Daily bump.
[gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2018 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "ssa.h"
30 #include "tree-ssa.h"
31 #include "memmodel.h"
32 #include "emit-rtl.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "tree-dfa.h"
36 #include "stor-layout.h"
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "tree-eh.h"
40 #include "gimple-iterator.h"
41 #include "tree-cfg.h"
42 #include "dumpfile.h"
43 #include "tree-ssa-live.h"
44 #include "tree-ssa-ter.h"
45 #include "tree-ssa-coalesce.h"
46 #include "tree-outof-ssa.h"
47 #include "dojump.h"
48
49 /* FIXME: A lot of code here deals with expanding to RTL. All that code
50 should be in cfgexpand.c. */
51 #include "explow.h"
52 #include "expr.h"
53
54 /* Return TRUE if expression STMT is suitable for replacement. */
55
56 bool
57 ssa_is_replaceable_p (gimple *stmt)
58 {
59 use_operand_p use_p;
60 tree def;
61 gimple *use_stmt;
62
63 /* Only consider modify stmts. */
64 if (!is_gimple_assign (stmt))
65 return false;
66
67 /* If the statement may throw an exception, it cannot be replaced. */
68 if (stmt_could_throw_p (stmt))
69 return false;
70
71 /* Punt if there is more than 1 def. */
72 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
73 if (!def)
74 return false;
75
76 /* Only consider definitions which have a single use. */
77 if (!single_imm_use (def, &use_p, &use_stmt))
78 return false;
79
80 /* Used in this block, but at the TOP of the block, not the end. */
81 if (gimple_code (use_stmt) == GIMPLE_PHI)
82 return false;
83
84 /* There must be no VDEFs. */
85 if (gimple_vdef (stmt))
86 return false;
87
88 /* Float expressions must go through memory if float-store is on. */
89 if (flag_float_store
90 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
91 return false;
92
93 /* An assignment with a register variable on the RHS is not
94 replaceable. */
95 if (gimple_assign_rhs_code (stmt) == VAR_DECL
96 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
97 return false;
98
99 /* No function calls can be replaced. */
100 if (is_gimple_call (stmt))
101 return false;
102
103 /* Leave any stmt with volatile operands alone as well. */
104 if (gimple_has_volatile_ops (stmt))
105 return false;
106
107 return true;
108 }
109
110
111 /* Used to hold all the components required to do SSA PHI elimination.
112 The node and pred/succ list is a simple linear list of nodes and
113 edges represented as pairs of nodes.
114
115 The predecessor and successor list: Nodes are entered in pairs, where
116 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
117 predecessors, all the odd elements are successors.
118
119 Rationale:
120 When implemented as bitmaps, very large programs SSA->Normal times were
121 being dominated by clearing the interference graph.
122
123 Typically this list of edges is extremely small since it only includes
124 PHI results and uses from a single edge which have not coalesced with
125 each other. This means that no virtual PHI nodes are included, and
126 empirical evidence suggests that the number of edges rarely exceed
127 3, and in a bootstrap of GCC, the maximum size encountered was 7.
128 This also limits the number of possible nodes that are involved to
129 rarely more than 6, and in the bootstrap of gcc, the maximum number
130 of nodes encountered was 12. */
131
132 struct elim_graph
133 {
134 elim_graph (var_map map);
135
136 /* Size of the elimination vectors. */
137 int size;
138
139 /* List of nodes in the elimination graph. */
140 auto_vec<int> nodes;
141
142 /* The predecessor and successor edge list. */
143 auto_vec<int> edge_list;
144
145 /* Source locus on each edge */
146 auto_vec<source_location> edge_locus;
147
148 /* Visited vector. */
149 auto_sbitmap visited;
150
151 /* Stack for visited nodes. */
152 auto_vec<int> stack;
153
154 /* The variable partition map. */
155 var_map map;
156
157 /* Edge being eliminated by this graph. */
158 edge e;
159
160 /* List of constant copies to emit. These are pushed on in pairs. */
161 auto_vec<int> const_dests;
162 auto_vec<tree> const_copies;
163
164 /* Source locations for any constant copies. */
165 auto_vec<source_location> copy_locus;
166 };
167
168
169 /* For an edge E find out a good source location to associate with
170 instructions inserted on edge E. If E has an implicit goto set,
171 use its location. Otherwise search instructions in predecessors
172 of E for a location, and use that one. That makes sense because
173 we insert on edges for PHI nodes, and effects of PHIs happen on
174 the end of the predecessor conceptually. */
175
176 static void
177 set_location_for_edge (edge e)
178 {
179 if (e->goto_locus)
180 {
181 set_curr_insn_location (e->goto_locus);
182 }
183 else
184 {
185 basic_block bb = e->src;
186 gimple_stmt_iterator gsi;
187
188 do
189 {
190 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
191 {
192 gimple *stmt = gsi_stmt (gsi);
193 if (is_gimple_debug (stmt))
194 continue;
195 if (gimple_has_location (stmt) || gimple_block (stmt))
196 {
197 set_curr_insn_location (gimple_location (stmt));
198 return;
199 }
200 }
201 /* Nothing found in this basic block. Make a half-assed attempt
202 to continue with another block. */
203 if (single_pred_p (bb))
204 bb = single_pred (bb);
205 else
206 bb = e->src;
207 }
208 while (bb != e->src);
209 }
210 }
211
212 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
213 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
214 which we deduce the size to copy in that case. */
215
216 static inline rtx_insn *
217 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
218 {
219 start_sequence ();
220
221 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
222 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
223 if (GET_MODE (src) == BLKmode)
224 {
225 gcc_assert (GET_MODE (dest) == BLKmode);
226 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
227 }
228 else
229 emit_move_insn (dest, src);
230 do_pending_stack_adjust ();
231
232 rtx_insn *seq = get_insns ();
233 end_sequence ();
234
235 return seq;
236 }
237
238 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
239
240 static void
241 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
242 {
243 tree var;
244 if (dump_file && (dump_flags & TDF_DETAILS))
245 {
246 fprintf (dump_file,
247 "Inserting a partition copy on edge BB%d->BB%d : "
248 "PART.%d = PART.%d",
249 e->src->index,
250 e->dest->index, dest, src);
251 fprintf (dump_file, "\n");
252 }
253
254 gcc_assert (SA.partition_to_pseudo[dest]);
255 gcc_assert (SA.partition_to_pseudo[src]);
256
257 set_location_for_edge (e);
258 /* If a locus is provided, override the default. */
259 if (locus)
260 set_curr_insn_location (locus);
261
262 var = partition_to_var (SA.map, src);
263 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
264 copy_rtx (SA.partition_to_pseudo[src]),
265 TYPE_UNSIGNED (TREE_TYPE (var)),
266 var);
267
268 insert_insn_on_edge (seq, e);
269 }
270
271 /* Insert a copy instruction from expression SRC to partition DEST
272 onto edge E. */
273
274 static void
275 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
276 {
277 rtx dest_rtx, seq, x;
278 machine_mode dest_mode, src_mode;
279 int unsignedp;
280
281 if (dump_file && (dump_flags & TDF_DETAILS))
282 {
283 fprintf (dump_file,
284 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
285 e->src->index,
286 e->dest->index, dest);
287 print_generic_expr (dump_file, src, TDF_SLIM);
288 fprintf (dump_file, "\n");
289 }
290
291 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
292 gcc_assert (dest_rtx);
293
294 set_location_for_edge (e);
295 /* If a locus is provided, override the default. */
296 if (locus)
297 set_curr_insn_location (locus);
298
299 start_sequence ();
300
301 tree name = partition_to_var (SA.map, dest);
302 src_mode = TYPE_MODE (TREE_TYPE (src));
303 dest_mode = GET_MODE (dest_rtx);
304 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (name)));
305 gcc_assert (!REG_P (dest_rtx)
306 || dest_mode == promote_ssa_mode (name, &unsignedp));
307
308 if (src_mode != dest_mode)
309 {
310 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
311 x = convert_modes (dest_mode, src_mode, x, unsignedp);
312 }
313 else if (src_mode == BLKmode)
314 {
315 x = dest_rtx;
316 store_expr (src, x, 0, false, false);
317 }
318 else
319 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
320
321 if (x != dest_rtx)
322 emit_move_insn (dest_rtx, x);
323 do_pending_stack_adjust ();
324
325 seq = get_insns ();
326 end_sequence ();
327
328 insert_insn_on_edge (seq, e);
329 }
330
331 /* Insert a copy instruction from RTL expression SRC to partition DEST
332 onto edge E. */
333
334 static void
335 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
336 source_location locus)
337 {
338 if (dump_file && (dump_flags & TDF_DETAILS))
339 {
340 fprintf (dump_file,
341 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
342 e->src->index,
343 e->dest->index, dest);
344 print_simple_rtl (dump_file, src);
345 fprintf (dump_file, "\n");
346 }
347
348 gcc_assert (SA.partition_to_pseudo[dest]);
349
350 set_location_for_edge (e);
351 /* If a locus is provided, override the default. */
352 if (locus)
353 set_curr_insn_location (locus);
354
355 /* We give the destination as sizeexp in case src/dest are BLKmode
356 mems. Usually we give the source. As we result from SSA names
357 the left and right size should be the same (and no WITH_SIZE_EXPR
358 involved), so it doesn't matter. */
359 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
360 src, unsignedsrcp,
361 partition_to_var (SA.map, dest));
362
363 insert_insn_on_edge (seq, e);
364 }
365
366 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
367 onto edge E. */
368
369 static void
370 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
371 {
372 tree var;
373 if (dump_file && (dump_flags & TDF_DETAILS))
374 {
375 fprintf (dump_file,
376 "Inserting a temp copy on edge BB%d->BB%d : ",
377 e->src->index,
378 e->dest->index);
379 print_simple_rtl (dump_file, dest);
380 fprintf (dump_file, "= PART.%d\n", src);
381 }
382
383 gcc_assert (SA.partition_to_pseudo[src]);
384
385 set_location_for_edge (e);
386 /* If a locus is provided, override the default. */
387 if (locus)
388 set_curr_insn_location (locus);
389
390 var = partition_to_var (SA.map, src);
391 rtx_insn *seq = emit_partition_copy (dest,
392 copy_rtx (SA.partition_to_pseudo[src]),
393 TYPE_UNSIGNED (TREE_TYPE (var)),
394 var);
395
396 insert_insn_on_edge (seq, e);
397 }
398
399
400 /* Create an elimination graph for map. */
401
402 elim_graph::elim_graph (var_map map) :
403 nodes (30), edge_list (20), edge_locus (10), visited (map->num_partitions),
404 stack (30), map (map), const_dests (20), const_copies (20), copy_locus (10)
405 {
406 }
407
408
409 /* Empty elimination graph G. */
410
411 static inline void
412 clear_elim_graph (elim_graph *g)
413 {
414 g->nodes.truncate (0);
415 g->edge_list.truncate (0);
416 g->edge_locus.truncate (0);
417 }
418
419
420 /* Return the number of nodes in graph G. */
421
422 static inline int
423 elim_graph_size (elim_graph *g)
424 {
425 return g->nodes.length ();
426 }
427
428
429 /* Add NODE to graph G, if it doesn't exist already. */
430
431 static inline void
432 elim_graph_add_node (elim_graph *g, int node)
433 {
434 int x;
435 int t;
436
437 FOR_EACH_VEC_ELT (g->nodes, x, t)
438 if (t == node)
439 return;
440 g->nodes.safe_push (node);
441 }
442
443
444 /* Add the edge PRED->SUCC to graph G. */
445
446 static inline void
447 elim_graph_add_edge (elim_graph *g, int pred, int succ, source_location locus)
448 {
449 g->edge_list.safe_push (pred);
450 g->edge_list.safe_push (succ);
451 g->edge_locus.safe_push (locus);
452 }
453
454
455 /* Remove an edge from graph G for which NODE is the predecessor, and
456 return the successor node. -1 is returned if there is no such edge. */
457
458 static inline int
459 elim_graph_remove_succ_edge (elim_graph *g, int node, source_location *locus)
460 {
461 int y;
462 unsigned x;
463 for (x = 0; x < g->edge_list.length (); x += 2)
464 if (g->edge_list[x] == node)
465 {
466 g->edge_list[x] = -1;
467 y = g->edge_list[x + 1];
468 g->edge_list[x + 1] = -1;
469 *locus = g->edge_locus[x / 2];
470 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
471 return y;
472 }
473 *locus = UNKNOWN_LOCATION;
474 return -1;
475 }
476
477
478 /* Find all the nodes in GRAPH which are successors to NODE in the
479 edge list. VAR will hold the partition number found. CODE is the
480 code fragment executed for every node found. */
481
482 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
483 do { \
484 unsigned x_; \
485 int y_; \
486 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
487 { \
488 y_ = (GRAPH)->edge_list[x_]; \
489 if (y_ != (NODE)) \
490 continue; \
491 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
492 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
493 CODE; \
494 } \
495 } while (0)
496
497
498 /* Find all the nodes which are predecessors of NODE in the edge list for
499 GRAPH. VAR will hold the partition number found. CODE is the
500 code fragment executed for every node found. */
501
502 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
503 do { \
504 unsigned x_; \
505 int y_; \
506 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
507 { \
508 y_ = (GRAPH)->edge_list[x_ + 1]; \
509 if (y_ != (NODE)) \
510 continue; \
511 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
512 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
513 CODE; \
514 } \
515 } while (0)
516
517
518 /* Add T to elimination graph G. */
519
520 static inline void
521 eliminate_name (elim_graph *g, int T)
522 {
523 elim_graph_add_node (g, T);
524 }
525
526 /* Return true if this phi argument T should have a copy queued when using
527 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
528 test for ssa_name is definitely simpler, but don't let invalid contents
529 slip through in the meantime. */
530
531 static inline bool
532 queue_phi_copy_p (var_map map, tree t)
533 {
534 if (TREE_CODE (t) == SSA_NAME)
535 {
536 if (var_to_partition (map, t) == NO_PARTITION)
537 return true;
538 return false;
539 }
540 gcc_checking_assert (is_gimple_min_invariant (t));
541 return true;
542 }
543
544 /* Build elimination graph G for basic block BB on incoming PHI edge
545 G->e. */
546
547 static void
548 eliminate_build (elim_graph *g)
549 {
550 tree Ti;
551 int p0, pi;
552 gphi_iterator gsi;
553
554 clear_elim_graph (g);
555
556 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
557 {
558 gphi *phi = gsi.phi ();
559 source_location locus;
560
561 p0 = var_to_partition (g->map, gimple_phi_result (phi));
562 /* Ignore results which are not in partitions. */
563 if (p0 == NO_PARTITION)
564 continue;
565
566 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
567 locus = gimple_phi_arg_location_from_edge (phi, g->e);
568
569 /* If this argument is a constant, or a SSA_NAME which is being
570 left in SSA form, just queue a copy to be emitted on this
571 edge. */
572 if (queue_phi_copy_p (g->map, Ti))
573 {
574 /* Save constant copies until all other copies have been emitted
575 on this edge. */
576 g->const_dests.safe_push (p0);
577 g->const_copies.safe_push (Ti);
578 g->copy_locus.safe_push (locus);
579 }
580 else
581 {
582 pi = var_to_partition (g->map, Ti);
583 if (p0 != pi)
584 {
585 eliminate_name (g, p0);
586 eliminate_name (g, pi);
587 elim_graph_add_edge (g, p0, pi, locus);
588 }
589 }
590 }
591 }
592
593
594 /* Push successors of T onto the elimination stack for G. */
595
596 static void
597 elim_forward (elim_graph *g, int T)
598 {
599 int S;
600 source_location locus;
601
602 bitmap_set_bit (g->visited, T);
603 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
604 {
605 if (!bitmap_bit_p (g->visited, S))
606 elim_forward (g, S);
607 });
608 g->stack.safe_push (T);
609 }
610
611
612 /* Return 1 if there unvisited predecessors of T in graph G. */
613
614 static int
615 elim_unvisited_predecessor (elim_graph *g, int T)
616 {
617 int P;
618 source_location locus;
619
620 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
621 {
622 if (!bitmap_bit_p (g->visited, P))
623 return 1;
624 });
625 return 0;
626 }
627
628 /* Process predecessors first, and insert a copy. */
629
630 static void
631 elim_backward (elim_graph *g, int T)
632 {
633 int P;
634 source_location locus;
635
636 bitmap_set_bit (g->visited, T);
637 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
638 {
639 if (!bitmap_bit_p (g->visited, P))
640 {
641 elim_backward (g, P);
642 insert_partition_copy_on_edge (g->e, P, T, locus);
643 }
644 });
645 }
646
647 /* Allocate a new pseudo register usable for storing values sitting
648 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
649
650 static rtx
651 get_temp_reg (tree name)
652 {
653 tree type = TREE_TYPE (name);
654 int unsignedp;
655 machine_mode reg_mode = promote_ssa_mode (name, &unsignedp);
656 rtx x = gen_reg_rtx (reg_mode);
657 if (POINTER_TYPE_P (type))
658 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
659 return x;
660 }
661
662 /* Insert required copies for T in graph G. Check for a strongly connected
663 region, and create a temporary to break the cycle if one is found. */
664
665 static void
666 elim_create (elim_graph *g, int T)
667 {
668 int P, S;
669 source_location locus;
670
671 if (elim_unvisited_predecessor (g, T))
672 {
673 tree var = partition_to_var (g->map, T);
674 rtx U = get_temp_reg (var);
675 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
676
677 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
678 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
679 {
680 if (!bitmap_bit_p (g->visited, P))
681 {
682 elim_backward (g, P);
683 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
684 }
685 });
686 }
687 else
688 {
689 S = elim_graph_remove_succ_edge (g, T, &locus);
690 if (S != -1)
691 {
692 bitmap_set_bit (g->visited, T);
693 insert_partition_copy_on_edge (g->e, T, S, locus);
694 }
695 }
696 }
697
698
699 /* Eliminate all the phi nodes on edge E in graph G. */
700
701 static void
702 eliminate_phi (edge e, elim_graph *g)
703 {
704 int x;
705
706 gcc_assert (g->const_copies.length () == 0);
707 gcc_assert (g->copy_locus.length () == 0);
708
709 /* Abnormal edges already have everything coalesced. */
710 if (e->flags & EDGE_ABNORMAL)
711 return;
712
713 g->e = e;
714
715 eliminate_build (g);
716
717 if (elim_graph_size (g) != 0)
718 {
719 int part;
720
721 bitmap_clear (g->visited);
722 g->stack.truncate (0);
723
724 FOR_EACH_VEC_ELT (g->nodes, x, part)
725 {
726 if (!bitmap_bit_p (g->visited, part))
727 elim_forward (g, part);
728 }
729
730 bitmap_clear (g->visited);
731 while (g->stack.length () > 0)
732 {
733 x = g->stack.pop ();
734 if (!bitmap_bit_p (g->visited, x))
735 elim_create (g, x);
736 }
737 }
738
739 /* If there are any pending constant copies, issue them now. */
740 while (g->const_copies.length () > 0)
741 {
742 int dest;
743 tree src;
744 source_location locus;
745
746 src = g->const_copies.pop ();
747 dest = g->const_dests.pop ();
748 locus = g->copy_locus.pop ();
749 insert_value_copy_on_edge (e, dest, src, locus);
750 }
751 }
752
753
754 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
755 check to see if this allows another PHI node to be removed. */
756
757 static void
758 remove_gimple_phi_args (gphi *phi)
759 {
760 use_operand_p arg_p;
761 ssa_op_iter iter;
762
763 if (dump_file && (dump_flags & TDF_DETAILS))
764 {
765 fprintf (dump_file, "Removing Dead PHI definition: ");
766 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
767 }
768
769 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
770 {
771 tree arg = USE_FROM_PTR (arg_p);
772 if (TREE_CODE (arg) == SSA_NAME)
773 {
774 /* Remove the reference to the existing argument. */
775 SET_USE (arg_p, NULL_TREE);
776 if (has_zero_uses (arg))
777 {
778 gimple *stmt;
779 gimple_stmt_iterator gsi;
780
781 stmt = SSA_NAME_DEF_STMT (arg);
782
783 /* Also remove the def if it is a PHI node. */
784 if (gimple_code (stmt) == GIMPLE_PHI)
785 {
786 remove_gimple_phi_args (as_a <gphi *> (stmt));
787 gsi = gsi_for_stmt (stmt);
788 remove_phi_node (&gsi, true);
789 }
790
791 }
792 }
793 }
794 }
795
796 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
797
798 static void
799 eliminate_useless_phis (void)
800 {
801 basic_block bb;
802 gphi_iterator gsi;
803 tree result;
804
805 FOR_EACH_BB_FN (bb, cfun)
806 {
807 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
808 {
809 gphi *phi = gsi.phi ();
810 result = gimple_phi_result (phi);
811 if (virtual_operand_p (result))
812 {
813 /* There should be no arguments which are not virtual, or the
814 results will be incorrect. */
815 if (flag_checking)
816 for (size_t i = 0; i < gimple_phi_num_args (phi); i++)
817 {
818 tree arg = PHI_ARG_DEF (phi, i);
819 if (TREE_CODE (arg) == SSA_NAME
820 && !virtual_operand_p (arg))
821 {
822 fprintf (stderr, "Argument of PHI is not virtual (");
823 print_generic_expr (stderr, arg, TDF_SLIM);
824 fprintf (stderr, "), but the result is :");
825 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
826 internal_error ("SSA corruption");
827 }
828 }
829
830 remove_phi_node (&gsi, true);
831 }
832 else
833 {
834 /* Also remove real PHIs with no uses. */
835 if (has_zero_uses (result))
836 {
837 remove_gimple_phi_args (phi);
838 remove_phi_node (&gsi, true);
839 }
840 else
841 gsi_next (&gsi);
842 }
843 }
844 }
845 }
846
847
848 /* This function will rewrite the current program using the variable mapping
849 found in MAP. If the replacement vector VALUES is provided, any
850 occurrences of partitions with non-null entries in the vector will be
851 replaced with the expression in the vector instead of its mapped
852 variable. */
853
854 static void
855 rewrite_trees (var_map map)
856 {
857 if (!flag_checking)
858 return;
859
860 basic_block bb;
861 /* Search for PHIs where the destination has no partition, but one
862 or more arguments has a partition. This should not happen and can
863 create incorrect code. */
864 FOR_EACH_BB_FN (bb, cfun)
865 {
866 gphi_iterator gsi;
867 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
868 {
869 gphi *phi = gsi.phi ();
870 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
871 if (T0 == NULL_TREE)
872 {
873 size_t i;
874 for (i = 0; i < gimple_phi_num_args (phi); i++)
875 {
876 tree arg = PHI_ARG_DEF (phi, i);
877
878 if (TREE_CODE (arg) == SSA_NAME
879 && var_to_partition (map, arg) != NO_PARTITION)
880 {
881 fprintf (stderr, "Argument of PHI is in a partition :(");
882 print_generic_expr (stderr, arg, TDF_SLIM);
883 fprintf (stderr, "), but the result is not :");
884 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
885 internal_error ("SSA corruption");
886 }
887 }
888 }
889 }
890 }
891 }
892
893 /* Create a default def for VAR. */
894
895 static void
896 create_default_def (tree var, void *arg ATTRIBUTE_UNUSED)
897 {
898 if (!is_gimple_reg (var))
899 return;
900
901 tree ssa = get_or_create_ssa_default_def (cfun, var);
902 gcc_assert (ssa);
903 }
904
905 /* Call CALLBACK for all PARM_DECLs and RESULT_DECLs for which
906 assign_parms may ask for a default partition. */
907
908 static void
909 for_all_parms (void (*callback)(tree var, void *arg), void *arg)
910 {
911 for (tree var = DECL_ARGUMENTS (current_function_decl); var;
912 var = DECL_CHAIN (var))
913 callback (var, arg);
914 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
915 callback (DECL_RESULT (current_function_decl), arg);
916 if (cfun->static_chain_decl)
917 callback (cfun->static_chain_decl, arg);
918 }
919
920 /* We need to pass two arguments to set_parm_default_def_partition,
921 but for_all_parms only supports one. Use a pair. */
922
923 typedef std::pair<var_map, bitmap> parm_default_def_partition_arg;
924
925 /* Set in ARG's PARTS bitmap the bit corresponding to the partition in
926 ARG's MAP containing VAR's default def. */
927
928 static void
929 set_parm_default_def_partition (tree var, void *arg_)
930 {
931 parm_default_def_partition_arg *arg = (parm_default_def_partition_arg *)arg_;
932 var_map map = arg->first;
933 bitmap parts = arg->second;
934
935 if (!is_gimple_reg (var))
936 return;
937
938 tree ssa = ssa_default_def (cfun, var);
939 gcc_assert (ssa);
940
941 int version = var_to_partition (map, ssa);
942 gcc_assert (version != NO_PARTITION);
943
944 bool changed = bitmap_set_bit (parts, version);
945 gcc_assert (changed);
946 }
947
948 /* Allocate and return a bitmap that has a bit set for each partition
949 that contains a default def for a parameter. */
950
951 static bitmap
952 get_parm_default_def_partitions (var_map map)
953 {
954 bitmap parm_default_def_parts = BITMAP_ALLOC (NULL);
955
956 parm_default_def_partition_arg
957 arg = std::make_pair (map, parm_default_def_parts);
958
959 for_all_parms (set_parm_default_def_partition, &arg);
960
961 return parm_default_def_parts;
962 }
963
964 /* Allocate and return a bitmap that has a bit set for each partition
965 that contains an undefined value. */
966
967 static bitmap
968 get_undefined_value_partitions (var_map map)
969 {
970 bitmap undefined_value_parts = BITMAP_ALLOC (NULL);
971
972 for (unsigned int i = 1; i < num_ssa_names; i++)
973 {
974 tree var = ssa_name (i);
975 if (var
976 && !virtual_operand_p (var)
977 && !has_zero_uses (var)
978 && ssa_undefined_value_p (var))
979 {
980 const int p = var_to_partition (map, var);
981 if (p != NO_PARTITION)
982 bitmap_set_bit (undefined_value_parts, p);
983 }
984 }
985
986 return undefined_value_parts;
987 }
988
989 /* Given the out-of-ssa info object SA (with prepared partitions)
990 eliminate all phi nodes in all basic blocks. Afterwards no
991 basic block will have phi nodes anymore and there are possibly
992 some RTL instructions inserted on edges. */
993
994 void
995 expand_phi_nodes (struct ssaexpand *sa)
996 {
997 basic_block bb;
998 elim_graph g (sa->map);
999
1000 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
1001 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1002 if (!gimple_seq_empty_p (phi_nodes (bb)))
1003 {
1004 edge e;
1005 edge_iterator ei;
1006 FOR_EACH_EDGE (e, ei, bb->preds)
1007 eliminate_phi (e, &g);
1008 set_phi_nodes (bb, NULL);
1009 /* We can't redirect EH edges in RTL land, so we need to do this
1010 here. Redirection happens only when splitting is necessary,
1011 which it is only for critical edges, normally. For EH edges
1012 it might also be necessary when the successor has more than
1013 one predecessor. In that case the edge is either required to
1014 be fallthru (which EH edges aren't), or the predecessor needs
1015 to end with a jump (which again, isn't the case with EH edges).
1016 Hence, split all EH edges on which we inserted instructions
1017 and whose successor has multiple predecessors. */
1018 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
1019 {
1020 if (e->insns.r && (e->flags & EDGE_EH)
1021 && !single_pred_p (e->dest))
1022 {
1023 rtx_insn *insns = e->insns.r;
1024 basic_block bb;
1025 e->insns.r = NULL;
1026 bb = split_edge (e);
1027 single_pred_edge (bb)->insns.r = insns;
1028 }
1029 else
1030 ei_next (&ei);
1031 }
1032 }
1033 }
1034
1035
1036 /* Remove the ssa-names in the current function and translate them into normal
1037 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
1038 should also be used. */
1039
1040 static void
1041 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
1042 {
1043 bitmap values = NULL;
1044 var_map map;
1045
1046 for_all_parms (create_default_def, NULL);
1047 map = init_var_map (num_ssa_names);
1048 coalesce_ssa_name (map);
1049
1050 /* Return to viewing the variable list as just all reference variables after
1051 coalescing has been performed. */
1052 partition_view_normal (map);
1053
1054 if (dump_file && (dump_flags & TDF_DETAILS))
1055 {
1056 fprintf (dump_file, "After Coalescing:\n");
1057 dump_var_map (dump_file, map);
1058 }
1059
1060 if (perform_ter)
1061 {
1062 values = find_replaceable_exprs (map);
1063 if (values && dump_file && (dump_flags & TDF_DETAILS))
1064 dump_replaceable_exprs (dump_file, values);
1065 }
1066
1067 rewrite_trees (map);
1068
1069 sa->map = map;
1070 sa->values = values;
1071 sa->partitions_for_parm_default_defs = get_parm_default_def_partitions (map);
1072 sa->partitions_for_undefined_values = get_undefined_value_partitions (map);
1073 }
1074
1075
1076 /* If not already done so for basic block BB, assign increasing uids
1077 to each of its instructions. */
1078
1079 static void
1080 maybe_renumber_stmts_bb (basic_block bb)
1081 {
1082 unsigned i = 0;
1083 gimple_stmt_iterator gsi;
1084
1085 if (!bb->aux)
1086 return;
1087 bb->aux = NULL;
1088 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1089 {
1090 gimple *stmt = gsi_stmt (gsi);
1091 gimple_set_uid (stmt, i);
1092 i++;
1093 }
1094 }
1095
1096
1097 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1098 of a PHI node) and ARG (one of its arguments) conflict. Return false
1099 otherwise, also when we simply aren't sure. */
1100
1101 static bool
1102 trivially_conflicts_p (basic_block bb, tree result, tree arg)
1103 {
1104 use_operand_p use;
1105 imm_use_iterator imm_iter;
1106 gimple *defa = SSA_NAME_DEF_STMT (arg);
1107
1108 /* If ARG isn't defined in the same block it's too complicated for
1109 our little mind. */
1110 if (gimple_bb (defa) != bb)
1111 return false;
1112
1113 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
1114 {
1115 gimple *use_stmt = USE_STMT (use);
1116 if (is_gimple_debug (use_stmt))
1117 continue;
1118 /* Now, if there's a use of RESULT that lies outside this basic block,
1119 then there surely is a conflict with ARG. */
1120 if (gimple_bb (use_stmt) != bb)
1121 return true;
1122 if (gimple_code (use_stmt) == GIMPLE_PHI)
1123 continue;
1124 /* The use now is in a real stmt of BB, so if ARG was defined
1125 in a PHI node (like RESULT) both conflict. */
1126 if (gimple_code (defa) == GIMPLE_PHI)
1127 return true;
1128 maybe_renumber_stmts_bb (bb);
1129 /* If the use of RESULT occurs after the definition of ARG,
1130 the two conflict too. */
1131 if (gimple_uid (defa) < gimple_uid (use_stmt))
1132 return true;
1133 }
1134
1135 return false;
1136 }
1137
1138
1139 /* Search every PHI node for arguments associated with backedges which
1140 we can trivially determine will need a copy (the argument is either
1141 not an SSA_NAME or the argument has a different underlying variable
1142 than the PHI result).
1143
1144 Insert a copy from the PHI argument to a new destination at the
1145 end of the block with the backedge to the top of the loop. Update
1146 the PHI argument to reference this new destination. */
1147
1148 static void
1149 insert_backedge_copies (void)
1150 {
1151 basic_block bb;
1152 gphi_iterator gsi;
1153
1154 mark_dfs_back_edges ();
1155
1156 FOR_EACH_BB_FN (bb, cfun)
1157 {
1158 /* Mark block as possibly needing calculation of UIDs. */
1159 bb->aux = &bb->aux;
1160
1161 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1162 {
1163 gphi *phi = gsi.phi ();
1164 tree result = gimple_phi_result (phi);
1165 size_t i;
1166
1167 if (virtual_operand_p (result))
1168 continue;
1169
1170 for (i = 0; i < gimple_phi_num_args (phi); i++)
1171 {
1172 tree arg = gimple_phi_arg_def (phi, i);
1173 edge e = gimple_phi_arg_edge (phi, i);
1174
1175 /* If the argument is not an SSA_NAME, then we will need a
1176 constant initialization. If the argument is an SSA_NAME with
1177 a different underlying variable then a copy statement will be
1178 needed. */
1179 if ((e->flags & EDGE_DFS_BACK)
1180 && (TREE_CODE (arg) != SSA_NAME
1181 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1182 || trivially_conflicts_p (bb, result, arg)))
1183 {
1184 tree name;
1185 gassign *stmt;
1186 gimple *last = NULL;
1187 gimple_stmt_iterator gsi2;
1188
1189 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1190 if (!gsi_end_p (gsi2))
1191 last = gsi_stmt (gsi2);
1192
1193 /* In theory the only way we ought to get back to the
1194 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1195 However, better safe than sorry.
1196 If the block ends with a control statement or
1197 something that might throw, then we have to
1198 insert this assignment before the last
1199 statement. Else insert it after the last statement. */
1200 if (last && stmt_ends_bb_p (last))
1201 {
1202 /* If the last statement in the block is the definition
1203 site of the PHI argument, then we can't insert
1204 anything after it. */
1205 if (TREE_CODE (arg) == SSA_NAME
1206 && SSA_NAME_DEF_STMT (arg) == last)
1207 continue;
1208 }
1209
1210 /* Create a new instance of the underlying variable of the
1211 PHI result. */
1212 name = copy_ssa_name (result);
1213 stmt = gimple_build_assign (name,
1214 gimple_phi_arg_def (phi, i));
1215
1216 /* copy location if present. */
1217 if (gimple_phi_arg_has_location (phi, i))
1218 gimple_set_location (stmt,
1219 gimple_phi_arg_location (phi, i));
1220
1221 /* Insert the new statement into the block and update
1222 the PHI node. */
1223 if (last && stmt_ends_bb_p (last))
1224 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1225 else
1226 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1227 SET_PHI_ARG_DEF (phi, i, name);
1228 }
1229 }
1230 }
1231
1232 /* Unmark this block again. */
1233 bb->aux = NULL;
1234 }
1235 }
1236
1237 /* Free all memory associated with going out of SSA form. SA is
1238 the outof-SSA info object. */
1239
1240 void
1241 finish_out_of_ssa (struct ssaexpand *sa)
1242 {
1243 free (sa->partition_to_pseudo);
1244 if (sa->values)
1245 BITMAP_FREE (sa->values);
1246 delete_var_map (sa->map);
1247 BITMAP_FREE (sa->partitions_for_parm_default_defs);
1248 BITMAP_FREE (sa->partitions_for_undefined_values);
1249 memset (sa, 0, sizeof *sa);
1250 }
1251
1252 /* Take the current function out of SSA form, translating PHIs as described in
1253 R. Morgan, ``Building an Optimizing Compiler'',
1254 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1255
1256 unsigned int
1257 rewrite_out_of_ssa (struct ssaexpand *sa)
1258 {
1259 /* If elimination of a PHI requires inserting a copy on a backedge,
1260 then we will have to split the backedge which has numerous
1261 undesirable performance effects.
1262
1263 A significant number of such cases can be handled here by inserting
1264 copies into the loop itself. */
1265 insert_backedge_copies ();
1266
1267
1268 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1269 eliminate_useless_phis ();
1270
1271 if (dump_file && (dump_flags & TDF_DETAILS))
1272 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1273
1274 remove_ssa_form (flag_tree_ter, sa);
1275
1276 if (dump_file && (dump_flags & TDF_DETAILS))
1277 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1278
1279 return 0;
1280 }