tree-into-ssa.c (mark_def_sites): Correct minor typo in function comment.
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "tree-gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50
51 /* This file builds the SSA form for a function as described in:
52 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
53 Computing Static Single Assignment Form and the Control Dependence
54 Graph. ACM Transactions on Programming Languages and Systems,
55 13(4):451-490, October 1991. */
56
57 /* True if the code is in ssa form. */
58 bool in_ssa_p;
59
60 /* Structure to map a variable VAR to the set of blocks that contain
61 definitions for VAR. */
62 struct def_blocks_d
63 {
64 /* The variable. */
65 tree var;
66
67 /* Blocks that contain definitions of VAR. Bit I will be set if the
68 Ith block contains a definition of VAR. */
69 bitmap def_blocks;
70
71 /* Blocks that contain a PHI node for VAR. */
72 bitmap phi_blocks;
73
74 /* Blocks where VAR is live-on-entry. Similar semantics as
75 DEF_BLOCKS. */
76 bitmap livein_blocks;
77 };
78
79
80 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
81 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
82 basic blocks where VAR is defined (assigned a new value). It also
83 contains a bitmap of all the blocks where VAR is live-on-entry
84 (i.e., there is a use of VAR in block B without a preceding
85 definition in B). The live-on-entry information is used when
86 computing PHI pruning heuristics. */
87 static htab_t def_blocks;
88
89 /* Stack of trees used to restore the global currdefs to its original
90 state after completing rewriting of a block and its dominator
91 children. Its elements have the following properties:
92
93 - An SSA_NAME indicates that the current definition of the
94 underlying variable should be set to the given SSA_NAME.
95
96 - A _DECL node indicates that the underlying variable has no
97 current definition.
98
99 - A NULL node is used to mark the last node associated with the
100 current block.
101
102 - A NULL node at the top entry is used to mark the last node
103 associated with the current block. */
104 static VEC(tree,heap) *block_defs_stack;
105
106 /* Basic block vectors used in this file ought to be allocated in the
107 heap. We use pointer vector, because ints can be easily passed by
108 value. */
109 DEF_VEC_I(int);
110 DEF_VEC_ALLOC_I(int,heap);
111
112 /* Set of existing SSA names being replaced by update_ssa. */
113 static sbitmap old_ssa_names;
114
115 /* Set of new SSA names being added by update_ssa. Note that both
116 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
117 the operations done on them are presence tests. */
118 static sbitmap new_ssa_names;
119
120 /* Symbols whose SSA form needs to be updated or created for the first
121 time. */
122 static bitmap syms_to_rename;
123
124 /* Set of SSA names that have been marked to be released after they
125 were registered in the replacement table. They will be finally
126 released after we finish updating the SSA web. */
127 static bitmap names_to_release;
128
129 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
130 to grow as the callers to register_new_name_mapping will typically
131 create new names on the fly. FIXME. Currently set to 1/3 to avoid
132 frequent reallocations but still need to find a reasonable growth
133 strategy. */
134 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
135
136 /* Tuple used to represent replacement mappings. */
137 struct repl_map_d
138 {
139 tree name;
140 bitmap set;
141 };
142
143 /* NEW -> OLD_SET replacement table. If we are replacing several
144 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
145 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
146 static htab_t repl_tbl;
147
148 /* true if register_new_name_mapping needs to initialize the data
149 structures needed by update_ssa. */
150 static bool need_to_initialize_update_ssa_p = true;
151
152 /* true if update_ssa needs to update virtual operands. */
153 static bool need_to_update_vops_p = false;
154
155 /* Statistics kept by update_ssa to use in the virtual mapping
156 heuristic. If the number of virtual mappings is beyond certain
157 threshold, the updater will switch from using the mappings into
158 renaming the virtual symbols from scratch. In some cases, the
159 large number of name mappings for virtual names causes significant
160 slowdowns in the PHI insertion code. */
161 struct update_ssa_stats_d
162 {
163 unsigned num_virtual_mappings;
164 unsigned num_total_mappings;
165 bitmap virtual_symbols;
166 unsigned num_virtual_symbols;
167 };
168 static struct update_ssa_stats_d update_ssa_stats;
169
170 /* Global data to attach to the main dominator walk structure. */
171 struct mark_def_sites_global_data
172 {
173 /* This bitmap contains the variables which are set before they
174 are used in a basic block. */
175 bitmap kills;
176
177 /* Bitmap of names to rename. */
178 sbitmap names_to_rename;
179
180 /* Set of blocks that mark_def_sites deems interesting for the
181 renamer to process. */
182 sbitmap interesting_blocks;
183 };
184
185
186 /* Information stored for SSA names. */
187 struct ssa_name_info
188 {
189 /* This field indicates whether or not the variable may need PHI nodes.
190 See the enum's definition for more detailed information about the
191 states. */
192 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
193
194 /* The actual definition of the ssa name. */
195 tree current_def;
196 };
197
198
199 /* The main entry point to the SSA renamer (rewrite_blocks) may be
200 called several times to do different, but related, tasks.
201 Initially, we need it to rename the whole program into SSA form.
202 At other times, we may need it to only rename into SSA newly
203 exposed symbols. Finally, we can also call it to incrementally fix
204 an already built SSA web. */
205 enum rewrite_mode {
206 /* Convert the whole function into SSA form. */
207 REWRITE_ALL,
208
209 /* Incrementally update the SSA web by replacing existing SSA
210 names with new ones. See update_ssa for details. */
211 REWRITE_UPDATE
212 };
213
214
215 /* Use TREE_VISITED to keep track of which statements we want to
216 rename. When renaming a subset of the variables, not all
217 statements will be processed. This is decided in mark_def_sites. */
218 #define REWRITE_THIS_STMT(T) TREE_VISITED (T)
219
220 /* Use the unsigned flag to keep track of which statements we want to
221 visit when marking new definition sites. This is slightly
222 different than REWRITE_THIS_STMT: it's used by update_ssa to
223 distinguish statements that need to have both uses and defs
224 processed from those that only need to have their defs processed.
225 Statements that define new SSA names only need to have their defs
226 registered, but they don't need to have their uses renamed. */
227 #define REGISTER_DEFS_IN_THIS_STMT(T) (T)->common.unsigned_flag
228
229
230 /* Prototypes for debugging functions. */
231 extern void dump_tree_ssa (FILE *);
232 extern void debug_tree_ssa (void);
233 extern void debug_def_blocks (void);
234 extern void dump_tree_ssa_stats (FILE *);
235 extern void debug_tree_ssa_stats (void);
236 void dump_update_ssa (FILE *);
237 void debug_update_ssa (void);
238 void dump_names_replaced_by (FILE *, tree);
239 void debug_names_replaced_by (tree);
240
241 /* Get the information associated with NAME. */
242
243 static inline struct ssa_name_info *
244 get_ssa_name_ann (tree name)
245 {
246 if (!SSA_NAME_AUX (name))
247 SSA_NAME_AUX (name) = xcalloc (1, sizeof (struct ssa_name_info));
248
249 return SSA_NAME_AUX (name);
250 }
251
252
253 /* Gets phi_state field for VAR. */
254
255 static inline enum need_phi_state
256 get_phi_state (tree var)
257 {
258 if (TREE_CODE (var) == SSA_NAME)
259 return get_ssa_name_ann (var)->need_phi_state;
260 else
261 return var_ann (var)->need_phi_state;
262 }
263
264
265 /* Sets phi_state field for VAR to STATE. */
266
267 static inline void
268 set_phi_state (tree var, enum need_phi_state state)
269 {
270 if (TREE_CODE (var) == SSA_NAME)
271 get_ssa_name_ann (var)->need_phi_state = state;
272 else
273 var_ann (var)->need_phi_state = state;
274 }
275
276
277 /* Return the current definition for VAR. */
278
279 tree
280 get_current_def (tree var)
281 {
282 if (TREE_CODE (var) == SSA_NAME)
283 return get_ssa_name_ann (var)->current_def;
284 else
285 return var_ann (var)->current_def;
286 }
287
288
289 /* Sets current definition of VAR to DEF. */
290
291 void
292 set_current_def (tree var, tree def)
293 {
294 if (TREE_CODE (var) == SSA_NAME)
295 get_ssa_name_ann (var)->current_def = def;
296 else
297 var_ann (var)->current_def = def;
298 }
299
300
301 /* Compute global livein information given the set of blockx where
302 an object is locally live at the start of the block (LIVEIN)
303 and the set of blocks where the object is defined (DEF_BLOCKS).
304
305 Note: This routine augments the existing local livein information
306 to include global livein (i.e., it modifies the underlying bitmap
307 for LIVEIN). */
308
309 void
310 compute_global_livein (bitmap livein, bitmap def_blocks)
311 {
312 basic_block bb, *worklist, *tos;
313 unsigned i;
314 bitmap_iterator bi;
315
316 tos = worklist
317 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
318
319 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
320 {
321 *tos++ = BASIC_BLOCK (i);
322 }
323
324 /* Iterate until the worklist is empty. */
325 while (tos != worklist)
326 {
327 edge e;
328 edge_iterator ei;
329
330 /* Pull a block off the worklist. */
331 bb = *--tos;
332
333 /* For each predecessor block. */
334 FOR_EACH_EDGE (e, ei, bb->preds)
335 {
336 basic_block pred = e->src;
337 int pred_index = pred->index;
338
339 /* None of this is necessary for the entry block. */
340 if (pred != ENTRY_BLOCK_PTR
341 && ! bitmap_bit_p (livein, pred_index)
342 && ! bitmap_bit_p (def_blocks, pred_index))
343 {
344 *tos++ = pred;
345 bitmap_set_bit (livein, pred_index);
346 }
347 }
348 }
349
350 free (worklist);
351 }
352
353
354 /* Return the set of blocks where variable VAR is defined and the blocks
355 where VAR is live on entry (livein). If no entry is found in
356 DEF_BLOCKS, a new one is created and returned. */
357
358 static inline struct def_blocks_d *
359 get_def_blocks_for (tree var)
360 {
361 struct def_blocks_d db, *db_p;
362 void **slot;
363
364 db.var = var;
365 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
366 if (*slot == NULL)
367 {
368 db_p = xmalloc (sizeof (*db_p));
369 db_p->var = var;
370 db_p->def_blocks = BITMAP_ALLOC (NULL);
371 db_p->phi_blocks = BITMAP_ALLOC (NULL);
372 db_p->livein_blocks = BITMAP_ALLOC (NULL);
373 *slot = (void *) db_p;
374 }
375 else
376 db_p = (struct def_blocks_d *) *slot;
377
378 return db_p;
379 }
380
381
382 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
383 VAR is defined by a PHI node. */
384
385 static void
386 set_def_block (tree var, basic_block bb, bool phi_p)
387 {
388 struct def_blocks_d *db_p;
389 enum need_phi_state state;
390
391 state = get_phi_state (var);
392 db_p = get_def_blocks_for (var);
393
394 /* Set the bit corresponding to the block where VAR is defined. */
395 bitmap_set_bit (db_p->def_blocks, bb->index);
396 if (phi_p)
397 bitmap_set_bit (db_p->phi_blocks, bb->index);
398
399 /* Keep track of whether or not we may need to insert PHI nodes.
400
401 If we are in the UNKNOWN state, then this is the first definition
402 of VAR. Additionally, we have not seen any uses of VAR yet, so
403 we do not need a PHI node for this variable at this time (i.e.,
404 transition to NEED_PHI_STATE_NO).
405
406 If we are in any other state, then we either have multiple definitions
407 of this variable occurring in different blocks or we saw a use of the
408 variable which was not dominated by the block containing the
409 definition(s). In this case we may need a PHI node, so enter
410 state NEED_PHI_STATE_MAYBE. */
411 if (state == NEED_PHI_STATE_UNKNOWN)
412 set_phi_state (var, NEED_PHI_STATE_NO);
413 else
414 set_phi_state (var, NEED_PHI_STATE_MAYBE);
415 }
416
417
418 /* Mark block BB as having VAR live at the entry to BB. */
419
420 static void
421 set_livein_block (tree var, basic_block bb)
422 {
423 struct def_blocks_d *db_p;
424 enum need_phi_state state = get_phi_state (var);
425
426 db_p = get_def_blocks_for (var);
427
428 /* Set the bit corresponding to the block where VAR is live in. */
429 bitmap_set_bit (db_p->livein_blocks, bb->index);
430
431 /* Keep track of whether or not we may need to insert PHI nodes.
432
433 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
434 by the single block containing the definition(s) of this variable. If
435 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
436 NEED_PHI_STATE_MAYBE. */
437 if (state == NEED_PHI_STATE_NO)
438 {
439 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
440
441 if (def_block_index == -1
442 || ! dominated_by_p (CDI_DOMINATORS, bb,
443 BASIC_BLOCK (def_block_index)))
444 set_phi_state (var, NEED_PHI_STATE_MAYBE);
445 }
446 else
447 set_phi_state (var, NEED_PHI_STATE_MAYBE);
448 }
449
450
451 /* Return true if symbol SYM is marked for renaming. */
452
453 static inline bool
454 symbol_marked_for_renaming (tree sym)
455 {
456 gcc_assert (DECL_P (sym));
457 return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
458 }
459
460
461 /* Return true if NAME is in OLD_SSA_NAMES. */
462
463 static inline bool
464 is_old_name (tree name)
465 {
466 unsigned ver = SSA_NAME_VERSION (name);
467 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
468 }
469
470
471 /* Return true if NAME is in NEW_SSA_NAMES. */
472
473 static inline bool
474 is_new_name (tree name)
475 {
476 unsigned ver = SSA_NAME_VERSION (name);
477 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
478 }
479
480
481 /* Hashing and equality functions for REPL_TBL. */
482
483 static hashval_t
484 repl_map_hash (const void *p)
485 {
486 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
487 }
488
489 static int
490 repl_map_eq (const void *p1, const void *p2)
491 {
492 return ((const struct repl_map_d *)p1)->name
493 == ((const struct repl_map_d *)p2)->name;
494 }
495
496 static void
497 repl_map_free (void *p)
498 {
499 BITMAP_FREE (((struct repl_map_d *)p)->set);
500 free (p);
501 }
502
503
504 /* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
505
506 static inline bitmap
507 names_replaced_by (tree new)
508 {
509 struct repl_map_d m;
510 void **slot;
511
512 m.name = new;
513 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
514
515 /* If N was not registered in the replacement table, return NULL. */
516 if (slot == NULL || *slot == NULL)
517 return NULL;
518
519 return ((struct repl_map_d *) *slot)->set;
520 }
521
522
523 /* Add OLD to REPL_TBL[NEW].SET. */
524
525 static inline void
526 add_to_repl_tbl (tree new, tree old)
527 {
528 struct repl_map_d m, *mp;
529 void **slot;
530
531 m.name = new;
532 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
533 if (*slot == NULL)
534 {
535 mp = xmalloc (sizeof (*mp));
536 mp->name = new;
537 mp->set = BITMAP_ALLOC (NULL);
538 *slot = (void *) mp;
539 }
540 else
541 mp = (struct repl_map_d *) *slot;
542
543 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
544 }
545
546
547 /* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
548 represents the set of names O_1 ... O_j replaced by N_i. This is
549 used by update_ssa and its helpers to introduce new SSA names in an
550 already formed SSA web. */
551
552 static void
553 add_new_name_mapping (tree new, tree old)
554 {
555 timevar_push (TV_TREE_SSA_INCREMENTAL);
556
557 /* OLD and NEW must be different SSA names for the same symbol. */
558 gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));
559
560 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
561 caller may have created new names since the set was created. */
562 if (new_ssa_names->n_bits <= num_ssa_names - 1)
563 {
564 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
565 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
566 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
567 }
568
569 /* If this mapping is for virtual names, we will need to update
570 virtual operands. */
571 if (!is_gimple_reg (new))
572 {
573 tree sym;
574 size_t uid;
575
576 need_to_update_vops_p = true;
577
578 /* Keep counts of virtual mappings and symbols to use in the
579 virtual mapping heuristic. If we have large numbers of
580 virtual mappings for a relatively low number of symbols, it
581 will make more sense to rename the symbols from scratch.
582 Otherwise, the insertion of PHI nodes for each of the old
583 names in these mappings will be very slow. */
584 sym = SSA_NAME_VAR (new);
585 uid = DECL_UID (sym);
586 update_ssa_stats.num_virtual_mappings++;
587 if (!bitmap_bit_p (update_ssa_stats.virtual_symbols, uid))
588 {
589 bitmap_set_bit (update_ssa_stats.virtual_symbols, uid);
590 update_ssa_stats.num_virtual_symbols++;
591 }
592 }
593
594 /* Update the REPL_TBL table. */
595 add_to_repl_tbl (new, old);
596
597 /* If OLD had already been registered as a new name, then all the
598 names that OLD replaces should also be replaced by NEW. */
599 if (is_new_name (old))
600 bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
601
602 /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
603 respectively. */
604 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
605 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
606
607 /* Update mapping counter to use in the virtual mapping heuristic. */
608 update_ssa_stats.num_total_mappings++;
609
610 timevar_pop (TV_TREE_SSA_INCREMENTAL);
611 }
612
613
614 /* Call back for walk_dominator_tree used to collect definition sites
615 for every variable in the function. For every statement S in block
616 BB:
617
618 1- Variables defined by S in the DEFS of S are marked in the bitmap
619 WALK_DATA->GLOBAL_DATA->KILLS.
620
621 2- If S uses a variable VAR and there is no preceding kill of VAR,
622 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
623
624 This information is used to determine which variables are live
625 across block boundaries to reduce the number of PHI nodes
626 we create. */
627
628 static void
629 mark_def_sites (struct dom_walk_data *walk_data,
630 basic_block bb,
631 block_stmt_iterator bsi)
632 {
633 struct mark_def_sites_global_data *gd = walk_data->global_data;
634 bitmap kills = gd->kills;
635 tree stmt, def;
636 use_operand_p use_p;
637 def_operand_p def_p;
638 ssa_op_iter iter;
639
640 stmt = bsi_stmt (bsi);
641 update_stmt_if_modified (stmt);
642
643 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
644 REWRITE_THIS_STMT (stmt) = 0;
645
646 /* If a variable is used before being set, then the variable is live
647 across a block boundary, so mark it live-on-entry to BB. */
648 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
649 SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTKILL)
650 {
651 tree sym = USE_FROM_PTR (use_p);
652 gcc_assert (DECL_P (sym));
653 if (!bitmap_bit_p (kills, DECL_UID (sym)))
654 set_livein_block (sym, bb);
655 REWRITE_THIS_STMT (stmt) = 1;
656 }
657
658 /* Note that virtual definitions are irrelevant for computing KILLS
659 because a V_MAY_DEF does not constitute a killing definition of the
660 variable. However, the operand of a virtual definitions is a use
661 of the variable, so it may cause the variable to be considered
662 live-on-entry. */
663 FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
664 {
665 tree sym = USE_FROM_PTR (use_p);
666 gcc_assert (DECL_P (sym));
667 set_livein_block (sym, bb);
668 set_def_block (sym, bb, false);
669 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
670 REWRITE_THIS_STMT (stmt) = 1;
671 }
672
673 /* Now process the defs and must-defs made by this statement. */
674 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
675 {
676 gcc_assert (DECL_P (def));
677 set_def_block (def, bb, false);
678 bitmap_set_bit (kills, DECL_UID (def));
679 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
680 }
681
682 /* If we found the statement interesting then also mark the block BB
683 as interesting. */
684 if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
685 SET_BIT (gd->interesting_blocks, bb->index);
686 }
687
688
689 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
690 return a bitmap with all the blocks in the iterated dominance
691 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
692 frontier information as returned by compute_dominance_frontiers.
693
694 The resulting set of blocks are the potential sites where PHI nodes
695 are needed. The caller is responsible from freeing the memory
696 allocated for the return value. */
697
698 static bitmap
699 find_idf (bitmap def_blocks, bitmap *dfs)
700 {
701 bitmap_iterator bi;
702 unsigned bb_index;
703 VEC(int,heap) *work_stack;
704 bitmap phi_insertion_points;
705
706 work_stack = VEC_alloc (int, heap, n_basic_blocks);
707 phi_insertion_points = BITMAP_ALLOC (NULL);
708
709 /* Seed the work list with all the blocks in DEF_BLOCKS. */
710 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
711 /* We use VEC_quick_push here for speed. This is safe because we
712 know that the number of definition blocks is no greater than
713 the number of basic blocks, which is the initial capacity of
714 WORK_STACK. */
715 VEC_quick_push (int, work_stack, bb_index);
716
717 /* Pop a block off the worklist, add every block that appears in
718 the original block's DF that we have not already processed to
719 the worklist. Iterate until the worklist is empty. Blocks
720 which are added to the worklist are potential sites for
721 PHI nodes. */
722 while (VEC_length (int, work_stack) > 0)
723 {
724 bb_index = VEC_pop (int, work_stack);
725
726 /* Since the registration of NEW -> OLD name mappings is done
727 separately from the call to update_ssa, when updating the SSA
728 form, the basic blocks where new and/or old names are defined
729 may have disappeared by CFG cleanup calls. In this case,
730 we may pull a non-existing block from the work stack. */
731 gcc_assert (bb_index < (unsigned) last_basic_block);
732
733 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
734 0, bb_index, bi)
735 {
736 /* Use a safe push because if there is a definition of VAR
737 in every basic block, then WORK_STACK may eventually have
738 more than N_BASIC_BLOCK entries. */
739 VEC_safe_push (int, heap, work_stack, bb_index);
740 bitmap_set_bit (phi_insertion_points, bb_index);
741 }
742 }
743
744 VEC_free (int, heap, work_stack);
745
746 return phi_insertion_points;
747 }
748
749
750 /* Return the set of blocks where variable VAR is defined and the blocks
751 where VAR is live on entry (livein). Return NULL, if no entry is
752 found in DEF_BLOCKS. */
753
754 static inline struct def_blocks_d *
755 find_def_blocks_for (tree var)
756 {
757 struct def_blocks_d dm;
758 dm.var = var;
759 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
760 }
761
762
763 /* Retrieve or create a default definition for symbol SYM. */
764
765 static inline tree
766 get_default_def_for (tree sym)
767 {
768 tree ddef = default_def (sym);
769
770 if (ddef == NULL_TREE)
771 {
772 ddef = make_ssa_name (sym, build_empty_stmt ());
773 set_default_def (sym, ddef);
774 }
775
776 return ddef;
777 }
778
779
780 /* Insert PHI nodes for variable VAR using the iterated dominance
781 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
782 function assumes that the caller is incrementally updating the SSA
783 form, in which case (1) VAR is assumed to be an SSA name, (2) a new
784 SSA name is created for VAR's symbol, and, (3) all the arguments
785 for the newly created PHI node are set to VAR.
786
787 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
788 PHI node for VAR. On exit, only the nodes that received a PHI node
789 for VAR will be present in PHI_INSERTION_POINTS. */
790
791 static void
792 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
793 {
794 unsigned bb_index;
795 edge e;
796 tree phi;
797 basic_block bb;
798 bitmap_iterator bi;
799 struct def_blocks_d *def_map;
800
801 def_map = find_def_blocks_for (var);
802 gcc_assert (def_map);
803
804 /* Remove the blocks where we already have PHI nodes for VAR. */
805 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
806
807 /* Now compute global livein for this variable. Note this modifies
808 def_map->livein_blocks. */
809 compute_global_livein (def_map->livein_blocks, def_map->def_blocks);
810
811 /* And insert the PHI nodes. */
812 EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks,
813 0, bb_index, bi)
814 {
815 bb = BASIC_BLOCK (bb_index);
816
817 if (update_p && TREE_CODE (var) == SSA_NAME)
818 {
819 /* If we are rewriting SSA names, create the LHS of the PHI
820 node by duplicating VAR. This is useful in the case of
821 pointers, to also duplicate pointer attributes (alias
822 information, in particular). */
823 edge_iterator ei;
824 tree new_lhs;
825
826 phi = create_phi_node (var, bb);
827 new_lhs = duplicate_ssa_name (var, phi);
828 SET_PHI_RESULT (phi, new_lhs);
829 add_new_name_mapping (new_lhs, var);
830
831 /* Add VAR to every argument slot of PHI. We need VAR in
832 every argument so that rewrite_update_phi_arguments knows
833 which name is this PHI node replacing. If VAR is a
834 symbol marked for renaming, this is not necessary, the
835 renamer will use the symbol on the LHS to get its
836 reaching definition. */
837 FOR_EACH_EDGE (e, ei, bb->preds)
838 add_phi_arg (phi, var, e);
839 }
840 else
841 {
842 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
843 phi = create_phi_node (sym, bb);
844 }
845
846 /* Mark this PHI node as interesting for update_ssa. */
847 REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
848 REWRITE_THIS_STMT (phi) = 1;
849 }
850 }
851
852
853 /* Insert PHI nodes at the dominance frontier of blocks with variable
854 definitions. DFS contains the dominance frontier information for
855 the flowgraph. PHI nodes will only be inserted at the dominance
856 frontier of definition blocks for variables whose NEED_PHI_STATE
857 annotation is marked as ``maybe'' or ``unknown'' (computed by
858 mark_def_sites). */
859
860 static void
861 insert_phi_nodes (bitmap *dfs)
862 {
863 referenced_var_iterator rvi;
864 tree var;
865
866 timevar_push (TV_TREE_INSERT_PHI_NODES);
867
868 FOR_EACH_REFERENCED_VAR (var, rvi)
869 {
870 struct def_blocks_d *def_map;
871 bitmap idf;
872
873 def_map = find_def_blocks_for (var);
874 if (def_map == NULL)
875 continue;
876
877 if (get_phi_state (var) != NEED_PHI_STATE_NO)
878 {
879 idf = find_idf (def_map->def_blocks, dfs);
880 insert_phi_nodes_for (var, idf, false);
881 BITMAP_FREE (idf);
882 }
883 }
884
885 timevar_pop (TV_TREE_INSERT_PHI_NODES);
886 }
887
888
889 /* Register DEF (an SSA_NAME) to be a new definition for its underlying
890 variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
891 into the stack pointed to by BLOCK_DEFS_P. */
892
893 void
894 register_new_def (tree def, VEC(tree,heap) **block_defs_p)
895 {
896 tree var = SSA_NAME_VAR (def);
897 tree currdef;
898
899 /* If this variable is set in a single basic block and all uses are
900 dominated by the set(s) in that single basic block, then there is
901 no reason to record anything for this variable in the block local
902 definition stacks. Doing so just wastes time and memory.
903
904 This is the same test to prune the set of variables which may
905 need PHI nodes. So we just use that information since it's already
906 computed and available for us to use. */
907 if (get_phi_state (var) == NEED_PHI_STATE_NO)
908 {
909 set_current_def (var, def);
910 return;
911 }
912
913 currdef = get_current_def (var);
914
915 /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
916 later used by the dominator tree callbacks to restore the reaching
917 definitions for all the variables defined in the block after a recursive
918 visit to all its immediately dominated blocks. If there is no current
919 reaching definition, then just record the underlying _DECL node. */
920 VEC_safe_push (tree, heap, *block_defs_p, currdef ? currdef : var);
921
922 /* Set the current reaching definition for VAR to be DEF. */
923 set_current_def (var, def);
924 }
925
926
927 /* Perform a depth-first traversal of the dominator tree looking for
928 variables to rename. BB is the block where to start searching.
929 Renaming is a five step process:
930
931 1- Every definition made by PHI nodes at the start of the blocks is
932 registered as the current definition for the corresponding variable.
933
934 2- Every statement in BB is rewritten. USE and VUSE operands are
935 rewritten with their corresponding reaching definition. DEF and
936 VDEF targets are registered as new definitions.
937
938 3- All the PHI nodes in successor blocks of BB are visited. The
939 argument corresponding to BB is replaced with its current reaching
940 definition.
941
942 4- Recursively rewrite every dominator child block of BB.
943
944 5- Restore (in reverse order) the current reaching definition for every
945 new definition introduced in this block. This is done so that when
946 we return from the recursive call, all the current reaching
947 definitions are restored to the names that were valid in the
948 dominator parent of BB. */
949
950 /* SSA Rewriting Step 1. Initialization, create a block local stack
951 of reaching definitions for new SSA names produced in this block
952 (BLOCK_DEFS). Register new definitions for every PHI node in the
953 block. */
954
955 static void
956 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
957 basic_block bb)
958 {
959 tree phi;
960
961 if (dump_file && (dump_flags & TDF_DETAILS))
962 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
963
964 /* Mark the unwind point for this block. */
965 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
966
967 /* Step 1. Register new definitions for every PHI node in the block.
968 Conceptually, all the PHI nodes are executed in parallel and each PHI
969 node introduces a new version for the associated variable. */
970 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
971 {
972 tree result = PHI_RESULT (phi);
973 register_new_def (result, &block_defs_stack);
974 }
975 }
976
977
978 /* Return the current definition for variable VAR. If none is found,
979 create a new SSA name to act as the zeroth definition for VAR. If VAR
980 is call clobbered and there exists a more recent definition of
981 GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
982 has been clobbered by a function call since its last assignment. */
983
984 static tree
985 get_reaching_def (tree var)
986 {
987 tree currdef_var, avar;
988
989 /* Lookup the current reaching definition for VAR. */
990 currdef_var = get_current_def (var);
991
992 /* If there is no reaching definition for VAR, create and register a
993 default definition for it (if needed). */
994 if (currdef_var == NULL_TREE)
995 {
996 avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
997 currdef_var = get_default_def_for (avar);
998 set_current_def (var, currdef_var);
999 }
1000
1001 /* Return the current reaching definition for VAR, or the default
1002 definition, if we had to create one. */
1003 return currdef_var;
1004 }
1005
1006
1007 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1008 the block with its immediate reaching definitions. Update the current
1009 definition of a variable when a new real or virtual definition is found. */
1010
1011 static void
1012 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1013 basic_block bb ATTRIBUTE_UNUSED,
1014 block_stmt_iterator si)
1015 {
1016 tree stmt;
1017 use_operand_p use_p;
1018 def_operand_p def_p;
1019 ssa_op_iter iter;
1020
1021 stmt = bsi_stmt (si);
1022
1023 /* If mark_def_sites decided that we don't need to rewrite this
1024 statement, ignore it. */
1025 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1026 return;
1027
1028 if (dump_file && (dump_flags & TDF_DETAILS))
1029 {
1030 fprintf (dump_file, "Renaming statement ");
1031 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1032 fprintf (dump_file, "\n");
1033 }
1034
1035 /* Step 1. Rewrite USES and VUSES in the statement. */
1036 if (REWRITE_THIS_STMT (stmt))
1037 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1038 SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
1039 {
1040 tree var = USE_FROM_PTR (use_p);
1041 gcc_assert (DECL_P (var));
1042 SET_USE (use_p, get_reaching_def (var));
1043 }
1044
1045 /* Step 2. Register the statement's DEF and VDEF operands. */
1046 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1047 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1048 {
1049 tree var = DEF_FROM_PTR (def_p);
1050 gcc_assert (DECL_P (var));
1051 SET_DEF (def_p, make_ssa_name (var, stmt));
1052 register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
1053 }
1054 }
1055
1056
1057 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1058 PHI nodes. For every PHI node found, add a new argument containing the
1059 current reaching definition for the variable and the edge through which
1060 that definition is reaching the PHI node. */
1061
1062 static void
1063 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1064 basic_block bb)
1065 {
1066 edge e;
1067 edge_iterator ei;
1068
1069 FOR_EACH_EDGE (e, ei, bb->succs)
1070 {
1071 tree phi;
1072
1073 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1074 {
1075 tree currdef;
1076 currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
1077 add_phi_arg (phi, currdef, e);
1078 }
1079 }
1080 }
1081
1082
1083 /* Called after visiting basic block BB. Restore CURRDEFS to its
1084 original value. */
1085
1086 static void
1087 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1088 basic_block bb ATTRIBUTE_UNUSED)
1089 {
1090 /* Restore CURRDEFS to its original state. */
1091 while (VEC_length (tree, block_defs_stack) > 0)
1092 {
1093 tree tmp = VEC_pop (tree, block_defs_stack);
1094 tree saved_def, var;
1095
1096 if (tmp == NULL_TREE)
1097 break;
1098
1099 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
1100 definition of its underlying variable. If we recorded anything
1101 else, it must have been an _DECL node and its current reaching
1102 definition must have been NULL. */
1103 if (TREE_CODE (tmp) == SSA_NAME)
1104 {
1105 saved_def = tmp;
1106 var = SSA_NAME_VAR (saved_def);
1107 }
1108 else
1109 {
1110 saved_def = NULL;
1111 var = tmp;
1112 }
1113
1114 set_current_def (var, saved_def);
1115 }
1116 }
1117
1118
1119 /* Dump SSA information to FILE. */
1120
1121 void
1122 dump_tree_ssa (FILE *file)
1123 {
1124 basic_block bb;
1125 const char *funcname
1126 = lang_hooks.decl_printable_name (current_function_decl, 2);
1127
1128 fprintf (file, "SSA information for %s\n\n", funcname);
1129
1130 FOR_EACH_BB (bb)
1131 {
1132 dump_bb (bb, file, 0);
1133 fputs (" ", file);
1134 print_generic_stmt (file, phi_nodes (bb), dump_flags);
1135 fputs ("\n\n", file);
1136 }
1137 }
1138
1139
1140 /* Dump SSA information to stderr. */
1141
1142 void
1143 debug_tree_ssa (void)
1144 {
1145 dump_tree_ssa (stderr);
1146 }
1147
1148
1149 /* Dump statistics for the hash table HTAB. */
1150
1151 static void
1152 htab_statistics (FILE *file, htab_t htab)
1153 {
1154 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1155 (long) htab_size (htab),
1156 (long) htab_elements (htab),
1157 htab_collisions (htab));
1158 }
1159
1160
1161 /* Dump SSA statistics on FILE. */
1162
1163 void
1164 dump_tree_ssa_stats (FILE *file)
1165 {
1166 fprintf (file, "\nHash table statistics:\n");
1167
1168 fprintf (file, " def_blocks: ");
1169 htab_statistics (file, def_blocks);
1170
1171 fprintf (file, "\n");
1172 }
1173
1174
1175 /* Dump SSA statistics on stderr. */
1176
1177 void
1178 debug_tree_ssa_stats (void)
1179 {
1180 dump_tree_ssa_stats (stderr);
1181 }
1182
1183
1184 /* Hashing and equality functions for DEF_BLOCKS. */
1185
1186 static hashval_t
1187 def_blocks_hash (const void *p)
1188 {
1189 return htab_hash_pointer
1190 ((const void *)((const struct def_blocks_d *)p)->var);
1191 }
1192
1193 static int
1194 def_blocks_eq (const void *p1, const void *p2)
1195 {
1196 return ((const struct def_blocks_d *)p1)->var
1197 == ((const struct def_blocks_d *)p2)->var;
1198 }
1199
1200
1201 /* Free memory allocated by one entry in DEF_BLOCKS. */
1202
1203 static void
1204 def_blocks_free (void *p)
1205 {
1206 struct def_blocks_d *entry = p;
1207 BITMAP_FREE (entry->def_blocks);
1208 BITMAP_FREE (entry->phi_blocks);
1209 BITMAP_FREE (entry->livein_blocks);
1210 free (entry);
1211 }
1212
1213
1214 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1215
1216 static int
1217 debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
1218 {
1219 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1220
1221 fprintf (stderr, "VAR: ");
1222 print_generic_expr (stderr, db_p->var, dump_flags);
1223 bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1224 bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");
1225
1226 return 1;
1227 }
1228
1229
1230 /* Dump the DEF_BLOCKS hash table on stderr. */
1231
1232 void
1233 debug_def_blocks (void)
1234 {
1235 htab_traverse (def_blocks, debug_def_blocks_r, NULL);
1236 }
1237
1238
1239 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1240
1241 static inline void
1242 register_new_update_single (tree new_name, tree old_name)
1243 {
1244 tree currdef = get_current_def (old_name);
1245
1246 /* Push the current reaching definition into *BLOCK_DEFS_P.
1247 This stack is later used by the dominator tree callbacks to
1248 restore the reaching definitions for all the variables
1249 defined in the block after a recursive visit to all its
1250 immediately dominated blocks. */
1251 VEC_reserve (tree, heap, block_defs_stack, 2);
1252 VEC_quick_push (tree, block_defs_stack, currdef);
1253 VEC_quick_push (tree, block_defs_stack, old_name);
1254
1255 /* Set the current reaching definition for OLD_NAME to be
1256 NEW_NAME. */
1257 set_current_def (old_name, new_name);
1258 }
1259
1260
1261 /* Register NEW_NAME to be the new reaching definition for all the
1262 names in OLD_NAMES. Used by the incremental SSA update routines to
1263 replace old SSA names with new ones. */
1264
1265 static inline void
1266 register_new_update_set (tree new_name, bitmap old_names)
1267 {
1268 bitmap_iterator bi;
1269 unsigned i;
1270
1271 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1272 register_new_update_single (new_name, ssa_name (i));
1273 }
1274
1275
1276 /* Initialization of block data structures for the incremental SSA
1277 update pass. Create a block local stack of reaching definitions
1278 for new SSA names produced in this block (BLOCK_DEFS). Register
1279 new definitions for every PHI node in the block. */
1280
1281 static void
1282 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1283 basic_block bb)
1284 {
1285 edge e;
1286 edge_iterator ei;
1287 tree phi;
1288 bool is_abnormal_phi;
1289
1290 if (dump_file && (dump_flags & TDF_DETAILS))
1291 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1292 bb->index);
1293
1294 /* Mark the unwind point for this block. */
1295 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1296
1297 /* Mark the LHS if any of the arguments flows through an abnormal
1298 edge. */
1299 is_abnormal_phi = false;
1300 FOR_EACH_EDGE (e, ei, bb->preds)
1301 if (e->flags & EDGE_ABNORMAL)
1302 {
1303 is_abnormal_phi = true;
1304 break;
1305 }
1306
1307 /* If any of the PHI nodes is a replacement for a name in
1308 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1309 register it as a new definition for its corresponding name. Also
1310 register definitions for names whose underlying symbols are
1311 marked for renaming. */
1312 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1313 {
1314 tree lhs, lhs_sym;
1315
1316 if (!REGISTER_DEFS_IN_THIS_STMT (phi))
1317 continue;
1318
1319 lhs = PHI_RESULT (phi);
1320 lhs_sym = SSA_NAME_VAR (lhs);
1321
1322 if (symbol_marked_for_renaming (lhs_sym))
1323 register_new_update_single (lhs, lhs_sym);
1324 else
1325 {
1326 /* If LHS is a new name, register a new definition for all
1327 the names replaced by LHS. */
1328 if (is_new_name (lhs))
1329 register_new_update_set (lhs, names_replaced_by (lhs));
1330
1331 /* If LHS is an OLD name, register it as a new definition
1332 for itself. */
1333 if (is_old_name (lhs))
1334 register_new_update_single (lhs, lhs);
1335 }
1336
1337 if (is_abnormal_phi)
1338 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1339 }
1340 }
1341
1342
1343 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1344 the current reaching definition of every name re-written in BB to
1345 the original reaching definition before visiting BB. This
1346 unwinding must be done in the opposite order to what is done in
1347 register_new_update_set. */
1348
1349 static void
1350 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1351 basic_block bb ATTRIBUTE_UNUSED)
1352 {
1353 while (VEC_length (tree, block_defs_stack) > 0)
1354 {
1355 tree var = VEC_pop (tree, block_defs_stack);
1356 tree saved_def;
1357
1358 /* NULL indicates the unwind stop point for this block (see
1359 rewrite_update_init_block). */
1360 if (var == NULL)
1361 return;
1362
1363 saved_def = VEC_pop (tree, block_defs_stack);
1364 set_current_def (var, saved_def);
1365 }
1366 }
1367
1368
1369 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1370 it is a symbol marked for renaming, replace it with USE_P's current
1371 reaching definition. */
1372
1373 static inline void
1374 maybe_replace_use (use_operand_p use_p)
1375 {
1376 tree rdef = NULL_TREE;
1377 tree use = USE_FROM_PTR (use_p);
1378 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1379
1380 if (symbol_marked_for_renaming (sym))
1381 rdef = get_reaching_def (sym);
1382 else if (is_old_name (use))
1383 rdef = get_reaching_def (use);
1384
1385 if (rdef && rdef != use)
1386 SET_USE (use_p, rdef);
1387 }
1388
1389
1390 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1391 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1392 register it as the current definition for the names replaced by
1393 DEF_P. */
1394
1395 static inline void
1396 maybe_register_def (def_operand_p def_p, tree stmt)
1397 {
1398 tree def = DEF_FROM_PTR (def_p);
1399 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1400
1401 /* If DEF is a naked symbol that needs renaming, create a
1402 new name for it. */
1403 if (symbol_marked_for_renaming (sym))
1404 {
1405 if (DECL_P (def))
1406 {
1407 def = make_ssa_name (def, stmt);
1408 SET_DEF (def_p, def);
1409 }
1410
1411 register_new_update_single (def, sym);
1412 }
1413 else
1414 {
1415 /* If DEF is a new name, register it as a new definition
1416 for all the names replaced by DEF. */
1417 if (is_new_name (def))
1418 register_new_update_set (def, names_replaced_by (def));
1419
1420 /* If DEF is an old name, register DEF as a new
1421 definition for itself. */
1422 if (is_old_name (def))
1423 register_new_update_single (def, def);
1424 }
1425 }
1426
1427
1428 /* Update every variable used in the statement pointed-to by SI. The
1429 statement is assumed to be in SSA form already. Names in
1430 OLD_SSA_NAMES used by SI will be updated to their current reaching
1431 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1432 will be registered as a new definition for their corresponding name
1433 in OLD_SSA_NAMES. */
1434
1435 static void
1436 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1437 basic_block bb ATTRIBUTE_UNUSED,
1438 block_stmt_iterator si)
1439 {
1440 stmt_ann_t ann;
1441 tree stmt;
1442 use_operand_p use_p;
1443 def_operand_p def_p;
1444 ssa_op_iter iter;
1445
1446 stmt = bsi_stmt (si);
1447 ann = stmt_ann (stmt);
1448
1449 /* Only update marked statements. */
1450 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1451 return;
1452
1453 if (dump_file && (dump_flags & TDF_DETAILS))
1454 {
1455 fprintf (dump_file, "Updating SSA information for statement ");
1456 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1457 fprintf (dump_file, "\n");
1458 }
1459
1460 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1461 symbol is marked for renaming. */
1462 if (REWRITE_THIS_STMT (stmt))
1463 {
1464 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1465 maybe_replace_use (use_p);
1466
1467 if (need_to_update_vops_p)
1468 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1469 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
1470 maybe_replace_use (use_p);
1471 }
1472
1473 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1474 Also register definitions for names whose underlying symbol is
1475 marked for renaming. */
1476 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1477 {
1478 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1479 maybe_register_def (def_p, stmt);
1480
1481 if (need_to_update_vops_p)
1482 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1483 maybe_register_def (def_p, stmt);
1484 }
1485 }
1486
1487
1488 /* Replace the operand pointed to by USE_P with USE's current reaching
1489 definition. */
1490
1491 static inline void
1492 replace_use (use_operand_p use_p, tree use)
1493 {
1494 tree rdef = get_reaching_def (use);
1495 if (rdef != use)
1496 SET_USE (use_p, rdef);
1497 }
1498
1499
1500 /* Visit all the successor blocks of BB looking for PHI nodes. For
1501 every PHI node found, check if any of its arguments is in
1502 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1503 definition, replace it. */
1504
1505 static void
1506 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1507 basic_block bb)
1508 {
1509 edge e;
1510 edge_iterator ei;
1511
1512 FOR_EACH_EDGE (e, ei, bb->succs)
1513 {
1514 tree phi;
1515
1516 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1517 {
1518 tree arg;
1519 use_operand_p arg_p;
1520
1521 /* Skip PHI nodes that are not marked for rewrite. */
1522 if (!REWRITE_THIS_STMT (phi))
1523 continue;
1524
1525 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1526 arg = USE_FROM_PTR (arg_p);
1527
1528 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1529 continue;
1530
1531 if (arg == NULL_TREE)
1532 {
1533 /* When updating a PHI node for a recently introduced
1534 symbol we may find NULL arguments. That's why we
1535 take the symbol from the LHS of the PHI node. */
1536 replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
1537 }
1538 else
1539 {
1540 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
1541
1542 if (symbol_marked_for_renaming (sym))
1543 replace_use (arg_p, sym);
1544 else if (is_old_name (arg))
1545 replace_use (arg_p, arg);
1546 }
1547
1548 if (e->flags & EDGE_ABNORMAL)
1549 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
1550 }
1551 }
1552 }
1553
1554
1555 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
1556 form.
1557
1558 ENTRY indicates the block where to start. Every block dominated by
1559 ENTRY will be rewritten.
1560
1561 WHAT indicates what actions will be taken by the renamer (see enum
1562 rewrite_mode).
1563
1564 BLOCKS are the set of interesting blocks for the dominator walker
1565 to process. If this set is NULL, then all the nodes dominated
1566 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
1567 are not present in BLOCKS are ignored. */
1568
1569 static void
1570 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
1571 {
1572 struct dom_walk_data walk_data;
1573
1574 /* Rewrite all the basic blocks in the program. */
1575 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
1576
1577 /* Setup callbacks for the generic dominator tree walker. */
1578 memset (&walk_data, 0, sizeof (walk_data));
1579
1580 walk_data.dom_direction = CDI_DOMINATORS;
1581 walk_data.interesting_blocks = blocks;
1582
1583 if (what == REWRITE_UPDATE)
1584 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
1585 else
1586 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
1587
1588 if (what == REWRITE_ALL)
1589 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
1590 else if (what == REWRITE_UPDATE)
1591 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
1592 else
1593 gcc_unreachable ();
1594
1595 if (what == REWRITE_ALL)
1596 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
1597 else if (what == REWRITE_UPDATE)
1598 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
1599 else
1600 gcc_unreachable ();
1601
1602 if (what == REWRITE_ALL)
1603 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
1604 else if (what == REWRITE_UPDATE)
1605 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
1606 else
1607 gcc_unreachable ();
1608
1609 block_defs_stack = VEC_alloc (tree, heap, 10);
1610
1611 /* Initialize the dominator walker. */
1612 init_walk_dominator_tree (&walk_data);
1613
1614 /* Recursively walk the dominator tree rewriting each statement in
1615 each basic block. */
1616 walk_dominator_tree (&walk_data, entry);
1617
1618 /* Finalize the dominator walker. */
1619 fini_walk_dominator_tree (&walk_data);
1620
1621 /* Debugging dumps. */
1622 if (dump_file && (dump_flags & TDF_STATS))
1623 {
1624 dump_dfa_stats (dump_file);
1625 if (def_blocks)
1626 dump_tree_ssa_stats (dump_file);
1627 }
1628
1629 if (def_blocks)
1630 {
1631 htab_delete (def_blocks);
1632 def_blocks = NULL;
1633 }
1634
1635 VEC_free (tree, heap, block_defs_stack);
1636
1637 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
1638 }
1639
1640
1641 /* Block initialization routine for mark_def_sites. Clear the
1642 KILLS bitmap at the start of each block. */
1643
1644 static void
1645 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
1646 basic_block bb ATTRIBUTE_UNUSED)
1647 {
1648 struct mark_def_sites_global_data *gd = walk_data->global_data;
1649 bitmap kills = gd->kills;
1650 bitmap_clear (kills);
1651 }
1652
1653
1654 /* Mark the definition site blocks for each variable, so that we know
1655 where the variable is actually live.
1656
1657 INTERESTING_BLOCKS will be filled in with all the blocks that
1658 should be processed by the renamer. It is assumed to be
1659 initialized and zeroed by the caller. */
1660
1661 static void
1662 mark_def_site_blocks (sbitmap interesting_blocks)
1663 {
1664 struct dom_walk_data walk_data;
1665 struct mark_def_sites_global_data mark_def_sites_global_data;
1666 referenced_var_iterator rvi;
1667 tree var;
1668
1669 /* Allocate memory for the DEF_BLOCKS hash table. */
1670 def_blocks = htab_create (num_referenced_vars,
1671 def_blocks_hash, def_blocks_eq, def_blocks_free);
1672 FOR_EACH_REFERENCED_VAR(var, rvi)
1673 set_current_def (var, NULL_TREE);
1674
1675 /* Setup callbacks for the generic dominator tree walker to find and
1676 mark definition sites. */
1677 walk_data.walk_stmts_backward = false;
1678 walk_data.dom_direction = CDI_DOMINATORS;
1679 walk_data.initialize_block_local_data = NULL;
1680 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
1681 walk_data.before_dom_children_walk_stmts = mark_def_sites;
1682 walk_data.before_dom_children_after_stmts = NULL;
1683 walk_data.after_dom_children_before_stmts = NULL;
1684 walk_data.after_dom_children_walk_stmts = NULL;
1685 walk_data.after_dom_children_after_stmts = NULL;
1686 walk_data.interesting_blocks = NULL;
1687
1688 /* Notice that this bitmap is indexed using variable UIDs, so it must be
1689 large enough to accommodate all the variables referenced in the
1690 function, not just the ones we are renaming. */
1691 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
1692
1693 /* Create the set of interesting blocks that will be filled by
1694 mark_def_sites. */
1695 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
1696 walk_data.global_data = &mark_def_sites_global_data;
1697
1698 /* We do not have any local data. */
1699 walk_data.block_local_data_size = 0;
1700
1701 /* Initialize the dominator walker. */
1702 init_walk_dominator_tree (&walk_data);
1703
1704 /* Recursively walk the dominator tree. */
1705 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1706
1707 /* Finalize the dominator walker. */
1708 fini_walk_dominator_tree (&walk_data);
1709
1710 /* We no longer need this bitmap, clear and free it. */
1711 BITMAP_FREE (mark_def_sites_global_data.kills);
1712 }
1713
1714
1715 /* Main entry point into the SSA builder. The renaming process
1716 proceeds in four main phases:
1717
1718 1- Compute dominance frontier and immediate dominators, needed to
1719 insert PHI nodes and rename the function in dominator tree
1720 order.
1721
1722 2- Find and mark all the blocks that define variables
1723 (mark_def_site_blocks).
1724
1725 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
1726
1727 4- Rename all the blocks (rewrite_blocks) and statements in the program.
1728
1729 Steps 3 and 5 are done using the dominator tree walker
1730 (walk_dominator_tree). */
1731
1732 static void
1733 rewrite_into_ssa (void)
1734 {
1735 bitmap *dfs;
1736 basic_block bb;
1737 sbitmap interesting_blocks;
1738
1739 timevar_push (TV_TREE_SSA_OTHER);
1740
1741 /* Initialize operand data structures. */
1742 init_ssa_operands ();
1743
1744 /* Initialize the set of interesting blocks. The callback
1745 mark_def_sites will add to this set those blocks that the renamer
1746 should process. */
1747 interesting_blocks = sbitmap_alloc (last_basic_block);
1748 sbitmap_zero (interesting_blocks);
1749
1750 /* Initialize dominance frontier. */
1751 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap));
1752 FOR_EACH_BB (bb)
1753 dfs[bb->index] = BITMAP_ALLOC (NULL);
1754
1755 /* 1- Compute dominance frontiers. */
1756 calculate_dominance_info (CDI_DOMINATORS);
1757 compute_dominance_frontiers (dfs);
1758
1759 /* 2- Find and mark definition sites. */
1760 mark_def_site_blocks (interesting_blocks);
1761
1762 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
1763 insert_phi_nodes (dfs);
1764
1765 /* 4- Rename all the blocks. */
1766 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
1767
1768 /* Free allocated memory. */
1769 FOR_EACH_BB (bb)
1770 BITMAP_FREE (dfs[bb->index]);
1771 free (dfs);
1772 sbitmap_free (interesting_blocks);
1773
1774 timevar_pop (TV_TREE_SSA_OTHER);
1775 in_ssa_p = true;
1776 }
1777
1778
1779 struct tree_opt_pass pass_build_ssa =
1780 {
1781 "ssa", /* name */
1782 NULL, /* gate */
1783 rewrite_into_ssa, /* execute */
1784 NULL, /* sub */
1785 NULL, /* next */
1786 0, /* static_pass_number */
1787 0, /* tv_id */
1788 PROP_cfg | PROP_referenced_vars, /* properties_required */
1789 PROP_ssa, /* properties_provided */
1790 0, /* properties_destroyed */
1791 0, /* todo_flags_start */
1792 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
1793 0 /* letter */
1794 };
1795
1796
1797 /* Mark the definition of VAR at STMT and BB as interesting for the
1798 renamer. BLOCKS is the set of blocks that need updating. */
1799
1800 static void
1801 mark_def_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1802 bool insert_phi_p)
1803 {
1804 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
1805 bitmap_set_bit (blocks, bb->index);
1806
1807 if (insert_phi_p)
1808 {
1809 bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;
1810
1811 set_def_block (var, bb, is_phi_p);
1812
1813 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
1814 site for both itself and all the old names replaced by it. */
1815 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
1816 {
1817 bitmap_iterator bi;
1818 unsigned i;
1819 bitmap set = names_replaced_by (var);
1820 if (set)
1821 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1822 set_def_block (ssa_name (i), bb, is_phi_p);
1823 }
1824 }
1825 }
1826
1827
1828 /* Mark the use of VAR at STMT and BB as interesting for the
1829 renamer. INSERT_PHI_P is true if we are going to insert new PHI
1830 nodes. BLOCKS is the set of blocks that need updating. */
1831
1832 static inline void
1833 mark_use_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1834 bool insert_phi_p)
1835 {
1836 REWRITE_THIS_STMT (stmt) = 1;
1837 bitmap_set_bit (blocks, bb->index);
1838
1839 /* If VAR has not been defined in BB, then it is live-on-entry
1840 to BB. Note that we cannot just use the block holding VAR's
1841 definition because if VAR is one of the names in OLD_SSA_NAMES,
1842 it will have several definitions (itself and all the names that
1843 replace it). */
1844 if (insert_phi_p)
1845 {
1846 struct def_blocks_d *db_p = get_def_blocks_for (var);
1847 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
1848 set_livein_block (var, bb);
1849 }
1850 }
1851
1852
1853 /* Do a dominator walk starting at BB processing statements that
1854 reference symbols in SYMS_TO_RENAME. This is very similar to
1855 mark_def_sites, but the scan handles statements whose operands may
1856 already be SSA names. Blocks that contain defs or uses of symbols
1857 in SYMS_TO_RENAME are added to BLOCKS.
1858
1859 If INSERT_PHI_P is true, mark those uses as live in the
1860 corresponding block. This is later used by the PHI placement
1861 algorithm to make PHI pruning decisions. */
1862
1863 static void
1864 prepare_block_for_update (basic_block bb, bitmap blocks, bool insert_phi_p)
1865 {
1866 basic_block son;
1867 block_stmt_iterator si;
1868 tree phi;
1869
1870 /* Process PHI nodes marking interesting those that define or use
1871 the symbols that we are interested in. */
1872 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1873 {
1874 tree lhs_sym, lhs = PHI_RESULT (phi);
1875
1876 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
1877
1878 if (symbol_marked_for_renaming (lhs_sym))
1879 {
1880 mark_use_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1881 mark_def_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1882 }
1883 }
1884
1885 /* Process the statements. */
1886 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1887 {
1888 tree stmt;
1889 ssa_op_iter i;
1890 use_operand_p use_p;
1891 def_operand_p def_p;
1892
1893 stmt = bsi_stmt (si);
1894
1895 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
1896 {
1897 tree use = USE_FROM_PTR (use_p);
1898 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1899 if (symbol_marked_for_renaming (sym))
1900 mark_use_interesting (use, stmt, bb, blocks, insert_phi_p);
1901 }
1902
1903 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
1904 {
1905 tree def = DEF_FROM_PTR (def_p);
1906 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1907
1908 if (symbol_marked_for_renaming (sym))
1909 mark_def_interesting (def, stmt, bb, blocks, insert_phi_p);
1910 }
1911
1912 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
1913 {
1914 tree def = DEF_FROM_PTR (def_p);
1915 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1916
1917 if (symbol_marked_for_renaming (sym))
1918 {
1919 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1920 mark_def_interesting (sym, stmt, bb, blocks, insert_phi_p);
1921 }
1922 }
1923
1924 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
1925 {
1926 tree use = USE_FROM_PTR (use_p);
1927 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1928
1929 if (symbol_marked_for_renaming (sym))
1930 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1931 }
1932 }
1933
1934 /* Now visit all the blocks dominated by BB. */
1935 for (son = first_dom_son (CDI_DOMINATORS, bb);
1936 son;
1937 son = next_dom_son (CDI_DOMINATORS, son))
1938 prepare_block_for_update (son, blocks, insert_phi_p);
1939 }
1940
1941
1942 /* Helper for prepare_names_to_update. Mark all the use sites for
1943 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
1944 prepare_names_to_update. */
1945
1946 static void
1947 prepare_use_sites_for (tree name, bitmap blocks, bool insert_phi_p)
1948 {
1949 use_operand_p use_p;
1950 imm_use_iterator iter;
1951
1952 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
1953 {
1954 tree stmt = USE_STMT (use_p);
1955 basic_block bb = bb_for_stmt (stmt);
1956
1957 if (TREE_CODE (stmt) == PHI_NODE)
1958 {
1959 /* Mark this use of NAME interesting for the renamer.
1960 Notice that we explicitly call mark_use_interesting with
1961 INSERT_PHI_P == false.
1962
1963 This is to avoid marking NAME as live-in in this block
1964 BB. If we were to mark NAME live-in to BB, then NAME
1965 would be considered live-in through ALL incoming edges to
1966 BB which is not what we want. Since we are updating the
1967 SSA form for NAME, we don't really know what other names
1968 of NAME are coming in through other edges into BB.
1969
1970 If we considered NAME live-in at BB, then the PHI
1971 placement algorithm may try to insert PHI nodes in blocks
1972 that are not only unnecessary but also the renamer would
1973 not know how to fill in. */
1974 mark_use_interesting (name, stmt, bb, blocks, false);
1975
1976 /* As discussed above, we only want to mark NAME live-in
1977 through the edge corresponding to its slot inside the PHI
1978 argument list. So, we look for the block BB1 where NAME
1979 is flowing through. If BB1 does not contain a definition
1980 of NAME, then consider NAME live-in at BB1. */
1981 if (insert_phi_p)
1982 {
1983 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
1984 edge e = PHI_ARG_EDGE (stmt, ix);
1985 basic_block bb1 = e->src;
1986 struct def_blocks_d *db = get_def_blocks_for (name);
1987
1988 if (!bitmap_bit_p (db->def_blocks, bb1->index))
1989 set_livein_block (name, bb1);
1990 }
1991 }
1992 else
1993 {
1994 /* For regular statements, mark this as an interesting use
1995 for NAME. */
1996 mark_use_interesting (name, stmt, bb, blocks, insert_phi_p);
1997 }
1998 }
1999 }
2000
2001
2002 /* Helper for prepare_names_to_update. Mark the definition site for
2003 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2004 prepare_names_to_update. */
2005
2006 static void
2007 prepare_def_site_for (tree name, bitmap blocks, bool insert_phi_p)
2008 {
2009 tree stmt;
2010 basic_block bb;
2011
2012 gcc_assert (names_to_release == NULL
2013 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2014
2015 stmt = SSA_NAME_DEF_STMT (name);
2016 bb = bb_for_stmt (stmt);
2017 if (bb)
2018 {
2019 gcc_assert (bb->index < last_basic_block);
2020 mark_def_interesting (name, stmt, bb, blocks, insert_phi_p);
2021 }
2022 }
2023
2024
2025 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2026 OLD_SSA_NAMES. Add each definition block to BLOCKS. INSERT_PHI_P
2027 is true if the caller wants to insert PHI nodes for newly created
2028 names. */
2029
2030 static void
2031 prepare_names_to_update (bitmap blocks, bool insert_phi_p)
2032 {
2033 unsigned i = 0;
2034 bitmap_iterator bi;
2035 sbitmap_iterator sbi;
2036
2037 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2038 remove it from NEW_SSA_NAMES so that we don't try to visit its
2039 defining basic block (which most likely doesn't exist). Notice
2040 that we cannot do the same with names in OLD_SSA_NAMES because we
2041 want to replace existing instances. */
2042 if (names_to_release)
2043 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2044 RESET_BIT (new_ssa_names, i);
2045
2046 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2047 names may be considered to be live-in on blocks that contain
2048 definitions for their replacements. */
2049 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2050 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2051
2052 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2053 OLD_SSA_NAMES, but we have to ignore its definition site. */
2054 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2055 {
2056 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2057 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2058 prepare_use_sites_for (ssa_name (i), blocks, insert_phi_p);
2059 }
2060 }
2061
2062
2063 /* Dump all the names replaced by NAME to FILE. */
2064
2065 void
2066 dump_names_replaced_by (FILE *file, tree name)
2067 {
2068 unsigned i;
2069 bitmap old_set;
2070 bitmap_iterator bi;
2071
2072 print_generic_expr (file, name, 0);
2073 fprintf (file, " -> { ");
2074
2075 old_set = names_replaced_by (name);
2076 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2077 {
2078 print_generic_expr (file, ssa_name (i), 0);
2079 fprintf (file, " ");
2080 }
2081
2082 fprintf (file, "}\n");
2083 }
2084
2085
2086 /* Dump all the names replaced by NAME to stderr. */
2087
2088 void
2089 debug_names_replaced_by (tree name)
2090 {
2091 dump_names_replaced_by (stderr, name);
2092 }
2093
2094
2095 /* Dump SSA update information to FILE. */
2096
2097 void
2098 dump_update_ssa (FILE *file)
2099 {
2100 unsigned i = 0;
2101 bitmap_iterator bi;
2102
2103 if (!need_ssa_update_p ())
2104 return;
2105
2106 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2107 {
2108 sbitmap_iterator sbi;
2109
2110 fprintf (file, "\nSSA replacement table\n");
2111 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2112 "O_1, ..., O_j\n\n");
2113
2114 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2115 dump_names_replaced_by (file, ssa_name (i));
2116
2117 fprintf (file, "\n");
2118 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2119 update_ssa_stats.num_virtual_mappings);
2120 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2121 update_ssa_stats.num_total_mappings
2122 - update_ssa_stats.num_virtual_mappings);
2123 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2124 update_ssa_stats.num_total_mappings);
2125
2126 fprintf (file, "\nNumber of virtual symbols: %u\n",
2127 update_ssa_stats.num_virtual_symbols);
2128 }
2129
2130 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2131 {
2132 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2133 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2134 {
2135 print_generic_expr (file, referenced_var (i), 0);
2136 fprintf (file, " ");
2137 }
2138 }
2139
2140 if (names_to_release && !bitmap_empty_p (names_to_release))
2141 {
2142 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2143 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2144 {
2145 print_generic_expr (file, ssa_name (i), 0);
2146 fprintf (file, " ");
2147 }
2148 }
2149
2150 fprintf (file, "\n\n");
2151 }
2152
2153
2154 /* Dump SSA update information to stderr. */
2155
2156 void
2157 debug_update_ssa (void)
2158 {
2159 dump_update_ssa (stderr);
2160 }
2161
2162
2163 /* Initialize data structures used for incremental SSA updates. */
2164
2165 static void
2166 init_update_ssa (void)
2167 {
2168 /* Reserve more space than the current number of names. The calls to
2169 add_new_name_mapping are typically done after creating new SSA
2170 names, so we'll need to reallocate these arrays. */
2171 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2172 sbitmap_zero (old_ssa_names);
2173
2174 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2175 sbitmap_zero (new_ssa_names);
2176
2177 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2178 need_to_initialize_update_ssa_p = false;
2179 need_to_update_vops_p = false;
2180 syms_to_rename = BITMAP_ALLOC (NULL);
2181 names_to_release = NULL;
2182 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2183 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2184 }
2185
2186
2187 /* Deallocate data structures used for incremental SSA updates. */
2188
2189 void
2190 delete_update_ssa (void)
2191 {
2192 unsigned i;
2193 bitmap_iterator bi;
2194
2195 sbitmap_free (old_ssa_names);
2196 old_ssa_names = NULL;
2197
2198 sbitmap_free (new_ssa_names);
2199 new_ssa_names = NULL;
2200
2201 htab_delete (repl_tbl);
2202 repl_tbl = NULL;
2203
2204 need_to_initialize_update_ssa_p = true;
2205 need_to_update_vops_p = false;
2206 BITMAP_FREE (syms_to_rename);
2207 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2208
2209 if (names_to_release)
2210 {
2211 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2212 release_ssa_name (ssa_name (i));
2213 BITMAP_FREE (names_to_release);
2214 }
2215
2216 for (i = 1; i < num_ssa_names; i++)
2217 {
2218 tree n = ssa_name (i);
2219
2220 if (n)
2221 {
2222 free (SSA_NAME_AUX (n));
2223 SSA_NAME_AUX (n) = NULL;
2224 }
2225 }
2226 }
2227
2228
2229 /* Create a new name for OLD_NAME in statement STMT and replace the
2230 operand pointed to by DEF_P with the newly created name. Return
2231 the new name and register the replacement mapping <NEW, OLD> in
2232 update_ssa's tables. */
2233
2234 tree
2235 create_new_def_for (tree old_name, tree stmt, def_operand_p def)
2236 {
2237 tree new_name = duplicate_ssa_name (old_name, stmt);
2238
2239 SET_DEF (def, new_name);
2240
2241 if (TREE_CODE (stmt) == PHI_NODE)
2242 {
2243 edge e;
2244 edge_iterator ei;
2245 basic_block bb = bb_for_stmt (stmt);
2246
2247 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2248 FOR_EACH_EDGE (e, ei, bb->preds)
2249 if (e->flags & EDGE_ABNORMAL)
2250 {
2251 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2252 break;
2253 }
2254 }
2255
2256 register_new_name_mapping (new_name, old_name);
2257
2258 /* For the benefit of passes that will be updating the SSA form on
2259 their own, set the current reaching definition of OLD_NAME to be
2260 NEW_NAME. */
2261 set_current_def (old_name, new_name);
2262
2263 return new_name;
2264 }
2265
2266
2267 /* Register name NEW to be a replacement for name OLD. This function
2268 must be called for every replacement that should be performed by
2269 update_ssa. */
2270
2271 void
2272 register_new_name_mapping (tree new, tree old)
2273 {
2274 if (need_to_initialize_update_ssa_p)
2275 init_update_ssa ();
2276
2277 add_new_name_mapping (new, old);
2278 }
2279
2280
2281 /* Register symbol SYM to be renamed by update_ssa. */
2282
2283 void
2284 mark_sym_for_renaming (tree sym)
2285 {
2286 if (need_to_initialize_update_ssa_p)
2287 init_update_ssa ();
2288
2289 bitmap_set_bit (syms_to_rename, DECL_UID (sym));
2290
2291 if (!is_gimple_reg (sym))
2292 need_to_update_vops_p = true;
2293 }
2294
2295
2296 /* Register all the symbols in SET to be renamed by update_ssa. */
2297
2298 void
2299 mark_set_for_renaming (bitmap set)
2300 {
2301 bitmap_iterator bi;
2302 unsigned i;
2303
2304 if (bitmap_empty_p (set))
2305 return;
2306
2307 if (need_to_initialize_update_ssa_p)
2308 init_update_ssa ();
2309
2310 bitmap_ior_into (syms_to_rename, set);
2311
2312 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2313 if (!is_gimple_reg (referenced_var (i)))
2314 {
2315 need_to_update_vops_p = true;
2316 break;
2317 }
2318 }
2319
2320
2321 /* Return true if there is any work to be done by update_ssa. */
2322
2323 bool
2324 need_ssa_update_p (void)
2325 {
2326 return syms_to_rename || old_ssa_names || new_ssa_names;
2327 }
2328
2329
2330 /* Return true if name N has been registered in the replacement table. */
2331
2332 bool
2333 name_registered_for_update_p (tree n)
2334 {
2335 if (!need_ssa_update_p ())
2336 return false;
2337
2338 return is_new_name (n)
2339 || is_old_name (n)
2340 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2341 }
2342
2343
2344 /* Return the set of all the SSA names marked to be replaced. */
2345
2346 bitmap
2347 ssa_names_to_replace (void)
2348 {
2349 unsigned i = 0;
2350 bitmap ret;
2351 sbitmap_iterator sbi;
2352
2353 ret = BITMAP_ALLOC (NULL);
2354 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2355 bitmap_set_bit (ret, i);
2356
2357 return ret;
2358 }
2359
2360
2361 /* Mark NAME to be released after update_ssa has finished. */
2362
2363 void
2364 release_ssa_name_after_update_ssa (tree name)
2365 {
2366 gcc_assert (!need_to_initialize_update_ssa_p);
2367
2368 if (names_to_release == NULL)
2369 names_to_release = BITMAP_ALLOC (NULL);
2370
2371 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2372 }
2373
2374
2375 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2376 frontier information. BLOCKS is the set of blocks to be updated.
2377
2378 This is slightly different than the regular PHI insertion
2379 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2380 real names (i.e., GIMPLE registers) are inserted:
2381
2382 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2383 nodes inside the region affected by the block that defines VAR
2384 and the blocks that define all its replacements. All these
2385 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2386
2387 First, we compute the entry point to the region (ENTRY). This is
2388 given by the nearest common dominator to all the definition
2389 blocks. When computing the iterated dominance frontier (IDF), any
2390 block not strictly dominated by ENTRY is ignored.
2391
2392 We then call the standard PHI insertion algorithm with the pruned
2393 IDF.
2394
2395 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2396 names is not pruned. PHI nodes are inserted at every IDF block. */
2397
2398 static void
2399 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2400 unsigned update_flags)
2401 {
2402 basic_block entry;
2403 struct def_blocks_d *db;
2404 bitmap idf, pruned_idf;
2405 bitmap_iterator bi;
2406 unsigned i;
2407
2408 #if defined ENABLE_CHECKING
2409 if (TREE_CODE (var) == SSA_NAME)
2410 gcc_assert (is_old_name (var));
2411 else
2412 gcc_assert (symbol_marked_for_renaming (var));
2413 #endif
2414
2415 /* Get all the definition sites for VAR. */
2416 db = find_def_blocks_for (var);
2417
2418 /* No need to do anything if there were no definitions to VAR. */
2419 if (db == NULL || bitmap_empty_p (db->def_blocks))
2420 return;
2421
2422 /* Compute the initial iterated dominance frontier. */
2423 idf = find_idf (db->def_blocks, dfs);
2424 pruned_idf = BITMAP_ALLOC (NULL);
2425
2426 if (TREE_CODE (var) == SSA_NAME)
2427 {
2428 if (update_flags == TODO_update_ssa)
2429 {
2430 /* If doing regular SSA updates for GIMPLE registers, we are
2431 only interested in IDF blocks dominated by the nearest
2432 common dominator of all the definition blocks. */
2433 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2434 db->def_blocks);
2435
2436 if (entry != ENTRY_BLOCK_PTR)
2437 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2438 if (BASIC_BLOCK (i) != entry
2439 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2440 bitmap_set_bit (pruned_idf, i);
2441 }
2442 else
2443 {
2444 /* Otherwise, do not prune the IDF for VAR. */
2445 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2446 bitmap_copy (pruned_idf, idf);
2447 }
2448 }
2449 else
2450 {
2451 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2452 for the first time, so we need to compute the full IDF for
2453 it. */
2454 bitmap_copy (pruned_idf, idf);
2455 }
2456
2457 if (!bitmap_empty_p (pruned_idf))
2458 {
2459 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2460 are included in the region to be updated. The feeding blocks
2461 are important to guarantee that the PHI arguments are renamed
2462 properly. */
2463 bitmap_ior_into (blocks, pruned_idf);
2464 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2465 {
2466 edge e;
2467 edge_iterator ei;
2468 basic_block bb = BASIC_BLOCK (i);
2469
2470 FOR_EACH_EDGE (e, ei, bb->preds)
2471 if (e->src->index >= 0)
2472 bitmap_set_bit (blocks, e->src->index);
2473 }
2474
2475 insert_phi_nodes_for (var, pruned_idf, true);
2476 }
2477
2478 BITMAP_FREE (pruned_idf);
2479 BITMAP_FREE (idf);
2480 }
2481
2482
2483 /* Heuristic to determine whether SSA name mappings for virtual names
2484 should be discarded and their symbols rewritten from scratch. When
2485 there is a large number of mappings for virtual names, the
2486 insertion of PHI nodes for the old names in the mappings takes
2487 considerable more time than if we inserted PHI nodes for the
2488 symbols instead.
2489
2490 Currently the heuristic takes these stats into account:
2491
2492 - Number of mappings for virtual SSA names.
2493 - Number of distinct virtual symbols involved in those mappings.
2494
2495 If the number of virtual mappings is much larger than the number of
2496 virtual symbols, then it will be faster to compute PHI insertion
2497 spots for the symbols. Even if this involves traversing the whole
2498 CFG, which is what happens when symbols are renamed from scratch. */
2499
2500 static bool
2501 switch_virtuals_to_full_rewrite_p (void)
2502 {
2503 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
2504 return false;
2505
2506 if (update_ssa_stats.num_virtual_mappings
2507 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
2508 * update_ssa_stats.num_virtual_symbols)
2509 return true;
2510
2511 return false;
2512 }
2513
2514
2515 /* Remove every virtual mapping and mark all the affected virtual
2516 symbols for renaming. */
2517
2518 static void
2519 switch_virtuals_to_full_rewrite (void)
2520 {
2521 unsigned i = 0;
2522 sbitmap_iterator sbi;
2523
2524 if (dump_file)
2525 {
2526 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
2527 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
2528 update_ssa_stats.num_virtual_mappings);
2529 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
2530 update_ssa_stats.num_virtual_symbols);
2531 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
2532 "faster than processing\nthe name mappings.\n\n");
2533 }
2534
2535 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
2536 Note that it is not really necessary to remove the mappings from
2537 REPL_TBL, that would only waste time. */
2538 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2539 if (!is_gimple_reg (ssa_name (i)))
2540 RESET_BIT (new_ssa_names, i);
2541
2542 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2543 if (!is_gimple_reg (ssa_name (i)))
2544 RESET_BIT (old_ssa_names, i);
2545
2546 bitmap_ior_into (syms_to_rename, update_ssa_stats.virtual_symbols);
2547 }
2548
2549
2550 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
2551 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
2552
2553 1- The names in OLD_SSA_NAMES dominated by the definitions of
2554 NEW_SSA_NAMES are all re-written to be reached by the
2555 appropriate definition from NEW_SSA_NAMES.
2556
2557 2- If needed, new PHI nodes are added to the iterated dominance
2558 frontier of the blocks where each of NEW_SSA_NAMES are defined.
2559
2560 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
2561 calling register_new_name_mapping for every pair of names that the
2562 caller wants to replace.
2563
2564 The caller identifies the new names that have been inserted and the
2565 names that need to be replaced by calling register_new_name_mapping
2566 for every pair <NEW, OLD>. Note that the function assumes that the
2567 new names have already been inserted in the IL.
2568
2569 For instance, given the following code:
2570
2571 1 L0:
2572 2 x_1 = PHI (0, x_5)
2573 3 if (x_1 < 10)
2574 4 if (x_1 > 7)
2575 5 y_2 = 0
2576 6 else
2577 7 y_3 = x_1 + x_7
2578 8 endif
2579 9 x_5 = x_1 + 1
2580 10 goto L0;
2581 11 endif
2582
2583 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
2584
2585 1 L0:
2586 2 x_1 = PHI (0, x_5)
2587 3 if (x_1 < 10)
2588 4 x_10 = ...
2589 5 if (x_1 > 7)
2590 6 y_2 = 0
2591 7 else
2592 8 x_11 = ...
2593 9 y_3 = x_1 + x_7
2594 10 endif
2595 11 x_5 = x_1 + 1
2596 12 goto L0;
2597 13 endif
2598
2599 We want to replace all the uses of x_1 with the new definitions of
2600 x_10 and x_11. Note that the only uses that should be replaced are
2601 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
2602 *not* be replaced (this is why we cannot just mark symbol 'x' for
2603 renaming).
2604
2605 Additionally, we may need to insert a PHI node at line 11 because
2606 that is a merge point for x_10 and x_11. So the use of x_1 at line
2607 11 will be replaced with the new PHI node. The insertion of PHI
2608 nodes is optional. They are not strictly necessary to preserve the
2609 SSA form, and depending on what the caller inserted, they may not
2610 even be useful for the optimizers. UPDATE_FLAGS controls various
2611 aspects of how update_ssa operates, see the documentation for
2612 TODO_update_ssa*. */
2613
2614 void
2615 update_ssa (unsigned update_flags)
2616 {
2617 bitmap blocks;
2618 basic_block bb, start_bb;
2619 bitmap_iterator bi;
2620 unsigned i = 0;
2621 sbitmap tmp;
2622 bool insert_phi_p;
2623 sbitmap_iterator sbi;
2624
2625 if (!need_ssa_update_p ())
2626 return;
2627
2628 timevar_push (TV_TREE_SSA_INCREMENTAL);
2629
2630 /* Ensure that the dominance information is up-to-date. */
2631 calculate_dominance_info (CDI_DOMINATORS);
2632
2633 /* Only one update flag should be set. */
2634 gcc_assert (update_flags == TODO_update_ssa
2635 || update_flags == TODO_update_ssa_no_phi
2636 || update_flags == TODO_update_ssa_full_phi
2637 || update_flags == TODO_update_ssa_only_virtuals);
2638
2639 /* If we only need to update virtuals, remove all the mappings for
2640 real names before proceeding. The caller is responsible for
2641 having dealt with the name mappings before calling update_ssa. */
2642 if (update_flags == TODO_update_ssa_only_virtuals)
2643 {
2644 sbitmap_zero (old_ssa_names);
2645 sbitmap_zero (new_ssa_names);
2646 htab_empty (repl_tbl);
2647 }
2648
2649 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
2650
2651 if (insert_phi_p)
2652 {
2653 /* If the caller requested PHI nodes to be added, initialize
2654 live-in information data structures (DEF_BLOCKS). */
2655
2656 /* For each SSA name N, the DEF_BLOCKS table describes where the
2657 name is defined, which blocks have PHI nodes for N, and which
2658 blocks have uses of N (i.e., N is live-on-entry in those
2659 blocks). */
2660 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
2661 def_blocks_eq, def_blocks_free);
2662 }
2663 else
2664 {
2665 def_blocks = NULL;
2666 }
2667
2668 blocks = BITMAP_ALLOC (NULL);
2669
2670 /* Clear the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags
2671 for every statement and PHI node. */
2672 FOR_EACH_BB (bb)
2673 {
2674 block_stmt_iterator si;
2675 tree phi;
2676
2677 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2678 {
2679 REWRITE_THIS_STMT (phi) = 0;
2680 REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
2681 }
2682
2683 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2684 {
2685 tree stmt = bsi_stmt (si);
2686 /* We are going to use the operand cache API, such as
2687 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
2688 cache for each statement should be up-to-date. */
2689 gcc_assert (!stmt_modified_p (stmt));
2690 REWRITE_THIS_STMT (stmt) = 0;
2691 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
2692 }
2693 }
2694
2695 /* Heuristic to avoid massive slow downs when the replacement
2696 mappings include lots of virtual names. */
2697 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
2698 switch_virtuals_to_full_rewrite ();
2699
2700 /* If there are names defined in the replacement table, prepare
2701 definition and use sites for all the names in NEW_SSA_NAMES and
2702 OLD_SSA_NAMES. */
2703 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
2704 {
2705 prepare_names_to_update (blocks, insert_phi_p);
2706
2707 /* If all the names in NEW_SSA_NAMES had been marked for
2708 removal, and there are no symbols to rename, then there's
2709 nothing else to do. */
2710 if (sbitmap_first_set_bit (new_ssa_names) < 0
2711 && bitmap_empty_p (syms_to_rename))
2712 goto done;
2713 }
2714
2715 /* Next, determine the block at which to start the renaming process. */
2716 if (!bitmap_empty_p (syms_to_rename))
2717 {
2718 /* If we have to rename some symbols from scratch, we need to
2719 start the process at the root of the CFG. FIXME, it should
2720 be possible to determine the nearest block that had a
2721 definition for each of the symbols that are marked for
2722 updating. For now this seems more work than it's worth. */
2723 start_bb = ENTRY_BLOCK_PTR;
2724
2725 /* Traverse the CFG looking for definitions and uses of symbols
2726 in SYMS_TO_RENAME. Mark interesting blocks and statements
2727 and set local live-in information for the PHI placement
2728 heuristics. */
2729 prepare_block_for_update (start_bb, blocks, insert_phi_p);
2730 }
2731 else
2732 {
2733 /* Otherwise, the entry block to the region is the nearest
2734 common dominator for the blocks in BLOCKS. */
2735 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2736 }
2737
2738 /* If requested, insert PHI nodes at the iterated dominance frontier
2739 of every block, creating new definitions for names in OLD_SSA_NAMES
2740 and for symbols in SYMS_TO_RENAME. */
2741 if (insert_phi_p)
2742 {
2743 bitmap *dfs;
2744
2745 /* If the caller requested PHI nodes to be added, compute
2746 dominance frontiers. */
2747 dfs = xmalloc (last_basic_block * sizeof (bitmap));
2748 FOR_EACH_BB (bb)
2749 dfs[bb->index] = BITMAP_ALLOC (NULL);
2750 compute_dominance_frontiers (dfs);
2751
2752 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
2753 {
2754 sbitmap_iterator sbi;
2755
2756 /* insert_update_phi_nodes_for will call add_new_name_mapping
2757 when inserting new PHI nodes, so the set OLD_SSA_NAMES
2758 will grow while we are traversing it (but it will not
2759 gain any new members). Copy OLD_SSA_NAMES to a temporary
2760 for traversal. */
2761 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
2762 sbitmap_copy (tmp, old_ssa_names);
2763 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
2764 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks,
2765 update_flags);
2766 sbitmap_free (tmp);
2767 }
2768
2769 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2770 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks,
2771 update_flags);
2772
2773 FOR_EACH_BB (bb)
2774 BITMAP_FREE (dfs[bb->index]);
2775 free (dfs);
2776
2777 /* Insertion of PHI nodes may have added blocks to the region.
2778 We need to re-compute START_BB to include the newly added
2779 blocks. */
2780 if (start_bb != ENTRY_BLOCK_PTR)
2781 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2782 }
2783
2784 /* Reset the current definition for name and symbol before renaming
2785 the sub-graph. */
2786 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2787 set_current_def (ssa_name (i), NULL_TREE);
2788
2789 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2790 set_current_def (referenced_var (i), NULL_TREE);
2791
2792 /* Now start the renaming process at START_BB. */
2793 tmp = sbitmap_alloc (last_basic_block);
2794 sbitmap_zero (tmp);
2795 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2796 SET_BIT (tmp, i);
2797
2798 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
2799
2800 sbitmap_free (tmp);
2801
2802 /* Debugging dumps. */
2803 if (dump_file)
2804 {
2805 int c;
2806 unsigned i;
2807
2808 dump_update_ssa (dump_file);
2809
2810 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
2811 start_bb->index);
2812
2813 c = 0;
2814 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2815 c++;
2816 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
2817 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
2818 c, PERCENT (c, last_basic_block));
2819
2820 if (dump_flags & TDF_DETAILS)
2821 {
2822 fprintf (dump_file, "Affected blocks: ");
2823 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2824 fprintf (dump_file, "%u ", i);
2825 fprintf (dump_file, "\n");
2826 }
2827
2828 fprintf (dump_file, "\n\n");
2829 }
2830
2831 /* Free allocated memory. */
2832 done:
2833 BITMAP_FREE (blocks);
2834 delete_update_ssa ();
2835
2836 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2837 }