Makefile.in (tree-optimize.o): Add CFGLOOP_H dependence.
[gcc.git] / gcc / tree-loop-linear.c
1 /* Linear Loop transforms
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "errors.h"
28 #include "ggc.h"
29 #include "tree.h"
30 #include "target.h"
31
32 #include "rtl.h"
33 #include "basic-block.h"
34 #include "diagnostic.h"
35 #include "tree-flow.h"
36 #include "tree-dump.h"
37 #include "timevar.h"
38 #include "cfgloop.h"
39 #include "expr.h"
40 #include "optabs.h"
41 #include "tree-chrec.h"
42 #include "tree-data-ref.h"
43 #include "tree-scalar-evolution.h"
44 #include "tree-pass.h"
45 #include "varray.h"
46 #include "lambda.h"
47
48 /* Linear loop transforms include any composition of interchange,
49 scaling, skewing, and reversal. They are used to change the
50 iteration order of loop nests in order to optimize data locality of
51 traversals, or remove dependences that prevent
52 parallelization/vectorization/etc.
53
54 TODO: Determine reuse vectors/matrix and use it to determine optimal
55 transform matrix for locality purposes.
56 TODO: Completion of partial transforms. */
57
58 /* Gather statistics for loop interchange. LOOP is the loop being
59 considered. The first loop in the considered loop nest is
60 FIRST_LOOP, and consequently, the index of the considered loop is
61 obtained by LOOP->DEPTH - FIRST_LOOP->DEPTH
62
63 Initializes:
64 - DEPENDENCE_STEPS the sum of all the data dependence distances
65 carried by loop LOOP,
66
67 - NB_DEPS_NOT_CARRIED_BY_LOOP the number of dependence relations
68 for which the loop LOOP is not carrying any dependence,
69
70 - ACCESS_STRIDES the sum of all the strides in LOOP.
71
72 Example: for the following loop,
73
74 | loop_1 runs 1335 times
75 | loop_2 runs 1335 times
76 | A[{{0, +, 1}_1, +, 1335}_2]
77 | B[{{0, +, 1}_1, +, 1335}_2]
78 | endloop_2
79 | A[{0, +, 1336}_1]
80 | endloop_1
81
82 gather_interchange_stats (in loop_1) will return
83 DEPENDENCE_STEPS = 3002
84 NB_DEPS_NOT_CARRIED_BY_LOOP = 5
85 ACCESS_STRIDES = 10694
86
87 gather_interchange_stats (in loop_2) will return
88 DEPENDENCE_STEPS = 3000
89 NB_DEPS_NOT_CARRIED_BY_LOOP = 7
90 ACCESS_STRIDES = 8010
91 */
92
93 static void
94 gather_interchange_stats (varray_type dependence_relations,
95 varray_type datarefs,
96 struct loop *loop,
97 struct loop *first_loop,
98 unsigned int *dependence_steps,
99 unsigned int *nb_deps_not_carried_by_loop,
100 unsigned int *access_strides)
101 {
102 unsigned int i;
103
104 *dependence_steps = 0;
105 *nb_deps_not_carried_by_loop = 0;
106 *access_strides = 0;
107
108 for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
109 {
110 int dist;
111 struct data_dependence_relation *ddr =
112 (struct data_dependence_relation *)
113 VARRAY_GENERIC_PTR (dependence_relations, i);
114
115 /* If we don't know anything about this dependence, or the distance
116 vector is NULL, or there is no dependence, then there is no reuse of
117 data. */
118
119 if (DDR_DIST_VECT (ddr) == NULL
120 || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
121 || DDR_ARE_DEPENDENT (ddr) == chrec_known)
122 continue;
123
124
125
126 dist = DDR_DIST_VECT (ddr)[loop->depth - first_loop->depth];
127 if (dist == 0)
128 (*nb_deps_not_carried_by_loop) += 1;
129 else if (dist < 0)
130 (*dependence_steps) += -dist;
131 else
132 (*dependence_steps) += dist;
133 }
134
135 /* Compute the access strides. */
136 for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
137 {
138 unsigned int it;
139 struct data_reference *dr = VARRAY_GENERIC_PTR (datarefs, i);
140 tree stmt = DR_STMT (dr);
141 struct loop *stmt_loop = loop_containing_stmt (stmt);
142 struct loop *inner_loop = first_loop->inner;
143
144 if (inner_loop != stmt_loop
145 && !flow_loop_nested_p (inner_loop, stmt_loop))
146 continue;
147 for (it = 0; it < DR_NUM_DIMENSIONS (dr); it++)
148 {
149 tree chrec = DR_ACCESS_FN (dr, it);
150 tree tstride = evolution_part_in_loop_num
151 (chrec, loop->num);
152
153 if (tstride == NULL_TREE
154 || TREE_CODE (tstride) != INTEGER_CST)
155 continue;
156
157 (*access_strides) += int_cst_value (tstride);
158 }
159 }
160 }
161
162 /* Attempt to apply interchange transformations to TRANS to maximize the
163 spatial and temporal locality of the loop.
164 Returns the new transform matrix. The smaller the reuse vector
165 distances in the inner loops, the fewer the cache misses.
166 FIRST_LOOP is the loop->num of the first loop in the analyzed loop
167 nest. */
168
169
170 static lambda_trans_matrix
171 try_interchange_loops (lambda_trans_matrix trans,
172 unsigned int depth,
173 varray_type dependence_relations,
174 varray_type datarefs,
175 struct loop *first_loop)
176 {
177 struct loop *loop_i;
178 struct loop *loop_j;
179 unsigned int dependence_steps_i, dependence_steps_j;
180 unsigned int access_strides_i, access_strides_j;
181 unsigned int nb_deps_not_carried_by_i, nb_deps_not_carried_by_j;
182 struct data_dependence_relation *ddr;
183
184 /* When there is an unknown relation in the dependence_relations, we
185 know that it is no worth looking at this loop nest: give up. */
186 ddr = (struct data_dependence_relation *)
187 VARRAY_GENERIC_PTR (dependence_relations, 0);
188 if (ddr == NULL || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
189 return trans;
190
191 /* LOOP_I is always the outer loop. */
192 for (loop_j = first_loop->inner;
193 loop_j;
194 loop_j = loop_j->inner)
195 for (loop_i = first_loop;
196 loop_i->depth < loop_j->depth;
197 loop_i = loop_i->inner)
198 {
199 gather_interchange_stats (dependence_relations, datarefs,
200 loop_i, first_loop,
201 &dependence_steps_i,
202 &nb_deps_not_carried_by_i,
203 &access_strides_i);
204 gather_interchange_stats (dependence_relations, datarefs,
205 loop_j, first_loop,
206 &dependence_steps_j,
207 &nb_deps_not_carried_by_j,
208 &access_strides_j);
209
210 /* Heuristics for loop interchange profitability:
211
212 1. (spatial locality) Inner loops should have smallest
213 dependence steps.
214
215 2. (spatial locality) Inner loops should contain more
216 dependence relations not carried by the loop.
217
218 3. (temporal locality) Inner loops should have smallest
219 array access strides.
220 */
221 if (dependence_steps_i < dependence_steps_j
222 || nb_deps_not_carried_by_i > nb_deps_not_carried_by_j
223 || access_strides_i < access_strides_j)
224 {
225 lambda_matrix_row_exchange (LTM_MATRIX (trans),
226 loop_i->depth - first_loop->depth,
227 loop_j->depth - first_loop->depth);
228 /* Validate the resulting matrix. When the transformation
229 is not valid, reverse to the previous transformation. */
230 if (!lambda_transform_legal_p (trans, depth, dependence_relations))
231 lambda_matrix_row_exchange (LTM_MATRIX (trans),
232 loop_i->depth - first_loop->depth,
233 loop_j->depth - first_loop->depth);
234 }
235 }
236
237 return trans;
238 }
239
240 /* Perform a set of linear transforms on LOOPS. */
241
242 void
243 linear_transform_loops (struct loops *loops)
244 {
245 unsigned int i;
246
247 compute_immediate_uses (TDFA_USE_OPS | TDFA_USE_VOPS, NULL);
248 for (i = 1; i < loops->num; i++)
249 {
250 unsigned int depth = 0;
251 varray_type datarefs;
252 varray_type dependence_relations;
253 struct loop *loop_nest = loops->parray[i];
254 struct loop *temp;
255 VEC (tree) *oldivs = NULL;
256 VEC (tree) *invariants = NULL;
257 lambda_loopnest before, after;
258 lambda_trans_matrix trans;
259 bool problem = false;
260 bool need_perfect_nest = false;
261 /* If it's not a loop nest, we don't want it.
262 We also don't handle sibling loops properly,
263 which are loops of the following form:
264 for (i = 0; i < 50; i++)
265 {
266 for (j = 0; j < 50; j++)
267 {
268 ...
269 }
270 for (j = 0; j < 50; j++)
271 {
272 ...
273 }
274 } */
275 if (!loop_nest || !loop_nest->inner)
276 continue;
277 depth = 1;
278 for (temp = loop_nest->inner; temp; temp = temp->inner)
279 {
280 /* If we have a sibling loop or multiple exit edges, jump ship. */
281 if (temp->next || !temp->single_exit)
282 {
283 problem = true;
284 break;
285 }
286 depth ++;
287 }
288 if (problem)
289 continue;
290
291 /* Analyze data references and dependence relations using scev. */
292
293 VARRAY_GENERIC_PTR_INIT (datarefs, 10, "datarefs");
294 VARRAY_GENERIC_PTR_INIT (dependence_relations, 10,
295 "dependence_relations");
296
297
298 compute_data_dependences_for_loop (depth, loop_nest,
299 &datarefs, &dependence_relations);
300 if (dump_file && (dump_flags & TDF_DETAILS))
301 {
302 unsigned int j;
303 for (j = 0; j < VARRAY_ACTIVE_SIZE (dependence_relations); j++)
304 {
305 struct data_dependence_relation *ddr =
306 (struct data_dependence_relation *)
307 VARRAY_GENERIC_PTR (dependence_relations, j);
308
309 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
310 {
311 fprintf (dump_file, "DISTANCE_V (");
312 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr),
313 DDR_SIZE_VECT (ddr));
314 fprintf (dump_file, ")\n");
315 fprintf (dump_file, "DIRECTION_V (");
316 print_lambda_vector (dump_file, DDR_DIR_VECT (ddr),
317 DDR_SIZE_VECT (ddr));
318 fprintf (dump_file, ")\n");
319 }
320 }
321 fprintf (dump_file, "\n\n");
322 }
323 /* Build the transformation matrix. */
324 trans = lambda_trans_matrix_new (depth, depth);
325 lambda_matrix_id (LTM_MATRIX (trans), depth);
326
327 trans = try_interchange_loops (trans, depth, dependence_relations,
328 datarefs, loop_nest);
329
330 if (lambda_trans_matrix_id_p (trans))
331 {
332 if (dump_file)
333 fprintf (dump_file, "Won't transform loop. Optimal transform is the identity transform\n");
334 continue;
335 }
336
337 /* Check whether the transformation is legal. */
338 if (!lambda_transform_legal_p (trans, depth, dependence_relations))
339 {
340 if (dump_file)
341 fprintf (dump_file, "Can't transform loop, transform is illegal:\n");
342 continue;
343 }
344 if (!perfect_nest_p (loop_nest))
345 need_perfect_nest = true;
346 before = gcc_loopnest_to_lambda_loopnest (loops,
347 loop_nest, &oldivs,
348 &invariants,
349 need_perfect_nest);
350 if (!before)
351 continue;
352
353 if (dump_file)
354 {
355 fprintf (dump_file, "Before:\n");
356 print_lambda_loopnest (dump_file, before, 'i');
357 }
358
359 after = lambda_loopnest_transform (before, trans);
360 if (dump_file)
361 {
362 fprintf (dump_file, "After:\n");
363 print_lambda_loopnest (dump_file, after, 'u');
364 }
365 lambda_loopnest_to_gcc_loopnest (loop_nest, oldivs, invariants,
366 after, trans);
367 if (dump_file)
368 fprintf (dump_file, "Successfully transformed loop.\n");
369 oldivs = NULL;
370 invariants = NULL;
371 free_dependence_relations (dependence_relations);
372 free_data_refs (datarefs);
373 }
374 free_df ();
375 scev_reset ();
376 rewrite_into_ssa (false);
377 rewrite_into_loop_closed_ssa (NULL);
378 #ifdef ENABLE_CHECKING
379 verify_loop_closed_ssa ();
380 #endif
381 }