real.h (struct real_format): Split the signbit field into two two fields, signbit_ro...
[gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "langhooks.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "errors.h"
36 #include "expr.h"
37 #include "function.h"
38 #include "diagnostic.h"
39 #include "bitmap.h"
40 #include "tree-flow.h"
41 #include "tree-gimple.h"
42 #include "tree-inline.h"
43 #include "varray.h"
44 #include "timevar.h"
45 #include "hashtab.h"
46 #include "tree-dump.h"
47 #include "tree-ssa-live.h"
48 #include "tree-pass.h"
49
50 /* Flags to pass to remove_ssa_form. */
51
52 #define SSANORM_PERFORM_TER 0x1
53 #define SSANORM_COMBINE_TEMPS 0x2
54 #define SSANORM_COALESCE_PARTITIONS 0x4
55
56 /* Used to hold all the components required to do SSA PHI elimination.
57 The node and pred/succ list is a simple linear list of nodes and
58 edges represented as pairs of nodes.
59
60 The predecessor and successor list: Nodes are entered in pairs, where
61 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
62 predecessors, all the odd elements are successors.
63
64 Rationale:
65 When implemented as bitmaps, very large programs SSA->Normal times were
66 being dominated by clearing the interference graph.
67
68 Typically this list of edges is extremely small since it only includes
69 PHI results and uses from a single edge which have not coalesced with
70 each other. This means that no virtual PHI nodes are included, and
71 empirical evidence suggests that the number of edges rarely exceed
72 3, and in a bootstrap of GCC, the maximum size encountered was 7.
73 This also limits the number of possible nodes that are involved to
74 rarely more than 6, and in the bootstrap of gcc, the maximum number
75 of nodes encountered was 12. */
76
77 typedef struct _elim_graph {
78 /* Size of the elimination vectors. */
79 int size;
80
81 /* List of nodes in the elimination graph. */
82 varray_type nodes;
83
84 /* The predecessor and successor edge list. */
85 varray_type edge_list;
86
87 /* Visited vector. */
88 sbitmap visited;
89
90 /* Stack for visited nodes. */
91 varray_type stack;
92
93 /* The variable partition map. */
94 var_map map;
95
96 /* Edge being eliminated by this graph. */
97 edge e;
98
99 /* List of constant copies to emit. These are pushed on in pairs. */
100 varray_type const_copies;
101 } *elim_graph;
102
103
104 /* Local functions. */
105 static tree create_temp (tree);
106 static void insert_copy_on_edge (edge, tree, tree);
107 static elim_graph new_elim_graph (int);
108 static inline void delete_elim_graph (elim_graph);
109 static inline void clear_elim_graph (elim_graph);
110 static inline int elim_graph_size (elim_graph);
111 static inline void elim_graph_add_node (elim_graph, tree);
112 static inline void elim_graph_add_edge (elim_graph, int, int);
113 static inline int elim_graph_remove_succ_edge (elim_graph, int);
114
115 static inline void eliminate_name (elim_graph, tree);
116 static void eliminate_build (elim_graph, basic_block);
117 static void elim_forward (elim_graph, int);
118 static int elim_unvisited_predecessor (elim_graph, int);
119 static void elim_backward (elim_graph, int);
120 static void elim_create (elim_graph, int);
121 static void eliminate_phi (edge, elim_graph);
122 static tree_live_info_p coalesce_ssa_name (var_map, int);
123 static void assign_vars (var_map);
124 static bool replace_use_variable (var_map, use_operand_p, tree *);
125 static bool replace_def_variable (var_map, def_operand_p, tree *);
126 static void eliminate_virtual_phis (void);
127 static void coalesce_abnormal_edges (var_map, conflict_graph, root_var_p);
128 static void print_exprs (FILE *, const char *, tree, const char *, tree,
129 const char *);
130 static void print_exprs_edge (FILE *, edge, const char *, tree, const char *,
131 tree);
132
133
134 /* Create a temporary variable based on the type of variable T. Use T's name
135 as the prefix. */
136
137 static tree
138 create_temp (tree t)
139 {
140 tree tmp;
141 const char *name = NULL;
142 tree type;
143
144 if (TREE_CODE (t) == SSA_NAME)
145 t = SSA_NAME_VAR (t);
146
147 gcc_assert (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL);
148
149 type = TREE_TYPE (t);
150 tmp = DECL_NAME (t);
151 if (tmp)
152 name = IDENTIFIER_POINTER (tmp);
153
154 if (name == NULL)
155 name = "temp";
156 tmp = create_tmp_var (type, name);
157
158 if (DECL_DEBUG_EXPR (t) && DECL_DEBUG_EXPR_IS_FROM (t))
159 {
160 DECL_DEBUG_EXPR (tmp) = DECL_DEBUG_EXPR (t);
161 DECL_DEBUG_EXPR_IS_FROM (tmp) = 1;
162 }
163 else if (!DECL_IGNORED_P (t))
164 {
165 DECL_DEBUG_EXPR (tmp) = t;
166 DECL_DEBUG_EXPR_IS_FROM (tmp) = 1;
167 }
168 DECL_ARTIFICIAL (tmp) = DECL_ARTIFICIAL (t);
169 DECL_IGNORED_P (tmp) = DECL_IGNORED_P (t);
170 add_referenced_tmp_var (tmp);
171
172 /* add_referenced_tmp_var will create the annotation and set up some
173 of the flags in the annotation. However, some flags we need to
174 inherit from our original variable. */
175 var_ann (tmp)->type_mem_tag = var_ann (t)->type_mem_tag;
176 if (is_call_clobbered (t))
177 mark_call_clobbered (tmp);
178
179 return tmp;
180 }
181
182
183 /* This helper function fill insert a copy from a constant or variable SRC to
184 variable DEST on edge E. */
185
186 static void
187 insert_copy_on_edge (edge e, tree dest, tree src)
188 {
189 tree copy;
190
191 copy = build (MODIFY_EXPR, TREE_TYPE (dest), dest, src);
192 set_is_used (dest);
193
194 if (TREE_CODE (src) == ADDR_EXPR)
195 src = TREE_OPERAND (src, 0);
196 if (TREE_CODE (src) == VAR_DECL || TREE_CODE (src) == PARM_DECL)
197 set_is_used (src);
198
199 if (dump_file && (dump_flags & TDF_DETAILS))
200 {
201 fprintf (dump_file,
202 "Inserting a copy on edge BB%d->BB%d :",
203 e->src->index,
204 e->dest->index);
205 print_generic_expr (dump_file, copy, dump_flags);
206 fprintf (dump_file, "\n");
207 }
208
209 bsi_insert_on_edge (e, copy);
210 }
211
212
213 /* Create an elimination graph with SIZE nodes and associated data
214 structures. */
215
216 static elim_graph
217 new_elim_graph (int size)
218 {
219 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
220
221 VARRAY_TREE_INIT (g->nodes, 30, "Elimination Node List");
222 VARRAY_TREE_INIT (g->const_copies, 20, "Elimination Constant Copies");
223 VARRAY_INT_INIT (g->edge_list, 20, "Elimination Edge List");
224 VARRAY_INT_INIT (g->stack, 30, " Elimination Stack");
225
226 g->visited = sbitmap_alloc (size);
227
228 return g;
229 }
230
231
232 /* Empty elimination graph G. */
233
234 static inline void
235 clear_elim_graph (elim_graph g)
236 {
237 VARRAY_POP_ALL (g->nodes);
238 VARRAY_POP_ALL (g->edge_list);
239 }
240
241
242 /* Delete elimination graph G. */
243
244 static inline void
245 delete_elim_graph (elim_graph g)
246 {
247 sbitmap_free (g->visited);
248 free (g);
249 }
250
251
252 /* Return the number of nodes in graph G. */
253
254 static inline int
255 elim_graph_size (elim_graph g)
256 {
257 return VARRAY_ACTIVE_SIZE (g->nodes);
258 }
259
260
261 /* Add NODE to graph G, if it doesn't exist already. */
262
263 static inline void
264 elim_graph_add_node (elim_graph g, tree node)
265 {
266 int x;
267 for (x = 0; x < elim_graph_size (g); x++)
268 if (VARRAY_TREE (g->nodes, x) == node)
269 return;
270 VARRAY_PUSH_TREE (g->nodes, node);
271 }
272
273
274 /* Add the edge PRED->SUCC to graph G. */
275
276 static inline void
277 elim_graph_add_edge (elim_graph g, int pred, int succ)
278 {
279 VARRAY_PUSH_INT (g->edge_list, pred);
280 VARRAY_PUSH_INT (g->edge_list, succ);
281 }
282
283
284 /* Remove an edge from graph G for which NODE is the predecessor, and
285 return the successor node. -1 is returned if there is no such edge. */
286
287 static inline int
288 elim_graph_remove_succ_edge (elim_graph g, int node)
289 {
290 int y;
291 unsigned x;
292 for (x = 0; x < VARRAY_ACTIVE_SIZE (g->edge_list); x += 2)
293 if (VARRAY_INT (g->edge_list, x) == node)
294 {
295 VARRAY_INT (g->edge_list, x) = -1;
296 y = VARRAY_INT (g->edge_list, x + 1);
297 VARRAY_INT (g->edge_list, x + 1) = -1;
298 return y;
299 }
300 return -1;
301 }
302
303
304 /* Find all the nodes in GRAPH which are successors to NODE in the
305 edge list. VAR will hold the partition number found. CODE is the
306 code fragment executed for every node found. */
307
308 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, CODE) \
309 do { \
310 unsigned x_; \
311 int y_; \
312 for (x_ = 0; x_ < VARRAY_ACTIVE_SIZE ((GRAPH)->edge_list); x_ += 2) \
313 { \
314 y_ = VARRAY_INT ((GRAPH)->edge_list, x_); \
315 if (y_ != (NODE)) \
316 continue; \
317 (VAR) = VARRAY_INT ((GRAPH)->edge_list, x_ + 1); \
318 CODE; \
319 } \
320 } while (0)
321
322
323 /* Find all the nodes which are predecessors of NODE in the edge list for
324 GRAPH. VAR will hold the partition number found. CODE is the
325 code fragment executed for every node found. */
326
327 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, CODE) \
328 do { \
329 unsigned x_; \
330 int y_; \
331 for (x_ = 0; x_ < VARRAY_ACTIVE_SIZE ((GRAPH)->edge_list); x_ += 2) \
332 { \
333 y_ = VARRAY_INT ((GRAPH)->edge_list, x_ + 1); \
334 if (y_ != (NODE)) \
335 continue; \
336 (VAR) = VARRAY_INT ((GRAPH)->edge_list, x_); \
337 CODE; \
338 } \
339 } while (0)
340
341
342 /* Add T to elimination graph G. */
343
344 static inline void
345 eliminate_name (elim_graph g, tree T)
346 {
347 elim_graph_add_node (g, T);
348 }
349
350
351 /* Build elimination graph G for basic block BB on incoming PHI edge
352 G->e. */
353
354 static void
355 eliminate_build (elim_graph g, basic_block B)
356 {
357 tree phi;
358 tree T0, Ti;
359 int p0, pi;
360
361 clear_elim_graph (g);
362
363 for (phi = phi_nodes (B); phi; phi = PHI_CHAIN (phi))
364 {
365 T0 = var_to_partition_to_var (g->map, PHI_RESULT (phi));
366
367 /* Ignore results which are not in partitions. */
368 if (T0 == NULL_TREE)
369 continue;
370
371 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
372
373 /* If this argument is a constant, or a SSA_NAME which is being
374 left in SSA form, just queue a copy to be emitted on this
375 edge. */
376 if (!phi_ssa_name_p (Ti)
377 || (TREE_CODE (Ti) == SSA_NAME
378 && var_to_partition (g->map, Ti) == NO_PARTITION))
379 {
380 /* Save constant copies until all other copies have been emitted
381 on this edge. */
382 VARRAY_PUSH_TREE (g->const_copies, T0);
383 VARRAY_PUSH_TREE (g->const_copies, Ti);
384 }
385 else
386 {
387 Ti = var_to_partition_to_var (g->map, Ti);
388 if (T0 != Ti)
389 {
390 eliminate_name (g, T0);
391 eliminate_name (g, Ti);
392 p0 = var_to_partition (g->map, T0);
393 pi = var_to_partition (g->map, Ti);
394 elim_graph_add_edge (g, p0, pi);
395 }
396 }
397 }
398 }
399
400
401 /* Push successors of T onto the elimination stack for G. */
402
403 static void
404 elim_forward (elim_graph g, int T)
405 {
406 int S;
407 SET_BIT (g->visited, T);
408 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S,
409 {
410 if (!TEST_BIT (g->visited, S))
411 elim_forward (g, S);
412 });
413 VARRAY_PUSH_INT (g->stack, T);
414 }
415
416
417 /* Return 1 if there unvisited predecessors of T in graph G. */
418
419 static int
420 elim_unvisited_predecessor (elim_graph g, int T)
421 {
422 int P;
423 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
424 {
425 if (!TEST_BIT (g->visited, P))
426 return 1;
427 });
428 return 0;
429 }
430
431 /* Process predecessors first, and insert a copy. */
432
433 static void
434 elim_backward (elim_graph g, int T)
435 {
436 int P;
437 SET_BIT (g->visited, T);
438 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
439 {
440 if (!TEST_BIT (g->visited, P))
441 {
442 elim_backward (g, P);
443 insert_copy_on_edge (g->e,
444 partition_to_var (g->map, P),
445 partition_to_var (g->map, T));
446 }
447 });
448 }
449
450 /* Insert required copies for T in graph G. Check for a strongly connected
451 region, and create a temporary to break the cycle if one is found. */
452
453 static void
454 elim_create (elim_graph g, int T)
455 {
456 tree U;
457 int P, S;
458
459 if (elim_unvisited_predecessor (g, T))
460 {
461 U = create_temp (partition_to_var (g->map, T));
462 insert_copy_on_edge (g->e, U, partition_to_var (g->map, T));
463 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
464 {
465 if (!TEST_BIT (g->visited, P))
466 {
467 elim_backward (g, P);
468 insert_copy_on_edge (g->e, partition_to_var (g->map, P), U);
469 }
470 });
471 }
472 else
473 {
474 S = elim_graph_remove_succ_edge (g, T);
475 if (S != -1)
476 {
477 SET_BIT (g->visited, T);
478 insert_copy_on_edge (g->e,
479 partition_to_var (g->map, T),
480 partition_to_var (g->map, S));
481 }
482 }
483
484 }
485
486 /* Eliminate all the phi nodes on edge E in graph G. */
487
488 static void
489 eliminate_phi (edge e, elim_graph g)
490 {
491 int x;
492 basic_block B = e->dest;
493
494 gcc_assert (VARRAY_ACTIVE_SIZE (g->const_copies) == 0);
495
496 /* Abnormal edges already have everything coalesced, or the coalescer
497 would have aborted. */
498 if (e->flags & EDGE_ABNORMAL)
499 return;
500
501 g->e = e;
502
503 eliminate_build (g, B);
504
505 if (elim_graph_size (g) != 0)
506 {
507 sbitmap_zero (g->visited);
508 VARRAY_POP_ALL (g->stack);
509
510 for (x = 0; x < elim_graph_size (g); x++)
511 {
512 tree var = VARRAY_TREE (g->nodes, x);
513 int p = var_to_partition (g->map, var);
514 if (!TEST_BIT (g->visited, p))
515 elim_forward (g, p);
516 }
517
518 sbitmap_zero (g->visited);
519 while (VARRAY_ACTIVE_SIZE (g->stack) > 0)
520 {
521 x = VARRAY_TOP_INT (g->stack);
522 VARRAY_POP (g->stack);
523 if (!TEST_BIT (g->visited, x))
524 elim_create (g, x);
525 }
526 }
527
528 /* If there are any pending constant copies, issue them now. */
529 while (VARRAY_ACTIVE_SIZE (g->const_copies) > 0)
530 {
531 tree src, dest;
532 src = VARRAY_TOP_TREE (g->const_copies);
533 VARRAY_POP (g->const_copies);
534 dest = VARRAY_TOP_TREE (g->const_copies);
535 VARRAY_POP (g->const_copies);
536 insert_copy_on_edge (e, dest, src);
537 }
538 }
539
540
541 /* Shortcut routine to print messages to file F of the form:
542 "STR1 EXPR1 STR2 EXPR2 STR3." */
543
544 static void
545 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
546 tree expr2, const char *str3)
547 {
548 fprintf (f, "%s", str1);
549 print_generic_expr (f, expr1, TDF_SLIM);
550 fprintf (f, "%s", str2);
551 print_generic_expr (f, expr2, TDF_SLIM);
552 fprintf (f, "%s", str3);
553 }
554
555
556 /* Shortcut routine to print abnormal edge messages to file F of the form:
557 "STR1 EXPR1 STR2 EXPR2 across edge E. */
558
559 static void
560 print_exprs_edge (FILE *f, edge e, const char *str1, tree expr1,
561 const char *str2, tree expr2)
562 {
563 print_exprs (f, str1, expr1, str2, expr2, " across an abnormal edge");
564 fprintf (f, " from BB%d->BB%d\n", e->src->index,
565 e->dest->index);
566 }
567
568
569 /* Coalesce partitions in MAP which are live across abnormal edges in GRAPH.
570 RV is the root variable groupings of the partitions in MAP. Since code
571 cannot be inserted on these edges, failure to coalesce something across
572 an abnormal edge is an error. */
573
574 static void
575 coalesce_abnormal_edges (var_map map, conflict_graph graph, root_var_p rv)
576 {
577 basic_block bb;
578 edge e;
579 tree phi, var, tmp;
580 int x, y, z;
581 edge_iterator ei;
582
583 /* Code cannot be inserted on abnormal edges. Look for all abnormal
584 edges, and coalesce any PHI results with their arguments across
585 that edge. */
586
587 FOR_EACH_BB (bb)
588 FOR_EACH_EDGE (e, ei, bb->succs)
589 if (e->dest != EXIT_BLOCK_PTR && e->flags & EDGE_ABNORMAL)
590 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
591 {
592 /* Visit each PHI on the destination side of this abnormal
593 edge, and attempt to coalesce the argument with the result. */
594 var = PHI_RESULT (phi);
595 x = var_to_partition (map, var);
596
597 /* Ignore results which are not relevant. */
598 if (x == NO_PARTITION)
599 continue;
600
601 tmp = PHI_ARG_DEF (phi, e->dest_idx);
602 #ifdef ENABLE_CHECKING
603 if (!phi_ssa_name_p (tmp))
604 {
605 print_exprs_edge (stderr, e,
606 "\nConstant argument in PHI. Can't insert :",
607 var, " = ", tmp);
608 internal_error ("SSA corruption");
609 }
610 #else
611 gcc_assert (phi_ssa_name_p (tmp));
612 #endif
613 y = var_to_partition (map, tmp);
614 gcc_assert (x != NO_PARTITION);
615 gcc_assert (y != NO_PARTITION);
616 #ifdef ENABLE_CHECKING
617 if (root_var_find (rv, x) != root_var_find (rv, y))
618 {
619 print_exprs_edge (stderr, e, "\nDifferent root vars: ",
620 root_var (rv, root_var_find (rv, x)),
621 " and ",
622 root_var (rv, root_var_find (rv, y)));
623 internal_error ("SSA corruption");
624 }
625 #else
626 gcc_assert (root_var_find (rv, x) == root_var_find (rv, y));
627 #endif
628
629 if (x != y)
630 {
631 #ifdef ENABLE_CHECKING
632 if (conflict_graph_conflict_p (graph, x, y))
633 {
634 print_exprs_edge (stderr, e, "\n Conflict ",
635 partition_to_var (map, x),
636 " and ", partition_to_var (map, y));
637 internal_error ("SSA corruption");
638 }
639 #else
640 gcc_assert (!conflict_graph_conflict_p (graph, x, y));
641 #endif
642
643 /* Now map the partitions back to their real variables. */
644 var = partition_to_var (map, x);
645 tmp = partition_to_var (map, y);
646 if (dump_file && (dump_flags & TDF_DETAILS))
647 {
648 print_exprs_edge (dump_file, e,
649 "ABNORMAL: Coalescing ",
650 var, " and ", tmp);
651 }
652 z = var_union (map, var, tmp);
653 #ifdef ENABLE_CHECKING
654 if (z == NO_PARTITION)
655 {
656 print_exprs_edge (stderr, e, "\nUnable to coalesce",
657 partition_to_var (map, x), " and ",
658 partition_to_var (map, y));
659 internal_error ("SSA corruption");
660 }
661 #else
662 gcc_assert (z != NO_PARTITION);
663 #endif
664 gcc_assert (z == x || z == y);
665 if (z == x)
666 conflict_graph_merge_regs (graph, x, y);
667 else
668 conflict_graph_merge_regs (graph, y, x);
669 }
670 }
671 }
672
673
674 /* Reduce the number of live ranges in MAP. Live range information is
675 returned if FLAGS indicates that we are combining temporaries, otherwise
676 NULL is returned. The only partitions which are associated with actual
677 variables at this point are those which are forced to be coalesced for
678 various reason. (live on entry, live across abnormal edges, etc.). */
679
680 static tree_live_info_p
681 coalesce_ssa_name (var_map map, int flags)
682 {
683 unsigned num, x, i;
684 sbitmap live;
685 tree var, phi;
686 root_var_p rv;
687 tree_live_info_p liveinfo;
688 var_ann_t ann;
689 conflict_graph graph;
690 basic_block bb;
691 coalesce_list_p cl = NULL;
692
693 if (num_var_partitions (map) <= 1)
694 return NULL;
695
696 liveinfo = calculate_live_on_entry (map);
697 calculate_live_on_exit (liveinfo);
698 rv = root_var_init (map);
699
700 /* Remove single element variable from the list. */
701 root_var_compact (rv);
702
703 cl = create_coalesce_list (map);
704
705 /* Add all potential copies via PHI arguments to the list. */
706 FOR_EACH_BB (bb)
707 {
708 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
709 {
710 tree res = PHI_RESULT (phi);
711 int p = var_to_partition (map, res);
712 if (p == NO_PARTITION)
713 continue;
714 for (x = 0; x < (unsigned)PHI_NUM_ARGS (phi); x++)
715 {
716 tree arg = PHI_ARG_DEF (phi, x);
717 int p2;
718
719 if (TREE_CODE (arg) != SSA_NAME)
720 continue;
721 if (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg))
722 continue;
723 p2 = var_to_partition (map, PHI_ARG_DEF (phi, x));
724 if (p2 != NO_PARTITION)
725 add_coalesce (cl, p, p2, 1);
726 }
727 }
728 }
729
730 /* Coalesce all the result decls together. */
731 var = NULL_TREE;
732 i = 0;
733 for (x = 0; x < num_var_partitions (map); x++)
734 {
735 tree p = partition_to_var (map, x);
736 if (TREE_CODE (SSA_NAME_VAR(p)) == RESULT_DECL)
737 {
738 if (var == NULL_TREE)
739 {
740 var = p;
741 i = x;
742 }
743 else
744 add_coalesce (cl, i, x, 1);
745 }
746 }
747
748 /* Build a conflict graph. */
749 graph = build_tree_conflict_graph (liveinfo, rv, cl);
750
751 if (cl)
752 {
753 if (dump_file && (dump_flags & TDF_DETAILS))
754 {
755 fprintf (dump_file, "Before sorting:\n");
756 dump_coalesce_list (dump_file, cl);
757 }
758
759 sort_coalesce_list (cl);
760
761 if (dump_file && (dump_flags & TDF_DETAILS))
762 {
763 fprintf (dump_file, "\nAfter sorting:\n");
764 dump_coalesce_list (dump_file, cl);
765 }
766 }
767
768 /* Put the single element variables back in. */
769 root_var_decompact (rv);
770
771 /* First, coalesce all live on entry variables to their root variable.
772 This will ensure the first use is coming from the correct location. */
773
774 live = sbitmap_alloc (num_var_partitions (map));
775 sbitmap_zero (live);
776
777 /* Set 'live' vector to indicate live on entry partitions. */
778 num = num_var_partitions (map);
779 for (x = 0 ; x < num; x++)
780 {
781 var = partition_to_var (map, x);
782 if (default_def (SSA_NAME_VAR (var)) == var)
783 SET_BIT (live, x);
784 }
785
786 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
787 {
788 delete_tree_live_info (liveinfo);
789 liveinfo = NULL;
790 }
791
792 /* Assign root variable as partition representative for each live on entry
793 partition. */
794 EXECUTE_IF_SET_IN_SBITMAP (live, 0, x,
795 {
796 var = root_var (rv, root_var_find (rv, x));
797 ann = var_ann (var);
798 /* If these aren't already coalesced... */
799 if (partition_to_var (map, x) != var)
800 {
801 /* This root variable should have not already been assigned
802 to another partition which is not coalesced with this one. */
803 gcc_assert (!ann->out_of_ssa_tag);
804
805 if (dump_file && (dump_flags & TDF_DETAILS))
806 {
807 print_exprs (dump_file, "Must coalesce ",
808 partition_to_var (map, x),
809 " with the root variable ", var, ".\n");
810 }
811
812 change_partition_var (map, var, x);
813 }
814 });
815
816 sbitmap_free (live);
817
818 /* Coalesce partitions live across abnormal edges. */
819 coalesce_abnormal_edges (map, graph, rv);
820
821 if (dump_file && (dump_flags & TDF_DETAILS))
822 dump_var_map (dump_file, map);
823
824 /* Coalesce partitions. */
825 coalesce_tpa_members (rv, graph, map, cl,
826 ((dump_flags & TDF_DETAILS) ? dump_file
827 : NULL));
828
829 if (flags & SSANORM_COALESCE_PARTITIONS)
830 coalesce_tpa_members (rv, graph, map, NULL,
831 ((dump_flags & TDF_DETAILS) ? dump_file
832 : NULL));
833 if (cl)
834 delete_coalesce_list (cl);
835 root_var_delete (rv);
836 conflict_graph_delete (graph);
837
838 return liveinfo;
839 }
840
841
842 /* Take the ssa-name var_map MAP, and assign real variables to each
843 partition. */
844
845 static void
846 assign_vars (var_map map)
847 {
848 int x, i, num, rep;
849 tree t, var;
850 var_ann_t ann;
851 root_var_p rv;
852
853 rv = root_var_init (map);
854 if (!rv)
855 return;
856
857 /* Coalescing may already have forced some partitions to their root
858 variable. Find these and tag them. */
859
860 num = num_var_partitions (map);
861 for (x = 0; x < num; x++)
862 {
863 var = partition_to_var (map, x);
864 if (TREE_CODE (var) != SSA_NAME)
865 {
866 /* Coalescing will already have verified that more than one
867 partition doesn't have the same root variable. Simply marked
868 the variable as assigned. */
869 ann = var_ann (var);
870 ann->out_of_ssa_tag = 1;
871 if (dump_file && (dump_flags & TDF_DETAILS))
872 {
873 fprintf (dump_file, "partition %d has variable ", x);
874 print_generic_expr (dump_file, var, TDF_SLIM);
875 fprintf (dump_file, " assigned to it.\n");
876 }
877
878 }
879 }
880
881 num = root_var_num (rv);
882 for (x = 0; x < num; x++)
883 {
884 var = root_var (rv, x);
885 ann = var_ann (var);
886 for (i = root_var_first_partition (rv, x);
887 i != ROOT_VAR_NONE;
888 i = root_var_next_partition (rv, i))
889 {
890 t = partition_to_var (map, i);
891
892 if (t == var || TREE_CODE (t) != SSA_NAME)
893 continue;
894
895 rep = var_to_partition (map, t);
896
897 if (!ann->out_of_ssa_tag)
898 {
899 if (dump_file && (dump_flags & TDF_DETAILS))
900 print_exprs (dump_file, "", t, " --> ", var, "\n");
901 change_partition_var (map, var, rep);
902 continue;
903 }
904
905 if (dump_file && (dump_flags & TDF_DETAILS))
906 print_exprs (dump_file, "", t, " not coalesced with ", var,
907 "");
908
909 var = create_temp (t);
910 change_partition_var (map, var, rep);
911 ann = var_ann (var);
912
913 if (dump_file && (dump_flags & TDF_DETAILS))
914 {
915 fprintf (dump_file, " --> New temp: '");
916 print_generic_expr (dump_file, var, TDF_SLIM);
917 fprintf (dump_file, "'\n");
918 }
919 }
920 }
921
922 root_var_delete (rv);
923 }
924
925
926 /* Replace use operand P with whatever variable it has been rewritten to based
927 on the partitions in MAP. EXPR is an optional expression vector over SSA
928 versions which is used to replace P with an expression instead of a variable.
929 If the stmt is changed, return true. */
930
931 static inline bool
932 replace_use_variable (var_map map, use_operand_p p, tree *expr)
933 {
934 tree new_var;
935 tree var = USE_FROM_PTR (p);
936
937 /* Check if we are replacing this variable with an expression. */
938 if (expr)
939 {
940 int version = SSA_NAME_VERSION (var);
941 if (expr[version])
942 {
943 tree new_expr = TREE_OPERAND (expr[version], 1);
944 SET_USE (p, new_expr);
945 /* Clear the stmt's RHS, or GC might bite us. */
946 TREE_OPERAND (expr[version], 1) = NULL_TREE;
947 return true;
948 }
949 }
950
951 new_var = var_to_partition_to_var (map, var);
952 if (new_var)
953 {
954 SET_USE (p, new_var);
955 set_is_used (new_var);
956 return true;
957 }
958 return false;
959 }
960
961
962 /* Replace def operand DEF_P with whatever variable it has been rewritten to
963 based on the partitions in MAP. EXPR is an optional expression vector over
964 SSA versions which is used to replace DEF_P with an expression instead of a
965 variable. If the stmt is changed, return true. */
966
967 static inline bool
968 replace_def_variable (var_map map, def_operand_p def_p, tree *expr)
969 {
970 tree new_var;
971 tree var = DEF_FROM_PTR (def_p);
972
973 /* Check if we are replacing this variable with an expression. */
974 if (expr)
975 {
976 int version = SSA_NAME_VERSION (var);
977 if (expr[version])
978 {
979 tree new_expr = TREE_OPERAND (expr[version], 1);
980 SET_DEF (def_p, new_expr);
981 /* Clear the stmt's RHS, or GC might bite us. */
982 TREE_OPERAND (expr[version], 1) = NULL_TREE;
983 return true;
984 }
985 }
986
987 new_var = var_to_partition_to_var (map, var);
988 if (new_var)
989 {
990 SET_DEF (def_p, new_var);
991 set_is_used (new_var);
992 return true;
993 }
994 return false;
995 }
996
997
998 /* Remove any PHI node which is a virtual PHI. */
999
1000 static void
1001 eliminate_virtual_phis (void)
1002 {
1003 basic_block bb;
1004 tree phi, next;
1005
1006 FOR_EACH_BB (bb)
1007 {
1008 for (phi = phi_nodes (bb); phi; phi = next)
1009 {
1010 next = PHI_CHAIN (phi);
1011 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1012 {
1013 #ifdef ENABLE_CHECKING
1014 int i;
1015 /* There should be no arguments of this PHI which are in
1016 the partition list, or we get incorrect results. */
1017 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1018 {
1019 tree arg = PHI_ARG_DEF (phi, i);
1020 if (TREE_CODE (arg) == SSA_NAME
1021 && is_gimple_reg (SSA_NAME_VAR (arg)))
1022 {
1023 fprintf (stderr, "Argument of PHI is not virtual (");
1024 print_generic_expr (stderr, arg, TDF_SLIM);
1025 fprintf (stderr, "), but the result is :");
1026 print_generic_stmt (stderr, phi, TDF_SLIM);
1027 internal_error ("SSA corruption");
1028 }
1029 }
1030 #endif
1031 remove_phi_node (phi, NULL_TREE);
1032 }
1033 }
1034 }
1035 }
1036
1037
1038 /* This routine will coalesce variables in MAP of the same type which do not
1039 interfere with each other. LIVEINFO is the live range info for variables
1040 of interest. This will both reduce the memory footprint of the stack, and
1041 allow us to coalesce together local copies of globals and scalarized
1042 component refs. */
1043
1044 static void
1045 coalesce_vars (var_map map, tree_live_info_p liveinfo)
1046 {
1047 basic_block bb;
1048 type_var_p tv;
1049 tree var;
1050 unsigned x, p, p2;
1051 coalesce_list_p cl;
1052 conflict_graph graph;
1053
1054 cl = create_coalesce_list (map);
1055
1056 /* Merge all the live on entry vectors for coalesced partitions. */
1057 for (x = 0; x < num_var_partitions (map); x++)
1058 {
1059 var = partition_to_var (map, x);
1060 p = var_to_partition (map, var);
1061 if (p != x)
1062 live_merge_and_clear (liveinfo, p, x);
1063 }
1064
1065 /* When PHI nodes are turned into copies, the result of each PHI node
1066 becomes live on entry to the block. Mark these now. */
1067 FOR_EACH_BB (bb)
1068 {
1069 tree phi, arg;
1070 unsigned p;
1071
1072 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1073 {
1074 p = var_to_partition (map, PHI_RESULT (phi));
1075
1076 /* Skip virtual PHI nodes. */
1077 if (p == (unsigned)NO_PARTITION)
1078 continue;
1079
1080 make_live_on_entry (liveinfo, bb, p);
1081
1082 /* Each argument is a potential copy operation. Add any arguments
1083 which are not coalesced to the result to the coalesce list. */
1084 for (x = 0; x < (unsigned)PHI_NUM_ARGS (phi); x++)
1085 {
1086 arg = PHI_ARG_DEF (phi, x);
1087 if (!phi_ssa_name_p (arg))
1088 continue;
1089 p2 = var_to_partition (map, arg);
1090 if (p2 == (unsigned)NO_PARTITION)
1091 continue;
1092 if (p != p2)
1093 add_coalesce (cl, p, p2, 1);
1094 }
1095 }
1096 }
1097
1098
1099 /* Re-calculate live on exit info. */
1100 calculate_live_on_exit (liveinfo);
1101
1102 if (dump_file && (dump_flags & TDF_DETAILS))
1103 {
1104 fprintf (dump_file, "Live range info for variable memory coalescing.\n");
1105 dump_live_info (dump_file, liveinfo, LIVEDUMP_ALL);
1106
1107 fprintf (dump_file, "Coalesce list from phi nodes:\n");
1108 dump_coalesce_list (dump_file, cl);
1109 }
1110
1111
1112 tv = type_var_init (map);
1113 if (dump_file)
1114 type_var_dump (dump_file, tv);
1115 type_var_compact (tv);
1116 if (dump_file)
1117 type_var_dump (dump_file, tv);
1118
1119 graph = build_tree_conflict_graph (liveinfo, tv, cl);
1120
1121 type_var_decompact (tv);
1122 if (dump_file && (dump_flags & TDF_DETAILS))
1123 {
1124 fprintf (dump_file, "type var list now looks like:n");
1125 type_var_dump (dump_file, tv);
1126
1127 fprintf (dump_file, "Coalesce list after conflict graph build:\n");
1128 dump_coalesce_list (dump_file, cl);
1129 }
1130
1131 sort_coalesce_list (cl);
1132 if (dump_file && (dump_flags & TDF_DETAILS))
1133 {
1134 fprintf (dump_file, "Coalesce list after sorting:\n");
1135 dump_coalesce_list (dump_file, cl);
1136 }
1137
1138 coalesce_tpa_members (tv, graph, map, cl,
1139 ((dump_flags & TDF_DETAILS) ? dump_file : NULL));
1140
1141 type_var_delete (tv);
1142 delete_coalesce_list (cl);
1143 }
1144
1145
1146 /* Temporary Expression Replacement (TER)
1147
1148 Replace SSA version variables during out-of-ssa with their defining
1149 expression if there is only one use of the variable.
1150
1151 A pass is made through the function, one block at a time. No cross block
1152 information is tracked.
1153
1154 Variables which only have one use, and whose defining stmt is considered
1155 a replaceable expression (see check_replaceable) are entered into
1156 consideration by adding a list of dependent partitions to the version_info
1157 vector for that ssa_name_version. This information comes from the partition
1158 mapping for each USE. At the same time, the partition_dep_list vector for
1159 these partitions have this version number entered into their lists.
1160
1161 When the use of a replaceable ssa_variable is encountered, the dependence
1162 list in version_info[] is moved to the "pending_dependence" list in case
1163 the current expression is also replaceable. (To be determined later in
1164 processing this stmt.) version_info[] for the version is then updated to
1165 point to the defining stmt and the 'replaceable' bit is set.
1166
1167 Any partition which is defined by a statement 'kills' any expression which
1168 is dependent on this partition. Every ssa version in the partitions'
1169 dependence list is removed from future consideration.
1170
1171 All virtual references are lumped together. Any expression which is
1172 dependent on any virtual variable (via a VUSE) has a dependence added
1173 to the special partition defined by VIRTUAL_PARTITION.
1174
1175 Whenever a V_MAY_DEF is seen, all expressions dependent this
1176 VIRTUAL_PARTITION are removed from consideration.
1177
1178 At the end of a basic block, all expression are removed from consideration
1179 in preparation for the next block.
1180
1181 The end result is a vector over SSA_NAME_VERSION which is passed back to
1182 rewrite_out_of_ssa. As the SSA variables are being rewritten, instead of
1183 replacing the SSA_NAME tree element with the partition it was assigned,
1184 it is replaced with the RHS of the defining expression. */
1185
1186
1187 /* Dependency list element. This can contain either a partition index or a
1188 version number, depending on which list it is in. */
1189
1190 typedef struct value_expr_d
1191 {
1192 int value;
1193 struct value_expr_d *next;
1194 } *value_expr_p;
1195
1196
1197 /* Temporary Expression Replacement (TER) table information. */
1198
1199 typedef struct temp_expr_table_d
1200 {
1201 var_map map;
1202 void **version_info;
1203 value_expr_p *partition_dep_list;
1204 bitmap replaceable;
1205 bool saw_replaceable;
1206 int virtual_partition;
1207 bitmap partition_in_use;
1208 value_expr_p free_list;
1209 value_expr_p pending_dependence;
1210 } *temp_expr_table_p;
1211
1212 /* Used to indicate a dependency on V_MAY_DEFs. */
1213 #define VIRTUAL_PARTITION(table) (table->virtual_partition)
1214
1215 static temp_expr_table_p new_temp_expr_table (var_map);
1216 static tree *free_temp_expr_table (temp_expr_table_p);
1217 static inline value_expr_p new_value_expr (temp_expr_table_p);
1218 static inline void free_value_expr (temp_expr_table_p, value_expr_p);
1219 static inline value_expr_p find_value_in_list (value_expr_p, int,
1220 value_expr_p *);
1221 static inline void add_value_to_list (temp_expr_table_p, value_expr_p *, int);
1222 static inline void add_info_to_list (temp_expr_table_p, value_expr_p *,
1223 value_expr_p);
1224 static value_expr_p remove_value_from_list (value_expr_p *, int);
1225 static void add_dependance (temp_expr_table_p, int, tree);
1226 static bool check_replaceable (temp_expr_table_p, tree);
1227 static void finish_expr (temp_expr_table_p, int, bool);
1228 static void mark_replaceable (temp_expr_table_p, tree);
1229 static inline void kill_expr (temp_expr_table_p, int, bool);
1230 static inline void kill_virtual_exprs (temp_expr_table_p, bool);
1231 static void find_replaceable_in_bb (temp_expr_table_p, basic_block);
1232 static tree *find_replaceable_exprs (var_map);
1233 static void dump_replaceable_exprs (FILE *, tree *);
1234
1235
1236 /* Create a new TER table for MAP. */
1237
1238 static temp_expr_table_p
1239 new_temp_expr_table (var_map map)
1240 {
1241 temp_expr_table_p t;
1242
1243 t = (temp_expr_table_p) xmalloc (sizeof (struct temp_expr_table_d));
1244 t->map = map;
1245
1246 t->version_info = xcalloc (num_ssa_names + 1, sizeof (void *));
1247 t->partition_dep_list = xcalloc (num_var_partitions (map) + 1,
1248 sizeof (value_expr_p));
1249
1250 t->replaceable = BITMAP_ALLOC (NULL);
1251 t->partition_in_use = BITMAP_ALLOC (NULL);
1252
1253 t->saw_replaceable = false;
1254 t->virtual_partition = num_var_partitions (map);
1255 t->free_list = NULL;
1256 t->pending_dependence = NULL;
1257
1258 return t;
1259 }
1260
1261
1262 /* Free TER table T. If there are valid replacements, return the expression
1263 vector. */
1264
1265 static tree *
1266 free_temp_expr_table (temp_expr_table_p t)
1267 {
1268 value_expr_p p;
1269 tree *ret = NULL;
1270
1271 #ifdef ENABLE_CHECKING
1272 unsigned x;
1273 for (x = 0; x <= num_var_partitions (t->map); x++)
1274 gcc_assert (!t->partition_dep_list[x]);
1275 #endif
1276
1277 while ((p = t->free_list))
1278 {
1279 t->free_list = p->next;
1280 free (p);
1281 }
1282
1283 BITMAP_FREE (t->partition_in_use);
1284 BITMAP_FREE (t->replaceable);
1285
1286 free (t->partition_dep_list);
1287 if (t->saw_replaceable)
1288 ret = (tree *)t->version_info;
1289 else
1290 free (t->version_info);
1291
1292 free (t);
1293 return ret;
1294 }
1295
1296
1297 /* Allocate a new value list node. Take it from the free list in TABLE if
1298 possible. */
1299
1300 static inline value_expr_p
1301 new_value_expr (temp_expr_table_p table)
1302 {
1303 value_expr_p p;
1304 if (table->free_list)
1305 {
1306 p = table->free_list;
1307 table->free_list = p->next;
1308 }
1309 else
1310 p = (value_expr_p) xmalloc (sizeof (struct value_expr_d));
1311
1312 return p;
1313 }
1314
1315
1316 /* Add value list node P to the free list in TABLE. */
1317
1318 static inline void
1319 free_value_expr (temp_expr_table_p table, value_expr_p p)
1320 {
1321 p->next = table->free_list;
1322 table->free_list = p;
1323 }
1324
1325
1326 /* Find VALUE if it's in LIST. Return a pointer to the list object if found,
1327 else return NULL. If LAST_PTR is provided, it will point to the previous
1328 item upon return, or NULL if this is the first item in the list. */
1329
1330 static inline value_expr_p
1331 find_value_in_list (value_expr_p list, int value, value_expr_p *last_ptr)
1332 {
1333 value_expr_p curr;
1334 value_expr_p last = NULL;
1335
1336 for (curr = list; curr; last = curr, curr = curr->next)
1337 {
1338 if (curr->value == value)
1339 break;
1340 }
1341 if (last_ptr)
1342 *last_ptr = last;
1343 return curr;
1344 }
1345
1346
1347 /* Add VALUE to LIST, if it isn't already present. TAB is the expression
1348 table */
1349
1350 static inline void
1351 add_value_to_list (temp_expr_table_p tab, value_expr_p *list, int value)
1352 {
1353 value_expr_p info;
1354
1355 if (!find_value_in_list (*list, value, NULL))
1356 {
1357 info = new_value_expr (tab);
1358 info->value = value;
1359 info->next = *list;
1360 *list = info;
1361 }
1362 }
1363
1364
1365 /* Add value node INFO if it's value isn't already in LIST. Free INFO if
1366 it is already in the list. TAB is the expression table. */
1367
1368 static inline void
1369 add_info_to_list (temp_expr_table_p tab, value_expr_p *list, value_expr_p info)
1370 {
1371 if (find_value_in_list (*list, info->value, NULL))
1372 free_value_expr (tab, info);
1373 else
1374 {
1375 info->next = *list;
1376 *list = info;
1377 }
1378 }
1379
1380
1381 /* Look for VALUE in LIST. If found, remove it from the list and return it's
1382 pointer. */
1383
1384 static value_expr_p
1385 remove_value_from_list (value_expr_p *list, int value)
1386 {
1387 value_expr_p info, last;
1388
1389 info = find_value_in_list (*list, value, &last);
1390 if (!info)
1391 return NULL;
1392 if (!last)
1393 *list = info->next;
1394 else
1395 last->next = info->next;
1396
1397 return info;
1398 }
1399
1400
1401 /* Add a dependency between the def of ssa VERSION and VAR. If VAR is
1402 replaceable by an expression, add a dependence each of the elements of the
1403 expression. These are contained in the pending list. TAB is the
1404 expression table. */
1405
1406 static void
1407 add_dependance (temp_expr_table_p tab, int version, tree var)
1408 {
1409 int i, x;
1410 value_expr_p info;
1411
1412 i = SSA_NAME_VERSION (var);
1413 if (bitmap_bit_p (tab->replaceable, i))
1414 {
1415 /* This variable is being substituted, so use whatever dependences
1416 were queued up when we marked this as replaceable earlier. */
1417 while ((info = tab->pending_dependence))
1418 {
1419 tab->pending_dependence = info->next;
1420 /* Get the partition this variable was dependent on. Reuse this
1421 object to represent the current expression instead. */
1422 x = info->value;
1423 info->value = version;
1424 add_info_to_list (tab, &(tab->partition_dep_list[x]), info);
1425 add_value_to_list (tab,
1426 (value_expr_p *)&(tab->version_info[version]), x);
1427 bitmap_set_bit (tab->partition_in_use, x);
1428 }
1429 }
1430 else
1431 {
1432 i = var_to_partition (tab->map, var);
1433 gcc_assert (i != NO_PARTITION);
1434 add_value_to_list (tab, &(tab->partition_dep_list[i]), version);
1435 add_value_to_list (tab,
1436 (value_expr_p *)&(tab->version_info[version]), i);
1437 bitmap_set_bit (tab->partition_in_use, i);
1438 }
1439 }
1440
1441
1442 /* Check if expression STMT is suitable for replacement in table TAB. If so,
1443 create an expression entry. Return true if this stmt is replaceable. */
1444
1445 static bool
1446 check_replaceable (temp_expr_table_p tab, tree stmt)
1447 {
1448 stmt_ann_t ann;
1449 vuse_optype vuseops;
1450 def_optype defs;
1451 use_optype uses;
1452 tree var, def;
1453 int num_use_ops, version;
1454 var_map map = tab->map;
1455 ssa_op_iter iter;
1456 tree call_expr;
1457
1458 if (TREE_CODE (stmt) != MODIFY_EXPR)
1459 return false;
1460
1461 ann = stmt_ann (stmt);
1462 defs = DEF_OPS (ann);
1463
1464 /* Punt if there is more than 1 def, or more than 1 use. */
1465 if (NUM_DEFS (defs) != 1)
1466 return false;
1467 def = DEF_OP (defs, 0);
1468 if (version_ref_count (map, def) != 1)
1469 return false;
1470
1471 /* There must be no V_MAY_DEFS. */
1472 if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) != 0)
1473 return false;
1474
1475 /* There must be no V_MUST_DEFS. */
1476 if (NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) != 0)
1477 return false;
1478
1479 /* Float expressions must go through memory if float-store is on. */
1480 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
1481 return false;
1482
1483 /* Calls to functions with side-effects cannot be replaced. */
1484 if ((call_expr = get_call_expr_in (stmt)) != NULL_TREE)
1485 {
1486 int call_flags = call_expr_flags (call_expr);
1487 if (TREE_SIDE_EFFECTS (call_expr)
1488 && !(call_flags & (ECF_PURE | ECF_CONST | ECF_NORETURN)))
1489 return false;
1490 }
1491
1492 uses = USE_OPS (ann);
1493 num_use_ops = NUM_USES (uses);
1494 vuseops = VUSE_OPS (ann);
1495
1496 /* Any expression which has no virtual operands and no real operands
1497 should have been propagated if it's possible to do anything with them.
1498 If this happens here, it probably exists that way for a reason, so we
1499 won't touch it. An example is:
1500 b_4 = &tab
1501 There are no virtual uses nor any real uses, so we just leave this
1502 alone to be safe. */
1503
1504 if (num_use_ops == 0 && NUM_VUSES (vuseops) == 0)
1505 return false;
1506
1507 version = SSA_NAME_VERSION (def);
1508
1509 /* Add this expression to the dependency list for each use partition. */
1510 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
1511 {
1512 add_dependance (tab, version, var);
1513 }
1514
1515 /* If there are VUSES, add a dependence on virtual defs. */
1516 if (NUM_VUSES (vuseops) != 0)
1517 {
1518 add_value_to_list (tab, (value_expr_p *)&(tab->version_info[version]),
1519 VIRTUAL_PARTITION (tab));
1520 add_value_to_list (tab,
1521 &(tab->partition_dep_list[VIRTUAL_PARTITION (tab)]),
1522 version);
1523 bitmap_set_bit (tab->partition_in_use, VIRTUAL_PARTITION (tab));
1524 }
1525
1526 return true;
1527 }
1528
1529
1530 /* This function will remove the expression for VERSION from replacement
1531 consideration.n table TAB If 'replace' is true, it is marked as
1532 replaceable, otherwise not. */
1533
1534 static void
1535 finish_expr (temp_expr_table_p tab, int version, bool replace)
1536 {
1537 value_expr_p info, tmp;
1538 int partition;
1539
1540 /* Remove this expression from its dependent lists. The partition dependence
1541 list is retained and transfered later to whomever uses this version. */
1542 for (info = (value_expr_p) tab->version_info[version]; info; info = tmp)
1543 {
1544 partition = info->value;
1545 gcc_assert (tab->partition_dep_list[partition]);
1546 tmp = remove_value_from_list (&(tab->partition_dep_list[partition]),
1547 version);
1548 gcc_assert (tmp);
1549 free_value_expr (tab, tmp);
1550 /* Only clear the bit when the dependency list is emptied via
1551 a replacement. Otherwise kill_expr will take care of it. */
1552 if (!(tab->partition_dep_list[partition]) && replace)
1553 bitmap_clear_bit (tab->partition_in_use, partition);
1554 tmp = info->next;
1555 if (!replace)
1556 free_value_expr (tab, info);
1557 }
1558
1559 if (replace)
1560 {
1561 tab->saw_replaceable = true;
1562 bitmap_set_bit (tab->replaceable, version);
1563 }
1564 else
1565 {
1566 gcc_assert (!bitmap_bit_p (tab->replaceable, version));
1567 tab->version_info[version] = NULL;
1568 }
1569 }
1570
1571
1572 /* Mark the expression associated with VAR as replaceable, and enter
1573 the defining stmt into the version_info table TAB. */
1574
1575 static void
1576 mark_replaceable (temp_expr_table_p tab, tree var)
1577 {
1578 value_expr_p info;
1579 int version = SSA_NAME_VERSION (var);
1580 finish_expr (tab, version, true);
1581
1582 /* Move the dependence list to the pending list. */
1583 if (tab->version_info[version])
1584 {
1585 info = (value_expr_p) tab->version_info[version];
1586 for ( ; info->next; info = info->next)
1587 continue;
1588 info->next = tab->pending_dependence;
1589 tab->pending_dependence = (value_expr_p)tab->version_info[version];
1590 }
1591
1592 tab->version_info[version] = SSA_NAME_DEF_STMT (var);
1593 }
1594
1595
1596 /* This function marks any expression in TAB which is dependent on PARTITION
1597 as NOT replaceable. CLEAR_BIT is used to determine whether partition_in_use
1598 should have its bit cleared. Since this routine can be called within an
1599 EXECUTE_IF_SET_IN_BITMAP, the bit can't always be cleared. */
1600
1601 static inline void
1602 kill_expr (temp_expr_table_p tab, int partition, bool clear_bit)
1603 {
1604 value_expr_p ptr;
1605
1606 /* Mark every active expr dependent on this var as not replaceable. */
1607 while ((ptr = tab->partition_dep_list[partition]) != NULL)
1608 finish_expr (tab, ptr->value, false);
1609
1610 if (clear_bit)
1611 bitmap_clear_bit (tab->partition_in_use, partition);
1612 }
1613
1614
1615 /* This function kills all expressions in TAB which are dependent on virtual
1616 DEFs. CLEAR_BIT determines whether partition_in_use gets cleared. */
1617
1618 static inline void
1619 kill_virtual_exprs (temp_expr_table_p tab, bool clear_bit)
1620 {
1621 kill_expr (tab, VIRTUAL_PARTITION (tab), clear_bit);
1622 }
1623
1624
1625 /* This function processes basic block BB, and looks for variables which can
1626 be replaced by their expressions. Results are stored in TAB. */
1627
1628 static void
1629 find_replaceable_in_bb (temp_expr_table_p tab, basic_block bb)
1630 {
1631 block_stmt_iterator bsi;
1632 tree stmt, def;
1633 stmt_ann_t ann;
1634 int partition;
1635 var_map map = tab->map;
1636 value_expr_p p;
1637 ssa_op_iter iter;
1638
1639 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1640 {
1641 stmt = bsi_stmt (bsi);
1642 ann = stmt_ann (stmt);
1643
1644 /* Determine if this stmt finishes an existing expression. */
1645 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_USE)
1646 {
1647 if (tab->version_info[SSA_NAME_VERSION (def)])
1648 {
1649 bool same_root_var = false;
1650 tree def2;
1651 ssa_op_iter iter2;
1652
1653 /* See if the root variables are the same. If they are, we
1654 do not want to do the replacement to avoid problems with
1655 code size, see PR tree-optimization/17549. */
1656 FOR_EACH_SSA_TREE_OPERAND (def2, stmt, iter2, SSA_OP_DEF)
1657 if (SSA_NAME_VAR (def) == SSA_NAME_VAR (def2))
1658 {
1659 same_root_var = true;
1660 break;
1661 }
1662
1663 /* Mark expression as replaceable unless stmt is volatile
1664 or DEF sets the same root variable as STMT. */
1665 if (!ann->has_volatile_ops && !same_root_var)
1666 mark_replaceable (tab, def);
1667 else
1668 finish_expr (tab, SSA_NAME_VERSION (def), false);
1669 }
1670 }
1671
1672 /* Next, see if this stmt kills off an active expression. */
1673 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
1674 {
1675 partition = var_to_partition (map, def);
1676 if (partition != NO_PARTITION && tab->partition_dep_list[partition])
1677 kill_expr (tab, partition, true);
1678 }
1679
1680 /* Now see if we are creating a new expression or not. */
1681 if (!ann->has_volatile_ops)
1682 check_replaceable (tab, stmt);
1683
1684 /* Free any unused dependency lists. */
1685 while ((p = tab->pending_dependence))
1686 {
1687 tab->pending_dependence = p->next;
1688 free_value_expr (tab, p);
1689 }
1690
1691 /* A V_MAY_DEF kills any expression using a virtual operand. */
1692 if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) > 0)
1693 kill_virtual_exprs (tab, true);
1694
1695 /* A V_MUST_DEF kills any expression using a virtual operand. */
1696 if (NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) > 0)
1697 kill_virtual_exprs (tab, true);
1698 }
1699 }
1700
1701
1702 /* This function is the driver routine for replacement of temporary expressions
1703 in the SSA->normal phase, operating on MAP. If there are replaceable
1704 expressions, a table is returned which maps SSA versions to the
1705 expressions they should be replaced with. A NULL_TREE indicates no
1706 replacement should take place. If there are no replacements at all,
1707 NULL is returned by the function, otherwise an expression vector indexed
1708 by SSA_NAME version numbers. */
1709
1710 static tree *
1711 find_replaceable_exprs (var_map map)
1712 {
1713 basic_block bb;
1714 unsigned i;
1715 temp_expr_table_p table;
1716 tree *ret;
1717
1718 table = new_temp_expr_table (map);
1719 FOR_EACH_BB (bb)
1720 {
1721 bitmap_iterator bi;
1722
1723 find_replaceable_in_bb (table, bb);
1724 EXECUTE_IF_SET_IN_BITMAP ((table->partition_in_use), 0, i, bi)
1725 {
1726 kill_expr (table, i, false);
1727 }
1728 }
1729
1730 ret = free_temp_expr_table (table);
1731 return ret;
1732 }
1733
1734
1735 /* Dump TER expression table EXPR to file F. */
1736
1737 static void
1738 dump_replaceable_exprs (FILE *f, tree *expr)
1739 {
1740 tree stmt, var;
1741 int x;
1742 fprintf (f, "\nReplacing Expressions\n");
1743 for (x = 0; x < (int)num_ssa_names + 1; x++)
1744 if (expr[x])
1745 {
1746 stmt = expr[x];
1747 var = DEF_OP (STMT_DEF_OPS (stmt), 0);
1748 print_generic_expr (f, var, TDF_SLIM);
1749 fprintf (f, " replace with --> ");
1750 print_generic_expr (f, TREE_OPERAND (stmt, 1), TDF_SLIM);
1751 fprintf (f, "\n");
1752 }
1753 fprintf (f, "\n");
1754 }
1755
1756
1757 /* Helper function for discover_nonconstant_array_refs.
1758 Look for ARRAY_REF nodes with non-constant indexes and mark them
1759 addressable. */
1760
1761 static tree
1762 discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
1763 void *data ATTRIBUTE_UNUSED)
1764 {
1765 tree t = *tp;
1766
1767 if (IS_TYPE_OR_DECL_P (t))
1768 *walk_subtrees = 0;
1769 else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1770 {
1771 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1772 && is_gimple_min_invariant (TREE_OPERAND (t, 1))
1773 && (!TREE_OPERAND (t, 2)
1774 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
1775 || (TREE_CODE (t) == COMPONENT_REF
1776 && (!TREE_OPERAND (t,2)
1777 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
1778 || TREE_CODE (t) == BIT_FIELD_REF
1779 || TREE_CODE (t) == REALPART_EXPR
1780 || TREE_CODE (t) == IMAGPART_EXPR
1781 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1782 || TREE_CODE (t) == NOP_EXPR
1783 || TREE_CODE (t) == CONVERT_EXPR)
1784 t = TREE_OPERAND (t, 0);
1785
1786 if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1787 {
1788 t = get_base_address (t);
1789 if (t && DECL_P (t))
1790 TREE_ADDRESSABLE (t) = 1;
1791 }
1792
1793 *walk_subtrees = 0;
1794 }
1795
1796 return NULL_TREE;
1797 }
1798
1799
1800 /* RTL expansion is not able to compile array references with variable
1801 offsets for arrays stored in single register. Discover such
1802 expressions and mark variables as addressable to avoid this
1803 scenario. */
1804
1805 static void
1806 discover_nonconstant_array_refs (void)
1807 {
1808 basic_block bb;
1809 block_stmt_iterator bsi;
1810
1811 FOR_EACH_BB (bb)
1812 {
1813 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1814 walk_tree (bsi_stmt_ptr (bsi), discover_nonconstant_array_refs_r,
1815 NULL , NULL);
1816 }
1817 }
1818
1819
1820 /* This function will rewrite the current program using the variable mapping
1821 found in MAP. If the replacement vector VALUES is provided, any
1822 occurrences of partitions with non-null entries in the vector will be
1823 replaced with the expression in the vector instead of its mapped
1824 variable. */
1825
1826 static void
1827 rewrite_trees (var_map map, tree *values)
1828 {
1829 elim_graph g;
1830 basic_block bb;
1831 block_stmt_iterator si;
1832 edge e;
1833 tree phi;
1834 bool changed;
1835
1836 #ifdef ENABLE_CHECKING
1837 /* Search for PHIs where the destination has no partition, but one
1838 or more arguments has a partition. This should not happen and can
1839 create incorrect code. */
1840 FOR_EACH_BB (bb)
1841 {
1842 tree phi;
1843
1844 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1845 {
1846 tree T0 = var_to_partition_to_var (map, PHI_RESULT (phi));
1847
1848 if (T0 == NULL_TREE)
1849 {
1850 int i;
1851
1852 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1853 {
1854 tree arg = PHI_ARG_DEF (phi, i);
1855
1856 if (TREE_CODE (arg) == SSA_NAME
1857 && var_to_partition (map, arg) != NO_PARTITION)
1858 {
1859 fprintf (stderr, "Argument of PHI is in a partition :(");
1860 print_generic_expr (stderr, arg, TDF_SLIM);
1861 fprintf (stderr, "), but the result is not :");
1862 print_generic_stmt (stderr, phi, TDF_SLIM);
1863 internal_error ("SSA corruption");
1864 }
1865 }
1866 }
1867 }
1868 }
1869 #endif
1870
1871 /* Replace PHI nodes with any required copies. */
1872 g = new_elim_graph (map->num_partitions);
1873 g->map = map;
1874 FOR_EACH_BB (bb)
1875 {
1876 for (si = bsi_start (bb); !bsi_end_p (si); )
1877 {
1878 size_t num_uses, num_defs;
1879 use_optype uses;
1880 def_optype defs;
1881 tree stmt = bsi_stmt (si);
1882 use_operand_p use_p;
1883 def_operand_p def_p;
1884 int remove = 0, is_copy = 0;
1885 stmt_ann_t ann;
1886 ssa_op_iter iter;
1887
1888 get_stmt_operands (stmt);
1889 ann = stmt_ann (stmt);
1890 changed = false;
1891
1892 if (TREE_CODE (stmt) == MODIFY_EXPR
1893 && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME))
1894 is_copy = 1;
1895
1896 uses = USE_OPS (ann);
1897 num_uses = NUM_USES (uses);
1898 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1899 {
1900 if (replace_use_variable (map, use_p, values))
1901 changed = true;
1902 }
1903
1904 defs = DEF_OPS (ann);
1905 num_defs = NUM_DEFS (defs);
1906
1907 /* Mark this stmt for removal if it is the list of replaceable
1908 expressions. */
1909 if (values && num_defs == 1)
1910 {
1911 tree def = DEF_OP (defs, 0);
1912 tree val;
1913 val = values[SSA_NAME_VERSION (def)];
1914 if (val)
1915 remove = 1;
1916 }
1917 if (!remove)
1918 {
1919 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1920 {
1921 if (replace_def_variable (map, def_p, NULL))
1922 changed = true;
1923
1924 /* If both SSA_NAMEs coalesce to the same variable,
1925 mark the now redundant copy for removal. */
1926 if (is_copy
1927 && num_uses == 1
1928 && (DEF_FROM_PTR (def_p) == USE_OP (uses, 0)))
1929 remove = 1;
1930 }
1931 if (changed & !remove)
1932 modify_stmt (stmt);
1933 }
1934
1935 /* Remove any stmts marked for removal. */
1936 if (remove)
1937 bsi_remove (&si);
1938 else
1939 bsi_next (&si);
1940 }
1941
1942 phi = phi_nodes (bb);
1943 if (phi)
1944 {
1945 edge_iterator ei;
1946 FOR_EACH_EDGE (e, ei, bb->preds)
1947 eliminate_phi (e, g);
1948 }
1949 }
1950
1951 delete_elim_graph (g);
1952 }
1953
1954
1955 /* These are the local work structures used to determine the best place to
1956 insert the copies that were placed on edges by the SSA->normal pass.. */
1957 static varray_type edge_leader = NULL;
1958 static varray_type GTY(()) stmt_list = NULL;
1959 static bitmap leader_has_match = NULL;
1960 static edge leader_match = NULL;
1961
1962
1963 /* Pass this function to make_forwarder_block so that all the edges with
1964 matching PENDING_STMT lists to 'curr_stmt_list' get redirected. */
1965 static bool
1966 same_stmt_list_p (edge e)
1967 {
1968 return (e->aux == (PTR) leader_match) ? true : false;
1969 }
1970
1971
1972 /* Return TRUE if S1 and S2 are equivalent copies. */
1973 static inline bool
1974 identical_copies_p (tree s1, tree s2)
1975 {
1976 #ifdef ENABLE_CHECKING
1977 gcc_assert (TREE_CODE (s1) == MODIFY_EXPR);
1978 gcc_assert (TREE_CODE (s2) == MODIFY_EXPR);
1979 gcc_assert (DECL_P (TREE_OPERAND (s1, 0)));
1980 gcc_assert (DECL_P (TREE_OPERAND (s2, 0)));
1981 #endif
1982
1983 if (TREE_OPERAND (s1, 0) != TREE_OPERAND (s2, 0))
1984 return false;
1985
1986 s1 = TREE_OPERAND (s1, 1);
1987 s2 = TREE_OPERAND (s2, 1);
1988
1989 if (s1 != s2)
1990 return false;
1991
1992 return true;
1993 }
1994
1995
1996 /* Compare the PENDING_STMT list for two edges, and return true if the lists
1997 contain the same sequence of copies. */
1998
1999 static inline bool
2000 identical_stmt_lists_p (edge e1, edge e2)
2001 {
2002 tree t1 = PENDING_STMT (e1);
2003 tree t2 = PENDING_STMT (e2);
2004 tree_stmt_iterator tsi1, tsi2;
2005
2006 gcc_assert (TREE_CODE (t1) == STATEMENT_LIST);
2007 gcc_assert (TREE_CODE (t2) == STATEMENT_LIST);
2008
2009 for (tsi1 = tsi_start (t1), tsi2 = tsi_start (t2);
2010 !tsi_end_p (tsi1) && !tsi_end_p (tsi2);
2011 tsi_next (&tsi1), tsi_next (&tsi2))
2012 {
2013 if (!identical_copies_p (tsi_stmt (tsi1), tsi_stmt (tsi2)))
2014 break;
2015 }
2016
2017 if (!tsi_end_p (tsi1) || ! tsi_end_p (tsi2))
2018 return false;
2019
2020 return true;
2021 }
2022
2023
2024 /* Look at all the incoming edges to block BB, and decide where the best place
2025 to insert the stmts on each edge are, and perform those insertions. Output
2026 any debug information to DEBUG_FILE. */
2027
2028 static void
2029 analyze_edges_for_bb (basic_block bb, FILE *debug_file)
2030 {
2031 edge e;
2032 edge_iterator ei;
2033 int count;
2034 unsigned int x;
2035 bool have_opportunity;
2036 block_stmt_iterator bsi;
2037 tree stmt;
2038 edge single_edge = NULL;
2039 bool is_label;
2040
2041 count = 0;
2042
2043 /* Blocks which contain at least one abnormal edge cannot use
2044 make_forwarder_block. Look for these blocks, and commit any PENDING_STMTs
2045 found on edges in these block. */
2046 have_opportunity = true;
2047 FOR_EACH_EDGE (e, ei, bb->preds)
2048 if (e->flags & EDGE_ABNORMAL)
2049 {
2050 have_opportunity = false;
2051 break;
2052 }
2053
2054 if (!have_opportunity)
2055 {
2056 FOR_EACH_EDGE (e, ei, bb->preds)
2057 if (PENDING_STMT (e))
2058 bsi_commit_one_edge_insert (e, NULL);
2059 return;
2060 }
2061 /* Find out how many edges there are with interesting pending stmts on them.
2062 Commit the stmts on edges we are not interested in. */
2063 FOR_EACH_EDGE (e, ei, bb->preds)
2064 {
2065 if (PENDING_STMT (e))
2066 {
2067 gcc_assert (!(e->flags & EDGE_ABNORMAL));
2068 if (e->flags & EDGE_FALLTHRU)
2069 {
2070 bsi = bsi_start (e->src);
2071 if (!bsi_end_p (bsi))
2072 {
2073 stmt = bsi_stmt (bsi);
2074 bsi_next (&bsi);
2075 gcc_assert (stmt != NULL_TREE);
2076 is_label = (TREE_CODE (stmt) == LABEL_EXPR);
2077 /* Punt if it has non-label stmts, or isn't local. */
2078 if (!is_label || DECL_NONLOCAL (TREE_OPERAND (stmt, 0))
2079 || !bsi_end_p (bsi))
2080 {
2081 bsi_commit_one_edge_insert (e, NULL);
2082 continue;
2083 }
2084 }
2085 }
2086 single_edge = e;
2087 count++;
2088 }
2089 }
2090
2091 /* If there aren't at least 2 edges, no sharing will happen. */
2092 if (count < 2)
2093 {
2094 if (single_edge)
2095 bsi_commit_one_edge_insert (single_edge, NULL);
2096 return;
2097 }
2098
2099 /* Ensure that we have empty worklists. */
2100 if (edge_leader == NULL)
2101 {
2102 VARRAY_EDGE_INIT (edge_leader, 25, "edge_leader");
2103 VARRAY_TREE_INIT (stmt_list, 25, "stmt_list");
2104 leader_has_match = BITMAP_ALLOC (NULL);
2105 }
2106 else
2107 {
2108 #ifdef ENABLE_CHECKING
2109 gcc_assert (VARRAY_ACTIVE_SIZE (edge_leader) == 0);
2110 gcc_assert (VARRAY_ACTIVE_SIZE (stmt_list) == 0);
2111 gcc_assert (bitmap_empty_p (leader_has_match));
2112 #endif
2113 }
2114
2115 /* Find the "leader" block for each set of unique stmt lists. Preference is
2116 given to FALLTHRU blocks since they would need a GOTO to arrive at another
2117 block. The leader edge destination is the block which all the other edges
2118 with the same stmt list will be redirected to. */
2119 have_opportunity = false;
2120 FOR_EACH_EDGE (e, ei, bb->preds)
2121 {
2122 if (PENDING_STMT (e))
2123 {
2124 bool found = false;
2125
2126 /* Look for the same stmt list in edge leaders list. */
2127 for (x = 0; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2128 {
2129 edge leader = VARRAY_EDGE (edge_leader, x);
2130 if (identical_stmt_lists_p (leader, e))
2131 {
2132 /* Give this edge the same stmt list pointer. */
2133 PENDING_STMT (e) = NULL;
2134 e->aux = leader;
2135 bitmap_set_bit (leader_has_match, x);
2136 have_opportunity = found = true;
2137 break;
2138 }
2139 }
2140
2141 /* If no similar stmt list, add this edge to the leader list. */
2142 if (!found)
2143 {
2144 VARRAY_PUSH_EDGE (edge_leader, e);
2145 VARRAY_PUSH_TREE (stmt_list, PENDING_STMT (e));
2146 }
2147 }
2148 }
2149
2150 /* If there are no similar lists, just issue the stmts. */
2151 if (!have_opportunity)
2152 {
2153 for (x = 0; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2154 bsi_commit_one_edge_insert (VARRAY_EDGE (edge_leader, x), NULL);
2155 VARRAY_POP_ALL (edge_leader);
2156 VARRAY_POP_ALL (stmt_list);
2157 bitmap_clear (leader_has_match);
2158 return;
2159 }
2160
2161
2162 if (debug_file)
2163 fprintf (debug_file, "\nOpportunities in BB %d for stmt/block reduction:\n",
2164 bb->index);
2165
2166
2167 /* For each common list, create a forwarding block and issue the stmt's
2168 in that block. */
2169 for (x = 0 ; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2170 if (bitmap_bit_p (leader_has_match, x))
2171 {
2172 edge new_edge, leader_edge;
2173 block_stmt_iterator bsi;
2174 tree curr_stmt_list;
2175
2176 leader_match = leader_edge = VARRAY_EDGE (edge_leader, x);
2177
2178 /* The tree_* cfg manipulation routines use the PENDING_EDGE field
2179 for various PHI manipulations, so it gets cleared whhen calls are
2180 made to make_forwarder_block(). So make sure the edge is clear,
2181 and use the saved stmt list. */
2182 PENDING_STMT (leader_edge) = NULL;
2183 leader_edge->aux = leader_edge;
2184 curr_stmt_list = VARRAY_TREE (stmt_list, x);
2185
2186 new_edge = make_forwarder_block (leader_edge->dest, same_stmt_list_p,
2187 NULL);
2188 bb = new_edge->dest;
2189 if (debug_file)
2190 {
2191 fprintf (debug_file, "Splitting BB %d for Common stmt list. ",
2192 leader_edge->dest->index);
2193 fprintf (debug_file, "Original block is now BB%d.\n", bb->index);
2194 print_generic_stmt (debug_file, curr_stmt_list, TDF_VOPS);
2195 }
2196
2197 FOR_EACH_EDGE (e, ei, new_edge->src->preds)
2198 {
2199 e->aux = NULL;
2200 if (debug_file)
2201 fprintf (debug_file, " Edge (%d->%d) lands here.\n",
2202 e->src->index, e->dest->index);
2203 }
2204
2205 bsi = bsi_last (leader_edge->dest);
2206 bsi_insert_after (&bsi, curr_stmt_list, BSI_NEW_STMT);
2207
2208 leader_match = NULL;
2209 /* We should never get a new block now. */
2210 }
2211 else
2212 {
2213 e = VARRAY_EDGE (edge_leader, x);
2214 PENDING_STMT (e) = VARRAY_TREE (stmt_list, x);
2215 bsi_commit_one_edge_insert (e, NULL);
2216 }
2217
2218
2219 /* Clear the working data structures. */
2220 VARRAY_POP_ALL (edge_leader);
2221 VARRAY_POP_ALL (stmt_list);
2222 bitmap_clear (leader_has_match);
2223 }
2224
2225
2226 /* This function will analyze the insertions which were performed on edges,
2227 and decide whether they should be left on that edge, or whether it is more
2228 efficient to emit some subset of them in a single block. All stmts are
2229 inserted somewhere, and if non-NULL, debug information is printed via
2230 DUMP_FILE. */
2231
2232 static void
2233 perform_edge_inserts (FILE *dump_file)
2234 {
2235 basic_block bb;
2236
2237 if (dump_file)
2238 fprintf(dump_file, "Analyzing Edge Insertions.\n");
2239
2240 /* analyze_edges_for_bb calls make_forwarder_block, which tries to
2241 incrementally update the dominator information. Since we don't
2242 need dominator information after this pass, go ahead and free the
2243 dominator information. */
2244 free_dominance_info (CDI_DOMINATORS);
2245 free_dominance_info (CDI_POST_DOMINATORS);
2246
2247 FOR_EACH_BB (bb)
2248 analyze_edges_for_bb (bb, dump_file);
2249
2250 analyze_edges_for_bb (EXIT_BLOCK_PTR, dump_file);
2251
2252 /* Clear out any tables which were created. */
2253 edge_leader = NULL;
2254 BITMAP_FREE (leader_has_match);
2255
2256 #ifdef ENABLE_CHECKING
2257 {
2258 edge_iterator ei;
2259 edge e;
2260 FOR_EACH_BB (bb)
2261 {
2262 FOR_EACH_EDGE (e, ei, bb->preds)
2263 {
2264 if (PENDING_STMT (e))
2265 error (" Pending stmts not issued on PRED edge (%d, %d)\n",
2266 e->src->index, e->dest->index);
2267 }
2268 FOR_EACH_EDGE (e, ei, bb->succs)
2269 {
2270 if (PENDING_STMT (e))
2271 error (" Pending stmts not issued on SUCC edge (%d, %d)\n",
2272 e->src->index, e->dest->index);
2273 }
2274 }
2275 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2276 {
2277 if (PENDING_STMT (e))
2278 error (" Pending stmts not issued on ENTRY edge (%d, %d)\n",
2279 e->src->index, e->dest->index);
2280 }
2281 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2282 {
2283 if (PENDING_STMT (e))
2284 error (" Pending stmts not issued on EXIT edge (%d, %d)\n",
2285 e->src->index, e->dest->index);
2286 }
2287 }
2288 #endif
2289 }
2290
2291
2292 /* Remove the variables specified in MAP from SSA form. Any debug information
2293 is sent to DUMP. FLAGS indicate what options should be used. */
2294
2295 static void
2296 remove_ssa_form (FILE *dump, var_map map, int flags)
2297 {
2298 tree_live_info_p liveinfo;
2299 basic_block bb;
2300 tree phi, next;
2301 FILE *save;
2302 tree *values = NULL;
2303
2304 save = dump_file;
2305 dump_file = dump;
2306
2307 /* If we are not combining temps, don't calculate live ranges for variables
2308 with only one SSA version. */
2309 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
2310 compact_var_map (map, VARMAP_NO_SINGLE_DEFS);
2311 else
2312 compact_var_map (map, VARMAP_NORMAL);
2313
2314 if (dump_file && (dump_flags & TDF_DETAILS))
2315 dump_var_map (dump_file, map);
2316
2317 liveinfo = coalesce_ssa_name (map, flags);
2318
2319 /* Make sure even single occurrence variables are in the list now. */
2320 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
2321 compact_var_map (map, VARMAP_NORMAL);
2322
2323 if (dump_file && (dump_flags & TDF_DETAILS))
2324 {
2325 fprintf (dump_file, "After Coalescing:\n");
2326 dump_var_map (dump_file, map);
2327 }
2328
2329 if (flags & SSANORM_PERFORM_TER)
2330 {
2331 values = find_replaceable_exprs (map);
2332 if (values && dump_file && (dump_flags & TDF_DETAILS))
2333 dump_replaceable_exprs (dump_file, values);
2334 }
2335
2336 /* Assign real variables to the partitions now. */
2337 assign_vars (map);
2338
2339 if (dump_file && (dump_flags & TDF_DETAILS))
2340 {
2341 fprintf (dump_file, "After Root variable replacement:\n");
2342 dump_var_map (dump_file, map);
2343 }
2344
2345 if ((flags & SSANORM_COMBINE_TEMPS) && liveinfo)
2346 {
2347 coalesce_vars (map, liveinfo);
2348 if (dump_file && (dump_flags & TDF_DETAILS))
2349 {
2350 fprintf (dump_file, "After variable memory coalescing:\n");
2351 dump_var_map (dump_file, map);
2352 }
2353 }
2354
2355 if (liveinfo)
2356 delete_tree_live_info (liveinfo);
2357
2358 rewrite_trees (map, values);
2359
2360 if (values)
2361 free (values);
2362
2363 /* Remove phi nodes which have been translated back to real variables. */
2364 FOR_EACH_BB (bb)
2365 {
2366 for (phi = phi_nodes (bb); phi; phi = next)
2367 {
2368 next = PHI_CHAIN (phi);
2369 remove_phi_node (phi, NULL_TREE);
2370 }
2371 }
2372
2373 /* If any copies were inserted on edges, analyze and insert them now. */
2374 perform_edge_inserts (dump_file);
2375
2376 dump_file = save;
2377 }
2378
2379 /* Search every PHI node for arguments associated with backedges which
2380 we can trivially determine will need a copy (the argument is either
2381 not an SSA_NAME or the argument has a different underlying variable
2382 than the PHI result).
2383
2384 Insert a copy from the PHI argument to a new destination at the
2385 end of the block with the backedge to the top of the loop. Update
2386 the PHI argument to reference this new destination. */
2387
2388 static void
2389 insert_backedge_copies (void)
2390 {
2391 basic_block bb;
2392
2393 FOR_EACH_BB (bb)
2394 {
2395 tree phi;
2396
2397 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2398 {
2399 tree result = PHI_RESULT (phi);
2400 tree result_var;
2401 int i;
2402
2403 if (!is_gimple_reg (result))
2404 continue;
2405
2406 result_var = SSA_NAME_VAR (result);
2407 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
2408 {
2409 tree arg = PHI_ARG_DEF (phi, i);
2410 edge e = PHI_ARG_EDGE (phi, i);
2411
2412 /* If the argument is not an SSA_NAME, then we will
2413 need a constant initialization. If the argument is
2414 an SSA_NAME with a different underlying variable and
2415 we are not combining temporaries, then we will
2416 need a copy statement. */
2417 if ((e->flags & EDGE_DFS_BACK)
2418 && (TREE_CODE (arg) != SSA_NAME
2419 || (!flag_tree_combine_temps
2420 && SSA_NAME_VAR (arg) != result_var)))
2421 {
2422 tree stmt, name, last = NULL;
2423 block_stmt_iterator bsi;
2424
2425 bsi = bsi_last (PHI_ARG_EDGE (phi, i)->src);
2426 if (!bsi_end_p (bsi))
2427 last = bsi_stmt (bsi);
2428
2429 /* In theory the only way we ought to get back to the
2430 start of a loop should be with a COND_EXPR or GOTO_EXPR.
2431 However, better safe than sorry.
2432
2433 If the block ends with a control statement or
2434 something that might throw, then we have to
2435 insert this assignment before the last
2436 statement. Else insert it after the last statement. */
2437 if (last && stmt_ends_bb_p (last))
2438 {
2439 /* If the last statement in the block is the definition
2440 site of the PHI argument, then we can't insert
2441 anything after it. */
2442 if (TREE_CODE (arg) == SSA_NAME
2443 && SSA_NAME_DEF_STMT (arg) == last)
2444 continue;
2445 }
2446
2447 /* Create a new instance of the underlying
2448 variable of the PHI result. */
2449 stmt = build (MODIFY_EXPR, TREE_TYPE (result_var),
2450 NULL, PHI_ARG_DEF (phi, i));
2451 name = make_ssa_name (result_var, stmt);
2452 TREE_OPERAND (stmt, 0) = name;
2453
2454 /* Insert the new statement into the block and update
2455 the PHI node. */
2456 if (last && stmt_ends_bb_p (last))
2457 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
2458 else
2459 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
2460 modify_stmt (stmt);
2461 SET_PHI_ARG_DEF (phi, i, name);
2462 }
2463 }
2464 }
2465 }
2466 }
2467
2468 /* Take the current function out of SSA form, as described in
2469 R. Morgan, ``Building an Optimizing Compiler'',
2470 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
2471
2472 static void
2473 rewrite_out_of_ssa (void)
2474 {
2475 var_map map;
2476 int var_flags = 0;
2477 int ssa_flags = 0;
2478
2479 /* If elimination of a PHI requires inserting a copy on a backedge,
2480 then we will have to split the backedge which has numerous
2481 undesirable performance effects.
2482
2483 A significant number of such cases can be handled here by inserting
2484 copies into the loop itself. */
2485 insert_backedge_copies ();
2486
2487 if (!flag_tree_live_range_split)
2488 ssa_flags |= SSANORM_COALESCE_PARTITIONS;
2489
2490 eliminate_virtual_phis ();
2491
2492 if (dump_file && (dump_flags & TDF_DETAILS))
2493 dump_tree_cfg (dump_file, dump_flags & ~TDF_DETAILS);
2494
2495 /* We cannot allow unssa to un-gimplify trees before we instrument them. */
2496 if (flag_tree_ter && !flag_mudflap)
2497 var_flags = SSA_VAR_MAP_REF_COUNT;
2498
2499 map = create_ssa_var_map (var_flags);
2500
2501 if (flag_tree_combine_temps)
2502 ssa_flags |= SSANORM_COMBINE_TEMPS;
2503 if (flag_tree_ter && !flag_mudflap)
2504 ssa_flags |= SSANORM_PERFORM_TER;
2505
2506 remove_ssa_form (dump_file, map, ssa_flags);
2507
2508 if (dump_file && (dump_flags & TDF_DETAILS))
2509 dump_tree_cfg (dump_file, dump_flags & ~TDF_DETAILS);
2510
2511 /* Do some cleanups which reduce the amount of data the
2512 tree->rtl expanders deal with. */
2513 cfg_remove_useless_stmts ();
2514
2515 /* Flush out flow graph and SSA data. */
2516 delete_var_map (map);
2517
2518 /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */
2519 discover_nonconstant_array_refs ();
2520 }
2521
2522
2523 /* Define the parameters of the out of SSA pass. */
2524
2525 struct tree_opt_pass pass_del_ssa =
2526 {
2527 "optimized", /* name */
2528 NULL, /* gate */
2529 rewrite_out_of_ssa, /* execute */
2530 NULL, /* sub */
2531 NULL, /* next */
2532 0, /* static_pass_number */
2533 TV_TREE_SSA_TO_NORMAL, /* tv_id */
2534 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2535 0, /* properties_provided */
2536 /* ??? If TER is enabled, we also kill gimple. */
2537 PROP_ssa, /* properties_destroyed */
2538 TODO_verify_ssa | TODO_verify_flow
2539 | TODO_verify_stmts, /* todo_flags_start */
2540 TODO_dump_func | TODO_ggc_collect, /* todo_flags_finish */
2541 0 /* letter */
2542 };