re PR tree-optimization/69172 (ICE in make_ssa_name_fn, at tree-ssanames.c:266)
[gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "ssa.h"
30 #include "emit-rtl.h"
31 #include "gimple-pretty-print.h"
32 #include "diagnostic-core.h"
33 #include "stor-layout.h"
34 #include "cfgrtl.h"
35 #include "cfganal.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "tree-cfg.h"
39 #include "dumpfile.h"
40 #include "tree-ssa-live.h"
41 #include "tree-ssa-ter.h"
42 #include "tree-ssa-coalesce.h"
43 #include "tree-outof-ssa.h"
44
45 /* FIXME: A lot of code here deals with expanding to RTL. All that code
46 should be in cfgexpand.c. */
47 #include "explow.h"
48 #include "expr.h"
49
50 /* Return TRUE if expression STMT is suitable for replacement. */
51
52 bool
53 ssa_is_replaceable_p (gimple *stmt)
54 {
55 use_operand_p use_p;
56 tree def;
57 gimple *use_stmt;
58
59 /* Only consider modify stmts. */
60 if (!is_gimple_assign (stmt))
61 return false;
62
63 /* If the statement may throw an exception, it cannot be replaced. */
64 if (stmt_could_throw_p (stmt))
65 return false;
66
67 /* Punt if there is more than 1 def. */
68 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
69 if (!def)
70 return false;
71
72 /* Only consider definitions which have a single use. */
73 if (!single_imm_use (def, &use_p, &use_stmt))
74 return false;
75
76 /* Used in this block, but at the TOP of the block, not the end. */
77 if (gimple_code (use_stmt) == GIMPLE_PHI)
78 return false;
79
80 /* There must be no VDEFs. */
81 if (gimple_vdef (stmt))
82 return false;
83
84 /* Float expressions must go through memory if float-store is on. */
85 if (flag_float_store
86 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
87 return false;
88
89 /* An assignment with a register variable on the RHS is not
90 replaceable. */
91 if (gimple_assign_rhs_code (stmt) == VAR_DECL
92 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
93 return false;
94
95 /* No function calls can be replaced. */
96 if (is_gimple_call (stmt))
97 return false;
98
99 /* Leave any stmt with volatile operands alone as well. */
100 if (gimple_has_volatile_ops (stmt))
101 return false;
102
103 return true;
104 }
105
106
107 /* Used to hold all the components required to do SSA PHI elimination.
108 The node and pred/succ list is a simple linear list of nodes and
109 edges represented as pairs of nodes.
110
111 The predecessor and successor list: Nodes are entered in pairs, where
112 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
113 predecessors, all the odd elements are successors.
114
115 Rationale:
116 When implemented as bitmaps, very large programs SSA->Normal times were
117 being dominated by clearing the interference graph.
118
119 Typically this list of edges is extremely small since it only includes
120 PHI results and uses from a single edge which have not coalesced with
121 each other. This means that no virtual PHI nodes are included, and
122 empirical evidence suggests that the number of edges rarely exceed
123 3, and in a bootstrap of GCC, the maximum size encountered was 7.
124 This also limits the number of possible nodes that are involved to
125 rarely more than 6, and in the bootstrap of gcc, the maximum number
126 of nodes encountered was 12. */
127
128 typedef struct _elim_graph {
129 /* Size of the elimination vectors. */
130 int size;
131
132 /* List of nodes in the elimination graph. */
133 vec<int> nodes;
134
135 /* The predecessor and successor edge list. */
136 vec<int> edge_list;
137
138 /* Source locus on each edge */
139 vec<source_location> edge_locus;
140
141 /* Visited vector. */
142 sbitmap visited;
143
144 /* Stack for visited nodes. */
145 vec<int> stack;
146
147 /* The variable partition map. */
148 var_map map;
149
150 /* Edge being eliminated by this graph. */
151 edge e;
152
153 /* List of constant copies to emit. These are pushed on in pairs. */
154 vec<int> const_dests;
155 vec<tree> const_copies;
156
157 /* Source locations for any constant copies. */
158 vec<source_location> copy_locus;
159 } *elim_graph;
160
161
162 /* For an edge E find out a good source location to associate with
163 instructions inserted on edge E. If E has an implicit goto set,
164 use its location. Otherwise search instructions in predecessors
165 of E for a location, and use that one. That makes sense because
166 we insert on edges for PHI nodes, and effects of PHIs happen on
167 the end of the predecessor conceptually. */
168
169 static void
170 set_location_for_edge (edge e)
171 {
172 if (e->goto_locus)
173 {
174 set_curr_insn_location (e->goto_locus);
175 }
176 else
177 {
178 basic_block bb = e->src;
179 gimple_stmt_iterator gsi;
180
181 do
182 {
183 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
184 {
185 gimple *stmt = gsi_stmt (gsi);
186 if (is_gimple_debug (stmt))
187 continue;
188 if (gimple_has_location (stmt) || gimple_block (stmt))
189 {
190 set_curr_insn_location (gimple_location (stmt));
191 return;
192 }
193 }
194 /* Nothing found in this basic block. Make a half-assed attempt
195 to continue with another block. */
196 if (single_pred_p (bb))
197 bb = single_pred (bb);
198 else
199 bb = e->src;
200 }
201 while (bb != e->src);
202 }
203 }
204
205 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
206 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
207 which we deduce the size to copy in that case. */
208
209 static inline rtx_insn *
210 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
211 {
212 start_sequence ();
213
214 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
215 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
216 if (GET_MODE (src) == BLKmode)
217 {
218 gcc_assert (GET_MODE (dest) == BLKmode);
219 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
220 }
221 else
222 emit_move_insn (dest, src);
223
224 rtx_insn *seq = get_insns ();
225 end_sequence ();
226
227 return seq;
228 }
229
230 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
231
232 static void
233 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
234 {
235 tree var;
236 if (dump_file && (dump_flags & TDF_DETAILS))
237 {
238 fprintf (dump_file,
239 "Inserting a partition copy on edge BB%d->BB%d :"
240 "PART.%d = PART.%d",
241 e->src->index,
242 e->dest->index, dest, src);
243 fprintf (dump_file, "\n");
244 }
245
246 gcc_assert (SA.partition_to_pseudo[dest]);
247 gcc_assert (SA.partition_to_pseudo[src]);
248
249 set_location_for_edge (e);
250 /* If a locus is provided, override the default. */
251 if (locus)
252 set_curr_insn_location (locus);
253
254 var = partition_to_var (SA.map, src);
255 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
256 copy_rtx (SA.partition_to_pseudo[src]),
257 TYPE_UNSIGNED (TREE_TYPE (var)),
258 var);
259
260 insert_insn_on_edge (seq, e);
261 }
262
263 /* Insert a copy instruction from expression SRC to partition DEST
264 onto edge E. */
265
266 static void
267 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
268 {
269 rtx dest_rtx, seq, x;
270 machine_mode dest_mode, src_mode;
271 int unsignedp;
272
273 if (dump_file && (dump_flags & TDF_DETAILS))
274 {
275 fprintf (dump_file,
276 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
277 e->src->index,
278 e->dest->index, dest);
279 print_generic_expr (dump_file, src, TDF_SLIM);
280 fprintf (dump_file, "\n");
281 }
282
283 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
284 gcc_assert (dest_rtx);
285
286 set_location_for_edge (e);
287 /* If a locus is provided, override the default. */
288 if (locus)
289 set_curr_insn_location (locus);
290
291 start_sequence ();
292
293 tree name = partition_to_var (SA.map, dest);
294 src_mode = TYPE_MODE (TREE_TYPE (src));
295 dest_mode = GET_MODE (dest_rtx);
296 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (name)));
297 gcc_assert (!REG_P (dest_rtx)
298 || dest_mode == promote_ssa_mode (name, &unsignedp));
299
300 if (src_mode != dest_mode)
301 {
302 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
303 x = convert_modes (dest_mode, src_mode, x, unsignedp);
304 }
305 else if (src_mode == BLKmode)
306 {
307 x = dest_rtx;
308 store_expr (src, x, 0, false, false);
309 }
310 else
311 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
312
313 if (x != dest_rtx)
314 emit_move_insn (dest_rtx, x);
315 seq = get_insns ();
316 end_sequence ();
317
318 insert_insn_on_edge (seq, e);
319 }
320
321 /* Insert a copy instruction from RTL expression SRC to partition DEST
322 onto edge E. */
323
324 static void
325 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
326 source_location locus)
327 {
328 if (dump_file && (dump_flags & TDF_DETAILS))
329 {
330 fprintf (dump_file,
331 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
332 e->src->index,
333 e->dest->index, dest);
334 print_simple_rtl (dump_file, src);
335 fprintf (dump_file, "\n");
336 }
337
338 gcc_assert (SA.partition_to_pseudo[dest]);
339
340 set_location_for_edge (e);
341 /* If a locus is provided, override the default. */
342 if (locus)
343 set_curr_insn_location (locus);
344
345 /* We give the destination as sizeexp in case src/dest are BLKmode
346 mems. Usually we give the source. As we result from SSA names
347 the left and right size should be the same (and no WITH_SIZE_EXPR
348 involved), so it doesn't matter. */
349 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
350 src, unsignedsrcp,
351 partition_to_var (SA.map, dest));
352
353 insert_insn_on_edge (seq, e);
354 }
355
356 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
357 onto edge E. */
358
359 static void
360 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
361 {
362 tree var;
363 if (dump_file && (dump_flags & TDF_DETAILS))
364 {
365 fprintf (dump_file,
366 "Inserting a temp copy on edge BB%d->BB%d : ",
367 e->src->index,
368 e->dest->index);
369 print_simple_rtl (dump_file, dest);
370 fprintf (dump_file, "= PART.%d\n", src);
371 }
372
373 gcc_assert (SA.partition_to_pseudo[src]);
374
375 set_location_for_edge (e);
376 /* If a locus is provided, override the default. */
377 if (locus)
378 set_curr_insn_location (locus);
379
380 var = partition_to_var (SA.map, src);
381 rtx_insn *seq = emit_partition_copy (dest,
382 copy_rtx (SA.partition_to_pseudo[src]),
383 TYPE_UNSIGNED (TREE_TYPE (var)),
384 var);
385
386 insert_insn_on_edge (seq, e);
387 }
388
389
390 /* Create an elimination graph with SIZE nodes and associated data
391 structures. */
392
393 static elim_graph
394 new_elim_graph (int size)
395 {
396 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
397
398 g->nodes.create (30);
399 g->const_dests.create (20);
400 g->const_copies.create (20);
401 g->copy_locus.create (10);
402 g->edge_list.create (20);
403 g->edge_locus.create (10);
404 g->stack.create (30);
405
406 g->visited = sbitmap_alloc (size);
407
408 return g;
409 }
410
411
412 /* Empty elimination graph G. */
413
414 static inline void
415 clear_elim_graph (elim_graph g)
416 {
417 g->nodes.truncate (0);
418 g->edge_list.truncate (0);
419 g->edge_locus.truncate (0);
420 }
421
422
423 /* Delete elimination graph G. */
424
425 static inline void
426 delete_elim_graph (elim_graph g)
427 {
428 sbitmap_free (g->visited);
429 g->stack.release ();
430 g->edge_list.release ();
431 g->const_copies.release ();
432 g->const_dests.release ();
433 g->nodes.release ();
434 g->copy_locus.release ();
435 g->edge_locus.release ();
436
437 free (g);
438 }
439
440
441 /* Return the number of nodes in graph G. */
442
443 static inline int
444 elim_graph_size (elim_graph g)
445 {
446 return g->nodes.length ();
447 }
448
449
450 /* Add NODE to graph G, if it doesn't exist already. */
451
452 static inline void
453 elim_graph_add_node (elim_graph g, int node)
454 {
455 int x;
456 int t;
457
458 FOR_EACH_VEC_ELT (g->nodes, x, t)
459 if (t == node)
460 return;
461 g->nodes.safe_push (node);
462 }
463
464
465 /* Add the edge PRED->SUCC to graph G. */
466
467 static inline void
468 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
469 {
470 g->edge_list.safe_push (pred);
471 g->edge_list.safe_push (succ);
472 g->edge_locus.safe_push (locus);
473 }
474
475
476 /* Remove an edge from graph G for which NODE is the predecessor, and
477 return the successor node. -1 is returned if there is no such edge. */
478
479 static inline int
480 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
481 {
482 int y;
483 unsigned x;
484 for (x = 0; x < g->edge_list.length (); x += 2)
485 if (g->edge_list[x] == node)
486 {
487 g->edge_list[x] = -1;
488 y = g->edge_list[x + 1];
489 g->edge_list[x + 1] = -1;
490 *locus = g->edge_locus[x / 2];
491 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
492 return y;
493 }
494 *locus = UNKNOWN_LOCATION;
495 return -1;
496 }
497
498
499 /* Find all the nodes in GRAPH which are successors to NODE in the
500 edge list. VAR will hold the partition number found. CODE is the
501 code fragment executed for every node found. */
502
503 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
504 do { \
505 unsigned x_; \
506 int y_; \
507 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
508 { \
509 y_ = (GRAPH)->edge_list[x_]; \
510 if (y_ != (NODE)) \
511 continue; \
512 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
513 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
514 CODE; \
515 } \
516 } while (0)
517
518
519 /* Find all the nodes which are predecessors of NODE in the edge list for
520 GRAPH. VAR will hold the partition number found. CODE is the
521 code fragment executed for every node found. */
522
523 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
524 do { \
525 unsigned x_; \
526 int y_; \
527 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
528 { \
529 y_ = (GRAPH)->edge_list[x_ + 1]; \
530 if (y_ != (NODE)) \
531 continue; \
532 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
533 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
534 CODE; \
535 } \
536 } while (0)
537
538
539 /* Add T to elimination graph G. */
540
541 static inline void
542 eliminate_name (elim_graph g, int T)
543 {
544 elim_graph_add_node (g, T);
545 }
546
547 /* Return true if this phi argument T should have a copy queued when using
548 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
549 test for ssa_name is definitely simpler, but don't let invalid contents
550 slip through in the meantime. */
551
552 static inline bool
553 queue_phi_copy_p (var_map map, tree t)
554 {
555 if (TREE_CODE (t) == SSA_NAME)
556 {
557 if (var_to_partition (map, t) == NO_PARTITION)
558 return true;
559 return false;
560 }
561 gcc_checking_assert (is_gimple_min_invariant (t));
562 return true;
563 }
564
565 /* Build elimination graph G for basic block BB on incoming PHI edge
566 G->e. */
567
568 static void
569 eliminate_build (elim_graph g)
570 {
571 tree Ti;
572 int p0, pi;
573 gphi_iterator gsi;
574
575 clear_elim_graph (g);
576
577 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
578 {
579 gphi *phi = gsi.phi ();
580 source_location locus;
581
582 p0 = var_to_partition (g->map, gimple_phi_result (phi));
583 /* Ignore results which are not in partitions. */
584 if (p0 == NO_PARTITION)
585 continue;
586
587 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
588 locus = gimple_phi_arg_location_from_edge (phi, g->e);
589
590 /* If this argument is a constant, or a SSA_NAME which is being
591 left in SSA form, just queue a copy to be emitted on this
592 edge. */
593 if (queue_phi_copy_p (g->map, Ti))
594 {
595 /* Save constant copies until all other copies have been emitted
596 on this edge. */
597 g->const_dests.safe_push (p0);
598 g->const_copies.safe_push (Ti);
599 g->copy_locus.safe_push (locus);
600 }
601 else
602 {
603 pi = var_to_partition (g->map, Ti);
604 if (p0 != pi)
605 {
606 eliminate_name (g, p0);
607 eliminate_name (g, pi);
608 elim_graph_add_edge (g, p0, pi, locus);
609 }
610 }
611 }
612 }
613
614
615 /* Push successors of T onto the elimination stack for G. */
616
617 static void
618 elim_forward (elim_graph g, int T)
619 {
620 int S;
621 source_location locus;
622
623 bitmap_set_bit (g->visited, T);
624 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
625 {
626 if (!bitmap_bit_p (g->visited, S))
627 elim_forward (g, S);
628 });
629 g->stack.safe_push (T);
630 }
631
632
633 /* Return 1 if there unvisited predecessors of T in graph G. */
634
635 static int
636 elim_unvisited_predecessor (elim_graph g, int T)
637 {
638 int P;
639 source_location locus;
640
641 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
642 {
643 if (!bitmap_bit_p (g->visited, P))
644 return 1;
645 });
646 return 0;
647 }
648
649 /* Process predecessors first, and insert a copy. */
650
651 static void
652 elim_backward (elim_graph g, int T)
653 {
654 int P;
655 source_location locus;
656
657 bitmap_set_bit (g->visited, T);
658 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
659 {
660 if (!bitmap_bit_p (g->visited, P))
661 {
662 elim_backward (g, P);
663 insert_partition_copy_on_edge (g->e, P, T, locus);
664 }
665 });
666 }
667
668 /* Allocate a new pseudo register usable for storing values sitting
669 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
670
671 static rtx
672 get_temp_reg (tree name)
673 {
674 tree type = TREE_TYPE (name);
675 int unsignedp;
676 machine_mode reg_mode = promote_ssa_mode (name, &unsignedp);
677 rtx x = gen_reg_rtx (reg_mode);
678 if (POINTER_TYPE_P (type))
679 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
680 return x;
681 }
682
683 /* Insert required copies for T in graph G. Check for a strongly connected
684 region, and create a temporary to break the cycle if one is found. */
685
686 static void
687 elim_create (elim_graph g, int T)
688 {
689 int P, S;
690 source_location locus;
691
692 if (elim_unvisited_predecessor (g, T))
693 {
694 tree var = partition_to_var (g->map, T);
695 rtx U = get_temp_reg (var);
696 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
697
698 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
699 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
700 {
701 if (!bitmap_bit_p (g->visited, P))
702 {
703 elim_backward (g, P);
704 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
705 }
706 });
707 }
708 else
709 {
710 S = elim_graph_remove_succ_edge (g, T, &locus);
711 if (S != -1)
712 {
713 bitmap_set_bit (g->visited, T);
714 insert_partition_copy_on_edge (g->e, T, S, locus);
715 }
716 }
717 }
718
719
720 /* Eliminate all the phi nodes on edge E in graph G. */
721
722 static void
723 eliminate_phi (edge e, elim_graph g)
724 {
725 int x;
726
727 gcc_assert (g->const_copies.length () == 0);
728 gcc_assert (g->copy_locus.length () == 0);
729
730 /* Abnormal edges already have everything coalesced. */
731 if (e->flags & EDGE_ABNORMAL)
732 return;
733
734 g->e = e;
735
736 eliminate_build (g);
737
738 if (elim_graph_size (g) != 0)
739 {
740 int part;
741
742 bitmap_clear (g->visited);
743 g->stack.truncate (0);
744
745 FOR_EACH_VEC_ELT (g->nodes, x, part)
746 {
747 if (!bitmap_bit_p (g->visited, part))
748 elim_forward (g, part);
749 }
750
751 bitmap_clear (g->visited);
752 while (g->stack.length () > 0)
753 {
754 x = g->stack.pop ();
755 if (!bitmap_bit_p (g->visited, x))
756 elim_create (g, x);
757 }
758 }
759
760 /* If there are any pending constant copies, issue them now. */
761 while (g->const_copies.length () > 0)
762 {
763 int dest;
764 tree src;
765 source_location locus;
766
767 src = g->const_copies.pop ();
768 dest = g->const_dests.pop ();
769 locus = g->copy_locus.pop ();
770 insert_value_copy_on_edge (e, dest, src, locus);
771 }
772 }
773
774
775 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
776 check to see if this allows another PHI node to be removed. */
777
778 static void
779 remove_gimple_phi_args (gphi *phi)
780 {
781 use_operand_p arg_p;
782 ssa_op_iter iter;
783
784 if (dump_file && (dump_flags & TDF_DETAILS))
785 {
786 fprintf (dump_file, "Removing Dead PHI definition: ");
787 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
788 }
789
790 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
791 {
792 tree arg = USE_FROM_PTR (arg_p);
793 if (TREE_CODE (arg) == SSA_NAME)
794 {
795 /* Remove the reference to the existing argument. */
796 SET_USE (arg_p, NULL_TREE);
797 if (has_zero_uses (arg))
798 {
799 gimple *stmt;
800 gimple_stmt_iterator gsi;
801
802 stmt = SSA_NAME_DEF_STMT (arg);
803
804 /* Also remove the def if it is a PHI node. */
805 if (gimple_code (stmt) == GIMPLE_PHI)
806 {
807 remove_gimple_phi_args (as_a <gphi *> (stmt));
808 gsi = gsi_for_stmt (stmt);
809 remove_phi_node (&gsi, true);
810 }
811
812 }
813 }
814 }
815 }
816
817 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
818
819 static void
820 eliminate_useless_phis (void)
821 {
822 basic_block bb;
823 gphi_iterator gsi;
824 tree result;
825
826 FOR_EACH_BB_FN (bb, cfun)
827 {
828 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
829 {
830 gphi *phi = gsi.phi ();
831 result = gimple_phi_result (phi);
832 if (virtual_operand_p (result))
833 {
834 /* There should be no arguments which are not virtual, or the
835 results will be incorrect. */
836 if (flag_checking)
837 for (size_t i = 0; i < gimple_phi_num_args (phi); i++)
838 {
839 tree arg = PHI_ARG_DEF (phi, i);
840 if (TREE_CODE (arg) == SSA_NAME
841 && !virtual_operand_p (arg))
842 {
843 fprintf (stderr, "Argument of PHI is not virtual (");
844 print_generic_expr (stderr, arg, TDF_SLIM);
845 fprintf (stderr, "), but the result is :");
846 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
847 internal_error ("SSA corruption");
848 }
849 }
850
851 remove_phi_node (&gsi, true);
852 }
853 else
854 {
855 /* Also remove real PHIs with no uses. */
856 if (has_zero_uses (result))
857 {
858 remove_gimple_phi_args (phi);
859 remove_phi_node (&gsi, true);
860 }
861 else
862 gsi_next (&gsi);
863 }
864 }
865 }
866 }
867
868
869 /* This function will rewrite the current program using the variable mapping
870 found in MAP. If the replacement vector VALUES is provided, any
871 occurrences of partitions with non-null entries in the vector will be
872 replaced with the expression in the vector instead of its mapped
873 variable. */
874
875 static void
876 rewrite_trees (var_map map)
877 {
878 if (!flag_checking)
879 return;
880
881 basic_block bb;
882 /* Search for PHIs where the destination has no partition, but one
883 or more arguments has a partition. This should not happen and can
884 create incorrect code. */
885 FOR_EACH_BB_FN (bb, cfun)
886 {
887 gphi_iterator gsi;
888 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
889 {
890 gphi *phi = gsi.phi ();
891 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
892 if (T0 == NULL_TREE)
893 {
894 size_t i;
895 for (i = 0; i < gimple_phi_num_args (phi); i++)
896 {
897 tree arg = PHI_ARG_DEF (phi, i);
898
899 if (TREE_CODE (arg) == SSA_NAME
900 && var_to_partition (map, arg) != NO_PARTITION)
901 {
902 fprintf (stderr, "Argument of PHI is in a partition :(");
903 print_generic_expr (stderr, arg, TDF_SLIM);
904 fprintf (stderr, "), but the result is not :");
905 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
906 internal_error ("SSA corruption");
907 }
908 }
909 }
910 }
911 }
912 }
913
914 /* Given the out-of-ssa info object SA (with prepared partitions)
915 eliminate all phi nodes in all basic blocks. Afterwards no
916 basic block will have phi nodes anymore and there are possibly
917 some RTL instructions inserted on edges. */
918
919 void
920 expand_phi_nodes (struct ssaexpand *sa)
921 {
922 basic_block bb;
923 elim_graph g = new_elim_graph (sa->map->num_partitions);
924 g->map = sa->map;
925
926 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
927 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
928 if (!gimple_seq_empty_p (phi_nodes (bb)))
929 {
930 edge e;
931 edge_iterator ei;
932 FOR_EACH_EDGE (e, ei, bb->preds)
933 eliminate_phi (e, g);
934 set_phi_nodes (bb, NULL);
935 /* We can't redirect EH edges in RTL land, so we need to do this
936 here. Redirection happens only when splitting is necessary,
937 which it is only for critical edges, normally. For EH edges
938 it might also be necessary when the successor has more than
939 one predecessor. In that case the edge is either required to
940 be fallthru (which EH edges aren't), or the predecessor needs
941 to end with a jump (which again, isn't the case with EH edges).
942 Hence, split all EH edges on which we inserted instructions
943 and whose successor has multiple predecessors. */
944 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
945 {
946 if (e->insns.r && (e->flags & EDGE_EH)
947 && !single_pred_p (e->dest))
948 {
949 rtx_insn *insns = e->insns.r;
950 basic_block bb;
951 e->insns.r = NULL;
952 bb = split_edge (e);
953 single_pred_edge (bb)->insns.r = insns;
954 }
955 else
956 ei_next (&ei);
957 }
958 }
959
960 delete_elim_graph (g);
961 }
962
963
964 /* Remove the ssa-names in the current function and translate them into normal
965 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
966 should also be used. */
967
968 static void
969 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
970 {
971 bitmap values = NULL;
972 var_map map;
973
974 map = coalesce_ssa_name ();
975
976 /* Return to viewing the variable list as just all reference variables after
977 coalescing has been performed. */
978 partition_view_normal (map);
979
980 if (dump_file && (dump_flags & TDF_DETAILS))
981 {
982 fprintf (dump_file, "After Coalescing:\n");
983 dump_var_map (dump_file, map);
984 }
985
986 if (perform_ter)
987 {
988 values = find_replaceable_exprs (map);
989 if (values && dump_file && (dump_flags & TDF_DETAILS))
990 dump_replaceable_exprs (dump_file, values);
991 }
992
993 rewrite_trees (map);
994
995 sa->map = map;
996 sa->values = values;
997 sa->partitions_for_parm_default_defs = get_parm_default_def_partitions (map);
998 }
999
1000
1001 /* If not already done so for basic block BB, assign increasing uids
1002 to each of its instructions. */
1003
1004 static void
1005 maybe_renumber_stmts_bb (basic_block bb)
1006 {
1007 unsigned i = 0;
1008 gimple_stmt_iterator gsi;
1009
1010 if (!bb->aux)
1011 return;
1012 bb->aux = NULL;
1013 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1014 {
1015 gimple *stmt = gsi_stmt (gsi);
1016 gimple_set_uid (stmt, i);
1017 i++;
1018 }
1019 }
1020
1021
1022 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1023 of a PHI node) and ARG (one of its arguments) conflict. Return false
1024 otherwise, also when we simply aren't sure. */
1025
1026 static bool
1027 trivially_conflicts_p (basic_block bb, tree result, tree arg)
1028 {
1029 use_operand_p use;
1030 imm_use_iterator imm_iter;
1031 gimple *defa = SSA_NAME_DEF_STMT (arg);
1032
1033 /* If ARG isn't defined in the same block it's too complicated for
1034 our little mind. */
1035 if (gimple_bb (defa) != bb)
1036 return false;
1037
1038 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
1039 {
1040 gimple *use_stmt = USE_STMT (use);
1041 if (is_gimple_debug (use_stmt))
1042 continue;
1043 /* Now, if there's a use of RESULT that lies outside this basic block,
1044 then there surely is a conflict with ARG. */
1045 if (gimple_bb (use_stmt) != bb)
1046 return true;
1047 if (gimple_code (use_stmt) == GIMPLE_PHI)
1048 continue;
1049 /* The use now is in a real stmt of BB, so if ARG was defined
1050 in a PHI node (like RESULT) both conflict. */
1051 if (gimple_code (defa) == GIMPLE_PHI)
1052 return true;
1053 maybe_renumber_stmts_bb (bb);
1054 /* If the use of RESULT occurs after the definition of ARG,
1055 the two conflict too. */
1056 if (gimple_uid (defa) < gimple_uid (use_stmt))
1057 return true;
1058 }
1059
1060 return false;
1061 }
1062
1063
1064 /* Search every PHI node for arguments associated with backedges which
1065 we can trivially determine will need a copy (the argument is either
1066 not an SSA_NAME or the argument has a different underlying variable
1067 than the PHI result).
1068
1069 Insert a copy from the PHI argument to a new destination at the
1070 end of the block with the backedge to the top of the loop. Update
1071 the PHI argument to reference this new destination. */
1072
1073 static void
1074 insert_backedge_copies (void)
1075 {
1076 basic_block bb;
1077 gphi_iterator gsi;
1078
1079 mark_dfs_back_edges ();
1080
1081 FOR_EACH_BB_FN (bb, cfun)
1082 {
1083 /* Mark block as possibly needing calculation of UIDs. */
1084 bb->aux = &bb->aux;
1085
1086 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1087 {
1088 gphi *phi = gsi.phi ();
1089 tree result = gimple_phi_result (phi);
1090 size_t i;
1091
1092 if (virtual_operand_p (result))
1093 continue;
1094
1095 for (i = 0; i < gimple_phi_num_args (phi); i++)
1096 {
1097 tree arg = gimple_phi_arg_def (phi, i);
1098 edge e = gimple_phi_arg_edge (phi, i);
1099
1100 /* If the argument is not an SSA_NAME, then we will need a
1101 constant initialization. If the argument is an SSA_NAME with
1102 a different underlying variable then a copy statement will be
1103 needed. */
1104 if ((e->flags & EDGE_DFS_BACK)
1105 && (TREE_CODE (arg) != SSA_NAME
1106 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1107 || trivially_conflicts_p (bb, result, arg)))
1108 {
1109 tree name;
1110 gassign *stmt;
1111 gimple *last = NULL;
1112 gimple_stmt_iterator gsi2;
1113
1114 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1115 if (!gsi_end_p (gsi2))
1116 last = gsi_stmt (gsi2);
1117
1118 /* In theory the only way we ought to get back to the
1119 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1120 However, better safe than sorry.
1121 If the block ends with a control statement or
1122 something that might throw, then we have to
1123 insert this assignment before the last
1124 statement. Else insert it after the last statement. */
1125 if (last && stmt_ends_bb_p (last))
1126 {
1127 /* If the last statement in the block is the definition
1128 site of the PHI argument, then we can't insert
1129 anything after it. */
1130 if (TREE_CODE (arg) == SSA_NAME
1131 && SSA_NAME_DEF_STMT (arg) == last)
1132 continue;
1133 }
1134
1135 /* Create a new instance of the underlying variable of the
1136 PHI result. */
1137 name = copy_ssa_name (result);
1138 stmt = gimple_build_assign (name,
1139 gimple_phi_arg_def (phi, i));
1140
1141 /* copy location if present. */
1142 if (gimple_phi_arg_has_location (phi, i))
1143 gimple_set_location (stmt,
1144 gimple_phi_arg_location (phi, i));
1145
1146 /* Insert the new statement into the block and update
1147 the PHI node. */
1148 if (last && stmt_ends_bb_p (last))
1149 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1150 else
1151 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1152 SET_PHI_ARG_DEF (phi, i, name);
1153 }
1154 }
1155 }
1156
1157 /* Unmark this block again. */
1158 bb->aux = NULL;
1159 }
1160 }
1161
1162 /* Free all memory associated with going out of SSA form. SA is
1163 the outof-SSA info object. */
1164
1165 void
1166 finish_out_of_ssa (struct ssaexpand *sa)
1167 {
1168 free (sa->partition_to_pseudo);
1169 if (sa->values)
1170 BITMAP_FREE (sa->values);
1171 delete_var_map (sa->map);
1172 BITMAP_FREE (sa->partitions_for_parm_default_defs);
1173 memset (sa, 0, sizeof *sa);
1174 }
1175
1176 /* Take the current function out of SSA form, translating PHIs as described in
1177 R. Morgan, ``Building an Optimizing Compiler'',
1178 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1179
1180 unsigned int
1181 rewrite_out_of_ssa (struct ssaexpand *sa)
1182 {
1183 /* If elimination of a PHI requires inserting a copy on a backedge,
1184 then we will have to split the backedge which has numerous
1185 undesirable performance effects.
1186
1187 A significant number of such cases can be handled here by inserting
1188 copies into the loop itself. */
1189 insert_backedge_copies ();
1190
1191
1192 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1193 eliminate_useless_phis ();
1194
1195 if (dump_file && (dump_flags & TDF_DETAILS))
1196 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1197
1198 remove_ssa_form (flag_tree_ter, sa);
1199
1200 if (dump_file && (dump_flags & TDF_DETAILS))
1201 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1202
1203 return 0;
1204 }