
2563 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2564 }
2565 }
2566
2567 /* Now visit all the blocks dominated by BB. */
2568 for (son = first_dom_son (CDI_DOMINATORS, bb);
2569 son;
2570 son = next_dom_son (CDI_DOMINATORS, son))
2571 prepare_block_for_update (son, insert_phi_p);
2572 }
2573
2574
2575 /* Helper for prepare_names_to_update. Mark all the use sites for
2576 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2577 prepare_names_to_update. */
2578
2579 static void
2580 prepare_use_sites_for (tree name, bool insert_phi_p)
2581 {
2582 use_operand_p use_p;
2583 imm_use_iterator iter;
2584
2585 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2586 {
2587 gimple stmt = USE_STMT (use_p);
2588 basic_block bb = gimple_bb (stmt);
2589
2590 if (gimple_code (stmt) == GIMPLE_PHI)
2591 {
2592 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2593 edge e = gimple_phi_arg_edge (stmt, ix);
2594 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2595 }
2596 else
2597 {
2598 /* For regular statements, mark this as an interesting use
2599 for NAME. */
2600 mark_use_interesting (name, stmt, bb, insert_phi_p);
2601 }
2602 }
2603 }
2604
2605
2606 /* Helper for prepare_names_to_update. Mark the definition site for
2607 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2608 prepare_names_to_update. */
2609
2610 static void
2611 prepare_def_site_for (tree name, bool insert_phi_p)
2612 {
2613 gimple stmt;
2614 basic_block bb;
2615
2616 gcc_assert (names_to_release == NULL
2617 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2618
2619 stmt = SSA_NAME_DEF_STMT (name);
2620 bb = gimple_bb (stmt);
2621 if (bb)
2622 {
2623 gcc_assert (bb->index < last_basic_block);
2624 mark_block_for_update (bb);
2625 mark_def_interesting (name, stmt, bb, insert_phi_p);
2626 }
2627 }
2628
2629
2630 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2631 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2632 PHI nodes for newly created names. */
2633
2634 static void
2635 prepare_names_to_update (bool insert_phi_p)
2636 {
2637 unsigned i = 0;
2638 bitmap_iterator bi;
2639 sbitmap_iterator sbi;
2640
2641 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2642 remove it from NEW_SSA_NAMES so that we don't try to visit its
2643 defining basic block (which most likely doesn't exist). Notice
2644 that we cannot do the same with names in OLD_SSA_NAMES because we
2645 want to replace existing instances. */
2646 if (names_to_release)
2647 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2648 RESET_BIT (new_ssa_names, i);
2649
2650 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2651 names may be considered to be live-in on blocks that contain
2652 definitions for their replacements. */
2653 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2654 prepare_def_site_for (ssa_name (i), insert_phi_p);
2655
2656 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2657 OLD_SSA_NAMES, but we have to ignore its definition site. */
2658 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2659 {
2660 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2661 prepare_def_site_for (ssa_name (i), insert_phi_p);
2662 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2663 }
2664 }
2665
2666
2667 /* Dump all the names replaced by NAME to FILE. */
2668
2669 void
2670 dump_names_replaced_by (FILE *file, tree name)
2671 {
2672 unsigned i;
2673 bitmap old_set;
2674 bitmap_iterator bi;
2675
2676 print_generic_expr (file, name, 0);
2677 fprintf (file, " -> { ");
2678
2679 old_set = names_replaced_by (name);
2680 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2681 {
2682 print_generic_expr (file, ssa_name (i), 0);
2683 fprintf (file, " ");
2684 }
2685
2686 fprintf (file, "}\n");
2687 }
2688
2689
2690 /* Dump all the names replaced by NAME to stderr. */
2691
2692 DEBUG_FUNCTION void
2693 debug_names_replaced_by (tree name)
2694 {
2695 dump_names_replaced_by (stderr, name);
2696 }
2697
2698
2699 /* Dump SSA update information to FILE. */
2700
2701 void
2702 dump_update_ssa (FILE *file)
2703 {
2704 unsigned i = 0;
2705 bitmap_iterator bi;
2706
2707 if (!need_ssa_update_p (cfun))
2708 return;
2709
2710 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2711 {
2712 sbitmap_iterator sbi;
2713
2714 fprintf (file, "\nSSA replacement table\n");
2715 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2716 "O_1, ..., O_j\n\n");
2717
2718 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2719 dump_names_replaced_by (file, ssa_name (i));
2720
2721 fprintf (file, "\n");
2722 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2723 update_ssa_stats.num_virtual_mappings);
2724 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2725 update_ssa_stats.num_total_mappings
2726 - update_ssa_stats.num_virtual_mappings);
2727 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2728 update_ssa_stats.num_total_mappings);
2729
2730 fprintf (file, "\nNumber of virtual symbols: %u\n",
2731 update_ssa_stats.num_virtual_symbols);
2732 }
2733
2734 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
2735 {
2736 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2737 dump_decl_set (file, SYMS_TO_RENAME (cfun));
2738 fprintf (file, "\n");
2739 }
2740
2741 if (names_to_release && !bitmap_empty_p (names_to_release))
2742 {
2743 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2744 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2745 {
2746 print_generic_expr (file, ssa_name (i), 0);
2747 fprintf (file, " ");
2748 }
2749 }
2750
2751 fprintf (file, "\n\n");
2752 }
2753
2754
2755 /* Dump SSA update information to stderr. */
2756
2757 DEBUG_FUNCTION void
2758 debug_update_ssa (void)
2759 {
2760 dump_update_ssa (stderr);
2761 }
2762
2763
2764 /* Initialize data structures used for incremental SSA updates. */
2765
2766 static void
2767 init_update_ssa (struct function *fn)
2768 {
2769 /* Reserve more space than the current number of names. The calls to
2770 add_new_name_mapping are typically done after creating new SSA
2771 names, so we'll need to reallocate these arrays. */
2772 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2773 sbitmap_zero (old_ssa_names);
2774
2775 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2776 sbitmap_zero (new_ssa_names);
2777
2778 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2779 names_to_release = NULL;
2780 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2781 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2782 update_ssa_initialized_fn = fn;
2783 }
2784
2785
2786 /* Deallocate data structures used for incremental SSA updates. */
2787
2788 void
2789 delete_update_ssa (void)
2790 {
2791 unsigned i;
2792 bitmap_iterator bi;
2793
2794 sbitmap_free (old_ssa_names);
2795 old_ssa_names = NULL;
2796
2797 sbitmap_free (new_ssa_names);
2798 new_ssa_names = NULL;
2799
2800 htab_delete (repl_tbl);
2801 repl_tbl = NULL;
2802
2803 bitmap_clear (SYMS_TO_RENAME (update_ssa_initialized_fn));
2804 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2805
2806 if (names_to_release)
2807 {
2808 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2809 release_ssa_name (ssa_name (i));
2810 BITMAP_FREE (names_to_release);
2811 }
2812
2813 clear_ssa_name_info ();
2814
2815 fini_ssa_renamer ();
2816
2817 if (blocks_with_phis_to_rewrite)
2818 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2819 {
2820 gimple_vec phis = VEC_index (gimple_vec, phis_to_rewrite, i);
2821
2822 VEC_free (gimple, heap, phis);
2823 VEC_replace (gimple_vec, phis_to_rewrite, i, NULL);
2824 }
2825
2826 BITMAP_FREE (blocks_with_phis_to_rewrite);
2827 BITMAP_FREE (blocks_to_update);
2828 update_ssa_initialized_fn = NULL;
2829 }
2830
2831
2832 /* Create a new name for OLD_NAME in statement STMT and replace the
2833 operand pointed to by DEF_P with the newly created name. Return
2834 the new name and register the replacement mapping <NEW, OLD> in
2835 update_ssa's tables. */
2836
2837 tree
2838 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2839 {
2840 tree new_name = duplicate_ssa_name (old_name, stmt);
2841
2842 SET_DEF (def, new_name);
2843
2844 if (gimple_code (stmt) == GIMPLE_PHI)
2845 {
2846 edge e;
2847 edge_iterator ei;
2848 basic_block bb = gimple_bb (stmt);
2849
2850 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2851 FOR_EACH_EDGE (e, ei, bb->preds)
2852 if (e->flags & EDGE_ABNORMAL)
2853 {
2854 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2855 break;
2856 }
2857 }
2858
2859 register_new_name_mapping (new_name, old_name);
2860
2861 /* For the benefit of passes that will be updating the SSA form on
2862 their own, set the current reaching definition of OLD_NAME to be
2863 NEW_NAME. */
2864 set_current_def (old_name, new_name);
2865
2866 return new_name;
2867 }
2868
2869
2870 /* Register name NEW to be a replacement for name OLD. This function
2871 must be called for every replacement that should be performed by
2872 update_ssa. */
2873
2874 void
2875 register_new_name_mapping (tree new_tree, tree old)
2876 {
2877 if (!update_ssa_initialized_fn)
2878 init_update_ssa (cfun);
2879
2880 gcc_assert (update_ssa_initialized_fn == cfun);
2881
2882 add_new_name_mapping (new_tree, old);
2883 }
2884
2885
2886 /* Register symbol SYM to be renamed by update_ssa. */
2887
2888 void
2889 mark_sym_for_renaming (tree sym)
2890 {
2891 bitmap_set_bit (SYMS_TO_RENAME (cfun), DECL_UID (sym));
2892 }
2893
2894
2895 /* Register all the symbols in SET to be renamed by update_ssa. */
2896
2897 void
2898 mark_set_for_renaming (bitmap set)
2899 {
2900 bitmap_iterator bi;
2901 unsigned i;
2902
2903 if (set == NULL || bitmap_empty_p (set))
2904 return;
2905
2906 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2907 mark_sym_for_renaming (referenced_var (i));
2908 }
2909
2910
2911 /* Return true if there is any work to be done by update_ssa
2912 for function FN. */
2913
2914 bool
2915 need_ssa_update_p (struct function *fn)
2916 {
2917 gcc_assert (fn != NULL);
2918 return (update_ssa_initialized_fn == fn
2919 || (fn->gimple_df
2920 && !bitmap_empty_p (SYMS_TO_RENAME (fn))));
2921 }
2922
2923 /* Return true if SSA name mappings have been registered for SSA updating. */
2924
2925 bool
2926 name_mappings_registered_p (void)
2927 {
2928 if (!update_ssa_initialized_fn)
2929 return false;
2930
2931 gcc_assert (update_ssa_initialized_fn == cfun);
2932
2933 return repl_tbl && htab_elements (repl_tbl) > 0;
2934 }
2935
2936 /* Return true if name N has been registered in the replacement table. */
2937
2938 bool
2939 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2940 {
2941 if (!update_ssa_initialized_fn)
2942 return false;
2943
2944 gcc_assert (update_ssa_initialized_fn == cfun);
2945
2946 return is_new_name (n) || is_old_name (n);
2947 }
2948
2949
2950 /* Return the set of all the SSA names marked to be replaced. */
2951
2952 bitmap
2953 ssa_names_to_replace (void)
2954 {
2955 unsigned i = 0;
2956 bitmap ret;
2957 sbitmap_iterator sbi;
2958
2959 gcc_assert (update_ssa_initialized_fn == NULL
2960 || update_ssa_initialized_fn == cfun);
2961
2962 ret = BITMAP_ALLOC (NULL);
2963 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2964 bitmap_set_bit (ret, i);
2965
2966 return ret;
2967 }
2968
2969
2970 /* Mark NAME to be released after update_ssa has finished. */
2971
2972 void
2973 release_ssa_name_after_update_ssa (tree name)
2974 {
2975 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2976
2977 if (names_to_release == NULL)
2978 names_to_release = BITMAP_ALLOC (NULL);
2979
2980 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2981 }
2982
2983
2984 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2985 frontier information. BLOCKS is the set of blocks to be updated.
2986
2987 This is slightly different than the regular PHI insertion
2988 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2989 real names (i.e., GIMPLE registers) are inserted:
2990
2991 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2992 nodes inside the region affected by the block that defines VAR
2993 and the blocks that define all its replacements. All these
2994 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2995
2996 First, we compute the entry point to the region (ENTRY). This is
2997 given by the nearest common dominator to all the definition
2998 blocks. When computing the iterated dominance frontier (IDF), any
2999 block not strictly dominated by ENTRY is ignored.
3000
3001 We then call the standard PHI insertion algorithm with the pruned
3002 IDF.
3003
3004 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3005 names is not pruned. PHI nodes are inserted at every IDF block. */
3006
3007 static void
3008 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3009 unsigned update_flags)
3010 {
3011 basic_block entry;
3012 struct def_blocks_d *db;
3013 bitmap idf, pruned_idf;
3014 bitmap_iterator bi;
3015 unsigned i;
3016
3017 #if defined ENABLE_CHECKING
3018 if (TREE_CODE (var) == SSA_NAME)
3019 gcc_assert (is_old_name (var));
3020 else
3021 gcc_assert (symbol_marked_for_renaming (var));
3022 #endif
3023
3024 /* Get all the definition sites for VAR. */
3025 db = find_def_blocks_for (var);
3026
3027 /* No need to do anything if there were no definitions to VAR. */
3028 if (db == NULL || bitmap_empty_p (db->def_blocks))
3029 return;
3030
3031 /* Compute the initial iterated dominance frontier. */
3032 idf = compute_idf (db->def_blocks, dfs);
3033 pruned_idf = BITMAP_ALLOC (NULL);
3034
3035 if (TREE_CODE (var) == SSA_NAME)
3036 {
3037 if (update_flags == TODO_update_ssa)
3038 {
3039 /* If doing regular SSA updates for GIMPLE registers, we are
3040 only interested in IDF blocks dominated by the nearest
3041 common dominator of all the definition blocks. */
3042 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3043 db->def_blocks);
3044 if (entry != ENTRY_BLOCK_PTR)
3045 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3046 if (BASIC_BLOCK (i) != entry
3047 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
3048 bitmap_set_bit (pruned_idf, i);
3049 }
3050 else
3051 {
3052 /* Otherwise, do not prune the IDF for VAR. */
3053 gcc_assert (update_flags == TODO_update_ssa_full_phi);
3054 bitmap_copy (pruned_idf, idf);
3055 }
3056 }
3057 else
3058 {
3059 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3060 for the first time, so we need to compute the full IDF for
3061 it. */
3062 bitmap_copy (pruned_idf, idf);
3063 }
3064
3065 if (!bitmap_empty_p (pruned_idf))
3066 {
3067 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3068 are included in the region to be updated. The feeding blocks
3069 are important to guarantee that the PHI arguments are renamed
3070 properly. */
3071
3072 /* FIXME, this is not needed if we are updating symbols. We are
3073 already starting at the ENTRY block anyway. */
3074 bitmap_ior_into (blocks, pruned_idf);
3075 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3076 {
3077 edge e;
3078 edge_iterator ei;
3079 basic_block bb = BASIC_BLOCK (i);
3080
3081 FOR_EACH_EDGE (e, ei, bb->preds)
3082 if (e->src->index >= 0)
3083 bitmap_set_bit (blocks, e->src->index);
3084 }
3085
3086 insert_phi_nodes_for (var, pruned_idf, true);
3087 }
3088
3089 BITMAP_FREE (pruned_idf);
3090 BITMAP_FREE (idf);
3091 }
3092
3093
3094 /* Heuristic to determine whether SSA name mappings for virtual names
3095 should be discarded and their symbols rewritten from scratch. When
3096 there is a large number of mappings for virtual names, the
3097 insertion of PHI nodes for the old names in the mappings takes
3098 considerable more time than if we inserted PHI nodes for the
3099 symbols instead.
3100
3101 Currently the heuristic takes these stats into account:
3102
3103 - Number of mappings for virtual SSA names.
3104 - Number of distinct virtual symbols involved in those mappings.
3105
3106 If the number of virtual mappings is much larger than the number of
3107 virtual symbols, then it will be faster to compute PHI insertion
3108 spots for the symbols. Even if this involves traversing the whole
3109 CFG, which is what happens when symbols are renamed from scratch. */
3110
3111 static bool
3112 switch_virtuals_to_full_rewrite_p (void)
3113 {
3114 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
3115 return false;
3116
3117 if (update_ssa_stats.num_virtual_mappings
3118 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
3119 * update_ssa_stats.num_virtual_symbols)
3120 return true;
3121
3122 return false;
3123 }
3124
3125
3126 /* Remove every virtual mapping and mark all the affected virtual
3127 symbols for renaming. */
3128
3129 static void
3130 switch_virtuals_to_full_rewrite (void)
3131 {
3132 unsigned i = 0;
3133 sbitmap_iterator sbi;
3134
3135 if (dump_file)
3136 {
3137 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
3138 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
3139 update_ssa_stats.num_virtual_mappings);
3140 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
3141 update_ssa_stats.num_virtual_symbols);
3142 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
3143 "faster than processing\nthe name mappings.\n\n");
3144 }
3145
3146 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
3147 Note that it is not really necessary to remove the mappings from
3148 REPL_TBL, that would only waste time. */
3149 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
3150 if (!is_gimple_reg (ssa_name (i)))
3151 RESET_BIT (new_ssa_names, i);
3152
3153 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3154 if (!is_gimple_reg (ssa_name (i)))
3155 RESET_BIT (old_ssa_names, i);
3156
3157 mark_set_for_renaming (update_ssa_stats.virtual_symbols);
3158 }
3159
3160
3161 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3162 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3163
3164 1- The names in OLD_SSA_NAMES dominated by the definitions of
3165 NEW_SSA_NAMES are all re-written to be reached by the
3166 appropriate definition from NEW_SSA_NAMES.
3167
3168 2- If needed, new PHI nodes are added to the iterated dominance
3169 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3170
3171 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3172 calling register_new_name_mapping for every pair of names that the
3173 caller wants to replace.
3174
3175 The caller identifies the new names that have been inserted and the
3176 names that need to be replaced by calling register_new_name_mapping
3177 for every pair <NEW, OLD>. Note that the function assumes that the
3178 new names have already been inserted in the IL.
3179
3180 For instance, given the following code:
3181
3182 1 L0:
3183 2 x_1 = PHI (0, x_5)
3184 3 if (x_1 < 10)
3185 4 if (x_1 > 7)
3186 5 y_2 = 0
3187 6 else
3188 7 y_3 = x_1 + x_7
3189 8 endif
3190 9 x_5 = x_1 + 1
3191 10 goto L0;
3192 11 endif
3193
3194 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3195
3196 1 L0:
3197 2 x_1 = PHI (0, x_5)
3198 3 if (x_1 < 10)
3199 4 x_10 = ...
3200 5 if (x_1 > 7)
3201 6 y_2 = 0
3202 7 else
3203 8 x_11 = ...
3204 9 y_3 = x_1 + x_7
3205 10 endif
3206 11 x_5 = x_1 + 1
3207 12 goto L0;
3208 13 endif
3209
3210 We want to replace all the uses of x_1 with the new definitions of
3211 x_10 and x_11. Note that the only uses that should be replaced are
3212 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3213 *not* be replaced (this is why we cannot just mark symbol 'x' for
3214 renaming).
3215
3216 Additionally, we may need to insert a PHI node at line 11 because
3217 that is a merge point for x_10 and x_11. So the use of x_1 at line
3218 11 will be replaced with the new PHI node. The insertion of PHI
3219 nodes is optional. They are not strictly necessary to preserve the
3220 SSA form, and depending on what the caller inserted, they may not
3221 even be useful for the optimizers. UPDATE_FLAGS controls various
3222 aspects of how update_ssa operates, see the documentation for
3223 TODO_update_ssa*. */
3224
3225 void
3226 update_ssa (unsigned update_flags)
3227 {
3228 basic_block bb, start_bb;
3229 bitmap_iterator bi;
3230 unsigned i = 0;
3231 bool insert_phi_p;
3232 sbitmap_iterator sbi;
3233
3234 if (!need_ssa_update_p (cfun))
3235 return;
3236
3237 timevar_push (TV_TREE_SSA_INCREMENTAL);
3238
3239 if (!update_ssa_initialized_fn)
3240 init_update_ssa (cfun);
3241 gcc_assert (update_ssa_initialized_fn == cfun);
3242
3243 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3244 if (!phis_to_rewrite)
3245 phis_to_rewrite = VEC_alloc (gimple_vec, heap, last_basic_block);
3246 blocks_to_update = BITMAP_ALLOC (NULL);
3247
3248 /* Ensure that the dominance information is up-to-date. */
3249 calculate_dominance_info (CDI_DOMINATORS);
3250
3251 /* Only one update flag should be set. */
3252 gcc_assert (update_flags == TODO_update_ssa
3253 || update_flags == TODO_update_ssa_no_phi
3254 || update_flags == TODO_update_ssa_full_phi
3255 || update_flags == TODO_update_ssa_only_virtuals);
3256
3257 /* If we only need to update virtuals, remove all the mappings for
3258 real names before proceeding. The caller is responsible for
3259 having dealt with the name mappings before calling update_ssa. */
3260 if (update_flags == TODO_update_ssa_only_virtuals)
3261 {
3262 sbitmap_zero (old_ssa_names);
3263 sbitmap_zero (new_ssa_names);
3264 htab_empty (repl_tbl);
3265 }
3266
3267 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3268
3269 if (insert_phi_p)
3270 {
3271 /* If the caller requested PHI nodes to be added, initialize
3272 live-in information data structures (DEF_BLOCKS). */
3273
3274 /* For each SSA name N, the DEF_BLOCKS table describes where the
3275 name is defined, which blocks have PHI nodes for N, and which
3276 blocks have uses of N (i.e., N is live-on-entry in those
3277 blocks). */
3278 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
3279 def_blocks_eq, def_blocks_free);
3280 }
3281 else
3282 {
3283 def_blocks = NULL;
3284 }
3285
3286 /* Heuristic to avoid massive slow downs when the replacement
3287 mappings include lots of virtual names. */
3288 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
3289 switch_virtuals_to_full_rewrite ();
3290
3291 /* If there are names defined in the replacement table, prepare
3292 definition and use sites for all the names in NEW_SSA_NAMES and
3293 OLD_SSA_NAMES. */
3294 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
3295 {
3296 prepare_names_to_update (insert_phi_p);
3297
3298 /* If all the names in NEW_SSA_NAMES had been marked for
3299 removal, and there are no symbols to rename, then there's
3300 nothing else to do. */
3301 if (sbitmap_first_set_bit (new_ssa_names) < 0
3302 && bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3303 goto done;
3304 }
3305
3306 /* Next, determine the block at which to start the renaming process. */
3307 if (!bitmap_empty_p (SYMS_TO_RENAME (cfun)))
3308 {
3309 /* If we have to rename some symbols from scratch, we need to
3310 start the process at the root of the CFG. FIXME, it should
3311 be possible to determine the nearest block that had a
3312 definition for each of the symbols that are marked for
3313 updating. For now this seems more work than it's worth. */
3314 start_bb = ENTRY_BLOCK_PTR;
3315
3316 /* Traverse the CFG looking for existing definitions and uses of
3317 symbols in SYMS_TO_RENAME. Mark interesting blocks and
3318 statements and set local live-in information for the PHI
3319 placement heuristics. */
3320 prepare_block_for_update (start_bb, insert_phi_p);
3321 }
3322 else
3323 {
3324 /* Otherwise, the entry block to the region is the nearest
3325 common dominator for the blocks in BLOCKS. */
3326 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3327 blocks_to_update);
3328 }
3329
3330 /* If requested, insert PHI nodes at the iterated dominance frontier
3331 of every block, creating new definitions for names in OLD_SSA_NAMES
3332 and for symbols in SYMS_TO_RENAME. */
3333 if (insert_phi_p)
3334 {
3335 bitmap_head *dfs;
3336
3337 /* If the caller requested PHI nodes to be added, compute
3338 dominance frontiers. */
3339 dfs = XNEWVEC (bitmap_head, last_basic_block);
3340 FOR_EACH_BB (bb)
3341 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3342 compute_dominance_frontiers (dfs);
3343
3344 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
3345 {
3346 sbitmap_iterator sbi;
3347
3348 /* insert_update_phi_nodes_for will call add_new_name_mapping
3349 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3350 will grow while we are traversing it (but it will not
3351 gain any new members). Copy OLD_SSA_NAMES to a temporary
3352 for traversal. */
3353 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
3354 sbitmap_copy (tmp, old_ssa_names);
3355 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
3356 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3357 update_flags);
3358 sbitmap_free (tmp);
3359 }
3360
3361 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3362 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks_to_update,
3363 update_flags);
3364
3365 FOR_EACH_BB (bb)
3366 bitmap_clear (&dfs[bb->index]);
3367 free (dfs);
3368
3369 /* Insertion of PHI nodes may have added blocks to the region.
3370 We need to re-compute START_BB to include the newly added
3371 blocks. */
3372 if (start_bb != ENTRY_BLOCK_PTR)
3373 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3374 blocks_to_update);
3375 }
3376
3377 /* Reset the current definition for name and symbol before renaming
3378 the sub-graph. */
3379 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
3380 set_current_def (ssa_name (i), NULL_TREE);
3381
3382 EXECUTE_IF_SET_IN_BITMAP (SYMS_TO_RENAME (cfun), 0, i, bi)
3383 set_current_def (referenced_var (i), NULL_TREE);
3384
3385 /* Now start the renaming process at START_BB. */
3386 interesting_blocks = sbitmap_alloc (last_basic_block);
3387 sbitmap_zero (interesting_blocks);
3388 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3389 SET_BIT (interesting_blocks, i);
3390
3391 rewrite_blocks (start_bb, REWRITE_UPDATE);
3392
3393 sbitmap_free (interesting_blocks);
3394
3395 /* Debugging dumps. */
3396 if (dump_file)
3397 {
3398 int c;
3399 unsigned i;
3400
3401 dump_update_ssa (dump_file);
3402
3403 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
3404 start_bb->index);
3405
3406 c = 0;
3407 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3408 c++;
3409 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3410 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
3411 c, PERCENT (c, last_basic_block));
3412
3413 if (dump_flags & TDF_DETAILS)
3414 {
3415 fprintf (dump_file, "Affected blocks: ");
3416 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3417 fprintf (dump_file, "%u ", i);
3418 fprintf (dump_file, "\n");
3419 }
3420
3421 fprintf (dump_file, "\n\n");
3422 }
3423
3424 /* Free allocated memory. */
3425 done:
3426 delete_update_ssa ();
3427
3428 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3429 }