genattrtab.c (write_header): Include hash-set.h...
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-set.h"
26 #include "machmode.h"
27 #include "vec.h"
28 #include "double-int.h"
29 #include "input.h"
30 #include "alias.h"
31 #include "symtab.h"
32 #include "wide-int.h"
33 #include "inchash.h"
34 #include "tree.h"
35 #include "fold-const.h"
36 #include "flags.h"
37 #include "tm_p.h"
38 #include "langhooks.h"
39 #include "predict.h"
40 #include "hard-reg-set.h"
41 #include "input.h"
42 #include "function.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "cfganal.h"
46 #include "basic-block.h"
47 #include "gimple-pretty-print.h"
48 #include "hash-table.h"
49 #include "tree-ssa-alias.h"
50 #include "internal-fn.h"
51 #include "gimple-expr.h"
52 #include "is-a.h"
53 #include "gimple.h"
54 #include "gimple-iterator.h"
55 #include "gimple-ssa.h"
56 #include "tree-cfg.h"
57 #include "tree-phinodes.h"
58 #include "ssa-iterators.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "tree-into-ssa.h"
62 #include "expr.h"
63 #include "tree-dfa.h"
64 #include "tree-ssa.h"
65 #include "tree-inline.h"
66 #include "tree-pass.h"
67 #include "cfgloop.h"
68 #include "domwalk.h"
69 #include "params.h"
70 #include "diagnostic-core.h"
71 #include "tree-into-ssa.h"
72
73 #define PERCENT(x,y) ((float)(x) * 100.0 / (float)(y))
74
75 /* This file builds the SSA form for a function as described in:
76 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
77 Computing Static Single Assignment Form and the Control Dependence
78 Graph. ACM Transactions on Programming Languages and Systems,
79 13(4):451-490, October 1991. */
80
81 /* Structure to map a variable VAR to the set of blocks that contain
82 definitions for VAR. */
83 struct def_blocks_d
84 {
85 /* Blocks that contain definitions of VAR. Bit I will be set if the
86 Ith block contains a definition of VAR. */
87 bitmap def_blocks;
88
89 /* Blocks that contain a PHI node for VAR. */
90 bitmap phi_blocks;
91
92 /* Blocks where VAR is live-on-entry. Similar semantics as
93 DEF_BLOCKS. */
94 bitmap livein_blocks;
95 };
96
97 typedef struct def_blocks_d *def_blocks_p;
98
99
100 /* Stack of trees used to restore the global currdefs to its original
101 state after completing rewriting of a block and its dominator
102 children. Its elements have the following properties:
103
104 - An SSA_NAME (N) indicates that the current definition of the
105 underlying variable should be set to the given SSA_NAME. If the
106 symbol associated with the SSA_NAME is not a GIMPLE register, the
107 next slot in the stack must be a _DECL node (SYM). In this case,
108 the name N in the previous slot is the current reaching
109 definition for SYM.
110
111 - A _DECL node indicates that the underlying variable has no
112 current definition.
113
114 - A NULL node at the top entry is used to mark the last slot
115 associated with the current block. */
116 static vec<tree> block_defs_stack;
117
118
119 /* Set of existing SSA names being replaced by update_ssa. */
120 static sbitmap old_ssa_names;
121
122 /* Set of new SSA names being added by update_ssa. Note that both
123 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
124 the operations done on them are presence tests. */
125 static sbitmap new_ssa_names;
126
127 static sbitmap interesting_blocks;
128
129 /* Set of SSA names that have been marked to be released after they
130 were registered in the replacement table. They will be finally
131 released after we finish updating the SSA web. */
132 static bitmap names_to_release;
133
134 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
135 the to basic block with index I. Allocated once per compilation, *not*
136 released between different functions. */
137 static vec< vec<gphi *> > phis_to_rewrite;
138
139 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
140 static bitmap blocks_with_phis_to_rewrite;
141
142 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
143 to grow as the callers to create_new_def_for will create new names on
144 the fly.
145 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
146 need to find a reasonable growth strategy. */
147 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
148
149
150 /* The function the SSA updating data structures have been initialized for.
151 NULL if they need to be initialized by create_new_def_for. */
152 static struct function *update_ssa_initialized_fn = NULL;
153
154 /* Global data to attach to the main dominator walk structure. */
155 struct mark_def_sites_global_data
156 {
157 /* This bitmap contains the variables which are set before they
158 are used in a basic block. */
159 bitmap kills;
160 };
161
162 /* It is advantageous to avoid things like life analysis for variables which
163 do not need PHI nodes. This enum describes whether or not a particular
164 variable may need a PHI node. */
165
166 enum need_phi_state {
167 /* This is the default. If we are still in this state after finding
168 all the definition and use sites, then we will assume the variable
169 needs PHI nodes. This is probably an overly conservative assumption. */
170 NEED_PHI_STATE_UNKNOWN,
171
172 /* This state indicates that we have seen one or more sets of the
173 variable in a single basic block and that the sets dominate all
174 uses seen so far. If after finding all definition and use sites
175 we are still in this state, then the variable does not need any
176 PHI nodes. */
177 NEED_PHI_STATE_NO,
178
179 /* This state indicates that we have either seen multiple definitions of
180 the variable in multiple blocks, or that we encountered a use in a
181 block that was not dominated by the block containing the set(s) of
182 this variable. This variable is assumed to need PHI nodes. */
183 NEED_PHI_STATE_MAYBE
184 };
185
186 /* Information stored for both SSA names and decls. */
187 struct common_info_d
188 {
189 /* This field indicates whether or not the variable may need PHI nodes.
190 See the enum's definition for more detailed information about the
191 states. */
192 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
193
194 /* The current reaching definition replacing this var. */
195 tree current_def;
196
197 /* Definitions for this var. */
198 struct def_blocks_d def_blocks;
199 };
200
201 /* The information associated with decls and SSA names. */
202 typedef struct common_info_d *common_info_p;
203
204 /* Information stored for decls. */
205 struct var_info_d
206 {
207 /* The variable. */
208 tree var;
209
210 /* Information stored for both SSA names and decls. */
211 struct common_info_d info;
212 };
213
214 /* The information associated with decls. */
215 typedef struct var_info_d *var_info_p;
216
217
218 /* VAR_INFOS hashtable helpers. */
219
220 struct var_info_hasher : typed_free_remove <var_info_d>
221 {
222 typedef var_info_d *value_type;
223 typedef var_info_d *compare_type;
224 typedef int store_values_directly;
225 static inline hashval_t hash (const value_type &);
226 static inline bool equal (const value_type &, const compare_type &);
227 };
228
229 inline hashval_t
230 var_info_hasher::hash (const value_type &p)
231 {
232 return DECL_UID (p->var);
233 }
234
235 inline bool
236 var_info_hasher::equal (const value_type &p1, const compare_type &p2)
237 {
238 return p1->var == p2->var;
239 }
240
241
242 /* Each entry in VAR_INFOS contains an element of type STRUCT
243 VAR_INFO_D. */
244 static hash_table<var_info_hasher> *var_infos;
245
246
247 /* Information stored for SSA names. */
248 struct ssa_name_info
249 {
250 /* Age of this record (so that info_for_ssa_name table can be cleared
251 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
252 are assumed to be null. */
253 unsigned age;
254
255 /* Replacement mappings, allocated from update_ssa_obstack. */
256 bitmap repl_set;
257
258 /* Information stored for both SSA names and decls. */
259 struct common_info_d info;
260 };
261
262 /* The information associated with names. */
263 typedef struct ssa_name_info *ssa_name_info_p;
264
265 static vec<ssa_name_info_p> info_for_ssa_name;
266 static unsigned current_info_for_ssa_name_age;
267
268 static bitmap_obstack update_ssa_obstack;
269
270 /* The set of blocks affected by update_ssa. */
271 static bitmap blocks_to_update;
272
273 /* The main entry point to the SSA renamer (rewrite_blocks) may be
274 called several times to do different, but related, tasks.
275 Initially, we need it to rename the whole program into SSA form.
276 At other times, we may need it to only rename into SSA newly
277 exposed symbols. Finally, we can also call it to incrementally fix
278 an already built SSA web. */
279 enum rewrite_mode {
280 /* Convert the whole function into SSA form. */
281 REWRITE_ALL,
282
283 /* Incrementally update the SSA web by replacing existing SSA
284 names with new ones. See update_ssa for details. */
285 REWRITE_UPDATE
286 };
287
288 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
289 static bitmap symbols_to_rename_set;
290 static vec<tree> symbols_to_rename;
291
292 /* Mark SYM for renaming. */
293
294 static void
295 mark_for_renaming (tree sym)
296 {
297 if (!symbols_to_rename_set)
298 symbols_to_rename_set = BITMAP_ALLOC (NULL);
299 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
300 symbols_to_rename.safe_push (sym);
301 }
302
303 /* Return true if SYM is marked for renaming. */
304
305 static bool
306 marked_for_renaming (tree sym)
307 {
308 if (!symbols_to_rename_set || sym == NULL_TREE)
309 return false;
310 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
311 }
312
313
314 /* Return true if STMT needs to be rewritten. When renaming a subset
315 of the variables, not all statements will be processed. This is
316 decided in mark_def_sites. */
317
318 static inline bool
319 rewrite_uses_p (gimple stmt)
320 {
321 return gimple_visited_p (stmt);
322 }
323
324
325 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
326
327 static inline void
328 set_rewrite_uses (gimple stmt, bool rewrite_p)
329 {
330 gimple_set_visited (stmt, rewrite_p);
331 }
332
333
334 /* Return true if the DEFs created by statement STMT should be
335 registered when marking new definition sites. This is slightly
336 different than rewrite_uses_p: it's used by update_ssa to
337 distinguish statements that need to have both uses and defs
338 processed from those that only need to have their defs processed.
339 Statements that define new SSA names only need to have their defs
340 registered, but they don't need to have their uses renamed. */
341
342 static inline bool
343 register_defs_p (gimple stmt)
344 {
345 return gimple_plf (stmt, GF_PLF_1) != 0;
346 }
347
348
349 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
350
351 static inline void
352 set_register_defs (gimple stmt, bool register_defs_p)
353 {
354 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
355 }
356
357
358 /* Get the information associated with NAME. */
359
360 static inline ssa_name_info_p
361 get_ssa_name_ann (tree name)
362 {
363 unsigned ver = SSA_NAME_VERSION (name);
364 unsigned len = info_for_ssa_name.length ();
365 struct ssa_name_info *info;
366
367 /* Re-allocate the vector at most once per update/into-SSA. */
368 if (ver >= len)
369 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
370
371 /* But allocate infos lazily. */
372 info = info_for_ssa_name[ver];
373 if (!info)
374 {
375 info = XCNEW (struct ssa_name_info);
376 info->age = current_info_for_ssa_name_age;
377 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
378 info_for_ssa_name[ver] = info;
379 }
380
381 if (info->age < current_info_for_ssa_name_age)
382 {
383 info->age = current_info_for_ssa_name_age;
384 info->repl_set = NULL;
385 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
386 info->info.current_def = NULL_TREE;
387 info->info.def_blocks.def_blocks = NULL;
388 info->info.def_blocks.phi_blocks = NULL;
389 info->info.def_blocks.livein_blocks = NULL;
390 }
391
392 return info;
393 }
394
395 /* Return and allocate the auxiliar information for DECL. */
396
397 static inline var_info_p
398 get_var_info (tree decl)
399 {
400 struct var_info_d vi;
401 var_info_d **slot;
402 vi.var = decl;
403 slot = var_infos->find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
404 if (*slot == NULL)
405 {
406 var_info_p v = XCNEW (struct var_info_d);
407 v->var = decl;
408 *slot = v;
409 return v;
410 }
411 return *slot;
412 }
413
414
415 /* Clears info for SSA names. */
416
417 static void
418 clear_ssa_name_info (void)
419 {
420 current_info_for_ssa_name_age++;
421
422 /* If current_info_for_ssa_name_age wraps we use stale information.
423 Asser that this does not happen. */
424 gcc_assert (current_info_for_ssa_name_age != 0);
425 }
426
427
428 /* Get access to the auxiliar information stored per SSA name or decl. */
429
430 static inline common_info_p
431 get_common_info (tree var)
432 {
433 if (TREE_CODE (var) == SSA_NAME)
434 return &get_ssa_name_ann (var)->info;
435 else
436 return &get_var_info (var)->info;
437 }
438
439
440 /* Return the current definition for VAR. */
441
442 tree
443 get_current_def (tree var)
444 {
445 return get_common_info (var)->current_def;
446 }
447
448
449 /* Sets current definition of VAR to DEF. */
450
451 void
452 set_current_def (tree var, tree def)
453 {
454 get_common_info (var)->current_def = def;
455 }
456
457 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
458 all statements in basic block BB. */
459
460 static void
461 initialize_flags_in_bb (basic_block bb)
462 {
463 gimple stmt;
464 gimple_stmt_iterator gsi;
465
466 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
467 {
468 gimple phi = gsi_stmt (gsi);
469 set_rewrite_uses (phi, false);
470 set_register_defs (phi, false);
471 }
472
473 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
474 {
475 stmt = gsi_stmt (gsi);
476
477 /* We are going to use the operand cache API, such as
478 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
479 cache for each statement should be up-to-date. */
480 gcc_checking_assert (!gimple_modified_p (stmt));
481 set_rewrite_uses (stmt, false);
482 set_register_defs (stmt, false);
483 }
484 }
485
486 /* Mark block BB as interesting for update_ssa. */
487
488 static void
489 mark_block_for_update (basic_block bb)
490 {
491 gcc_checking_assert (blocks_to_update != NULL);
492 if (!bitmap_set_bit (blocks_to_update, bb->index))
493 return;
494 initialize_flags_in_bb (bb);
495 }
496
497 /* Return the set of blocks where variable VAR is defined and the blocks
498 where VAR is live on entry (livein). If no entry is found in
499 DEF_BLOCKS, a new one is created and returned. */
500
501 static inline struct def_blocks_d *
502 get_def_blocks_for (common_info_p info)
503 {
504 struct def_blocks_d *db_p = &info->def_blocks;
505 if (!db_p->def_blocks)
506 {
507 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
508 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
509 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
510 }
511
512 return db_p;
513 }
514
515
516 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
517 VAR is defined by a PHI node. */
518
519 static void
520 set_def_block (tree var, basic_block bb, bool phi_p)
521 {
522 struct def_blocks_d *db_p;
523 common_info_p info;
524
525 info = get_common_info (var);
526 db_p = get_def_blocks_for (info);
527
528 /* Set the bit corresponding to the block where VAR is defined. */
529 bitmap_set_bit (db_p->def_blocks, bb->index);
530 if (phi_p)
531 bitmap_set_bit (db_p->phi_blocks, bb->index);
532
533 /* Keep track of whether or not we may need to insert PHI nodes.
534
535 If we are in the UNKNOWN state, then this is the first definition
536 of VAR. Additionally, we have not seen any uses of VAR yet, so
537 we do not need a PHI node for this variable at this time (i.e.,
538 transition to NEED_PHI_STATE_NO).
539
540 If we are in any other state, then we either have multiple definitions
541 of this variable occurring in different blocks or we saw a use of the
542 variable which was not dominated by the block containing the
543 definition(s). In this case we may need a PHI node, so enter
544 state NEED_PHI_STATE_MAYBE. */
545 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
546 info->need_phi_state = NEED_PHI_STATE_NO;
547 else
548 info->need_phi_state = NEED_PHI_STATE_MAYBE;
549 }
550
551
552 /* Mark block BB as having VAR live at the entry to BB. */
553
554 static void
555 set_livein_block (tree var, basic_block bb)
556 {
557 common_info_p info;
558 struct def_blocks_d *db_p;
559
560 info = get_common_info (var);
561 db_p = get_def_blocks_for (info);
562
563 /* Set the bit corresponding to the block where VAR is live in. */
564 bitmap_set_bit (db_p->livein_blocks, bb->index);
565
566 /* Keep track of whether or not we may need to insert PHI nodes.
567
568 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
569 by the single block containing the definition(s) of this variable. If
570 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
571 NEED_PHI_STATE_MAYBE. */
572 if (info->need_phi_state == NEED_PHI_STATE_NO)
573 {
574 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
575
576 if (def_block_index == -1
577 || ! dominated_by_p (CDI_DOMINATORS, bb,
578 BASIC_BLOCK_FOR_FN (cfun, def_block_index)))
579 info->need_phi_state = NEED_PHI_STATE_MAYBE;
580 }
581 else
582 info->need_phi_state = NEED_PHI_STATE_MAYBE;
583 }
584
585
586 /* Return true if NAME is in OLD_SSA_NAMES. */
587
588 static inline bool
589 is_old_name (tree name)
590 {
591 unsigned ver = SSA_NAME_VERSION (name);
592 if (!old_ssa_names)
593 return false;
594 return (ver < SBITMAP_SIZE (old_ssa_names)
595 && bitmap_bit_p (old_ssa_names, ver));
596 }
597
598
599 /* Return true if NAME is in NEW_SSA_NAMES. */
600
601 static inline bool
602 is_new_name (tree name)
603 {
604 unsigned ver = SSA_NAME_VERSION (name);
605 if (!new_ssa_names)
606 return false;
607 return (ver < SBITMAP_SIZE (new_ssa_names)
608 && bitmap_bit_p (new_ssa_names, ver));
609 }
610
611
612 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
613
614 static inline bitmap
615 names_replaced_by (tree new_tree)
616 {
617 return get_ssa_name_ann (new_tree)->repl_set;
618 }
619
620
621 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
622
623 static inline void
624 add_to_repl_tbl (tree new_tree, tree old)
625 {
626 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
627 if (!*set)
628 *set = BITMAP_ALLOC (&update_ssa_obstack);
629 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
630 }
631
632
633 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
634 represents the set of names O_1 ... O_j replaced by N_i. This is
635 used by update_ssa and its helpers to introduce new SSA names in an
636 already formed SSA web. */
637
638 static void
639 add_new_name_mapping (tree new_tree, tree old)
640 {
641 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
642 gcc_checking_assert (new_tree != old
643 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
644
645 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
646 caller may have created new names since the set was created. */
647 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
648 {
649 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
650 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
651 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
652 }
653
654 /* Update the REPL_TBL table. */
655 add_to_repl_tbl (new_tree, old);
656
657 /* If OLD had already been registered as a new name, then all the
658 names that OLD replaces should also be replaced by NEW_TREE. */
659 if (is_new_name (old))
660 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
661
662 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
663 respectively. */
664 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
665 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
666 }
667
668
669 /* Call back for walk_dominator_tree used to collect definition sites
670 for every variable in the function. For every statement S in block
671 BB:
672
673 1- Variables defined by S in the DEFS of S are marked in the bitmap
674 KILLS.
675
676 2- If S uses a variable VAR and there is no preceding kill of VAR,
677 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
678
679 This information is used to determine which variables are live
680 across block boundaries to reduce the number of PHI nodes
681 we create. */
682
683 static void
684 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
685 {
686 tree def;
687 use_operand_p use_p;
688 ssa_op_iter iter;
689
690 /* Since this is the first time that we rewrite the program into SSA
691 form, force an operand scan on every statement. */
692 update_stmt (stmt);
693
694 gcc_checking_assert (blocks_to_update == NULL);
695 set_register_defs (stmt, false);
696 set_rewrite_uses (stmt, false);
697
698 if (is_gimple_debug (stmt))
699 {
700 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
701 {
702 tree sym = USE_FROM_PTR (use_p);
703 gcc_checking_assert (DECL_P (sym));
704 set_rewrite_uses (stmt, true);
705 }
706 if (rewrite_uses_p (stmt))
707 bitmap_set_bit (interesting_blocks, bb->index);
708 return;
709 }
710
711 /* If a variable is used before being set, then the variable is live
712 across a block boundary, so mark it live-on-entry to BB. */
713 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
714 {
715 tree sym = USE_FROM_PTR (use_p);
716 gcc_checking_assert (DECL_P (sym));
717 if (!bitmap_bit_p (kills, DECL_UID (sym)))
718 set_livein_block (sym, bb);
719 set_rewrite_uses (stmt, true);
720 }
721
722 /* Now process the defs. Mark BB as the definition block and add
723 each def to the set of killed symbols. */
724 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
725 {
726 gcc_checking_assert (DECL_P (def));
727 set_def_block (def, bb, false);
728 bitmap_set_bit (kills, DECL_UID (def));
729 set_register_defs (stmt, true);
730 }
731
732 /* If we found the statement interesting then also mark the block BB
733 as interesting. */
734 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
735 bitmap_set_bit (interesting_blocks, bb->index);
736 }
737
738 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
739 in the dfs numbering of the dominance tree. */
740
741 struct dom_dfsnum
742 {
743 /* Basic block whose index this entry corresponds to. */
744 unsigned bb_index;
745
746 /* The dfs number of this node. */
747 unsigned dfs_num;
748 };
749
750 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
751 for qsort. */
752
753 static int
754 cmp_dfsnum (const void *a, const void *b)
755 {
756 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
757 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
758
759 return (int) da->dfs_num - (int) db->dfs_num;
760 }
761
762 /* Among the intervals starting at the N points specified in DEFS, find
763 the one that contains S, and return its bb_index. */
764
765 static unsigned
766 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
767 {
768 unsigned f = 0, t = n, m;
769
770 while (t > f + 1)
771 {
772 m = (f + t) / 2;
773 if (defs[m].dfs_num <= s)
774 f = m;
775 else
776 t = m;
777 }
778
779 return defs[f].bb_index;
780 }
781
782 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
783 KILLS is a bitmap of blocks where the value is defined before any use. */
784
785 static void
786 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
787 {
788 bitmap_iterator bi;
789 unsigned i, b, p, u, top;
790 bitmap live_phis;
791 basic_block def_bb, use_bb;
792 edge e;
793 edge_iterator ei;
794 bitmap to_remove;
795 struct dom_dfsnum *defs;
796 unsigned n_defs, adef;
797
798 if (bitmap_empty_p (uses))
799 {
800 bitmap_clear (phis);
801 return;
802 }
803
804 /* The phi must dominate a use, or an argument of a live phi. Also, we
805 do not create any phi nodes in def blocks, unless they are also livein. */
806 to_remove = BITMAP_ALLOC (NULL);
807 bitmap_and_compl (to_remove, kills, uses);
808 bitmap_and_compl_into (phis, to_remove);
809 if (bitmap_empty_p (phis))
810 {
811 BITMAP_FREE (to_remove);
812 return;
813 }
814
815 /* We want to remove the unnecessary phi nodes, but we do not want to compute
816 liveness information, as that may be linear in the size of CFG, and if
817 there are lot of different variables to rewrite, this may lead to quadratic
818 behavior.
819
820 Instead, we basically emulate standard dce. We put all uses to worklist,
821 then for each of them find the nearest def that dominates them. If this
822 def is a phi node, we mark it live, and if it was not live before, we
823 add the predecessors of its basic block to the worklist.
824
825 To quickly locate the nearest def that dominates use, we use dfs numbering
826 of the dominance tree (that is already available in order to speed up
827 queries). For each def, we have the interval given by the dfs number on
828 entry to and on exit from the corresponding subtree in the dominance tree.
829 The nearest dominator for a given use is the smallest of these intervals
830 that contains entry and exit dfs numbers for the basic block with the use.
831 If we store the bounds for all the uses to an array and sort it, we can
832 locate the nearest dominating def in logarithmic time by binary search.*/
833 bitmap_ior (to_remove, kills, phis);
834 n_defs = bitmap_count_bits (to_remove);
835 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
836 defs[0].bb_index = 1;
837 defs[0].dfs_num = 0;
838 adef = 1;
839 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
840 {
841 def_bb = BASIC_BLOCK_FOR_FN (cfun, i);
842 defs[adef].bb_index = i;
843 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
844 defs[adef + 1].bb_index = i;
845 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
846 adef += 2;
847 }
848 BITMAP_FREE (to_remove);
849 gcc_assert (adef == 2 * n_defs + 1);
850 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
851 gcc_assert (defs[0].bb_index == 1);
852
853 /* Now each DEFS entry contains the number of the basic block to that the
854 dfs number corresponds. Change them to the number of basic block that
855 corresponds to the interval following the dfs number. Also, for the
856 dfs_out numbers, increase the dfs number by one (so that it corresponds
857 to the start of the following interval, not to the end of the current
858 one). We use WORKLIST as a stack. */
859 auto_vec<int> worklist (n_defs + 1);
860 worklist.quick_push (1);
861 top = 1;
862 n_defs = 1;
863 for (i = 1; i < adef; i++)
864 {
865 b = defs[i].bb_index;
866 if (b == top)
867 {
868 /* This is a closing element. Interval corresponding to the top
869 of the stack after removing it follows. */
870 worklist.pop ();
871 top = worklist[worklist.length () - 1];
872 defs[n_defs].bb_index = top;
873 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
874 }
875 else
876 {
877 /* Opening element. Nothing to do, just push it to the stack and move
878 it to the correct position. */
879 defs[n_defs].bb_index = defs[i].bb_index;
880 defs[n_defs].dfs_num = defs[i].dfs_num;
881 worklist.quick_push (b);
882 top = b;
883 }
884
885 /* If this interval starts at the same point as the previous one, cancel
886 the previous one. */
887 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
888 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
889 else
890 n_defs++;
891 }
892 worklist.pop ();
893 gcc_assert (worklist.is_empty ());
894
895 /* Now process the uses. */
896 live_phis = BITMAP_ALLOC (NULL);
897 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
898 {
899 worklist.safe_push (i);
900 }
901
902 while (!worklist.is_empty ())
903 {
904 b = worklist.pop ();
905 if (b == ENTRY_BLOCK)
906 continue;
907
908 /* If there is a phi node in USE_BB, it is made live. Otherwise,
909 find the def that dominates the immediate dominator of USE_BB
910 (the kill in USE_BB does not dominate the use). */
911 if (bitmap_bit_p (phis, b))
912 p = b;
913 else
914 {
915 use_bb = get_immediate_dominator (CDI_DOMINATORS,
916 BASIC_BLOCK_FOR_FN (cfun, b));
917 p = find_dfsnum_interval (defs, n_defs,
918 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
919 if (!bitmap_bit_p (phis, p))
920 continue;
921 }
922
923 /* If the phi node is already live, there is nothing to do. */
924 if (!bitmap_set_bit (live_phis, p))
925 continue;
926
927 /* Add the new uses to the worklist. */
928 def_bb = BASIC_BLOCK_FOR_FN (cfun, p);
929 FOR_EACH_EDGE (e, ei, def_bb->preds)
930 {
931 u = e->src->index;
932 if (bitmap_bit_p (uses, u))
933 continue;
934
935 /* In case there is a kill directly in the use block, do not record
936 the use (this is also necessary for correctness, as we assume that
937 uses dominated by a def directly in their block have been filtered
938 out before). */
939 if (bitmap_bit_p (kills, u))
940 continue;
941
942 bitmap_set_bit (uses, u);
943 worklist.safe_push (u);
944 }
945 }
946
947 bitmap_copy (phis, live_phis);
948 BITMAP_FREE (live_phis);
949 free (defs);
950 }
951
952 /* Return the set of blocks where variable VAR is defined and the blocks
953 where VAR is live on entry (livein). Return NULL, if no entry is
954 found in DEF_BLOCKS. */
955
956 static inline struct def_blocks_d *
957 find_def_blocks_for (tree var)
958 {
959 def_blocks_p p = &get_common_info (var)->def_blocks;
960 if (!p->def_blocks)
961 return NULL;
962 return p;
963 }
964
965
966 /* Marks phi node PHI in basic block BB for rewrite. */
967
968 static void
969 mark_phi_for_rewrite (basic_block bb, gphi *phi)
970 {
971 vec<gphi *> phis;
972 unsigned n, idx = bb->index;
973
974 if (rewrite_uses_p (phi))
975 return;
976
977 set_rewrite_uses (phi, true);
978
979 if (!blocks_with_phis_to_rewrite)
980 return;
981
982 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
983
984 n = (unsigned) last_basic_block_for_fn (cfun) + 1;
985 if (phis_to_rewrite.length () < n)
986 phis_to_rewrite.safe_grow_cleared (n);
987
988 phis = phis_to_rewrite[idx];
989 phis.reserve (10);
990
991 phis.safe_push (phi);
992 phis_to_rewrite[idx] = phis;
993 }
994
995 /* Insert PHI nodes for variable VAR using the iterated dominance
996 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
997 function assumes that the caller is incrementally updating the
998 existing SSA form, in which case VAR may be an SSA name instead of
999 a symbol.
1000
1001 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
1002 PHI node for VAR. On exit, only the nodes that received a PHI node
1003 for VAR will be present in PHI_INSERTION_POINTS. */
1004
1005 static void
1006 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
1007 {
1008 unsigned bb_index;
1009 edge e;
1010 gphi *phi;
1011 basic_block bb;
1012 bitmap_iterator bi;
1013 struct def_blocks_d *def_map = find_def_blocks_for (var);
1014
1015 /* Remove the blocks where we already have PHI nodes for VAR. */
1016 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
1017
1018 /* Remove obviously useless phi nodes. */
1019 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
1020 def_map->livein_blocks);
1021
1022 /* And insert the PHI nodes. */
1023 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
1024 {
1025 bb = BASIC_BLOCK_FOR_FN (cfun, bb_index);
1026 if (update_p)
1027 mark_block_for_update (bb);
1028
1029 if (dump_file && (dump_flags & TDF_DETAILS))
1030 {
1031 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1032 print_generic_expr (dump_file, var, TDF_SLIM);
1033 fprintf (dump_file, "\n");
1034 }
1035 phi = NULL;
1036
1037 if (TREE_CODE (var) == SSA_NAME)
1038 {
1039 /* If we are rewriting SSA names, create the LHS of the PHI
1040 node by duplicating VAR. This is useful in the case of
1041 pointers, to also duplicate pointer attributes (alias
1042 information, in particular). */
1043 edge_iterator ei;
1044 tree new_lhs;
1045
1046 gcc_checking_assert (update_p);
1047 new_lhs = duplicate_ssa_name (var, NULL);
1048 phi = create_phi_node (new_lhs, bb);
1049 add_new_name_mapping (new_lhs, var);
1050
1051 /* Add VAR to every argument slot of PHI. We need VAR in
1052 every argument so that rewrite_update_phi_arguments knows
1053 which name is this PHI node replacing. If VAR is a
1054 symbol marked for renaming, this is not necessary, the
1055 renamer will use the symbol on the LHS to get its
1056 reaching definition. */
1057 FOR_EACH_EDGE (e, ei, bb->preds)
1058 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1059 }
1060 else
1061 {
1062 tree tracked_var;
1063
1064 gcc_checking_assert (DECL_P (var));
1065 phi = create_phi_node (var, bb);
1066
1067 tracked_var = target_for_debug_bind (var);
1068 if (tracked_var)
1069 {
1070 gimple note = gimple_build_debug_bind (tracked_var,
1071 PHI_RESULT (phi),
1072 phi);
1073 gimple_stmt_iterator si = gsi_after_labels (bb);
1074 gsi_insert_before (&si, note, GSI_SAME_STMT);
1075 }
1076 }
1077
1078 /* Mark this PHI node as interesting for update_ssa. */
1079 set_register_defs (phi, true);
1080 mark_phi_for_rewrite (bb, phi);
1081 }
1082 }
1083
1084 /* Sort var_infos after DECL_UID of their var. */
1085
1086 static int
1087 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1088 {
1089 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1090 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1091 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1092 return -1;
1093 else
1094 return 1;
1095 }
1096
1097 /* Insert PHI nodes at the dominance frontier of blocks with variable
1098 definitions. DFS contains the dominance frontier information for
1099 the flowgraph. */
1100
1101 static void
1102 insert_phi_nodes (bitmap_head *dfs)
1103 {
1104 hash_table<var_info_hasher>::iterator hi;
1105 unsigned i;
1106 var_info_p info;
1107
1108 timevar_push (TV_TREE_INSERT_PHI_NODES);
1109
1110 auto_vec<var_info_p> vars (var_infos->elements ());
1111 FOR_EACH_HASH_TABLE_ELEMENT (*var_infos, info, var_info_p, hi)
1112 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1113 vars.quick_push (info);
1114
1115 /* Do two stages to avoid code generation differences for UID
1116 differences but no UID ordering differences. */
1117 vars.qsort (insert_phi_nodes_compare_var_infos);
1118
1119 FOR_EACH_VEC_ELT (vars, i, info)
1120 {
1121 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1122 insert_phi_nodes_for (info->var, idf, false);
1123 BITMAP_FREE (idf);
1124 }
1125
1126 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1127 }
1128
1129
1130 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1131 register DEF (an SSA_NAME) to be a new definition for SYM. */
1132
1133 static void
1134 register_new_def (tree def, tree sym)
1135 {
1136 common_info_p info = get_common_info (sym);
1137 tree currdef;
1138
1139 /* If this variable is set in a single basic block and all uses are
1140 dominated by the set(s) in that single basic block, then there is
1141 no reason to record anything for this variable in the block local
1142 definition stacks. Doing so just wastes time and memory.
1143
1144 This is the same test to prune the set of variables which may
1145 need PHI nodes. So we just use that information since it's already
1146 computed and available for us to use. */
1147 if (info->need_phi_state == NEED_PHI_STATE_NO)
1148 {
1149 info->current_def = def;
1150 return;
1151 }
1152
1153 currdef = info->current_def;
1154
1155 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1156 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1157 in the stack so that we know which symbol is being defined by
1158 this SSA name when we unwind the stack. */
1159 if (currdef && !is_gimple_reg (sym))
1160 block_defs_stack.safe_push (sym);
1161
1162 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1163 stack is later used by the dominator tree callbacks to restore
1164 the reaching definitions for all the variables defined in the
1165 block after a recursive visit to all its immediately dominated
1166 blocks. If there is no current reaching definition, then just
1167 record the underlying _DECL node. */
1168 block_defs_stack.safe_push (currdef ? currdef : sym);
1169
1170 /* Set the current reaching definition for SYM to be DEF. */
1171 info->current_def = def;
1172 }
1173
1174
1175 /* Perform a depth-first traversal of the dominator tree looking for
1176 variables to rename. BB is the block where to start searching.
1177 Renaming is a five step process:
1178
1179 1- Every definition made by PHI nodes at the start of the blocks is
1180 registered as the current definition for the corresponding variable.
1181
1182 2- Every statement in BB is rewritten. USE and VUSE operands are
1183 rewritten with their corresponding reaching definition. DEF and
1184 VDEF targets are registered as new definitions.
1185
1186 3- All the PHI nodes in successor blocks of BB are visited. The
1187 argument corresponding to BB is replaced with its current reaching
1188 definition.
1189
1190 4- Recursively rewrite every dominator child block of BB.
1191
1192 5- Restore (in reverse order) the current reaching definition for every
1193 new definition introduced in this block. This is done so that when
1194 we return from the recursive call, all the current reaching
1195 definitions are restored to the names that were valid in the
1196 dominator parent of BB. */
1197
1198 /* Return the current definition for variable VAR. If none is found,
1199 create a new SSA name to act as the zeroth definition for VAR. */
1200
1201 static tree
1202 get_reaching_def (tree var)
1203 {
1204 common_info_p info = get_common_info (var);
1205 tree currdef;
1206
1207 /* Lookup the current reaching definition for VAR. */
1208 currdef = info->current_def;
1209
1210 /* If there is no reaching definition for VAR, create and register a
1211 default definition for it (if needed). */
1212 if (currdef == NULL_TREE)
1213 {
1214 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1215 currdef = get_or_create_ssa_default_def (cfun, sym);
1216 }
1217
1218 /* Return the current reaching definition for VAR, or the default
1219 definition, if we had to create one. */
1220 return currdef;
1221 }
1222
1223
1224 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1225
1226 static void
1227 rewrite_debug_stmt_uses (gimple stmt)
1228 {
1229 use_operand_p use_p;
1230 ssa_op_iter iter;
1231 bool update = false;
1232
1233 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1234 {
1235 tree var = USE_FROM_PTR (use_p), def;
1236 common_info_p info = get_common_info (var);
1237 gcc_checking_assert (DECL_P (var));
1238 def = info->current_def;
1239 if (!def)
1240 {
1241 if (TREE_CODE (var) == PARM_DECL
1242 && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
1243 {
1244 gimple_stmt_iterator gsi
1245 =
1246 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1247 int lim;
1248 /* Search a few source bind stmts at the start of first bb to
1249 see if a DEBUG_EXPR_DECL can't be reused. */
1250 for (lim = 32;
1251 !gsi_end_p (gsi) && lim > 0;
1252 gsi_next (&gsi), lim--)
1253 {
1254 gimple gstmt = gsi_stmt (gsi);
1255 if (!gimple_debug_source_bind_p (gstmt))
1256 break;
1257 if (gimple_debug_source_bind_get_value (gstmt) == var)
1258 {
1259 def = gimple_debug_source_bind_get_var (gstmt);
1260 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1261 break;
1262 else
1263 def = NULL_TREE;
1264 }
1265 }
1266 /* If not, add a new source bind stmt. */
1267 if (def == NULL_TREE)
1268 {
1269 gimple def_temp;
1270 def = make_node (DEBUG_EXPR_DECL);
1271 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1272 DECL_ARTIFICIAL (def) = 1;
1273 TREE_TYPE (def) = TREE_TYPE (var);
1274 DECL_MODE (def) = DECL_MODE (var);
1275 gsi =
1276 gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1277 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1278 }
1279 update = true;
1280 }
1281 }
1282 else
1283 {
1284 /* Check if info->current_def can be trusted. */
1285 basic_block bb = gimple_bb (stmt);
1286 basic_block def_bb
1287 = SSA_NAME_IS_DEFAULT_DEF (def)
1288 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1289
1290 /* If definition is in current bb, it is fine. */
1291 if (bb == def_bb)
1292 ;
1293 /* If definition bb doesn't dominate the current bb,
1294 it can't be used. */
1295 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1296 def = NULL;
1297 /* If there is just one definition and dominates the current
1298 bb, it is fine. */
1299 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1300 ;
1301 else
1302 {
1303 struct def_blocks_d *db_p = get_def_blocks_for (info);
1304
1305 /* If there are some non-debug uses in the current bb,
1306 it is fine. */
1307 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1308 ;
1309 /* Otherwise give up for now. */
1310 else
1311 def = NULL;
1312 }
1313 }
1314 if (def == NULL)
1315 {
1316 gimple_debug_bind_reset_value (stmt);
1317 update_stmt (stmt);
1318 return;
1319 }
1320 SET_USE (use_p, def);
1321 }
1322 if (update)
1323 update_stmt (stmt);
1324 }
1325
1326 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1327 the block with its immediate reaching definitions. Update the current
1328 definition of a variable when a new real or virtual definition is found. */
1329
1330 static void
1331 rewrite_stmt (gimple_stmt_iterator *si)
1332 {
1333 use_operand_p use_p;
1334 def_operand_p def_p;
1335 ssa_op_iter iter;
1336 gimple stmt = gsi_stmt (*si);
1337
1338 /* If mark_def_sites decided that we don't need to rewrite this
1339 statement, ignore it. */
1340 gcc_assert (blocks_to_update == NULL);
1341 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1342 return;
1343
1344 if (dump_file && (dump_flags & TDF_DETAILS))
1345 {
1346 fprintf (dump_file, "Renaming statement ");
1347 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1348 fprintf (dump_file, "\n");
1349 }
1350
1351 /* Step 1. Rewrite USES in the statement. */
1352 if (rewrite_uses_p (stmt))
1353 {
1354 if (is_gimple_debug (stmt))
1355 rewrite_debug_stmt_uses (stmt);
1356 else
1357 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1358 {
1359 tree var = USE_FROM_PTR (use_p);
1360 gcc_checking_assert (DECL_P (var));
1361 SET_USE (use_p, get_reaching_def (var));
1362 }
1363 }
1364
1365 /* Step 2. Register the statement's DEF operands. */
1366 if (register_defs_p (stmt))
1367 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1368 {
1369 tree var = DEF_FROM_PTR (def_p);
1370 tree name;
1371 tree tracked_var;
1372
1373 gcc_checking_assert (DECL_P (var));
1374
1375 if (gimple_clobber_p (stmt)
1376 && is_gimple_reg (var))
1377 {
1378 /* If we rewrite a DECL into SSA form then drop its
1379 clobber stmts and replace uses with a new default def. */
1380 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1381 && !gimple_vdef (stmt));
1382 gsi_replace (si, gimple_build_nop (), true);
1383 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1384 break;
1385 }
1386
1387 name = make_ssa_name (var, stmt);
1388 SET_DEF (def_p, name);
1389 register_new_def (DEF_FROM_PTR (def_p), var);
1390
1391 tracked_var = target_for_debug_bind (var);
1392 if (tracked_var)
1393 {
1394 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1395 gsi_insert_after (si, note, GSI_SAME_STMT);
1396 }
1397 }
1398 }
1399
1400
1401 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1402 PHI nodes. For every PHI node found, add a new argument containing the
1403 current reaching definition for the variable and the edge through which
1404 that definition is reaching the PHI node. */
1405
1406 static void
1407 rewrite_add_phi_arguments (basic_block bb)
1408 {
1409 edge e;
1410 edge_iterator ei;
1411
1412 FOR_EACH_EDGE (e, ei, bb->succs)
1413 {
1414 gphi *phi;
1415 gphi_iterator gsi;
1416
1417 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1418 gsi_next (&gsi))
1419 {
1420 tree currdef, res;
1421 location_t loc;
1422
1423 phi = gsi.phi ();
1424 res = gimple_phi_result (phi);
1425 currdef = get_reaching_def (SSA_NAME_VAR (res));
1426 /* Virtual operand PHI args do not need a location. */
1427 if (virtual_operand_p (res))
1428 loc = UNKNOWN_LOCATION;
1429 else
1430 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1431 add_phi_arg (phi, currdef, e, loc);
1432 }
1433 }
1434 }
1435
1436 class rewrite_dom_walker : public dom_walker
1437 {
1438 public:
1439 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1440
1441 virtual void before_dom_children (basic_block);
1442 virtual void after_dom_children (basic_block);
1443 };
1444
1445 /* SSA Rewriting Step 1. Initialization, create a block local stack
1446 of reaching definitions for new SSA names produced in this block
1447 (BLOCK_DEFS). Register new definitions for every PHI node in the
1448 block. */
1449
1450 void
1451 rewrite_dom_walker::before_dom_children (basic_block bb)
1452 {
1453 if (dump_file && (dump_flags & TDF_DETAILS))
1454 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1455
1456 /* Mark the unwind point for this block. */
1457 block_defs_stack.safe_push (NULL_TREE);
1458
1459 /* Step 1. Register new definitions for every PHI node in the block.
1460 Conceptually, all the PHI nodes are executed in parallel and each PHI
1461 node introduces a new version for the associated variable. */
1462 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1463 gsi_next (&gsi))
1464 {
1465 tree result = gimple_phi_result (gsi_stmt (gsi));
1466 register_new_def (result, SSA_NAME_VAR (result));
1467 }
1468
1469 /* Step 2. Rewrite every variable used in each statement in the block
1470 with its immediate reaching definitions. Update the current definition
1471 of a variable when a new real or virtual definition is found. */
1472 if (bitmap_bit_p (interesting_blocks, bb->index))
1473 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1474 gsi_next (&gsi))
1475 rewrite_stmt (&gsi);
1476
1477 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1478 For every PHI node found, add a new argument containing the current
1479 reaching definition for the variable and the edge through which that
1480 definition is reaching the PHI node. */
1481 rewrite_add_phi_arguments (bb);
1482 }
1483
1484
1485
1486 /* Called after visiting all the statements in basic block BB and all
1487 of its dominator children. Restore CURRDEFS to its original value. */
1488
1489 void
1490 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1491 {
1492 /* Restore CURRDEFS to its original state. */
1493 while (block_defs_stack.length () > 0)
1494 {
1495 tree tmp = block_defs_stack.pop ();
1496 tree saved_def, var;
1497
1498 if (tmp == NULL_TREE)
1499 break;
1500
1501 if (TREE_CODE (tmp) == SSA_NAME)
1502 {
1503 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1504 current definition of its underlying variable. Note that
1505 if the SSA_NAME is not for a GIMPLE register, the symbol
1506 being defined is stored in the next slot in the stack.
1507 This mechanism is needed because an SSA name for a
1508 non-register symbol may be the definition for more than
1509 one symbol (e.g., SFTs, aliased variables, etc). */
1510 saved_def = tmp;
1511 var = SSA_NAME_VAR (saved_def);
1512 if (!is_gimple_reg (var))
1513 var = block_defs_stack.pop ();
1514 }
1515 else
1516 {
1517 /* If we recorded anything else, it must have been a _DECL
1518 node and its current reaching definition must have been
1519 NULL. */
1520 saved_def = NULL;
1521 var = tmp;
1522 }
1523
1524 get_common_info (var)->current_def = saved_def;
1525 }
1526 }
1527
1528
1529 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1530
1531 DEBUG_FUNCTION void
1532 debug_decl_set (bitmap set)
1533 {
1534 dump_decl_set (stderr, set);
1535 fprintf (stderr, "\n");
1536 }
1537
1538
1539 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1540 stack up to a maximum of N levels. If N is -1, the whole stack is
1541 dumped. New levels are created when the dominator tree traversal
1542 used for renaming enters a new sub-tree. */
1543
1544 void
1545 dump_defs_stack (FILE *file, int n)
1546 {
1547 int i, j;
1548
1549 fprintf (file, "\n\nRenaming stack");
1550 if (n > 0)
1551 fprintf (file, " (up to %d levels)", n);
1552 fprintf (file, "\n\n");
1553
1554 i = 1;
1555 fprintf (file, "Level %d (current level)\n", i);
1556 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1557 {
1558 tree name, var;
1559
1560 name = block_defs_stack[j];
1561 if (name == NULL_TREE)
1562 {
1563 i++;
1564 if (n > 0 && i > n)
1565 break;
1566 fprintf (file, "\nLevel %d\n", i);
1567 continue;
1568 }
1569
1570 if (DECL_P (name))
1571 {
1572 var = name;
1573 name = NULL_TREE;
1574 }
1575 else
1576 {
1577 var = SSA_NAME_VAR (name);
1578 if (!is_gimple_reg (var))
1579 {
1580 j--;
1581 var = block_defs_stack[j];
1582 }
1583 }
1584
1585 fprintf (file, " Previous CURRDEF (");
1586 print_generic_expr (file, var, 0);
1587 fprintf (file, ") = ");
1588 if (name)
1589 print_generic_expr (file, name, 0);
1590 else
1591 fprintf (file, "<NIL>");
1592 fprintf (file, "\n");
1593 }
1594 }
1595
1596
1597 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1598 stack up to a maximum of N levels. If N is -1, the whole stack is
1599 dumped. New levels are created when the dominator tree traversal
1600 used for renaming enters a new sub-tree. */
1601
1602 DEBUG_FUNCTION void
1603 debug_defs_stack (int n)
1604 {
1605 dump_defs_stack (stderr, n);
1606 }
1607
1608
1609 /* Dump the current reaching definition of every symbol to FILE. */
1610
1611 void
1612 dump_currdefs (FILE *file)
1613 {
1614 unsigned i;
1615 tree var;
1616
1617 if (symbols_to_rename.is_empty ())
1618 return;
1619
1620 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1621 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1622 {
1623 common_info_p info = get_common_info (var);
1624 fprintf (file, "CURRDEF (");
1625 print_generic_expr (file, var, 0);
1626 fprintf (file, ") = ");
1627 if (info->current_def)
1628 print_generic_expr (file, info->current_def, 0);
1629 else
1630 fprintf (file, "<NIL>");
1631 fprintf (file, "\n");
1632 }
1633 }
1634
1635
1636 /* Dump the current reaching definition of every symbol to stderr. */
1637
1638 DEBUG_FUNCTION void
1639 debug_currdefs (void)
1640 {
1641 dump_currdefs (stderr);
1642 }
1643
1644
1645 /* Dump SSA information to FILE. */
1646
1647 void
1648 dump_tree_ssa (FILE *file)
1649 {
1650 const char *funcname
1651 = lang_hooks.decl_printable_name (current_function_decl, 2);
1652
1653 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1654
1655 dump_var_infos (file);
1656 dump_defs_stack (file, -1);
1657 dump_currdefs (file);
1658 dump_tree_ssa_stats (file);
1659 }
1660
1661
1662 /* Dump SSA information to stderr. */
1663
1664 DEBUG_FUNCTION void
1665 debug_tree_ssa (void)
1666 {
1667 dump_tree_ssa (stderr);
1668 }
1669
1670
1671 /* Dump statistics for the hash table HTAB. */
1672
1673 static void
1674 htab_statistics (FILE *file, const hash_table<var_info_hasher> &htab)
1675 {
1676 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1677 (long) htab.size (),
1678 (long) htab.elements (),
1679 htab.collisions ());
1680 }
1681
1682
1683 /* Dump SSA statistics on FILE. */
1684
1685 void
1686 dump_tree_ssa_stats (FILE *file)
1687 {
1688 if (var_infos)
1689 {
1690 fprintf (file, "\nHash table statistics:\n");
1691 fprintf (file, " var_infos: ");
1692 htab_statistics (file, *var_infos);
1693 fprintf (file, "\n");
1694 }
1695 }
1696
1697
1698 /* Dump SSA statistics on stderr. */
1699
1700 DEBUG_FUNCTION void
1701 debug_tree_ssa_stats (void)
1702 {
1703 dump_tree_ssa_stats (stderr);
1704 }
1705
1706
1707 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1708
1709 int
1710 debug_var_infos_r (var_info_d **slot, FILE *file)
1711 {
1712 struct var_info_d *info = *slot;
1713
1714 fprintf (file, "VAR: ");
1715 print_generic_expr (file, info->var, dump_flags);
1716 bitmap_print (file, info->info.def_blocks.def_blocks,
1717 ", DEF_BLOCKS: { ", "}");
1718 bitmap_print (file, info->info.def_blocks.livein_blocks,
1719 ", LIVEIN_BLOCKS: { ", "}");
1720 bitmap_print (file, info->info.def_blocks.phi_blocks,
1721 ", PHI_BLOCKS: { ", "}\n");
1722
1723 return 1;
1724 }
1725
1726
1727 /* Dump the VAR_INFOS hash table on FILE. */
1728
1729 void
1730 dump_var_infos (FILE *file)
1731 {
1732 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1733 if (var_infos)
1734 var_infos->traverse <FILE *, debug_var_infos_r> (file);
1735 }
1736
1737
1738 /* Dump the VAR_INFOS hash table on stderr. */
1739
1740 DEBUG_FUNCTION void
1741 debug_var_infos (void)
1742 {
1743 dump_var_infos (stderr);
1744 }
1745
1746
1747 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1748
1749 static inline void
1750 register_new_update_single (tree new_name, tree old_name)
1751 {
1752 common_info_p info = get_common_info (old_name);
1753 tree currdef = info->current_def;
1754
1755 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1756 This stack is later used by the dominator tree callbacks to
1757 restore the reaching definitions for all the variables
1758 defined in the block after a recursive visit to all its
1759 immediately dominated blocks. */
1760 block_defs_stack.reserve (2);
1761 block_defs_stack.quick_push (currdef);
1762 block_defs_stack.quick_push (old_name);
1763
1764 /* Set the current reaching definition for OLD_NAME to be
1765 NEW_NAME. */
1766 info->current_def = new_name;
1767 }
1768
1769
1770 /* Register NEW_NAME to be the new reaching definition for all the
1771 names in OLD_NAMES. Used by the incremental SSA update routines to
1772 replace old SSA names with new ones. */
1773
1774 static inline void
1775 register_new_update_set (tree new_name, bitmap old_names)
1776 {
1777 bitmap_iterator bi;
1778 unsigned i;
1779
1780 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1781 register_new_update_single (new_name, ssa_name (i));
1782 }
1783
1784
1785
1786 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1787 it is a symbol marked for renaming, replace it with USE_P's current
1788 reaching definition. */
1789
1790 static inline void
1791 maybe_replace_use (use_operand_p use_p)
1792 {
1793 tree rdef = NULL_TREE;
1794 tree use = USE_FROM_PTR (use_p);
1795 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1796
1797 if (marked_for_renaming (sym))
1798 rdef = get_reaching_def (sym);
1799 else if (is_old_name (use))
1800 rdef = get_reaching_def (use);
1801
1802 if (rdef && rdef != use)
1803 SET_USE (use_p, rdef);
1804 }
1805
1806
1807 /* Same as maybe_replace_use, but without introducing default stmts,
1808 returning false to indicate a need to do so. */
1809
1810 static inline bool
1811 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1812 {
1813 tree rdef = NULL_TREE;
1814 tree use = USE_FROM_PTR (use_p);
1815 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1816
1817 if (marked_for_renaming (sym))
1818 rdef = get_var_info (sym)->info.current_def;
1819 else if (is_old_name (use))
1820 {
1821 rdef = get_ssa_name_ann (use)->info.current_def;
1822 /* We can't assume that, if there's no current definition, the
1823 default one should be used. It could be the case that we've
1824 rearranged blocks so that the earlier definition no longer
1825 dominates the use. */
1826 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1827 rdef = use;
1828 }
1829 else
1830 rdef = use;
1831
1832 if (rdef && rdef != use)
1833 SET_USE (use_p, rdef);
1834
1835 return rdef != NULL_TREE;
1836 }
1837
1838
1839 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1840 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1841 register it as the current definition for the names replaced by
1842 DEF_P. Returns whether the statement should be removed. */
1843
1844 static inline bool
1845 maybe_register_def (def_operand_p def_p, gimple stmt,
1846 gimple_stmt_iterator gsi)
1847 {
1848 tree def = DEF_FROM_PTR (def_p);
1849 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1850 bool to_delete = false;
1851
1852 /* If DEF is a naked symbol that needs renaming, create a new
1853 name for it. */
1854 if (marked_for_renaming (sym))
1855 {
1856 if (DECL_P (def))
1857 {
1858 if (gimple_clobber_p (stmt) && is_gimple_reg (sym))
1859 {
1860 gcc_checking_assert (TREE_CODE (sym) == VAR_DECL);
1861 /* Replace clobber stmts with a default def. This new use of a
1862 default definition may make it look like SSA_NAMEs have
1863 conflicting lifetimes, so we need special code to let them
1864 coalesce properly. */
1865 to_delete = true;
1866 def = get_or_create_ssa_default_def (cfun, sym);
1867 }
1868 else
1869 def = make_ssa_name (def, stmt);
1870 SET_DEF (def_p, def);
1871
1872 tree tracked_var = target_for_debug_bind (sym);
1873 if (tracked_var)
1874 {
1875 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1876 /* If stmt ends the bb, insert the debug stmt on the single
1877 non-EH edge from the stmt. */
1878 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1879 {
1880 basic_block bb = gsi_bb (gsi);
1881 edge_iterator ei;
1882 edge e, ef = NULL;
1883 FOR_EACH_EDGE (e, ei, bb->succs)
1884 if (!(e->flags & EDGE_EH))
1885 {
1886 gcc_checking_assert (!ef);
1887 ef = e;
1888 }
1889 /* If there are other predecessors to ef->dest, then
1890 there must be PHI nodes for the modified
1891 variable, and therefore there will be debug bind
1892 stmts after the PHI nodes. The debug bind notes
1893 we'd insert would force the creation of a new
1894 block (diverging codegen) and be redundant with
1895 the post-PHI bind stmts, so don't add them.
1896
1897 As for the exit edge, there wouldn't be redundant
1898 bind stmts, but there wouldn't be a PC to bind
1899 them to either, so avoid diverging the CFG. */
1900 if (ef && single_pred_p (ef->dest)
1901 && ef->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1902 {
1903 /* If there were PHI nodes in the node, we'd
1904 have to make sure the value we're binding
1905 doesn't need rewriting. But there shouldn't
1906 be PHI nodes in a single-predecessor block,
1907 so we just add the note. */
1908 gsi_insert_on_edge_immediate (ef, note);
1909 }
1910 }
1911 else
1912 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1913 }
1914 }
1915
1916 register_new_update_single (def, sym);
1917 }
1918 else
1919 {
1920 /* If DEF is a new name, register it as a new definition
1921 for all the names replaced by DEF. */
1922 if (is_new_name (def))
1923 register_new_update_set (def, names_replaced_by (def));
1924
1925 /* If DEF is an old name, register DEF as a new
1926 definition for itself. */
1927 if (is_old_name (def))
1928 register_new_update_single (def, def);
1929 }
1930
1931 return to_delete;
1932 }
1933
1934
1935 /* Update every variable used in the statement pointed-to by SI. The
1936 statement is assumed to be in SSA form already. Names in
1937 OLD_SSA_NAMES used by SI will be updated to their current reaching
1938 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1939 will be registered as a new definition for their corresponding name
1940 in OLD_SSA_NAMES. Returns whether STMT should be removed. */
1941
1942 static bool
1943 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1944 {
1945 use_operand_p use_p;
1946 def_operand_p def_p;
1947 ssa_op_iter iter;
1948
1949 /* Only update marked statements. */
1950 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1951 return false;
1952
1953 if (dump_file && (dump_flags & TDF_DETAILS))
1954 {
1955 fprintf (dump_file, "Updating SSA information for statement ");
1956 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1957 }
1958
1959 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1960 symbol is marked for renaming. */
1961 if (rewrite_uses_p (stmt))
1962 {
1963 if (is_gimple_debug (stmt))
1964 {
1965 bool failed = false;
1966
1967 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1968 if (!maybe_replace_use_in_debug_stmt (use_p))
1969 {
1970 failed = true;
1971 break;
1972 }
1973
1974 if (failed)
1975 {
1976 /* DOM sometimes threads jumps in such a way that a
1977 debug stmt ends up referencing a SSA variable that no
1978 longer dominates the debug stmt, but such that all
1979 incoming definitions refer to the same definition in
1980 an earlier dominator. We could try to recover that
1981 definition somehow, but this will have to do for now.
1982
1983 Introducing a default definition, which is what
1984 maybe_replace_use() would do in such cases, may
1985 modify code generation, for the otherwise-unused
1986 default definition would never go away, modifying SSA
1987 version numbers all over. */
1988 gimple_debug_bind_reset_value (stmt);
1989 update_stmt (stmt);
1990 }
1991 }
1992 else
1993 {
1994 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1995 maybe_replace_use (use_p);
1996 }
1997 }
1998
1999 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
2000 Also register definitions for names whose underlying symbol is
2001 marked for renaming. */
2002 bool to_delete = false;
2003 if (register_defs_p (stmt))
2004 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
2005 to_delete |= maybe_register_def (def_p, stmt, gsi);
2006
2007 return to_delete;
2008 }
2009
2010
2011 /* Visit all the successor blocks of BB looking for PHI nodes. For
2012 every PHI node found, check if any of its arguments is in
2013 OLD_SSA_NAMES. If so, and if the argument has a current reaching
2014 definition, replace it. */
2015
2016 static void
2017 rewrite_update_phi_arguments (basic_block bb)
2018 {
2019 edge e;
2020 edge_iterator ei;
2021 unsigned i;
2022
2023 FOR_EACH_EDGE (e, ei, bb->succs)
2024 {
2025 gphi *phi;
2026 vec<gphi *> phis;
2027
2028 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
2029 continue;
2030
2031 phis = phis_to_rewrite[e->dest->index];
2032 FOR_EACH_VEC_ELT (phis, i, phi)
2033 {
2034 tree arg, lhs_sym, reaching_def = NULL;
2035 use_operand_p arg_p;
2036
2037 gcc_checking_assert (rewrite_uses_p (phi));
2038
2039 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
2040 arg = USE_FROM_PTR (arg_p);
2041
2042 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
2043 continue;
2044
2045 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2046
2047 if (arg == NULL_TREE)
2048 {
2049 /* When updating a PHI node for a recently introduced
2050 symbol we may find NULL arguments. That's why we
2051 take the symbol from the LHS of the PHI node. */
2052 reaching_def = get_reaching_def (lhs_sym);
2053
2054 }
2055 else
2056 {
2057 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2058
2059 if (marked_for_renaming (sym))
2060 reaching_def = get_reaching_def (sym);
2061 else if (is_old_name (arg))
2062 reaching_def = get_reaching_def (arg);
2063 }
2064
2065 /* Update the argument if there is a reaching def. */
2066 if (reaching_def)
2067 {
2068 source_location locus;
2069 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2070
2071 SET_USE (arg_p, reaching_def);
2072
2073 /* Virtual operands do not need a location. */
2074 if (virtual_operand_p (reaching_def))
2075 locus = UNKNOWN_LOCATION;
2076 else
2077 {
2078 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2079 gphi *other_phi = dyn_cast <gphi *> (stmt);
2080
2081 /* Single element PHI nodes behave like copies, so get the
2082 location from the phi argument. */
2083 if (other_phi
2084 && gimple_phi_num_args (other_phi) == 1)
2085 locus = gimple_phi_arg_location (other_phi, 0);
2086 else
2087 locus = gimple_location (stmt);
2088 }
2089
2090 gimple_phi_arg_set_location (phi, arg_i, locus);
2091 }
2092
2093
2094 if (e->flags & EDGE_ABNORMAL)
2095 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2096 }
2097 }
2098 }
2099
2100 class rewrite_update_dom_walker : public dom_walker
2101 {
2102 public:
2103 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2104
2105 virtual void before_dom_children (basic_block);
2106 virtual void after_dom_children (basic_block);
2107 };
2108
2109 /* Initialization of block data structures for the incremental SSA
2110 update pass. Create a block local stack of reaching definitions
2111 for new SSA names produced in this block (BLOCK_DEFS). Register
2112 new definitions for every PHI node in the block. */
2113
2114 void
2115 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2116 {
2117 bool is_abnormal_phi;
2118
2119 if (dump_file && (dump_flags & TDF_DETAILS))
2120 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2121 bb->index);
2122
2123 /* Mark the unwind point for this block. */
2124 block_defs_stack.safe_push (NULL_TREE);
2125
2126 if (!bitmap_bit_p (blocks_to_update, bb->index))
2127 return;
2128
2129 /* Mark the LHS if any of the arguments flows through an abnormal
2130 edge. */
2131 is_abnormal_phi = bb_has_abnormal_pred (bb);
2132
2133 /* If any of the PHI nodes is a replacement for a name in
2134 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2135 register it as a new definition for its corresponding name. Also
2136 register definitions for names whose underlying symbols are
2137 marked for renaming. */
2138 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
2139 gsi_next (&gsi))
2140 {
2141 tree lhs, lhs_sym;
2142 gphi *phi = gsi.phi ();
2143
2144 if (!register_defs_p (phi))
2145 continue;
2146
2147 lhs = gimple_phi_result (phi);
2148 lhs_sym = SSA_NAME_VAR (lhs);
2149
2150 if (marked_for_renaming (lhs_sym))
2151 register_new_update_single (lhs, lhs_sym);
2152 else
2153 {
2154
2155 /* If LHS is a new name, register a new definition for all
2156 the names replaced by LHS. */
2157 if (is_new_name (lhs))
2158 register_new_update_set (lhs, names_replaced_by (lhs));
2159
2160 /* If LHS is an OLD name, register it as a new definition
2161 for itself. */
2162 if (is_old_name (lhs))
2163 register_new_update_single (lhs, lhs);
2164 }
2165
2166 if (is_abnormal_phi)
2167 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2168 }
2169
2170 /* Step 2. Rewrite every variable used in each statement in the block. */
2171 if (bitmap_bit_p (interesting_blocks, bb->index))
2172 {
2173 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2174 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2175 if (rewrite_update_stmt (gsi_stmt (gsi), gsi))
2176 gsi_remove (&gsi, true);
2177 else
2178 gsi_next (&gsi);
2179 }
2180
2181 /* Step 3. Update PHI nodes. */
2182 rewrite_update_phi_arguments (bb);
2183 }
2184
2185 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2186 the current reaching definition of every name re-written in BB to
2187 the original reaching definition before visiting BB. This
2188 unwinding must be done in the opposite order to what is done in
2189 register_new_update_set. */
2190
2191 void
2192 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2193 {
2194 while (block_defs_stack.length () > 0)
2195 {
2196 tree var = block_defs_stack.pop ();
2197 tree saved_def;
2198
2199 /* NULL indicates the unwind stop point for this block (see
2200 rewrite_update_enter_block). */
2201 if (var == NULL)
2202 return;
2203
2204 saved_def = block_defs_stack.pop ();
2205 get_common_info (var)->current_def = saved_def;
2206 }
2207 }
2208
2209
2210 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2211 form.
2212
2213 ENTRY indicates the block where to start. Every block dominated by
2214 ENTRY will be rewritten.
2215
2216 WHAT indicates what actions will be taken by the renamer (see enum
2217 rewrite_mode).
2218
2219 BLOCKS are the set of interesting blocks for the dominator walker
2220 to process. If this set is NULL, then all the nodes dominated
2221 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2222 are not present in BLOCKS are ignored. */
2223
2224 static void
2225 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2226 {
2227 /* Rewrite all the basic blocks in the program. */
2228 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2229
2230 block_defs_stack.create (10);
2231
2232 /* Recursively walk the dominator tree rewriting each statement in
2233 each basic block. */
2234 if (what == REWRITE_ALL)
2235 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2236 else if (what == REWRITE_UPDATE)
2237 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2238 else
2239 gcc_unreachable ();
2240
2241 /* Debugging dumps. */
2242 if (dump_file && (dump_flags & TDF_STATS))
2243 {
2244 dump_dfa_stats (dump_file);
2245 if (var_infos)
2246 dump_tree_ssa_stats (dump_file);
2247 }
2248
2249 block_defs_stack.release ();
2250
2251 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2252 }
2253
2254 class mark_def_dom_walker : public dom_walker
2255 {
2256 public:
2257 mark_def_dom_walker (cdi_direction direction);
2258 ~mark_def_dom_walker ();
2259
2260 virtual void before_dom_children (basic_block);
2261
2262 private:
2263 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2264 large enough to accommodate all the variables referenced in the
2265 function, not just the ones we are renaming. */
2266 bitmap m_kills;
2267 };
2268
2269 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2270 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2271 {
2272 }
2273
2274 mark_def_dom_walker::~mark_def_dom_walker ()
2275 {
2276 BITMAP_FREE (m_kills);
2277 }
2278
2279 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2280 at the start of each block, and call mark_def_sites for each statement. */
2281
2282 void
2283 mark_def_dom_walker::before_dom_children (basic_block bb)
2284 {
2285 gimple_stmt_iterator gsi;
2286
2287 bitmap_clear (m_kills);
2288 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2289 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2290 }
2291
2292 /* Initialize internal data needed during renaming. */
2293
2294 static void
2295 init_ssa_renamer (void)
2296 {
2297 cfun->gimple_df->in_ssa_p = false;
2298
2299 /* Allocate memory for the DEF_BLOCKS hash table. */
2300 gcc_assert (!var_infos);
2301 var_infos = new hash_table<var_info_hasher>
2302 (vec_safe_length (cfun->local_decls));
2303
2304 bitmap_obstack_initialize (&update_ssa_obstack);
2305 }
2306
2307
2308 /* Deallocate internal data structures used by the renamer. */
2309
2310 static void
2311 fini_ssa_renamer (void)
2312 {
2313 delete var_infos;
2314 var_infos = NULL;
2315
2316 bitmap_obstack_release (&update_ssa_obstack);
2317
2318 cfun->gimple_df->ssa_renaming_needed = 0;
2319 cfun->gimple_df->rename_vops = 0;
2320 cfun->gimple_df->in_ssa_p = true;
2321 }
2322
2323 /* Main entry point into the SSA builder. The renaming process
2324 proceeds in four main phases:
2325
2326 1- Compute dominance frontier and immediate dominators, needed to
2327 insert PHI nodes and rename the function in dominator tree
2328 order.
2329
2330 2- Find and mark all the blocks that define variables.
2331
2332 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2333
2334 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2335
2336 Steps 3 and 4 are done using the dominator tree walker
2337 (walk_dominator_tree). */
2338
2339 namespace {
2340
2341 const pass_data pass_data_build_ssa =
2342 {
2343 GIMPLE_PASS, /* type */
2344 "ssa", /* name */
2345 OPTGROUP_NONE, /* optinfo_flags */
2346 TV_TREE_SSA_OTHER, /* tv_id */
2347 PROP_cfg, /* properties_required */
2348 PROP_ssa, /* properties_provided */
2349 0, /* properties_destroyed */
2350 0, /* todo_flags_start */
2351 TODO_remove_unused_locals, /* todo_flags_finish */
2352 };
2353
2354 class pass_build_ssa : public gimple_opt_pass
2355 {
2356 public:
2357 pass_build_ssa (gcc::context *ctxt)
2358 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2359 {}
2360
2361 /* opt_pass methods: */
2362 virtual bool gate (function *fun)
2363 {
2364 /* Do nothing for funcions that was produced already in SSA form. */
2365 return !(fun->curr_properties & PROP_ssa);
2366 }
2367
2368 virtual unsigned int execute (function *);
2369
2370 }; // class pass_build_ssa
2371
2372 unsigned int
2373 pass_build_ssa::execute (function *fun)
2374 {
2375 bitmap_head *dfs;
2376 basic_block bb;
2377 unsigned i;
2378
2379 /* Initialize operand data structures. */
2380 init_ssa_operands (fun);
2381
2382 /* Initialize internal data needed by the renamer. */
2383 init_ssa_renamer ();
2384
2385 /* Initialize the set of interesting blocks. The callback
2386 mark_def_sites will add to this set those blocks that the renamer
2387 should process. */
2388 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (fun));
2389 bitmap_clear (interesting_blocks);
2390
2391 /* Initialize dominance frontier. */
2392 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (fun));
2393 FOR_EACH_BB_FN (bb, fun)
2394 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2395
2396 /* 1- Compute dominance frontiers. */
2397 calculate_dominance_info (CDI_DOMINATORS);
2398 compute_dominance_frontiers (dfs);
2399
2400 /* 2- Find and mark definition sites. */
2401 mark_def_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
2402
2403 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2404 insert_phi_nodes (dfs);
2405
2406 /* 4- Rename all the blocks. */
2407 rewrite_blocks (ENTRY_BLOCK_PTR_FOR_FN (fun), REWRITE_ALL);
2408
2409 /* Free allocated memory. */
2410 FOR_EACH_BB_FN (bb, fun)
2411 bitmap_clear (&dfs[bb->index]);
2412 free (dfs);
2413
2414 sbitmap_free (interesting_blocks);
2415
2416 fini_ssa_renamer ();
2417
2418 /* Try to get rid of all gimplifier generated temporaries by making
2419 its SSA names anonymous. This way we can garbage collect them
2420 all after removing unused locals which we do in our TODO. */
2421 for (i = 1; i < num_ssa_names; ++i)
2422 {
2423 tree decl, name = ssa_name (i);
2424 if (!name
2425 || SSA_NAME_IS_DEFAULT_DEF (name))
2426 continue;
2427 decl = SSA_NAME_VAR (name);
2428 if (decl
2429 && TREE_CODE (decl) == VAR_DECL
2430 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2431 && DECL_IGNORED_P (decl))
2432 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2433 }
2434
2435 return 0;
2436 }
2437
2438 } // anon namespace
2439
2440 gimple_opt_pass *
2441 make_pass_build_ssa (gcc::context *ctxt)
2442 {
2443 return new pass_build_ssa (ctxt);
2444 }
2445
2446
2447 /* Mark the definition of VAR at STMT and BB as interesting for the
2448 renamer. BLOCKS is the set of blocks that need updating. */
2449
2450 static void
2451 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2452 {
2453 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2454 set_register_defs (stmt, true);
2455
2456 if (insert_phi_p)
2457 {
2458 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2459
2460 set_def_block (var, bb, is_phi_p);
2461
2462 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2463 site for both itself and all the old names replaced by it. */
2464 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2465 {
2466 bitmap_iterator bi;
2467 unsigned i;
2468 bitmap set = names_replaced_by (var);
2469 if (set)
2470 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2471 set_def_block (ssa_name (i), bb, is_phi_p);
2472 }
2473 }
2474 }
2475
2476
2477 /* Mark the use of VAR at STMT and BB as interesting for the
2478 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2479 nodes. */
2480
2481 static inline void
2482 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2483 {
2484 basic_block def_bb = gimple_bb (stmt);
2485
2486 mark_block_for_update (def_bb);
2487 mark_block_for_update (bb);
2488
2489 if (gimple_code (stmt) == GIMPLE_PHI)
2490 mark_phi_for_rewrite (def_bb, as_a <gphi *> (stmt));
2491 else
2492 {
2493 set_rewrite_uses (stmt, true);
2494
2495 if (is_gimple_debug (stmt))
2496 return;
2497 }
2498
2499 /* If VAR has not been defined in BB, then it is live-on-entry
2500 to BB. Note that we cannot just use the block holding VAR's
2501 definition because if VAR is one of the names in OLD_SSA_NAMES,
2502 it will have several definitions (itself and all the names that
2503 replace it). */
2504 if (insert_phi_p)
2505 {
2506 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2507 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2508 set_livein_block (var, bb);
2509 }
2510 }
2511
2512
2513 /* Do a dominator walk starting at BB processing statements that
2514 reference symbols in SSA operands. This is very similar to
2515 mark_def_sites, but the scan handles statements whose operands may
2516 already be SSA names.
2517
2518 If INSERT_PHI_P is true, mark those uses as live in the
2519 corresponding block. This is later used by the PHI placement
2520 algorithm to make PHI pruning decisions.
2521
2522 FIXME. Most of this would be unnecessary if we could associate a
2523 symbol to all the SSA names that reference it. But that
2524 sounds like it would be expensive to maintain. Still, it
2525 would be interesting to see if it makes better sense to do
2526 that. */
2527
2528 static void
2529 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2530 {
2531 basic_block son;
2532 edge e;
2533 edge_iterator ei;
2534
2535 mark_block_for_update (bb);
2536
2537 /* Process PHI nodes marking interesting those that define or use
2538 the symbols that we are interested in. */
2539 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
2540 gsi_next (&si))
2541 {
2542 gphi *phi = si.phi ();
2543 tree lhs_sym, lhs = gimple_phi_result (phi);
2544
2545 if (TREE_CODE (lhs) == SSA_NAME
2546 && (! virtual_operand_p (lhs)
2547 || ! cfun->gimple_df->rename_vops))
2548 continue;
2549
2550 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2551 mark_for_renaming (lhs_sym);
2552 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2553
2554 /* Mark the uses in phi nodes as interesting. It would be more correct
2555 to process the arguments of the phi nodes of the successor edges of
2556 BB at the end of prepare_block_for_update, however, that turns out
2557 to be significantly more expensive. Doing it here is conservatively
2558 correct -- it may only cause us to believe a value to be live in a
2559 block that also contains its definition, and thus insert a few more
2560 phi nodes for it. */
2561 FOR_EACH_EDGE (e, ei, bb->preds)
2562 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2563 }
2564
2565 /* Process the statements. */
2566 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
2567 gsi_next (&si))
2568 {
2569 gimple stmt;
2570 ssa_op_iter i;
2571 use_operand_p use_p;
2572 def_operand_p def_p;
2573
2574 stmt = gsi_stmt (si);
2575
2576 if (cfun->gimple_df->rename_vops
2577 && gimple_vuse (stmt))
2578 {
2579 tree use = gimple_vuse (stmt);
2580 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2581 mark_for_renaming (sym);
2582 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2583 }
2584
2585 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2586 {
2587 tree use = USE_FROM_PTR (use_p);
2588 if (!DECL_P (use))
2589 continue;
2590 mark_for_renaming (use);
2591 mark_use_interesting (use, stmt, bb, insert_phi_p);
2592 }
2593
2594 if (cfun->gimple_df->rename_vops
2595 && gimple_vdef (stmt))
2596 {
2597 tree def = gimple_vdef (stmt);
2598 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2599 mark_for_renaming (sym);
2600 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2601 }
2602
2603 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2604 {
2605 tree def = DEF_FROM_PTR (def_p);
2606 if (!DECL_P (def))
2607 continue;
2608 mark_for_renaming (def);
2609 mark_def_interesting (def, stmt, bb, insert_phi_p);
2610 }
2611 }
2612
2613 /* Now visit all the blocks dominated by BB. */
2614 for (son = first_dom_son (CDI_DOMINATORS, bb);
2615 son;
2616 son = next_dom_son (CDI_DOMINATORS, son))
2617 prepare_block_for_update (son, insert_phi_p);
2618 }
2619
2620
2621 /* Helper for prepare_names_to_update. Mark all the use sites for
2622 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2623 prepare_names_to_update. */
2624
2625 static void
2626 prepare_use_sites_for (tree name, bool insert_phi_p)
2627 {
2628 use_operand_p use_p;
2629 imm_use_iterator iter;
2630
2631 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2632 {
2633 gimple stmt = USE_STMT (use_p);
2634 basic_block bb = gimple_bb (stmt);
2635
2636 if (gimple_code (stmt) == GIMPLE_PHI)
2637 {
2638 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2639 edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt), ix);
2640 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2641 }
2642 else
2643 {
2644 /* For regular statements, mark this as an interesting use
2645 for NAME. */
2646 mark_use_interesting (name, stmt, bb, insert_phi_p);
2647 }
2648 }
2649 }
2650
2651
2652 /* Helper for prepare_names_to_update. Mark the definition site for
2653 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2654 prepare_names_to_update. */
2655
2656 static void
2657 prepare_def_site_for (tree name, bool insert_phi_p)
2658 {
2659 gimple stmt;
2660 basic_block bb;
2661
2662 gcc_checking_assert (names_to_release == NULL
2663 || !bitmap_bit_p (names_to_release,
2664 SSA_NAME_VERSION (name)));
2665
2666 stmt = SSA_NAME_DEF_STMT (name);
2667 bb = gimple_bb (stmt);
2668 if (bb)
2669 {
2670 gcc_checking_assert (bb->index < last_basic_block_for_fn (cfun));
2671 mark_block_for_update (bb);
2672 mark_def_interesting (name, stmt, bb, insert_phi_p);
2673 }
2674 }
2675
2676
2677 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2678 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2679 PHI nodes for newly created names. */
2680
2681 static void
2682 prepare_names_to_update (bool insert_phi_p)
2683 {
2684 unsigned i = 0;
2685 bitmap_iterator bi;
2686 sbitmap_iterator sbi;
2687
2688 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2689 remove it from NEW_SSA_NAMES so that we don't try to visit its
2690 defining basic block (which most likely doesn't exist). Notice
2691 that we cannot do the same with names in OLD_SSA_NAMES because we
2692 want to replace existing instances. */
2693 if (names_to_release)
2694 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2695 bitmap_clear_bit (new_ssa_names, i);
2696
2697 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2698 names may be considered to be live-in on blocks that contain
2699 definitions for their replacements. */
2700 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2701 prepare_def_site_for (ssa_name (i), insert_phi_p);
2702
2703 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2704 OLD_SSA_NAMES, but we have to ignore its definition site. */
2705 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2706 {
2707 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2708 prepare_def_site_for (ssa_name (i), insert_phi_p);
2709 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2710 }
2711 }
2712
2713
2714 /* Dump all the names replaced by NAME to FILE. */
2715
2716 void
2717 dump_names_replaced_by (FILE *file, tree name)
2718 {
2719 unsigned i;
2720 bitmap old_set;
2721 bitmap_iterator bi;
2722
2723 print_generic_expr (file, name, 0);
2724 fprintf (file, " -> { ");
2725
2726 old_set = names_replaced_by (name);
2727 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2728 {
2729 print_generic_expr (file, ssa_name (i), 0);
2730 fprintf (file, " ");
2731 }
2732
2733 fprintf (file, "}\n");
2734 }
2735
2736
2737 /* Dump all the names replaced by NAME to stderr. */
2738
2739 DEBUG_FUNCTION void
2740 debug_names_replaced_by (tree name)
2741 {
2742 dump_names_replaced_by (stderr, name);
2743 }
2744
2745
2746 /* Dump SSA update information to FILE. */
2747
2748 void
2749 dump_update_ssa (FILE *file)
2750 {
2751 unsigned i = 0;
2752 bitmap_iterator bi;
2753
2754 if (!need_ssa_update_p (cfun))
2755 return;
2756
2757 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2758 {
2759 sbitmap_iterator sbi;
2760
2761 fprintf (file, "\nSSA replacement table\n");
2762 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2763 "O_1, ..., O_j\n\n");
2764
2765 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2766 dump_names_replaced_by (file, ssa_name (i));
2767 }
2768
2769 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2770 {
2771 fprintf (file, "\nSymbols to be put in SSA form\n");
2772 dump_decl_set (file, symbols_to_rename_set);
2773 fprintf (file, "\n");
2774 }
2775
2776 if (names_to_release && !bitmap_empty_p (names_to_release))
2777 {
2778 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2779 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2780 {
2781 print_generic_expr (file, ssa_name (i), 0);
2782 fprintf (file, " ");
2783 }
2784 fprintf (file, "\n");
2785 }
2786 }
2787
2788
2789 /* Dump SSA update information to stderr. */
2790
2791 DEBUG_FUNCTION void
2792 debug_update_ssa (void)
2793 {
2794 dump_update_ssa (stderr);
2795 }
2796
2797
2798 /* Initialize data structures used for incremental SSA updates. */
2799
2800 static void
2801 init_update_ssa (struct function *fn)
2802 {
2803 /* Reserve more space than the current number of names. The calls to
2804 add_new_name_mapping are typically done after creating new SSA
2805 names, so we'll need to reallocate these arrays. */
2806 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2807 bitmap_clear (old_ssa_names);
2808
2809 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2810 bitmap_clear (new_ssa_names);
2811
2812 bitmap_obstack_initialize (&update_ssa_obstack);
2813
2814 names_to_release = NULL;
2815 update_ssa_initialized_fn = fn;
2816 }
2817
2818
2819 /* Deallocate data structures used for incremental SSA updates. */
2820
2821 void
2822 delete_update_ssa (void)
2823 {
2824 unsigned i;
2825 bitmap_iterator bi;
2826
2827 sbitmap_free (old_ssa_names);
2828 old_ssa_names = NULL;
2829
2830 sbitmap_free (new_ssa_names);
2831 new_ssa_names = NULL;
2832
2833 BITMAP_FREE (symbols_to_rename_set);
2834 symbols_to_rename_set = NULL;
2835 symbols_to_rename.release ();
2836
2837 if (names_to_release)
2838 {
2839 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2840 release_ssa_name (ssa_name (i));
2841 BITMAP_FREE (names_to_release);
2842 }
2843
2844 clear_ssa_name_info ();
2845
2846 fini_ssa_renamer ();
2847
2848 if (blocks_with_phis_to_rewrite)
2849 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2850 {
2851 vec<gphi *> phis = phis_to_rewrite[i];
2852 phis.release ();
2853 phis_to_rewrite[i].create (0);
2854 }
2855
2856 BITMAP_FREE (blocks_with_phis_to_rewrite);
2857 BITMAP_FREE (blocks_to_update);
2858
2859 update_ssa_initialized_fn = NULL;
2860 }
2861
2862
2863 /* Create a new name for OLD_NAME in statement STMT and replace the
2864 operand pointed to by DEF_P with the newly created name. If DEF_P
2865 is NULL then STMT should be a GIMPLE assignment.
2866 Return the new name and register the replacement mapping <NEW, OLD> in
2867 update_ssa's tables. */
2868
2869 tree
2870 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2871 {
2872 tree new_name;
2873
2874 timevar_push (TV_TREE_SSA_INCREMENTAL);
2875
2876 if (!update_ssa_initialized_fn)
2877 init_update_ssa (cfun);
2878
2879 gcc_assert (update_ssa_initialized_fn == cfun);
2880
2881 new_name = duplicate_ssa_name (old_name, stmt);
2882 if (def)
2883 SET_DEF (def, new_name);
2884 else
2885 gimple_assign_set_lhs (stmt, new_name);
2886
2887 if (gimple_code (stmt) == GIMPLE_PHI)
2888 {
2889 basic_block bb = gimple_bb (stmt);
2890
2891 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2892 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2893 }
2894
2895 add_new_name_mapping (new_name, old_name);
2896
2897 /* For the benefit of passes that will be updating the SSA form on
2898 their own, set the current reaching definition of OLD_NAME to be
2899 NEW_NAME. */
2900 get_ssa_name_ann (old_name)->info.current_def = new_name;
2901
2902 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2903
2904 return new_name;
2905 }
2906
2907
2908 /* Mark virtual operands of FN for renaming by update_ssa. */
2909
2910 void
2911 mark_virtual_operands_for_renaming (struct function *fn)
2912 {
2913 fn->gimple_df->ssa_renaming_needed = 1;
2914 fn->gimple_df->rename_vops = 1;
2915 }
2916
2917 /* Replace all uses of NAME by underlying variable and mark it
2918 for renaming. This assumes the defining statement of NAME is
2919 going to be removed. */
2920
2921 void
2922 mark_virtual_operand_for_renaming (tree name)
2923 {
2924 tree name_var = SSA_NAME_VAR (name);
2925 bool used = false;
2926 imm_use_iterator iter;
2927 use_operand_p use_p;
2928 gimple stmt;
2929
2930 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
2931 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
2932 {
2933 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2934 SET_USE (use_p, name_var);
2935 used = true;
2936 }
2937 if (used)
2938 mark_virtual_operands_for_renaming (cfun);
2939 }
2940
2941 /* Replace all uses of the virtual PHI result by its underlying variable
2942 and mark it for renaming. This assumes the PHI node is going to be
2943 removed. */
2944
2945 void
2946 mark_virtual_phi_result_for_renaming (gphi *phi)
2947 {
2948 if (dump_file && (dump_flags & TDF_DETAILS))
2949 {
2950 fprintf (dump_file, "Marking result for renaming : ");
2951 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
2952 fprintf (dump_file, "\n");
2953 }
2954
2955 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
2956 }
2957
2958 /* Return true if there is any work to be done by update_ssa
2959 for function FN. */
2960
2961 bool
2962 need_ssa_update_p (struct function *fn)
2963 {
2964 gcc_assert (fn != NULL);
2965 return (update_ssa_initialized_fn == fn
2966 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2967 }
2968
2969 /* Return true if name N has been registered in the replacement table. */
2970
2971 bool
2972 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2973 {
2974 if (!update_ssa_initialized_fn)
2975 return false;
2976
2977 gcc_assert (update_ssa_initialized_fn == cfun);
2978
2979 return is_new_name (n) || is_old_name (n);
2980 }
2981
2982
2983 /* Mark NAME to be released after update_ssa has finished. */
2984
2985 void
2986 release_ssa_name_after_update_ssa (tree name)
2987 {
2988 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2989
2990 if (names_to_release == NULL)
2991 names_to_release = BITMAP_ALLOC (NULL);
2992
2993 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2994 }
2995
2996
2997 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2998 frontier information. BLOCKS is the set of blocks to be updated.
2999
3000 This is slightly different than the regular PHI insertion
3001 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
3002 real names (i.e., GIMPLE registers) are inserted:
3003
3004 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
3005 nodes inside the region affected by the block that defines VAR
3006 and the blocks that define all its replacements. All these
3007 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
3008
3009 First, we compute the entry point to the region (ENTRY). This is
3010 given by the nearest common dominator to all the definition
3011 blocks. When computing the iterated dominance frontier (IDF), any
3012 block not strictly dominated by ENTRY is ignored.
3013
3014 We then call the standard PHI insertion algorithm with the pruned
3015 IDF.
3016
3017 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
3018 names is not pruned. PHI nodes are inserted at every IDF block. */
3019
3020 static void
3021 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
3022 unsigned update_flags)
3023 {
3024 basic_block entry;
3025 struct def_blocks_d *db;
3026 bitmap idf, pruned_idf;
3027 bitmap_iterator bi;
3028 unsigned i;
3029
3030 if (TREE_CODE (var) == SSA_NAME)
3031 gcc_checking_assert (is_old_name (var));
3032 else
3033 gcc_checking_assert (marked_for_renaming (var));
3034
3035 /* Get all the definition sites for VAR. */
3036 db = find_def_blocks_for (var);
3037
3038 /* No need to do anything if there were no definitions to VAR. */
3039 if (db == NULL || bitmap_empty_p (db->def_blocks))
3040 return;
3041
3042 /* Compute the initial iterated dominance frontier. */
3043 idf = compute_idf (db->def_blocks, dfs);
3044 pruned_idf = BITMAP_ALLOC (NULL);
3045
3046 if (TREE_CODE (var) == SSA_NAME)
3047 {
3048 if (update_flags == TODO_update_ssa)
3049 {
3050 /* If doing regular SSA updates for GIMPLE registers, we are
3051 only interested in IDF blocks dominated by the nearest
3052 common dominator of all the definition blocks. */
3053 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
3054 db->def_blocks);
3055 if (entry != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3056 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
3057 if (BASIC_BLOCK_FOR_FN (cfun, i) != entry
3058 && dominated_by_p (CDI_DOMINATORS,
3059 BASIC_BLOCK_FOR_FN (cfun, i), entry))
3060 bitmap_set_bit (pruned_idf, i);
3061 }
3062 else
3063 {
3064 /* Otherwise, do not prune the IDF for VAR. */
3065 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
3066 bitmap_copy (pruned_idf, idf);
3067 }
3068 }
3069 else
3070 {
3071 /* Otherwise, VAR is a symbol that needs to be put into SSA form
3072 for the first time, so we need to compute the full IDF for
3073 it. */
3074 bitmap_copy (pruned_idf, idf);
3075 }
3076
3077 if (!bitmap_empty_p (pruned_idf))
3078 {
3079 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
3080 are included in the region to be updated. The feeding blocks
3081 are important to guarantee that the PHI arguments are renamed
3082 properly. */
3083
3084 /* FIXME, this is not needed if we are updating symbols. We are
3085 already starting at the ENTRY block anyway. */
3086 bitmap_ior_into (blocks, pruned_idf);
3087 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3088 {
3089 edge e;
3090 edge_iterator ei;
3091 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
3092
3093 FOR_EACH_EDGE (e, ei, bb->preds)
3094 if (e->src->index >= 0)
3095 bitmap_set_bit (blocks, e->src->index);
3096 }
3097
3098 insert_phi_nodes_for (var, pruned_idf, true);
3099 }
3100
3101 BITMAP_FREE (pruned_idf);
3102 BITMAP_FREE (idf);
3103 }
3104
3105 /* Sort symbols_to_rename after their DECL_UID. */
3106
3107 static int
3108 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3109 {
3110 const_tree syma = *(const const_tree *)a;
3111 const_tree symb = *(const const_tree *)b;
3112 if (DECL_UID (syma) == DECL_UID (symb))
3113 return 0;
3114 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3115 }
3116
3117 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3118 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3119
3120 1- The names in OLD_SSA_NAMES dominated by the definitions of
3121 NEW_SSA_NAMES are all re-written to be reached by the
3122 appropriate definition from NEW_SSA_NAMES.
3123
3124 2- If needed, new PHI nodes are added to the iterated dominance
3125 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3126
3127 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3128 calling create_new_def_for to create new defs for names that the
3129 caller wants to replace.
3130
3131 The caller cretaes the new names to be inserted and the names that need
3132 to be replaced by calling create_new_def_for for each old definition
3133 to be replaced. Note that the function assumes that the
3134 new defining statement has already been inserted in the IL.
3135
3136 For instance, given the following code:
3137
3138 1 L0:
3139 2 x_1 = PHI (0, x_5)
3140 3 if (x_1 < 10)
3141 4 if (x_1 > 7)
3142 5 y_2 = 0
3143 6 else
3144 7 y_3 = x_1 + x_7
3145 8 endif
3146 9 x_5 = x_1 + 1
3147 10 goto L0;
3148 11 endif
3149
3150 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3151
3152 1 L0:
3153 2 x_1 = PHI (0, x_5)
3154 3 if (x_1 < 10)
3155 4 x_10 = ...
3156 5 if (x_1 > 7)
3157 6 y_2 = 0
3158 7 else
3159 8 x_11 = ...
3160 9 y_3 = x_1 + x_7
3161 10 endif
3162 11 x_5 = x_1 + 1
3163 12 goto L0;
3164 13 endif
3165
3166 We want to replace all the uses of x_1 with the new definitions of
3167 x_10 and x_11. Note that the only uses that should be replaced are
3168 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3169 *not* be replaced (this is why we cannot just mark symbol 'x' for
3170 renaming).
3171
3172 Additionally, we may need to insert a PHI node at line 11 because
3173 that is a merge point for x_10 and x_11. So the use of x_1 at line
3174 11 will be replaced with the new PHI node. The insertion of PHI
3175 nodes is optional. They are not strictly necessary to preserve the
3176 SSA form, and depending on what the caller inserted, they may not
3177 even be useful for the optimizers. UPDATE_FLAGS controls various
3178 aspects of how update_ssa operates, see the documentation for
3179 TODO_update_ssa*. */
3180
3181 void
3182 update_ssa (unsigned update_flags)
3183 {
3184 basic_block bb, start_bb;
3185 bitmap_iterator bi;
3186 unsigned i = 0;
3187 bool insert_phi_p;
3188 sbitmap_iterator sbi;
3189 tree sym;
3190
3191 /* Only one update flag should be set. */
3192 gcc_assert (update_flags == TODO_update_ssa
3193 || update_flags == TODO_update_ssa_no_phi
3194 || update_flags == TODO_update_ssa_full_phi
3195 || update_flags == TODO_update_ssa_only_virtuals);
3196
3197 if (!need_ssa_update_p (cfun))
3198 return;
3199
3200 #ifdef ENABLE_CHECKING
3201 timevar_push (TV_TREE_STMT_VERIFY);
3202
3203 bool err = false;
3204
3205 FOR_EACH_BB_FN (bb, cfun)
3206 {
3207 gimple_stmt_iterator gsi;
3208 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3209 {
3210 gimple stmt = gsi_stmt (gsi);
3211
3212 ssa_op_iter i;
3213 use_operand_p use_p;
3214 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_ALL_USES)
3215 {
3216 tree use = USE_FROM_PTR (use_p);
3217 if (TREE_CODE (use) != SSA_NAME)
3218 continue;
3219
3220 if (SSA_NAME_IN_FREE_LIST (use))
3221 {
3222 error ("statement uses released SSA name:");
3223 debug_gimple_stmt (stmt);
3224 fprintf (stderr, "The use of ");
3225 print_generic_expr (stderr, use, 0);
3226 fprintf (stderr," should have been replaced\n");
3227 err = true;
3228 }
3229 }
3230 }
3231 }
3232
3233 if (err)
3234 internal_error ("cannot update SSA form");
3235
3236 timevar_pop (TV_TREE_STMT_VERIFY);
3237 #endif
3238
3239 timevar_push (TV_TREE_SSA_INCREMENTAL);
3240
3241 if (dump_file && (dump_flags & TDF_DETAILS))
3242 fprintf (dump_file, "\nUpdating SSA:\n");
3243
3244 if (!update_ssa_initialized_fn)
3245 init_update_ssa (cfun);
3246 else if (update_flags == TODO_update_ssa_only_virtuals)
3247 {
3248 /* If we only need to update virtuals, remove all the mappings for
3249 real names before proceeding. The caller is responsible for
3250 having dealt with the name mappings before calling update_ssa. */
3251 bitmap_clear (old_ssa_names);
3252 bitmap_clear (new_ssa_names);
3253 }
3254
3255 gcc_assert (update_ssa_initialized_fn == cfun);
3256
3257 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3258 if (!phis_to_rewrite.exists ())
3259 phis_to_rewrite.create (last_basic_block_for_fn (cfun) + 1);
3260 blocks_to_update = BITMAP_ALLOC (NULL);
3261
3262 /* Ensure that the dominance information is up-to-date. */
3263 calculate_dominance_info (CDI_DOMINATORS);
3264
3265 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3266
3267 /* If there are names defined in the replacement table, prepare
3268 definition and use sites for all the names in NEW_SSA_NAMES and
3269 OLD_SSA_NAMES. */
3270 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3271 {
3272 prepare_names_to_update (insert_phi_p);
3273
3274 /* If all the names in NEW_SSA_NAMES had been marked for
3275 removal, and there are no symbols to rename, then there's
3276 nothing else to do. */
3277 if (bitmap_first_set_bit (new_ssa_names) < 0
3278 && !cfun->gimple_df->ssa_renaming_needed)
3279 goto done;
3280 }
3281
3282 /* Next, determine the block at which to start the renaming process. */
3283 if (cfun->gimple_df->ssa_renaming_needed)
3284 {
3285 /* If we rename bare symbols initialize the mapping to
3286 auxiliar info we need to keep track of. */
3287 var_infos = new hash_table<var_info_hasher> (47);
3288
3289 /* If we have to rename some symbols from scratch, we need to
3290 start the process at the root of the CFG. FIXME, it should
3291 be possible to determine the nearest block that had a
3292 definition for each of the symbols that are marked for
3293 updating. For now this seems more work than it's worth. */
3294 start_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
3295
3296 /* Traverse the CFG looking for existing definitions and uses of
3297 symbols in SSA operands. Mark interesting blocks and
3298 statements and set local live-in information for the PHI
3299 placement heuristics. */
3300 prepare_block_for_update (start_bb, insert_phi_p);
3301
3302 #ifdef ENABLE_CHECKING
3303 for (i = 1; i < num_ssa_names; ++i)
3304 {
3305 tree name = ssa_name (i);
3306 if (!name
3307 || virtual_operand_p (name))
3308 continue;
3309
3310 /* For all but virtual operands, which do not have SSA names
3311 with overlapping life ranges, ensure that symbols marked
3312 for renaming do not have existing SSA names associated with
3313 them as we do not re-write them out-of-SSA before going
3314 into SSA for the remaining symbol uses. */
3315 if (marked_for_renaming (SSA_NAME_VAR (name)))
3316 {
3317 fprintf (stderr, "Existing SSA name for symbol marked for "
3318 "renaming: ");
3319 print_generic_expr (stderr, name, TDF_SLIM);
3320 fprintf (stderr, "\n");
3321 internal_error ("SSA corruption");
3322 }
3323 }
3324 #endif
3325 }
3326 else
3327 {
3328 /* Otherwise, the entry block to the region is the nearest
3329 common dominator for the blocks in BLOCKS. */
3330 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3331 blocks_to_update);
3332 }
3333
3334 /* If requested, insert PHI nodes at the iterated dominance frontier
3335 of every block, creating new definitions for names in OLD_SSA_NAMES
3336 and for symbols found. */
3337 if (insert_phi_p)
3338 {
3339 bitmap_head *dfs;
3340
3341 /* If the caller requested PHI nodes to be added, compute
3342 dominance frontiers. */
3343 dfs = XNEWVEC (bitmap_head, last_basic_block_for_fn (cfun));
3344 FOR_EACH_BB_FN (bb, cfun)
3345 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3346 compute_dominance_frontiers (dfs);
3347
3348 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3349 {
3350 sbitmap_iterator sbi;
3351
3352 /* insert_update_phi_nodes_for will call add_new_name_mapping
3353 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3354 will grow while we are traversing it (but it will not
3355 gain any new members). Copy OLD_SSA_NAMES to a temporary
3356 for traversal. */
3357 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3358 bitmap_copy (tmp, old_ssa_names);
3359 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3360 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3361 update_flags);
3362 sbitmap_free (tmp);
3363 }
3364
3365 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3366 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3367 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3368 update_flags);
3369
3370 FOR_EACH_BB_FN (bb, cfun)
3371 bitmap_clear (&dfs[bb->index]);
3372 free (dfs);
3373
3374 /* Insertion of PHI nodes may have added blocks to the region.
3375 We need to re-compute START_BB to include the newly added
3376 blocks. */
3377 if (start_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3378 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3379 blocks_to_update);
3380 }
3381
3382 /* Reset the current definition for name and symbol before renaming
3383 the sub-graph. */
3384 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3385 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3386
3387 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3388 get_var_info (sym)->info.current_def = NULL_TREE;
3389
3390 /* Now start the renaming process at START_BB. */
3391 interesting_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3392 bitmap_clear (interesting_blocks);
3393 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3394 bitmap_set_bit (interesting_blocks, i);
3395
3396 rewrite_blocks (start_bb, REWRITE_UPDATE);
3397
3398 sbitmap_free (interesting_blocks);
3399
3400 /* Debugging dumps. */
3401 if (dump_file)
3402 {
3403 int c;
3404 unsigned i;
3405
3406 dump_update_ssa (dump_file);
3407
3408 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3409 start_bb->index);
3410
3411 c = 0;
3412 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3413 c++;
3414 fprintf (dump_file, "Number of blocks in CFG: %d\n",
3415 last_basic_block_for_fn (cfun));
3416 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3417 c, PERCENT (c, last_basic_block_for_fn (cfun)));
3418
3419 if (dump_flags & TDF_DETAILS)
3420 {
3421 fprintf (dump_file, "Affected blocks:");
3422 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3423 fprintf (dump_file, " %u", i);
3424 fprintf (dump_file, "\n");
3425 }
3426
3427 fprintf (dump_file, "\n\n");
3428 }
3429
3430 /* Free allocated memory. */
3431 done:
3432 delete_update_ssa ();
3433
3434 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3435 }