vec.h: Implement integral type vector specialization.
[gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "errors.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "diagnostic.h"
38 #include "bitmap.h"
39 #include "tree-flow.h"
40 #include "tree-gimple.h"
41 #include "tree-inline.h"
42 #include "varray.h"
43 #include "timevar.h"
44 #include "hashtab.h"
45 #include "tree-dump.h"
46 #include "tree-pass.h"
47 #include "cfgloop.h"
48 #include "domwalk.h"
49 #include "ggc.h"
50 #include "params.h"
51
52 /* This file builds the SSA form for a function as described in:
53 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
54 Computing Static Single Assignment Form and the Control Dependence
55 Graph. ACM Transactions on Programming Languages and Systems,
56 13(4):451-490, October 1991. */
57
58 /* True if the code is in ssa form. */
59 bool in_ssa_p;
60
61 /* Structure to map a variable VAR to the set of blocks that contain
62 definitions for VAR. */
63 struct def_blocks_d
64 {
65 /* The variable. */
66 tree var;
67
68 /* Blocks that contain definitions of VAR. Bit I will be set if the
69 Ith block contains a definition of VAR. */
70 bitmap def_blocks;
71
72 /* Blocks that contain a PHI node for VAR. */
73 bitmap phi_blocks;
74
75 /* Blocks where VAR is live-on-entry. Similar semantics as
76 DEF_BLOCKS. */
77 bitmap livein_blocks;
78 };
79
80
81 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
82 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
83 basic blocks where VAR is defined (assigned a new value). It also
84 contains a bitmap of all the blocks where VAR is live-on-entry
85 (i.e., there is a use of VAR in block B without a preceding
86 definition in B). The live-on-entry information is used when
87 computing PHI pruning heuristics. */
88 static htab_t def_blocks;
89
90 /* Stack of trees used to restore the global currdefs to its original
91 state after completing rewriting of a block and its dominator
92 children. Its elements have the following properties:
93
94 - An SSA_NAME indicates that the current definition of the
95 underlying variable should be set to the given SSA_NAME.
96
97 - A _DECL node indicates that the underlying variable has no
98 current definition.
99
100 - A NULL node is used to mark the last node associated with the
101 current block.
102
103 - A NULL node at the top entry is used to mark the last node
104 associated with the current block. */
105 static VEC(tree,heap) *block_defs_stack;
106
107 /* Basic block vectors used in this file ought to be allocated in the
108 heap. We use pointer vector, because ints can be easily passed by
109 value. */
110 DEF_VEC_I(int);
111 DEF_VEC_ALLOC_I(int,heap);
112
113 /* Set of existing SSA names being replaced by update_ssa. */
114 static sbitmap old_ssa_names;
115
116 /* Set of new SSA names being added by update_ssa. Note that both
117 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
118 the operations done on them are presence tests. */
119 static sbitmap new_ssa_names;
120
121 /* Symbols whose SSA form needs to be updated or created for the first
122 time. */
123 static bitmap syms_to_rename;
124
125 /* Set of SSA names that have been marked to be released after they
126 were registered in the replacement table. They will be finally
127 released after we finish updating the SSA web. */
128 static bitmap names_to_release;
129
130 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
131 to grow as the callers to register_new_name_mapping will typically
132 create new names on the fly. FIXME. Currently set to 1/3 to avoid
133 frequent reallocations but still need to find a reasonable growth
134 strategy. */
135 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
136
137 /* Tuple used to represent replacement mappings. */
138 struct repl_map_d
139 {
140 tree name;
141 bitmap set;
142 };
143
144 /* NEW -> OLD_SET replacement table. If we are replacing several
145 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
146 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
147 static htab_t repl_tbl;
148
149 /* true if register_new_name_mapping needs to initialize the data
150 structures needed by update_ssa. */
151 static bool need_to_initialize_update_ssa_p = true;
152
153 /* true if update_ssa needs to update virtual operands. */
154 static bool need_to_update_vops_p = false;
155
156 /* Statistics kept by update_ssa to use in the virtual mapping
157 heuristic. If the number of virtual mappings is beyond certain
158 threshold, the updater will switch from using the mappings into
159 renaming the virtual symbols from scratch. In some cases, the
160 large number of name mappings for virtual names causes significant
161 slowdowns in the PHI insertion code. */
162 struct update_ssa_stats_d
163 {
164 unsigned num_virtual_mappings;
165 unsigned num_total_mappings;
166 bitmap virtual_symbols;
167 unsigned num_virtual_symbols;
168 };
169 static struct update_ssa_stats_d update_ssa_stats;
170
171 /* Global data to attach to the main dominator walk structure. */
172 struct mark_def_sites_global_data
173 {
174 /* This bitmap contains the variables which are set before they
175 are used in a basic block. */
176 bitmap kills;
177
178 /* Bitmap of names to rename. */
179 sbitmap names_to_rename;
180
181 /* Set of blocks that mark_def_sites deems interesting for the
182 renamer to process. */
183 sbitmap interesting_blocks;
184 };
185
186
187 /* Information stored for SSA names. */
188 struct ssa_name_info
189 {
190 /* This field indicates whether or not the variable may need PHI nodes.
191 See the enum's definition for more detailed information about the
192 states. */
193 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
194
195 /* The actual definition of the ssa name. */
196 tree current_def;
197 };
198
199
200 /* The main entry point to the SSA renamer (rewrite_blocks) may be
201 called several times to do different, but related, tasks.
202 Initially, we need it to rename the whole program into SSA form.
203 At other times, we may need it to only rename into SSA newly
204 exposed symbols. Finally, we can also call it to incrementally fix
205 an already built SSA web. */
206 enum rewrite_mode {
207 /* Convert the whole function into SSA form. */
208 REWRITE_ALL,
209
210 /* Incrementally update the SSA web by replacing existing SSA
211 names with new ones. See update_ssa for details. */
212 REWRITE_UPDATE
213 };
214
215
216 /* Use TREE_VISITED to keep track of which statements we want to
217 rename. When renaming a subset of the variables, not all
218 statements will be processed. This is decided in mark_def_sites. */
219 #define REWRITE_THIS_STMT(T) TREE_VISITED (T)
220
221 /* Use the unsigned flag to keep track of which statements we want to
222 visit when marking new definition sites. This is slightly
223 different than REWRITE_THIS_STMT: it's used by update_ssa to
224 distinguish statements that need to have both uses and defs
225 processed from those that only need to have their defs processed.
226 Statements that define new SSA names only need to have their defs
227 registered, but they don't need to have their uses renamed. */
228 #define REGISTER_DEFS_IN_THIS_STMT(T) (T)->common.unsigned_flag
229
230
231 /* Prototypes for debugging functions. */
232 extern void dump_tree_ssa (FILE *);
233 extern void debug_tree_ssa (void);
234 extern void debug_def_blocks (void);
235 extern void dump_tree_ssa_stats (FILE *);
236 extern void debug_tree_ssa_stats (void);
237 void dump_update_ssa (FILE *);
238 void debug_update_ssa (void);
239 void dump_names_replaced_by (FILE *, tree);
240 void debug_names_replaced_by (tree);
241
242 /* Get the information associated with NAME. */
243
244 static inline struct ssa_name_info *
245 get_ssa_name_ann (tree name)
246 {
247 if (!SSA_NAME_AUX (name))
248 SSA_NAME_AUX (name) = xcalloc (1, sizeof (struct ssa_name_info));
249
250 return SSA_NAME_AUX (name);
251 }
252
253
254 /* Gets phi_state field for VAR. */
255
256 static inline enum need_phi_state
257 get_phi_state (tree var)
258 {
259 if (TREE_CODE (var) == SSA_NAME)
260 return get_ssa_name_ann (var)->need_phi_state;
261 else
262 return var_ann (var)->need_phi_state;
263 }
264
265
266 /* Sets phi_state field for VAR to STATE. */
267
268 static inline void
269 set_phi_state (tree var, enum need_phi_state state)
270 {
271 if (TREE_CODE (var) == SSA_NAME)
272 get_ssa_name_ann (var)->need_phi_state = state;
273 else
274 var_ann (var)->need_phi_state = state;
275 }
276
277
278 /* Return the current definition for VAR. */
279
280 tree
281 get_current_def (tree var)
282 {
283 if (TREE_CODE (var) == SSA_NAME)
284 return get_ssa_name_ann (var)->current_def;
285 else
286 return var_ann (var)->current_def;
287 }
288
289
290 /* Sets current definition of VAR to DEF. */
291
292 void
293 set_current_def (tree var, tree def)
294 {
295 if (TREE_CODE (var) == SSA_NAME)
296 get_ssa_name_ann (var)->current_def = def;
297 else
298 var_ann (var)->current_def = def;
299 }
300
301
302 /* Compute global livein information given the set of blockx where
303 an object is locally live at the start of the block (LIVEIN)
304 and the set of blocks where the object is defined (DEF_BLOCKS).
305
306 Note: This routine augments the existing local livein information
307 to include global livein (i.e., it modifies the underlying bitmap
308 for LIVEIN). */
309
310 void
311 compute_global_livein (bitmap livein, bitmap def_blocks)
312 {
313 basic_block bb, *worklist, *tos;
314 unsigned i;
315 bitmap_iterator bi;
316
317 tos = worklist
318 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
319
320 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
321 {
322 *tos++ = BASIC_BLOCK (i);
323 }
324
325 /* Iterate until the worklist is empty. */
326 while (tos != worklist)
327 {
328 edge e;
329 edge_iterator ei;
330
331 /* Pull a block off the worklist. */
332 bb = *--tos;
333
334 /* For each predecessor block. */
335 FOR_EACH_EDGE (e, ei, bb->preds)
336 {
337 basic_block pred = e->src;
338 int pred_index = pred->index;
339
340 /* None of this is necessary for the entry block. */
341 if (pred != ENTRY_BLOCK_PTR
342 && ! bitmap_bit_p (livein, pred_index)
343 && ! bitmap_bit_p (def_blocks, pred_index))
344 {
345 *tos++ = pred;
346 bitmap_set_bit (livein, pred_index);
347 }
348 }
349 }
350
351 free (worklist);
352 }
353
354
355 /* Return the set of blocks where variable VAR is defined and the blocks
356 where VAR is live on entry (livein). If no entry is found in
357 DEF_BLOCKS, a new one is created and returned. */
358
359 static inline struct def_blocks_d *
360 get_def_blocks_for (tree var)
361 {
362 struct def_blocks_d db, *db_p;
363 void **slot;
364
365 db.var = var;
366 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
367 if (*slot == NULL)
368 {
369 db_p = xmalloc (sizeof (*db_p));
370 db_p->var = var;
371 db_p->def_blocks = BITMAP_ALLOC (NULL);
372 db_p->phi_blocks = BITMAP_ALLOC (NULL);
373 db_p->livein_blocks = BITMAP_ALLOC (NULL);
374 *slot = (void *) db_p;
375 }
376 else
377 db_p = (struct def_blocks_d *) *slot;
378
379 return db_p;
380 }
381
382
383 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
384 VAR is defined by a PHI node. */
385
386 static void
387 set_def_block (tree var, basic_block bb, bool phi_p)
388 {
389 struct def_blocks_d *db_p;
390 enum need_phi_state state;
391
392 state = get_phi_state (var);
393 db_p = get_def_blocks_for (var);
394
395 /* Set the bit corresponding to the block where VAR is defined. */
396 bitmap_set_bit (db_p->def_blocks, bb->index);
397 if (phi_p)
398 bitmap_set_bit (db_p->phi_blocks, bb->index);
399
400 /* Keep track of whether or not we may need to insert PHI nodes.
401
402 If we are in the UNKNOWN state, then this is the first definition
403 of VAR. Additionally, we have not seen any uses of VAR yet, so
404 we do not need a PHI node for this variable at this time (i.e.,
405 transition to NEED_PHI_STATE_NO).
406
407 If we are in any other state, then we either have multiple definitions
408 of this variable occurring in different blocks or we saw a use of the
409 variable which was not dominated by the block containing the
410 definition(s). In this case we may need a PHI node, so enter
411 state NEED_PHI_STATE_MAYBE. */
412 if (state == NEED_PHI_STATE_UNKNOWN)
413 set_phi_state (var, NEED_PHI_STATE_NO);
414 else
415 set_phi_state (var, NEED_PHI_STATE_MAYBE);
416 }
417
418
419 /* Mark block BB as having VAR live at the entry to BB. */
420
421 static void
422 set_livein_block (tree var, basic_block bb)
423 {
424 struct def_blocks_d *db_p;
425 enum need_phi_state state = get_phi_state (var);
426
427 db_p = get_def_blocks_for (var);
428
429 /* Set the bit corresponding to the block where VAR is live in. */
430 bitmap_set_bit (db_p->livein_blocks, bb->index);
431
432 /* Keep track of whether or not we may need to insert PHI nodes.
433
434 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
435 by the single block containing the definition(s) of this variable. If
436 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
437 NEED_PHI_STATE_MAYBE. */
438 if (state == NEED_PHI_STATE_NO)
439 {
440 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
441
442 if (def_block_index == -1
443 || ! dominated_by_p (CDI_DOMINATORS, bb,
444 BASIC_BLOCK (def_block_index)))
445 set_phi_state (var, NEED_PHI_STATE_MAYBE);
446 }
447 else
448 set_phi_state (var, NEED_PHI_STATE_MAYBE);
449 }
450
451
452 /* Return true if symbol SYM is marked for renaming. */
453
454 static inline bool
455 symbol_marked_for_renaming (tree sym)
456 {
457 gcc_assert (DECL_P (sym));
458 return bitmap_bit_p (syms_to_rename, var_ann (sym)->uid);
459 }
460
461
462 /* Return true if NAME is in OLD_SSA_NAMES. */
463
464 static inline bool
465 is_old_name (tree name)
466 {
467 unsigned ver = SSA_NAME_VERSION (name);
468 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
469 }
470
471
472 /* Return true if NAME is in NEW_SSA_NAMES. */
473
474 static inline bool
475 is_new_name (tree name)
476 {
477 unsigned ver = SSA_NAME_VERSION (name);
478 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
479 }
480
481
482 /* Hashing and equality functions for REPL_TBL. */
483
484 static hashval_t
485 repl_map_hash (const void *p)
486 {
487 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
488 }
489
490 static int
491 repl_map_eq (const void *p1, const void *p2)
492 {
493 return ((const struct repl_map_d *)p1)->name
494 == ((const struct repl_map_d *)p2)->name;
495 }
496
497 static void
498 repl_map_free (void *p)
499 {
500 BITMAP_FREE (((struct repl_map_d *)p)->set);
501 free (p);
502 }
503
504
505 /* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
506
507 static inline bitmap
508 names_replaced_by (tree new)
509 {
510 struct repl_map_d m;
511 void **slot;
512
513 m.name = new;
514 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
515
516 /* If N was not registered in the replacement table, return NULL. */
517 if (slot == NULL || *slot == NULL)
518 return NULL;
519
520 return ((struct repl_map_d *) *slot)->set;
521 }
522
523
524 /* Add OLD to REPL_TBL[NEW].SET. */
525
526 static inline void
527 add_to_repl_tbl (tree new, tree old)
528 {
529 struct repl_map_d m, *mp;
530 void **slot;
531
532 m.name = new;
533 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
534 if (*slot == NULL)
535 {
536 mp = xmalloc (sizeof (*mp));
537 mp->name = new;
538 mp->set = BITMAP_ALLOC (NULL);
539 *slot = (void *) mp;
540 }
541 else
542 mp = (struct repl_map_d *) *slot;
543
544 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
545 }
546
547
548 /* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
549 represents the set of names O_1 ... O_j replaced by N_i. This is
550 used by update_ssa and its helpers to introduce new SSA names in an
551 already formed SSA web. */
552
553 static void
554 add_new_name_mapping (tree new, tree old)
555 {
556 timevar_push (TV_TREE_SSA_INCREMENTAL);
557
558 /* OLD and NEW must be different SSA names for the same symbol. */
559 gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));
560
561 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
562 caller may have created new names since the set was created. */
563 if (new_ssa_names->n_bits <= num_ssa_names - 1)
564 {
565 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
566 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
567 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
568 }
569
570 /* If this mapping is for virtual names, we will need to update
571 virtual operands. */
572 if (!is_gimple_reg (new))
573 {
574 tree sym;
575 size_t uid;
576
577 need_to_update_vops_p = true;
578
579 /* Keep counts of virtual mappings and symbols to use in the
580 virtual mapping heuristic. If we have large numbers of
581 virtual mappings for a relatively low number of symbols, it
582 will make more sense to rename the symbols from scratch.
583 Otherwise, the insertion of PHI nodes for each of the old
584 names in these mappings will be very slow. */
585 sym = SSA_NAME_VAR (new);
586 uid = var_ann (sym)->uid;
587 update_ssa_stats.num_virtual_mappings++;
588 if (!bitmap_bit_p (update_ssa_stats.virtual_symbols, uid))
589 {
590 bitmap_set_bit (update_ssa_stats.virtual_symbols, uid);
591 update_ssa_stats.num_virtual_symbols++;
592 }
593 }
594
595 /* Update the REPL_TBL table. */
596 add_to_repl_tbl (new, old);
597
598 /* If OLD had already been registered as a new name, then all the
599 names that OLD replaces should also be replaced by NEW. */
600 if (is_new_name (old))
601 bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
602
603 /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
604 respectively. */
605 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
606 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
607
608 /* Update mapping counter to use in the virtual mapping heuristic. */
609 update_ssa_stats.num_total_mappings++;
610
611 timevar_pop (TV_TREE_SSA_INCREMENTAL);
612 }
613
614
615 /* Call back for walk_dominator_tree used to collect definition sites
616 for every variable in the function. For every statement S in block
617 BB:
618
619 1- Variables defined by S in the DEFS of S are marked in the bitmap
620 WALK_DATA->GLOBAL_DATA->KILLS.
621
622 2- If S uses a variable VAR and there is no preceding kill of VAR,
623 then it is marked in marked in the LIVEIN_BLOCKS bitmap
624 associated with VAR.
625
626 This information is used to determine which variables are live
627 across block boundaries to reduce the number of PHI nodes
628 we create. */
629
630 static void
631 mark_def_sites (struct dom_walk_data *walk_data,
632 basic_block bb,
633 block_stmt_iterator bsi)
634 {
635 struct mark_def_sites_global_data *gd = walk_data->global_data;
636 bitmap kills = gd->kills;
637 tree stmt, def;
638 use_operand_p use_p;
639 def_operand_p def_p;
640 ssa_op_iter iter;
641
642 stmt = bsi_stmt (bsi);
643 update_stmt_if_modified (stmt);
644
645 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
646 REWRITE_THIS_STMT (stmt) = 0;
647
648 /* If a variable is used before being set, then the variable is live
649 across a block boundary, so mark it live-on-entry to BB. */
650 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
651 SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTKILL)
652 {
653 tree sym = USE_FROM_PTR (use_p);
654 gcc_assert (DECL_P (sym));
655 if (!bitmap_bit_p (kills, var_ann (sym)->uid))
656 set_livein_block (sym, bb);
657 REWRITE_THIS_STMT (stmt) = 1;
658 }
659
660 /* Note that virtual definitions are irrelevant for computing KILLS
661 because a V_MAY_DEF does not constitute a killing definition of the
662 variable. However, the operand of a virtual definitions is a use
663 of the variable, so it may cause the variable to be considered
664 live-on-entry. */
665 FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
666 {
667 tree sym = USE_FROM_PTR (use_p);
668 gcc_assert (DECL_P (sym));
669 set_livein_block (sym, bb);
670 set_def_block (sym, bb, false);
671 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
672 REWRITE_THIS_STMT (stmt) = 1;
673 }
674
675 /* Now process the defs and must-defs made by this statement. */
676 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
677 {
678 gcc_assert (DECL_P (def));
679 set_def_block (def, bb, false);
680 bitmap_set_bit (kills, var_ann (def)->uid);
681 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
682 }
683
684 /* If we found the statement interesting then also mark the block BB
685 as interesting. */
686 if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
687 SET_BIT (gd->interesting_blocks, bb->index);
688 }
689
690
691 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
692 return a bitmap with all the blocks in the iterated dominance
693 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
694 frontier information as returned by compute_dominance_frontiers.
695
696 The resulting set of blocks are the potential sites where PHI nodes
697 are needed. The caller is responsible from freeing the memory
698 allocated for the return value. */
699
700 static bitmap
701 find_idf (bitmap def_blocks, bitmap *dfs)
702 {
703 bitmap_iterator bi;
704 unsigned bb_index;
705 VEC(int,heap) *work_stack;
706 bitmap phi_insertion_points;
707
708 work_stack = VEC_alloc (int, heap, n_basic_blocks);
709 phi_insertion_points = BITMAP_ALLOC (NULL);
710
711 /* Seed the work list with all the blocks in DEF_BLOCKS. */
712 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
713 /* We use VEC_quick_push here for speed. This is safe because we
714 know that the number of definition blocks is no greater than
715 the number of basic blocks, which is the initial capacity of
716 WORK_STACK. */
717 VEC_quick_push (int, work_stack, bb_index);
718
719 /* Pop a block off the worklist, add every block that appears in
720 the original block's DF that we have not already processed to
721 the worklist. Iterate until the worklist is empty. Blocks
722 which are added to the worklist are potential sites for
723 PHI nodes. */
724 while (VEC_length (int, work_stack) > 0)
725 {
726 bb_index = VEC_pop (int, work_stack);
727
728 /* Since the registration of NEW -> OLD name mappings is done
729 separately from the call to update_ssa, when updating the SSA
730 form, the basic blocks where new and/or old names are defined
731 may have disappeared by CFG cleanup calls. In this case,
732 we may pull a non-existing block from the work stack. */
733 gcc_assert (bb_index < (unsigned) last_basic_block);
734
735 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
736 0, bb_index, bi)
737 {
738 /* Use a safe push because if there is a definition of VAR
739 in every basic block, then WORK_STACK may eventually have
740 more than N_BASIC_BLOCK entries. */
741 VEC_safe_push (int, heap, work_stack, bb_index);
742 bitmap_set_bit (phi_insertion_points, bb_index);
743 }
744 }
745
746 VEC_free (int, heap, work_stack);
747
748 return phi_insertion_points;
749 }
750
751
752 /* Return the set of blocks where variable VAR is defined and the blocks
753 where VAR is live on entry (livein). Return NULL, if no entry is
754 found in DEF_BLOCKS. */
755
756 static inline struct def_blocks_d *
757 find_def_blocks_for (tree var)
758 {
759 struct def_blocks_d dm;
760 dm.var = var;
761 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
762 }
763
764
765 /* Retrieve or create a default definition for symbol SYM. */
766
767 static inline tree
768 get_default_def_for (tree sym)
769 {
770 tree ddef = default_def (sym);
771
772 if (ddef == NULL_TREE)
773 {
774 ddef = make_ssa_name (sym, build_empty_stmt ());
775 set_default_def (sym, ddef);
776 }
777
778 return ddef;
779 }
780
781
782 /* Insert PHI nodes for variable VAR using the iterated dominance
783 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
784 function assumes that the caller is incrementally updating the SSA
785 form, in which case (1) VAR is assumed to be an SSA name, (2) a new
786 SSA name is created for VAR's symbol, and, (3) all the arguments
787 for the newly created PHI node are set to VAR.
788
789 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
790 PHI node for VAR. On exit, only the nodes that received a PHI node
791 for VAR will be present in PHI_INSERTION_POINTS. */
792
793 static void
794 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
795 {
796 unsigned bb_index;
797 edge e;
798 tree phi;
799 basic_block bb;
800 bitmap_iterator bi;
801 struct def_blocks_d *def_map;
802
803 def_map = find_def_blocks_for (var);
804 gcc_assert (def_map);
805
806 /* Remove the blocks where we already have PHI nodes for VAR. */
807 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
808
809 /* Now compute global livein for this variable. Note this modifies
810 def_map->livein_blocks. */
811 compute_global_livein (def_map->livein_blocks, def_map->def_blocks);
812
813 /* And insert the PHI nodes. */
814 EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks,
815 0, bb_index, bi)
816 {
817 bb = BASIC_BLOCK (bb_index);
818
819 if (update_p && TREE_CODE (var) == SSA_NAME)
820 {
821 /* If we are rewriting SSA names, create the LHS of the PHI
822 node by duplicating VAR. This is useful in the case of
823 pointers, to also duplicate pointer attributes (alias
824 information, in particular). */
825 edge_iterator ei;
826 tree new_lhs;
827
828 phi = create_phi_node (var, bb);
829 new_lhs = duplicate_ssa_name (var, phi);
830 SET_PHI_RESULT (phi, new_lhs);
831 add_new_name_mapping (new_lhs, var);
832
833 /* Add VAR to every argument slot of PHI. We need VAR in
834 every argument so that rewrite_update_phi_arguments knows
835 which name is this PHI node replacing. If VAR is a
836 symbol marked for renaming, this is not necessary, the
837 renamer will use the symbol on the LHS to get its
838 reaching definition. */
839 FOR_EACH_EDGE (e, ei, bb->preds)
840 add_phi_arg (phi, var, e);
841 }
842 else
843 {
844 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
845 phi = create_phi_node (sym, bb);
846 }
847
848 /* Mark this PHI node as interesting for update_ssa. */
849 REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
850 REWRITE_THIS_STMT (phi) = 1;
851 }
852 }
853
854
855 /* Insert PHI nodes at the dominance frontier of blocks with variable
856 definitions. DFS contains the dominance frontier information for
857 the flowgraph. PHI nodes will only be inserted at the dominance
858 frontier of definition blocks for variables whose NEED_PHI_STATE
859 annotation is marked as ``maybe'' or ``unknown'' (computed by
860 mark_def_sites). */
861
862 static void
863 insert_phi_nodes (bitmap *dfs)
864 {
865 unsigned i;
866
867 timevar_push (TV_TREE_INSERT_PHI_NODES);
868
869 for (i = 0; i < num_referenced_vars; i++)
870 {
871 struct def_blocks_d *def_map;
872 bitmap idf;
873 tree var = referenced_var (i);
874
875 def_map = find_def_blocks_for (var);
876 if (def_map == NULL)
877 continue;
878
879 if (get_phi_state (var) != NEED_PHI_STATE_NO)
880 {
881 idf = find_idf (def_map->def_blocks, dfs);
882 insert_phi_nodes_for (var, idf, false);
883 BITMAP_FREE (idf);
884 }
885 }
886
887 timevar_pop (TV_TREE_INSERT_PHI_NODES);
888 }
889
890
891 /* Register DEF (an SSA_NAME) to be a new definition for its underlying
892 variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
893 into the stack pointed by BLOCK_DEFS_P. */
894
895 void
896 register_new_def (tree def, VEC(tree,heap) **block_defs_p)
897 {
898 tree var = SSA_NAME_VAR (def);
899 tree currdef;
900
901 /* If this variable is set in a single basic block and all uses are
902 dominated by the set(s) in that single basic block, then there is
903 no reason to record anything for this variable in the block local
904 definition stacks. Doing so just wastes time and memory.
905
906 This is the same test to prune the set of variables which may
907 need PHI nodes. So we just use that information since it's already
908 computed and available for us to use. */
909 if (get_phi_state (var) == NEED_PHI_STATE_NO)
910 {
911 set_current_def (var, def);
912 return;
913 }
914
915 currdef = get_current_def (var);
916
917 /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
918 later used by the dominator tree callbacks to restore the reaching
919 definitions for all the variables defined in the block after a recursive
920 visit to all its immediately dominated blocks. If there is no current
921 reaching definition, then just record the underlying _DECL node. */
922 VEC_safe_push (tree, heap, *block_defs_p, currdef ? currdef : var);
923
924 /* Set the current reaching definition for VAR to be DEF. */
925 set_current_def (var, def);
926 }
927
928
929 /* Perform a depth-first traversal of the dominator tree looking for
930 variables to rename. BB is the block where to start searching.
931 Renaming is a five step process:
932
933 1- Every definition made by PHI nodes at the start of the blocks is
934 registered as the current definition for the corresponding variable.
935
936 2- Every statement in BB is rewritten. USE and VUSE operands are
937 rewritten with their corresponding reaching definition. DEF and
938 VDEF targets are registered as new definitions.
939
940 3- All the PHI nodes in successor blocks of BB are visited. The
941 argument corresponding to BB is replaced with its current reaching
942 definition.
943
944 4- Recursively rewrite every dominator child block of BB.
945
946 5- Restore (in reverse order) the current reaching definition for every
947 new definition introduced in this block. This is done so that when
948 we return from the recursive call, all the current reaching
949 definitions are restored to the names that were valid in the
950 dominator parent of BB. */
951
952 /* SSA Rewriting Step 1. Initialization, create a block local stack
953 of reaching definitions for new SSA names produced in this block
954 (BLOCK_DEFS). Register new definitions for every PHI node in the
955 block. */
956
957 static void
958 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
959 basic_block bb)
960 {
961 tree phi;
962
963 if (dump_file && (dump_flags & TDF_DETAILS))
964 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
965
966 /* Mark the unwind point for this block. */
967 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
968
969 /* Step 1. Register new definitions for every PHI node in the block.
970 Conceptually, all the PHI nodes are executed in parallel and each PHI
971 node introduces a new version for the associated variable. */
972 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
973 {
974 tree result = PHI_RESULT (phi);
975 register_new_def (result, &block_defs_stack);
976 }
977 }
978
979
980 /* Return the current definition for variable VAR. If none is found,
981 create a new SSA name to act as the zeroth definition for VAR. If VAR
982 is call clobbered and there exists a more recent definition of
983 GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
984 has been clobbered by a function call since its last assignment. */
985
986 static tree
987 get_reaching_def (tree var)
988 {
989 tree currdef_var, avar;
990
991 /* Lookup the current reaching definition for VAR. */
992 currdef_var = get_current_def (var);
993
994 /* If there is no reaching definition for VAR, create and register a
995 default definition for it (if needed). */
996 if (currdef_var == NULL_TREE)
997 {
998 avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
999 currdef_var = get_default_def_for (avar);
1000 set_current_def (var, currdef_var);
1001 }
1002
1003 /* Return the current reaching definition for VAR, or the default
1004 definition, if we had to create one. */
1005 return currdef_var;
1006 }
1007
1008
1009 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1010 the block with its immediate reaching definitions. Update the current
1011 definition of a variable when a new real or virtual definition is found. */
1012
1013 static void
1014 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1015 basic_block bb ATTRIBUTE_UNUSED,
1016 block_stmt_iterator si)
1017 {
1018 tree stmt;
1019 use_operand_p use_p;
1020 def_operand_p def_p;
1021 ssa_op_iter iter;
1022
1023 stmt = bsi_stmt (si);
1024
1025 /* If mark_def_sites decided that we don't need to rewrite this
1026 statement, ignore it. */
1027 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1028 return;
1029
1030 if (dump_file && (dump_flags & TDF_DETAILS))
1031 {
1032 fprintf (dump_file, "Renaming statement ");
1033 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1034 fprintf (dump_file, "\n");
1035 }
1036
1037 /* Step 1. Rewrite USES and VUSES in the statement. */
1038 if (REWRITE_THIS_STMT (stmt))
1039 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1040 SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
1041 {
1042 tree var = USE_FROM_PTR (use_p);
1043 gcc_assert (DECL_P (var));
1044 SET_USE (use_p, get_reaching_def (var));
1045 }
1046
1047 /* Step 2. Register the statement's DEF and VDEF operands. */
1048 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1049 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1050 {
1051 tree var = DEF_FROM_PTR (def_p);
1052 gcc_assert (DECL_P (var));
1053 SET_DEF (def_p, make_ssa_name (var, stmt));
1054 register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
1055 }
1056 }
1057
1058
1059 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1060 PHI nodes. For every PHI node found, add a new argument containing the
1061 current reaching definition for the variable and the edge through which
1062 that definition is reaching the PHI node. */
1063
1064 static void
1065 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1066 basic_block bb)
1067 {
1068 edge e;
1069 edge_iterator ei;
1070
1071 FOR_EACH_EDGE (e, ei, bb->succs)
1072 {
1073 tree phi;
1074
1075 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1076 {
1077 tree currdef;
1078 currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
1079 add_phi_arg (phi, currdef, e);
1080 }
1081 }
1082 }
1083
1084
1085 /* Called after visiting basic block BB. Restore CURRDEFS to its
1086 original value. */
1087
1088 static void
1089 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1090 basic_block bb ATTRIBUTE_UNUSED)
1091 {
1092 /* Restore CURRDEFS to its original state. */
1093 while (VEC_length (tree, block_defs_stack) > 0)
1094 {
1095 tree tmp = VEC_pop (tree, block_defs_stack);
1096 tree saved_def, var;
1097
1098 if (tmp == NULL_TREE)
1099 break;
1100
1101 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
1102 definition of its underlying variable. If we recorded anything
1103 else, it must have been an _DECL node and its current reaching
1104 definition must have been NULL. */
1105 if (TREE_CODE (tmp) == SSA_NAME)
1106 {
1107 saved_def = tmp;
1108 var = SSA_NAME_VAR (saved_def);
1109 }
1110 else
1111 {
1112 saved_def = NULL;
1113 var = tmp;
1114 }
1115
1116 set_current_def (var, saved_def);
1117 }
1118 }
1119
1120
1121 /* Dump SSA information to FILE. */
1122
1123 void
1124 dump_tree_ssa (FILE *file)
1125 {
1126 basic_block bb;
1127 const char *funcname
1128 = lang_hooks.decl_printable_name (current_function_decl, 2);
1129
1130 fprintf (file, "SSA information for %s\n\n", funcname);
1131
1132 FOR_EACH_BB (bb)
1133 {
1134 dump_bb (bb, file, 0);
1135 fputs (" ", file);
1136 print_generic_stmt (file, phi_nodes (bb), dump_flags);
1137 fputs ("\n\n", file);
1138 }
1139 }
1140
1141
1142 /* Dump SSA information to stderr. */
1143
1144 void
1145 debug_tree_ssa (void)
1146 {
1147 dump_tree_ssa (stderr);
1148 }
1149
1150
1151 /* Dump statistics for the hash table HTAB. */
1152
1153 static void
1154 htab_statistics (FILE *file, htab_t htab)
1155 {
1156 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1157 (long) htab_size (htab),
1158 (long) htab_elements (htab),
1159 htab_collisions (htab));
1160 }
1161
1162
1163 /* Dump SSA statistics on FILE. */
1164
1165 void
1166 dump_tree_ssa_stats (FILE *file)
1167 {
1168 fprintf (file, "\nHash table statistics:\n");
1169
1170 fprintf (file, " def_blocks: ");
1171 htab_statistics (file, def_blocks);
1172
1173 fprintf (file, "\n");
1174 }
1175
1176
1177 /* Dump SSA statistics on stderr. */
1178
1179 void
1180 debug_tree_ssa_stats (void)
1181 {
1182 dump_tree_ssa_stats (stderr);
1183 }
1184
1185
1186 /* Hashing and equality functions for DEF_BLOCKS. */
1187
1188 static hashval_t
1189 def_blocks_hash (const void *p)
1190 {
1191 return htab_hash_pointer
1192 ((const void *)((const struct def_blocks_d *)p)->var);
1193 }
1194
1195 static int
1196 def_blocks_eq (const void *p1, const void *p2)
1197 {
1198 return ((const struct def_blocks_d *)p1)->var
1199 == ((const struct def_blocks_d *)p2)->var;
1200 }
1201
1202
1203 /* Free memory allocated by one entry in DEF_BLOCKS. */
1204
1205 static void
1206 def_blocks_free (void *p)
1207 {
1208 struct def_blocks_d *entry = p;
1209 BITMAP_FREE (entry->def_blocks);
1210 BITMAP_FREE (entry->phi_blocks);
1211 BITMAP_FREE (entry->livein_blocks);
1212 free (entry);
1213 }
1214
1215
1216 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1217
1218 static int
1219 debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
1220 {
1221 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1222
1223 fprintf (stderr, "VAR: ");
1224 print_generic_expr (stderr, db_p->var, dump_flags);
1225 bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1226 bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");
1227
1228 return 1;
1229 }
1230
1231
1232 /* Dump the DEF_BLOCKS hash table on stderr. */
1233
1234 void
1235 debug_def_blocks (void)
1236 {
1237 htab_traverse (def_blocks, debug_def_blocks_r, NULL);
1238 }
1239
1240
1241 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1242
1243 static inline void
1244 register_new_update_single (tree new_name, tree old_name)
1245 {
1246 tree currdef = get_current_def (old_name);
1247
1248 /* Push the current reaching definition into *BLOCK_DEFS_P.
1249 This stack is later used by the dominator tree callbacks to
1250 restore the reaching definitions for all the variables
1251 defined in the block after a recursive visit to all its
1252 immediately dominated blocks. */
1253 VEC_reserve (tree, heap, block_defs_stack, 2);
1254 VEC_quick_push (tree, block_defs_stack, currdef);
1255 VEC_quick_push (tree, block_defs_stack, old_name);
1256
1257 /* Set the current reaching definition for OLD_NAME to be
1258 NEW_NAME. */
1259 set_current_def (old_name, new_name);
1260 }
1261
1262
1263 /* Register NEW_NAME to be the new reaching definition for all the
1264 names in OLD_NAMES. Used by the incremental SSA update routines to
1265 replace old SSA names with new ones. */
1266
1267 static inline void
1268 register_new_update_set (tree new_name, bitmap old_names)
1269 {
1270 bitmap_iterator bi;
1271 unsigned i;
1272
1273 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1274 register_new_update_single (new_name, ssa_name (i));
1275 }
1276
1277
1278 /* Initialization of block data structures for the incremental SSA
1279 update pass. Create a block local stack of reaching definitions
1280 for new SSA names produced in this block (BLOCK_DEFS). Register
1281 new definitions for every PHI node in the block. */
1282
1283 static void
1284 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1285 basic_block bb)
1286 {
1287 edge e;
1288 edge_iterator ei;
1289 tree phi;
1290 bool is_abnormal_phi;
1291
1292 if (dump_file && (dump_flags & TDF_DETAILS))
1293 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1294 bb->index);
1295
1296 /* Mark the unwind point for this block. */
1297 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1298
1299 /* Mark the LHS if any of the arguments flows through an abnormal
1300 edge. */
1301 is_abnormal_phi = false;
1302 FOR_EACH_EDGE (e, ei, bb->preds)
1303 if (e->flags & EDGE_ABNORMAL)
1304 {
1305 is_abnormal_phi = true;
1306 break;
1307 }
1308
1309 /* If any of the PHI nodes is a replacement for a name in
1310 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1311 register it as a new definition for its corresponding name. Also
1312 register definitions for names whose underlying symbols are
1313 marked for renaming. */
1314 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1315 {
1316 tree lhs, lhs_sym;
1317
1318 if (!REGISTER_DEFS_IN_THIS_STMT (phi))
1319 continue;
1320
1321 lhs = PHI_RESULT (phi);
1322 lhs_sym = SSA_NAME_VAR (lhs);
1323
1324 if (symbol_marked_for_renaming (lhs_sym))
1325 register_new_update_single (lhs, lhs_sym);
1326 else
1327 {
1328 /* If LHS is a new name, register a new definition for all
1329 the names replaced by LHS. */
1330 if (is_new_name (lhs))
1331 register_new_update_set (lhs, names_replaced_by (lhs));
1332
1333 /* If LHS is an OLD name, register it as a new definition
1334 for itself. */
1335 if (is_old_name (lhs))
1336 register_new_update_single (lhs, lhs);
1337 }
1338
1339 if (is_abnormal_phi)
1340 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1341 }
1342 }
1343
1344
1345 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1346 the current reaching definition of every name re-written in BB to
1347 the original reaching definition before visiting BB. This
1348 unwinding must be done in the opposite order to what is done in
1349 register_new_update_set. */
1350
1351 static void
1352 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1353 basic_block bb ATTRIBUTE_UNUSED)
1354 {
1355 while (VEC_length (tree, block_defs_stack) > 0)
1356 {
1357 tree var = VEC_pop (tree, block_defs_stack);
1358 tree saved_def;
1359
1360 /* NULL indicates the unwind stop point for this block (see
1361 rewrite_update_init_block). */
1362 if (var == NULL)
1363 return;
1364
1365 saved_def = VEC_pop (tree, block_defs_stack);
1366 set_current_def (var, saved_def);
1367 }
1368 }
1369
1370
1371 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1372 it is a symbol marked for renaming, replace it with USE_P's current
1373 reaching definition. */
1374
1375 static inline void
1376 maybe_replace_use (use_operand_p use_p)
1377 {
1378 tree rdef = NULL_TREE;
1379 tree use = USE_FROM_PTR (use_p);
1380 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1381
1382 if (symbol_marked_for_renaming (sym))
1383 rdef = get_reaching_def (sym);
1384 else if (is_old_name (use))
1385 rdef = get_reaching_def (use);
1386
1387 if (rdef && rdef != use)
1388 SET_USE (use_p, rdef);
1389 }
1390
1391
1392 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1393 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1394 register it as the current definition for the names replaced by
1395 DEF_P. */
1396
1397 static inline void
1398 maybe_register_def (def_operand_p def_p, tree stmt)
1399 {
1400 tree def = DEF_FROM_PTR (def_p);
1401 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1402
1403 /* If DEF is a naked symbol that needs renaming, create a
1404 new name for it. */
1405 if (symbol_marked_for_renaming (sym))
1406 {
1407 if (DECL_P (def))
1408 {
1409 def = make_ssa_name (def, stmt);
1410 SET_DEF (def_p, def);
1411 }
1412
1413 register_new_update_single (def, sym);
1414 }
1415 else
1416 {
1417 /* If DEF is a new name, register it as a new definition
1418 for all the names replaced by DEF. */
1419 if (is_new_name (def))
1420 register_new_update_set (def, names_replaced_by (def));
1421
1422 /* If DEF is an old name, register DEF as a new
1423 definition for itself. */
1424 if (is_old_name (def))
1425 register_new_update_single (def, def);
1426 }
1427 }
1428
1429
1430 /* Update every variable used in the statement pointed-to by SI. The
1431 statement is assumed to be in SSA form already. Names in
1432 OLD_SSA_NAMES used by SI will be updated to their current reaching
1433 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1434 will be registered as a new definition for their corresponding name
1435 in OLD_SSA_NAMES. */
1436
1437 static void
1438 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1439 basic_block bb ATTRIBUTE_UNUSED,
1440 block_stmt_iterator si)
1441 {
1442 stmt_ann_t ann;
1443 tree stmt;
1444 use_operand_p use_p;
1445 def_operand_p def_p;
1446 ssa_op_iter iter;
1447
1448 stmt = bsi_stmt (si);
1449 ann = stmt_ann (stmt);
1450
1451 /* Only update marked statements. */
1452 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1453 return;
1454
1455 if (dump_file && (dump_flags & TDF_DETAILS))
1456 {
1457 fprintf (dump_file, "Updating SSA information for statement ");
1458 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1459 fprintf (dump_file, "\n");
1460 }
1461
1462 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1463 symbol is marked for renaming. */
1464 if (REWRITE_THIS_STMT (stmt))
1465 {
1466 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1467 maybe_replace_use (use_p);
1468
1469 if (need_to_update_vops_p)
1470 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1471 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
1472 maybe_replace_use (use_p);
1473 }
1474
1475 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1476 Also register definitions for names whose underlying symbol is
1477 marked for renaming. */
1478 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1479 {
1480 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1481 maybe_register_def (def_p, stmt);
1482
1483 if (need_to_update_vops_p)
1484 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1485 maybe_register_def (def_p, stmt);
1486 }
1487 }
1488
1489
1490 /* Replace the operand pointed by USE_P with USE's current reaching
1491 definition. */
1492
1493 static inline void
1494 replace_use (use_operand_p use_p, tree use)
1495 {
1496 tree rdef = get_reaching_def (use);
1497 if (rdef != use)
1498 SET_USE (use_p, rdef);
1499 }
1500
1501
1502 /* Visit all the successor blocks of BB looking for PHI nodes. For
1503 every PHI node found, check if any of its arguments is in
1504 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1505 definition, replace it. */
1506
1507 static void
1508 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1509 basic_block bb)
1510 {
1511 edge e;
1512 edge_iterator ei;
1513
1514 FOR_EACH_EDGE (e, ei, bb->succs)
1515 {
1516 tree phi;
1517
1518 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1519 {
1520 tree arg;
1521 use_operand_p arg_p;
1522
1523 /* Skip PHI nodes that are not marked for rewrite. */
1524 if (!REWRITE_THIS_STMT (phi))
1525 continue;
1526
1527 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1528 arg = USE_FROM_PTR (arg_p);
1529
1530 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1531 continue;
1532
1533 if (arg == NULL_TREE)
1534 {
1535 /* When updating a PHI node for a recently introduced
1536 symbol we may find NULL arguments. That's why we
1537 take the symbol from the LHS of the PHI node. */
1538 replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
1539 }
1540 else
1541 {
1542 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
1543
1544 if (symbol_marked_for_renaming (sym))
1545 replace_use (arg_p, sym);
1546 else if (is_old_name (arg))
1547 replace_use (arg_p, arg);
1548 }
1549
1550 if (e->flags & EDGE_ABNORMAL)
1551 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
1552 }
1553 }
1554 }
1555
1556
1557 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
1558 form.
1559
1560 ENTRY indicates the block where to start. Every block dominated by
1561 ENTRY will be rewritten.
1562
1563 WHAT indicates what actions will be taken by the renamer (see enum
1564 rewrite_mode).
1565
1566 BLOCKS are the set of interesting blocks for the dominator walker
1567 to process. If this set is NULL, then all the nodes dominated
1568 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
1569 are not present in BLOCKS are ignored. */
1570
1571 static void
1572 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
1573 {
1574 struct dom_walk_data walk_data;
1575
1576 /* Rewrite all the basic blocks in the program. */
1577 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
1578
1579 /* Setup callbacks for the generic dominator tree walker. */
1580 memset (&walk_data, 0, sizeof (walk_data));
1581
1582 walk_data.dom_direction = CDI_DOMINATORS;
1583 walk_data.interesting_blocks = blocks;
1584
1585 if (what == REWRITE_UPDATE)
1586 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
1587 else
1588 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
1589
1590 if (what == REWRITE_ALL)
1591 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
1592 else if (what == REWRITE_UPDATE)
1593 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
1594 else
1595 gcc_unreachable ();
1596
1597 if (what == REWRITE_ALL)
1598 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
1599 else if (what == REWRITE_UPDATE)
1600 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
1601 else
1602 gcc_unreachable ();
1603
1604 if (what == REWRITE_ALL)
1605 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
1606 else if (what == REWRITE_UPDATE)
1607 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
1608 else
1609 gcc_unreachable ();
1610
1611 block_defs_stack = VEC_alloc (tree, heap, 10);
1612
1613 /* Initialize the dominator walker. */
1614 init_walk_dominator_tree (&walk_data);
1615
1616 /* Recursively walk the dominator tree rewriting each statement in
1617 each basic block. */
1618 walk_dominator_tree (&walk_data, entry);
1619
1620 /* Finalize the dominator walker. */
1621 fini_walk_dominator_tree (&walk_data);
1622
1623 /* Debugging dumps. */
1624 if (dump_file && (dump_flags & TDF_STATS))
1625 {
1626 dump_dfa_stats (dump_file);
1627 if (def_blocks)
1628 dump_tree_ssa_stats (dump_file);
1629 }
1630
1631 if (def_blocks)
1632 {
1633 htab_delete (def_blocks);
1634 def_blocks = NULL;
1635 }
1636
1637 VEC_free (tree, heap, block_defs_stack);
1638
1639 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
1640 }
1641
1642
1643 /* Block initialization routine for mark_def_sites. Clear the
1644 KILLS bitmap at the start of each block. */
1645
1646 static void
1647 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
1648 basic_block bb ATTRIBUTE_UNUSED)
1649 {
1650 struct mark_def_sites_global_data *gd = walk_data->global_data;
1651 bitmap kills = gd->kills;
1652 bitmap_clear (kills);
1653 }
1654
1655
1656 /* Mark the definition site blocks for each variable, so that we know
1657 where the variable is actually live.
1658
1659 INTERESTING_BLOCKS will be filled in with all the blocks that
1660 should be processed by the renamer. It is assumed to be
1661 initialized and zeroed by the caller. */
1662
1663 static void
1664 mark_def_site_blocks (sbitmap interesting_blocks)
1665 {
1666 size_t i;
1667 struct dom_walk_data walk_data;
1668 struct mark_def_sites_global_data mark_def_sites_global_data;
1669
1670 /* Allocate memory for the DEF_BLOCKS hash table. */
1671 def_blocks = htab_create (VEC_length (tree, referenced_vars),
1672 def_blocks_hash, def_blocks_eq, def_blocks_free);
1673
1674 for (i = 0; i < num_referenced_vars; i++)
1675 set_current_def (referenced_var (i), NULL_TREE);
1676
1677 /* Setup callbacks for the generic dominator tree walker to find and
1678 mark definition sites. */
1679 walk_data.walk_stmts_backward = false;
1680 walk_data.dom_direction = CDI_DOMINATORS;
1681 walk_data.initialize_block_local_data = NULL;
1682 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
1683 walk_data.before_dom_children_walk_stmts = mark_def_sites;
1684 walk_data.before_dom_children_after_stmts = NULL;
1685 walk_data.after_dom_children_before_stmts = NULL;
1686 walk_data.after_dom_children_walk_stmts = NULL;
1687 walk_data.after_dom_children_after_stmts = NULL;
1688 walk_data.interesting_blocks = NULL;
1689
1690 /* Notice that this bitmap is indexed using variable UIDs, so it must be
1691 large enough to accommodate all the variables referenced in the
1692 function, not just the ones we are renaming. */
1693 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
1694
1695 /* Create the set of interesting blocks that will be filled by
1696 mark_def_sites. */
1697 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
1698 walk_data.global_data = &mark_def_sites_global_data;
1699
1700 /* We do not have any local data. */
1701 walk_data.block_local_data_size = 0;
1702
1703 /* Initialize the dominator walker. */
1704 init_walk_dominator_tree (&walk_data);
1705
1706 /* Recursively walk the dominator tree. */
1707 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1708
1709 /* Finalize the dominator walker. */
1710 fini_walk_dominator_tree (&walk_data);
1711
1712 /* We no longer need this bitmap, clear and free it. */
1713 BITMAP_FREE (mark_def_sites_global_data.kills);
1714 }
1715
1716
1717 /* Main entry point into the SSA builder. The renaming process
1718 proceeds in four main phases:
1719
1720 1- Compute dominance frontier and immediate dominators, needed to
1721 insert PHI nodes and rename the function in dominator tree
1722 order.
1723
1724 2- Find and mark all the blocks that define variables
1725 (mark_def_site_blocks).
1726
1727 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
1728
1729 4- Rename all the blocks (rewrite_blocks) and statements in the program.
1730
1731 Steps 3 and 5 are done using the dominator tree walker
1732 (walk_dominator_tree). */
1733
1734 static void
1735 rewrite_into_ssa (void)
1736 {
1737 bitmap *dfs;
1738 basic_block bb;
1739 sbitmap interesting_blocks;
1740
1741 timevar_push (TV_TREE_SSA_OTHER);
1742
1743 /* Initialize operand data structures. */
1744 init_ssa_operands ();
1745
1746 /* Initialize the set of interesting blocks. The callback
1747 mark_def_sites will add to this set those blocks that the renamer
1748 should process. */
1749 interesting_blocks = sbitmap_alloc (last_basic_block);
1750 sbitmap_zero (interesting_blocks);
1751
1752 /* Initialize dominance frontier. */
1753 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap));
1754 FOR_EACH_BB (bb)
1755 dfs[bb->index] = BITMAP_ALLOC (NULL);
1756
1757 /* 1- Compute dominance frontiers. */
1758 calculate_dominance_info (CDI_DOMINATORS);
1759 compute_dominance_frontiers (dfs);
1760
1761 /* 2- Find and mark definition sites. */
1762 mark_def_site_blocks (interesting_blocks);
1763
1764 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
1765 insert_phi_nodes (dfs);
1766
1767 /* 4- Rename all the blocks. */
1768 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
1769
1770 /* Free allocated memory. */
1771 FOR_EACH_BB (bb)
1772 BITMAP_FREE (dfs[bb->index]);
1773 free (dfs);
1774 sbitmap_free (interesting_blocks);
1775
1776 timevar_pop (TV_TREE_SSA_OTHER);
1777 in_ssa_p = true;
1778 }
1779
1780
1781 struct tree_opt_pass pass_build_ssa =
1782 {
1783 "ssa", /* name */
1784 NULL, /* gate */
1785 rewrite_into_ssa, /* execute */
1786 NULL, /* sub */
1787 NULL, /* next */
1788 0, /* static_pass_number */
1789 0, /* tv_id */
1790 PROP_cfg | PROP_referenced_vars, /* properties_required */
1791 PROP_ssa, /* properties_provided */
1792 0, /* properties_destroyed */
1793 0, /* todo_flags_start */
1794 TODO_dump_func | TODO_verify_ssa, /* todo_flags_finish */
1795 0 /* letter */
1796 };
1797
1798
1799 /* Mark the definition of VAR at STMT and BB as interesting for the
1800 renamer. BLOCKS is the set of blocks that need updating. */
1801
1802 static void
1803 mark_def_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1804 bool insert_phi_p)
1805 {
1806 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
1807 bitmap_set_bit (blocks, bb->index);
1808
1809 if (insert_phi_p)
1810 {
1811 bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;
1812
1813 set_def_block (var, bb, is_phi_p);
1814
1815 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
1816 site for both itself and all the old names replaced by it. */
1817 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
1818 {
1819 bitmap_iterator bi;
1820 unsigned i;
1821 bitmap set = names_replaced_by (var);
1822 if (set)
1823 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1824 set_def_block (ssa_name (i), bb, is_phi_p);
1825 }
1826 }
1827 }
1828
1829
1830 /* Mark the use of VAR at STMT and BB as interesting for the
1831 renamer. INSERT_PHI_P is true if we are going to insert new PHI
1832 nodes. BLOCKS is the set of blocks that need updating. */
1833
1834 static inline void
1835 mark_use_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1836 bool insert_phi_p)
1837 {
1838 REWRITE_THIS_STMT (stmt) = 1;
1839 bitmap_set_bit (blocks, bb->index);
1840
1841 /* If VAR has not been defined in BB, then it is live-on-entry
1842 to BB. Note that we cannot just use the block holding VAR's
1843 definition because if VAR is one of the names in OLD_SSA_NAMES,
1844 it will have several definitions (itself and all the names that
1845 replace it). */
1846 if (insert_phi_p)
1847 {
1848 struct def_blocks_d *db_p = get_def_blocks_for (var);
1849 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
1850 set_livein_block (var, bb);
1851 }
1852 }
1853
1854
1855 /* Do a dominator walk starting at BB processing statements that
1856 reference symbols in SYMS_TO_RENAME. This is very similar to
1857 mark_def_sites, but the scan handles statements whose operands may
1858 already be SSA names. Blocks that contain defs or uses of symbols
1859 in SYMS_TO_RENAME are added to BLOCKS.
1860
1861 If INSERT_PHI_P is true, mark those uses as live in the
1862 corresponding block. This is later used by the PHI placement
1863 algorithm to make PHI pruning decisions. */
1864
1865 static void
1866 prepare_block_for_update (basic_block bb, bitmap blocks, bool insert_phi_p)
1867 {
1868 basic_block son;
1869 block_stmt_iterator si;
1870 tree phi;
1871
1872 /* Process PHI nodes marking interesting those that define or use
1873 the symbols that we are interested in. */
1874 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1875 {
1876 tree lhs_sym, lhs = PHI_RESULT (phi);
1877
1878 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
1879
1880 if (symbol_marked_for_renaming (lhs_sym))
1881 {
1882 mark_use_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1883 mark_def_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1884 }
1885 }
1886
1887 /* Process the statements. */
1888 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1889 {
1890 tree stmt;
1891 ssa_op_iter i;
1892 use_operand_p use_p;
1893 def_operand_p def_p;
1894
1895 stmt = bsi_stmt (si);
1896
1897 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
1898 {
1899 tree use = USE_FROM_PTR (use_p);
1900 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1901 if (symbol_marked_for_renaming (sym))
1902 mark_use_interesting (use, stmt, bb, blocks, insert_phi_p);
1903 }
1904
1905 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
1906 {
1907 tree def = DEF_FROM_PTR (def_p);
1908 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1909
1910 if (symbol_marked_for_renaming (sym))
1911 mark_def_interesting (def, stmt, bb, blocks, insert_phi_p);
1912 }
1913
1914 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
1915 {
1916 tree def = DEF_FROM_PTR (def_p);
1917 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1918
1919 if (symbol_marked_for_renaming (sym))
1920 {
1921 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1922 mark_def_interesting (sym, stmt, bb, blocks, insert_phi_p);
1923 }
1924 }
1925
1926 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
1927 {
1928 tree use = USE_FROM_PTR (use_p);
1929 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1930
1931 if (symbol_marked_for_renaming (sym))
1932 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1933 }
1934 }
1935
1936 /* Now visit all the blocks dominated by BB. */
1937 for (son = first_dom_son (CDI_DOMINATORS, bb);
1938 son;
1939 son = next_dom_son (CDI_DOMINATORS, son))
1940 prepare_block_for_update (son, blocks, insert_phi_p);
1941 }
1942
1943
1944 /* Helper for prepare_names_to_update. Mark all the use sites for
1945 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
1946 prepare_names_to_update. */
1947
1948 static void
1949 prepare_use_sites_for (tree name, bitmap blocks, bool insert_phi_p)
1950 {
1951 use_operand_p use_p;
1952 imm_use_iterator iter;
1953
1954 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
1955 {
1956 tree stmt = USE_STMT (use_p);
1957 basic_block bb = bb_for_stmt (stmt);
1958
1959 if (TREE_CODE (stmt) == PHI_NODE)
1960 {
1961 /* Mark this use of NAME interesting for the renamer.
1962 Notice that we explicitly call mark_use_interesting with
1963 INSERT_PHI_P == false.
1964
1965 This is to avoid marking NAME as live-in in this block
1966 BB. If we were to mark NAME live-in to BB, then NAME
1967 would be considered live-in through ALL incoming edges to
1968 BB which is not what we want. Since we are updating the
1969 SSA form for NAME, we don't really know what other names
1970 of NAME are coming in through other edges into BB.
1971
1972 If we considered NAME live-in at BB, then the PHI
1973 placement algorithm may try to insert PHI nodes in blocks
1974 that are not only unnecessary but also the renamer would
1975 not know how to fill in. */
1976 mark_use_interesting (name, stmt, bb, blocks, false);
1977
1978 /* As discussed above, we only want to mark NAME live-in
1979 through the edge corresponding to its slot inside the PHI
1980 argument list. So, we look for the block BB1 where NAME
1981 is flowing through. If BB1 does not contain a definition
1982 of NAME, then consider NAME live-in at BB1. */
1983 if (insert_phi_p)
1984 {
1985 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
1986 edge e = PHI_ARG_EDGE (stmt, ix);
1987 basic_block bb1 = e->src;
1988 struct def_blocks_d *db = get_def_blocks_for (name);
1989
1990 if (!bitmap_bit_p (db->def_blocks, bb1->index))
1991 set_livein_block (name, bb1);
1992 }
1993 }
1994 else
1995 {
1996 /* For regular statements, mark this as an interesting use
1997 for NAME. */
1998 mark_use_interesting (name, stmt, bb, blocks, insert_phi_p);
1999 }
2000 }
2001 }
2002
2003
2004 /* Helper for prepare_names_to_update. Mark the definition site for
2005 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2006 prepare_names_to_update. */
2007
2008 static void
2009 prepare_def_site_for (tree name, bitmap blocks, bool insert_phi_p)
2010 {
2011 tree stmt;
2012 basic_block bb;
2013
2014 gcc_assert (names_to_release == NULL
2015 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2016
2017 stmt = SSA_NAME_DEF_STMT (name);
2018 bb = bb_for_stmt (stmt);
2019 if (bb)
2020 {
2021 gcc_assert (bb->index < last_basic_block);
2022 mark_def_interesting (name, stmt, bb, blocks, insert_phi_p);
2023 }
2024 }
2025
2026
2027 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2028 OLD_SSA_NAMES. Add each definition block to BLOCKS. INSERT_PHI_P
2029 is true if the caller wants to insert PHI nodes for newly created
2030 names. */
2031
2032 static void
2033 prepare_names_to_update (bitmap blocks, bool insert_phi_p)
2034 {
2035 unsigned i;
2036 bitmap_iterator bi;
2037
2038 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2039 remove it from NEW_SSA_NAMES so that we don't try to visit its
2040 defining basic block (which most likely doesn't exist). Notice
2041 that we cannot do the same with names in OLD_SSA_NAMES because we
2042 want to replace existing instances. */
2043 if (names_to_release)
2044 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2045 RESET_BIT (new_ssa_names, i);
2046
2047 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2048 names may be considered to be live-in on blocks that contain
2049 definitions for their replacements. */
2050 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i,
2051 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p));
2052
2053 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2054 OLD_SSA_NAMES, but we have to ignore its definition site. */
2055 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i,
2056 {
2057 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2058 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2059 prepare_use_sites_for (ssa_name (i), blocks, insert_phi_p);
2060 });
2061 }
2062
2063
2064 /* Dump all the names replaced by NAME to FILE. */
2065
2066 void
2067 dump_names_replaced_by (FILE *file, tree name)
2068 {
2069 unsigned i;
2070 bitmap old_set;
2071 bitmap_iterator bi;
2072
2073 print_generic_expr (file, name, 0);
2074 fprintf (file, " -> { ");
2075
2076 old_set = names_replaced_by (name);
2077 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2078 {
2079 print_generic_expr (file, ssa_name (i), 0);
2080 fprintf (file, " ");
2081 }
2082
2083 fprintf (file, "}\n");
2084 }
2085
2086
2087 /* Dump all the names replaced by NAME to stderr. */
2088
2089 void
2090 debug_names_replaced_by (tree name)
2091 {
2092 dump_names_replaced_by (stderr, name);
2093 }
2094
2095
2096 /* Dump SSA update information to FILE. */
2097
2098 void
2099 dump_update_ssa (FILE *file)
2100 {
2101 unsigned i;
2102 bitmap_iterator bi;
2103
2104 if (!need_ssa_update_p ())
2105 return;
2106
2107 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2108 {
2109 fprintf (file, "\nSSA replacement table\n");
2110 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2111 "O_1, ..., O_j\n\n");
2112
2113 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i,
2114 dump_names_replaced_by (file, ssa_name (i)));
2115
2116 fprintf (file, "\n");
2117 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2118 update_ssa_stats.num_virtual_mappings);
2119 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2120 update_ssa_stats.num_total_mappings
2121 - update_ssa_stats.num_virtual_mappings);
2122 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2123 update_ssa_stats.num_total_mappings);
2124
2125 fprintf (file, "\nNumber of virtual symbols: %u\n",
2126 update_ssa_stats.num_virtual_symbols);
2127 }
2128
2129 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2130 {
2131 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2132 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2133 {
2134 print_generic_expr (file, referenced_var (i), 0);
2135 fprintf (file, " ");
2136 }
2137 }
2138
2139 if (names_to_release && !bitmap_empty_p (names_to_release))
2140 {
2141 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2142 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2143 {
2144 print_generic_expr (file, ssa_name (i), 0);
2145 fprintf (file, " ");
2146 }
2147 }
2148
2149 fprintf (file, "\n\n");
2150 }
2151
2152
2153 /* Dump SSA update information to stderr. */
2154
2155 void
2156 debug_update_ssa (void)
2157 {
2158 dump_update_ssa (stderr);
2159 }
2160
2161
2162 /* Initialize data structures used for incremental SSA updates. */
2163
2164 static void
2165 init_update_ssa (void)
2166 {
2167 /* Reserve more space than the current number of names. The calls to
2168 add_new_name_mapping are typically done after creating new SSA
2169 names, so we'll need to reallocate these arrays. */
2170 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2171 sbitmap_zero (old_ssa_names);
2172
2173 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2174 sbitmap_zero (new_ssa_names);
2175
2176 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2177 need_to_initialize_update_ssa_p = false;
2178 need_to_update_vops_p = false;
2179 syms_to_rename = BITMAP_ALLOC (NULL);
2180 names_to_release = NULL;
2181 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2182 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2183 }
2184
2185
2186 /* Deallocate data structures used for incremental SSA updates. */
2187
2188 void
2189 delete_update_ssa (void)
2190 {
2191 unsigned i;
2192 bitmap_iterator bi;
2193
2194 sbitmap_free (old_ssa_names);
2195 old_ssa_names = NULL;
2196
2197 sbitmap_free (new_ssa_names);
2198 new_ssa_names = NULL;
2199
2200 htab_delete (repl_tbl);
2201 repl_tbl = NULL;
2202
2203 need_to_initialize_update_ssa_p = true;
2204 need_to_update_vops_p = false;
2205 BITMAP_FREE (syms_to_rename);
2206 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2207
2208 if (names_to_release)
2209 {
2210 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2211 release_ssa_name (ssa_name (i));
2212 BITMAP_FREE (names_to_release);
2213 }
2214
2215 for (i = 1; i < num_ssa_names; i++)
2216 {
2217 tree n = ssa_name (i);
2218
2219 if (n)
2220 {
2221 free (SSA_NAME_AUX (n));
2222 SSA_NAME_AUX (n) = NULL;
2223 }
2224 }
2225 }
2226
2227
2228 /* Create a new name for OLD_NAME in statement STMT and replace the
2229 operand pointed to by DEF_P with the newly created name. Return
2230 the new name and register the replacement mapping <NEW, OLD> in
2231 update_ssa's tables. */
2232
2233 tree
2234 create_new_def_for (tree old_name, tree stmt, def_operand_p def)
2235 {
2236 tree new_name = duplicate_ssa_name (old_name, stmt);
2237
2238 SET_DEF (def, new_name);
2239
2240 if (TREE_CODE (stmt) == PHI_NODE)
2241 {
2242 edge e;
2243 edge_iterator ei;
2244 basic_block bb = bb_for_stmt (stmt);
2245
2246 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2247 FOR_EACH_EDGE (e, ei, bb->preds)
2248 if (e->flags & EDGE_ABNORMAL)
2249 {
2250 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2251 break;
2252 }
2253 }
2254
2255 register_new_name_mapping (new_name, old_name);
2256
2257 /* For the benefit of passes that will be updating the SSA form on
2258 their own, set the current reaching definition of OLD_NAME to be
2259 NEW_NAME. */
2260 set_current_def (old_name, new_name);
2261
2262 return new_name;
2263 }
2264
2265
2266 /* Register name NEW to be a replacement for name OLD. This function
2267 must be called for every replacement that should be performed by
2268 update_ssa. */
2269
2270 void
2271 register_new_name_mapping (tree new, tree old)
2272 {
2273 if (need_to_initialize_update_ssa_p)
2274 init_update_ssa ();
2275
2276 add_new_name_mapping (new, old);
2277 }
2278
2279
2280 /* Register symbol SYM to be renamed by update_ssa. */
2281
2282 void
2283 mark_sym_for_renaming (tree sym)
2284 {
2285 if (need_to_initialize_update_ssa_p)
2286 init_update_ssa ();
2287
2288 bitmap_set_bit (syms_to_rename, var_ann (sym)->uid);
2289
2290 if (!is_gimple_reg (sym))
2291 need_to_update_vops_p = true;
2292 }
2293
2294
2295 /* Register all the symbols in SET to be renamed by update_ssa. */
2296
2297 void
2298 mark_set_for_renaming (bitmap set)
2299 {
2300 bitmap_iterator bi;
2301 unsigned i;
2302
2303 if (bitmap_empty_p (set))
2304 return;
2305
2306 if (need_to_initialize_update_ssa_p)
2307 init_update_ssa ();
2308
2309 bitmap_ior_into (syms_to_rename, set);
2310
2311 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2312 if (!is_gimple_reg (referenced_var (i)))
2313 {
2314 need_to_update_vops_p = true;
2315 break;
2316 }
2317 }
2318
2319
2320 /* Return true if there is any work to be done by update_ssa. */
2321
2322 bool
2323 need_ssa_update_p (void)
2324 {
2325 return syms_to_rename || old_ssa_names || new_ssa_names;
2326 }
2327
2328
2329 /* Return true if name N has been registered in the replacement table. */
2330
2331 bool
2332 name_registered_for_update_p (tree n)
2333 {
2334 if (!need_ssa_update_p ())
2335 return false;
2336
2337 return is_new_name (n)
2338 || is_old_name (n)
2339 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2340 }
2341
2342
2343 /* Return the set of all the SSA names marked to be replaced. */
2344
2345 bitmap
2346 ssa_names_to_replace (void)
2347 {
2348 unsigned i;
2349 bitmap ret;
2350
2351 ret = BITMAP_ALLOC (NULL);
2352 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i,
2353 bitmap_set_bit (ret, i));
2354
2355 return ret;
2356 }
2357
2358
2359 /* Mark NAME to be released after update_ssa has finished. */
2360
2361 void
2362 release_ssa_name_after_update_ssa (tree name)
2363 {
2364 gcc_assert (!need_to_initialize_update_ssa_p);
2365
2366 if (names_to_release == NULL)
2367 names_to_release = BITMAP_ALLOC (NULL);
2368
2369 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2370 }
2371
2372
2373 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2374 frontier information. BLOCKS is the set of blocks to be updated.
2375
2376 This is slightly different than the regular PHI insertion
2377 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2378 real names (i.e., GIMPLE registers) are inserted:
2379
2380 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2381 nodes inside the region affected by the block that defines VAR
2382 and the blocks that define all its replacements. All these
2383 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2384
2385 First, we compute the entry point to the region (ENTRY). This is
2386 given by the nearest common dominator to all the definition
2387 blocks. When computing the iterated dominance frontier (IDF), any
2388 block not strictly dominated by ENTRY is ignored.
2389
2390 We then call the standard PHI insertion algorithm with the pruned
2391 IDF.
2392
2393 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2394 names is not pruned. PHI nodes are inserted at every IDF block. */
2395
2396 static void
2397 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2398 unsigned update_flags)
2399 {
2400 basic_block entry;
2401 struct def_blocks_d *db;
2402 bitmap idf, pruned_idf;
2403 bitmap_iterator bi;
2404 unsigned i;
2405
2406 #if defined ENABLE_CHECKING
2407 if (TREE_CODE (var) == SSA_NAME)
2408 gcc_assert (is_old_name (var));
2409 else
2410 gcc_assert (symbol_marked_for_renaming (var));
2411 #endif
2412
2413 /* Get all the definition sites for VAR. */
2414 db = find_def_blocks_for (var);
2415
2416 /* No need to do anything if there were no definitions to VAR. */
2417 if (db == NULL || bitmap_empty_p (db->def_blocks))
2418 return;
2419
2420 /* Compute the initial iterated dominance frontier. */
2421 idf = find_idf (db->def_blocks, dfs);
2422 pruned_idf = BITMAP_ALLOC (NULL);
2423
2424 if (TREE_CODE (var) == SSA_NAME)
2425 {
2426 if (update_flags == TODO_update_ssa)
2427 {
2428 /* If doing regular SSA updates for GIMPLE registers, we are
2429 only interested in IDF blocks dominated by the nearest
2430 common dominator of all the definition blocks. */
2431 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2432 db->def_blocks);
2433
2434 if (entry != ENTRY_BLOCK_PTR)
2435 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2436 if (BASIC_BLOCK (i) != entry
2437 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2438 bitmap_set_bit (pruned_idf, i);
2439 }
2440 else
2441 {
2442 /* Otherwise, do not prune the IDF for VAR. */
2443 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2444 bitmap_copy (pruned_idf, idf);
2445 }
2446 }
2447 else
2448 {
2449 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2450 for the first time, so we need to compute the full IDF for
2451 it. */
2452 bitmap_copy (pruned_idf, idf);
2453 }
2454
2455 if (!bitmap_empty_p (pruned_idf))
2456 {
2457 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2458 are included in the region to be updated. The feeding blocks
2459 are important to guarantee that the PHI arguments are renamed
2460 properly. */
2461 bitmap_ior_into (blocks, pruned_idf);
2462 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2463 {
2464 edge e;
2465 edge_iterator ei;
2466 basic_block bb = BASIC_BLOCK (i);
2467
2468 FOR_EACH_EDGE (e, ei, bb->preds)
2469 if (e->src->index >= 0)
2470 bitmap_set_bit (blocks, e->src->index);
2471 }
2472
2473 insert_phi_nodes_for (var, pruned_idf, true);
2474 }
2475
2476 BITMAP_FREE (pruned_idf);
2477 BITMAP_FREE (idf);
2478 }
2479
2480
2481 /* Heuristic to determine whether SSA name mappings for virtual names
2482 should be discarded and their symbols rewritten from scratch. When
2483 there is a large number of mappings for virtual names, the
2484 insertion of PHI nodes for the old names in the mappings takes
2485 considerable more time than if we inserted PHI nodes for the
2486 symbols instead.
2487
2488 Currently the heuristic takes these stats into account:
2489
2490 - Number of mappings for virtual SSA names.
2491 - Number of distinct virtual symbols involved in those mappings.
2492
2493 If the number of virtual mappings is much larger than the number of
2494 virtual symbols, then it will be faster to compute PHI insertion
2495 spots for the symbols. Even if this involves traversing the whole
2496 CFG, which is what happens when symbols are renamed from scratch. */
2497
2498 static bool
2499 switch_virtuals_to_full_rewrite_p (void)
2500 {
2501 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
2502 return false;
2503
2504 if (update_ssa_stats.num_virtual_mappings
2505 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
2506 * update_ssa_stats.num_virtual_symbols)
2507 return true;
2508
2509 return false;
2510 }
2511
2512
2513 /* Remove every virtual mapping and mark all the affected virtual
2514 symbols for renaming. */
2515
2516 static void
2517 switch_virtuals_to_full_rewrite (void)
2518 {
2519 unsigned i;
2520
2521 if (dump_file)
2522 {
2523 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
2524 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
2525 update_ssa_stats.num_virtual_mappings);
2526 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
2527 update_ssa_stats.num_virtual_symbols);
2528 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
2529 "faster than processing\nthe name mappings.\n\n");
2530 }
2531
2532 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
2533 Note that it is not really necessary to remove the mappings from
2534 REPL_TBL, that would only waste time. */
2535 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i,
2536 if (!is_gimple_reg (ssa_name (i)))
2537 RESET_BIT (new_ssa_names, i));
2538
2539 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i,
2540 if (!is_gimple_reg (ssa_name (i)))
2541 RESET_BIT (old_ssa_names, i));
2542
2543 bitmap_ior_into (syms_to_rename, update_ssa_stats.virtual_symbols);
2544 }
2545
2546
2547 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
2548 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
2549
2550 1- The names in OLD_SSA_NAMES dominated by the definitions of
2551 NEW_SSA_NAMES are all re-written to be reached by the
2552 appropriate definition from NEW_SSA_NAMES.
2553
2554 2- If needed, new PHI nodes are added to the iterated dominance
2555 frontier of the blocks where each of NEW_SSA_NAMES are defined.
2556
2557 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
2558 calling register_new_name_mapping for every pair of names that the
2559 caller wants to replace.
2560
2561 The caller identifies the new names that have been inserted and the
2562 names that need to be replaced by calling register_new_name_mapping
2563 for every pair <NEW, OLD>. Note that the function assumes that the
2564 new names have already been inserted in the IL.
2565
2566 For instance, given the following code:
2567
2568 1 L0:
2569 2 x_1 = PHI (0, x_5)
2570 3 if (x_1 < 10)
2571 4 if (x_1 > 7)
2572 5 y_2 = 0
2573 6 else
2574 7 y_3 = x_1 + x_7
2575 8 endif
2576 9 x_5 = x_1 + 1
2577 10 goto L0;
2578 11 endif
2579
2580 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
2581
2582 1 L0:
2583 2 x_1 = PHI (0, x_5)
2584 3 if (x_1 < 10)
2585 4 x_10 = ...
2586 5 if (x_1 > 7)
2587 6 y_2 = 0
2588 7 else
2589 8 x_11 = ...
2590 9 y_3 = x_1 + x_7
2591 10 endif
2592 11 x_5 = x_1 + 1
2593 12 goto L0;
2594 13 endif
2595
2596 We want to replace all the uses of x_1 with the new definitions of
2597 x_10 and x_11. Note that the only uses that should be replaced are
2598 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
2599 *not* be replaced (this is why we cannot just mark symbol 'x' for
2600 renaming).
2601
2602 Additionally, we may need to insert a PHI node at line 11 because
2603 that is a merge point for x_10 and x_11. So the use of x_1 at line
2604 11 will be replaced with the new PHI node. The insertion of PHI
2605 nodes is optional. They are not strictly necessary to preserve the
2606 SSA form, and depending on what the caller inserted, they may not
2607 even be useful for the optimizers. UPDATE_FLAGS controls various
2608 aspects of how update_ssa operates, see the documentation for
2609 TODO_update_ssa*. */
2610
2611 void
2612 update_ssa (unsigned update_flags)
2613 {
2614 bitmap blocks;
2615 basic_block bb, start_bb;
2616 bitmap_iterator bi;
2617 unsigned i;
2618 sbitmap tmp;
2619 bool insert_phi_p;
2620
2621 if (!need_ssa_update_p ())
2622 return;
2623
2624 timevar_push (TV_TREE_SSA_INCREMENTAL);
2625
2626 /* Ensure that the dominance information is up-to-date. */
2627 calculate_dominance_info (CDI_DOMINATORS);
2628
2629 /* Only one update flag should be set. */
2630 gcc_assert (update_flags == TODO_update_ssa
2631 || update_flags == TODO_update_ssa_no_phi
2632 || update_flags == TODO_update_ssa_full_phi
2633 || update_flags == TODO_update_ssa_only_virtuals);
2634
2635 /* If we only need to update virtuals, remove all the mappings for
2636 real names before proceeding. The caller is responsible for
2637 having dealt with the name mappings before calling update_ssa. */
2638 if (update_flags == TODO_update_ssa_only_virtuals)
2639 {
2640 sbitmap_zero (old_ssa_names);
2641 sbitmap_zero (new_ssa_names);
2642 htab_empty (repl_tbl);
2643 }
2644
2645 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
2646
2647 if (insert_phi_p)
2648 {
2649 /* If the caller requested PHI nodes to be added, initialize
2650 live-in information data structures (DEF_BLOCKS). */
2651
2652 /* For each SSA name N, the DEF_BLOCKS table describes where the
2653 name is defined, which blocks have PHI nodes for N, and which
2654 blocks have uses of N (i.e., N is live-on-entry in those
2655 blocks). */
2656 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
2657 def_blocks_eq, def_blocks_free);
2658 }
2659 else
2660 {
2661 def_blocks = NULL;
2662 }
2663
2664 blocks = BITMAP_ALLOC (NULL);
2665
2666 /* Clear the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags
2667 for every statement and PHI node. */
2668 FOR_EACH_BB (bb)
2669 {
2670 block_stmt_iterator si;
2671 tree phi;
2672
2673 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2674 {
2675 REWRITE_THIS_STMT (phi) = 0;
2676 REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
2677 }
2678
2679 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2680 {
2681 tree stmt = bsi_stmt (si);
2682 /* We are going to use the operand cache API, such as
2683 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
2684 cache for each statement should be up-to-date. */
2685 gcc_assert (!stmt_modified_p (stmt));
2686 REWRITE_THIS_STMT (stmt) = 0;
2687 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
2688 }
2689 }
2690
2691 /* Heuristic to avoid massive slow downs when the replacement
2692 mappings include lots of virtual names. */
2693 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
2694 switch_virtuals_to_full_rewrite ();
2695
2696 /* If there are names defined in the replacement table, prepare
2697 definition and use sites for all the names in NEW_SSA_NAMES and
2698 OLD_SSA_NAMES. */
2699 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
2700 {
2701 prepare_names_to_update (blocks, insert_phi_p);
2702
2703 /* If all the names in NEW_SSA_NAMES had been marked for
2704 removal, and there are no symbols to rename, then there's
2705 nothing else to do. */
2706 if (sbitmap_first_set_bit (new_ssa_names) < 0
2707 && bitmap_empty_p (syms_to_rename))
2708 goto done;
2709 }
2710
2711 /* Next, determine the block at which to start the renaming process. */
2712 if (!bitmap_empty_p (syms_to_rename))
2713 {
2714 /* If we have to rename some symbols from scratch, we need to
2715 start the process at the root of the CFG. FIXME, it should
2716 be possible to determine the nearest block that had a
2717 definition for each of the symbols that are marked for
2718 updating. For now this seems more work than it's worth. */
2719 start_bb = ENTRY_BLOCK_PTR;
2720
2721 /* Traverse the CFG looking for definitions and uses of symbols
2722 in SYMS_TO_RENAME. Mark interesting blocks and statements
2723 and set local live-in information for the PHI placement
2724 heuristics. */
2725 prepare_block_for_update (start_bb, blocks, insert_phi_p);
2726 }
2727 else
2728 {
2729 /* Otherwise, the entry block to the region is the nearest
2730 common dominator for the blocks in BLOCKS. */
2731 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2732 }
2733
2734 /* If requested, insert PHI nodes at the iterated dominance frontier
2735 of every block, creating new definitions for names in OLD_SSA_NAMES
2736 and for symbols in SYMS_TO_RENAME. */
2737 if (insert_phi_p)
2738 {
2739 bitmap *dfs;
2740
2741 /* If the caller requested PHI nodes to be added, compute
2742 dominance frontiers. */
2743 dfs = xmalloc (last_basic_block * sizeof (bitmap));
2744 FOR_EACH_BB (bb)
2745 dfs[bb->index] = BITMAP_ALLOC (NULL);
2746 compute_dominance_frontiers (dfs);
2747
2748 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
2749 {
2750 /* insert_update_phi_nodes_for will call add_new_name_mapping
2751 when inserting new PHI nodes, so the set OLD_SSA_NAMES
2752 will grow while we are traversing it (but it will not
2753 gain any new members). Copy OLD_SSA_NAMES to a temporary
2754 for traversal. */
2755 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
2756 sbitmap_copy (tmp, old_ssa_names);
2757 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i,
2758 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks,
2759 update_flags));
2760 sbitmap_free (tmp);
2761 }
2762
2763 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2764 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks,
2765 update_flags);
2766
2767 FOR_EACH_BB (bb)
2768 BITMAP_FREE (dfs[bb->index]);
2769 free (dfs);
2770
2771 /* Insertion of PHI nodes may have added blocks to the region.
2772 We need to re-compute START_BB to include the newly added
2773 blocks. */
2774 if (start_bb != ENTRY_BLOCK_PTR)
2775 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2776 }
2777
2778 /* Reset the current definition for name and symbol before renaming
2779 the sub-graph. */
2780 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i,
2781 set_current_def (ssa_name (i), NULL_TREE));
2782
2783 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2784 set_current_def (referenced_var (i), NULL_TREE);
2785
2786 /* Now start the renaming process at START_BB. */
2787 tmp = sbitmap_alloc (last_basic_block);
2788 sbitmap_zero (tmp);
2789 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2790 SET_BIT (tmp, i);
2791
2792 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
2793
2794 sbitmap_free (tmp);
2795
2796 /* Debugging dumps. */
2797 if (dump_file)
2798 {
2799 int c;
2800 unsigned i;
2801
2802 dump_update_ssa (dump_file);
2803
2804 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
2805 start_bb->index);
2806
2807 c = 0;
2808 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2809 c++;
2810 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
2811 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
2812 c, PERCENT (c, last_basic_block));
2813
2814 if (dump_flags & TDF_DETAILS)
2815 {
2816 fprintf (dump_file, "Affected blocks: ");
2817 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2818 fprintf (dump_file, "%u ", i);
2819 fprintf (dump_file, "\n");
2820 }
2821
2822 fprintf (dump_file, "\n\n");
2823 }
2824
2825 /* Free allocated memory. */
2826 done:
2827 BITMAP_FREE (blocks);
2828 delete_update_ssa ();
2829
2830 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2831 }