expmed.c (struct init_expmed_rtl): Change all fields but pow2 and cint from struct...
[gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "basic-block.h"
28 #include "gimple-pretty-print.h"
29 #include "bitmap.h"
30 #include "sbitmap.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "tree-eh.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-cfg.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "dumpfile.h"
45 #include "diagnostic-core.h"
46 #include "tree-ssa-live.h"
47 #include "tree-ssa-ter.h"
48 #include "tree-ssa-coalesce.h"
49 #include "tree-outof-ssa.h"
50
51 /* FIXME: A lot of code here deals with expanding to RTL. All that code
52 should be in cfgexpand.c. */
53 #include "expr.h"
54
55 /* Return TRUE if expression STMT is suitable for replacement. */
56
57 bool
58 ssa_is_replaceable_p (gimple stmt)
59 {
60 use_operand_p use_p;
61 tree def;
62 gimple use_stmt;
63
64 /* Only consider modify stmts. */
65 if (!is_gimple_assign (stmt))
66 return false;
67
68 /* If the statement may throw an exception, it cannot be replaced. */
69 if (stmt_could_throw_p (stmt))
70 return false;
71
72 /* Punt if there is more than 1 def. */
73 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
74 if (!def)
75 return false;
76
77 /* Only consider definitions which have a single use. */
78 if (!single_imm_use (def, &use_p, &use_stmt))
79 return false;
80
81 /* Used in this block, but at the TOP of the block, not the end. */
82 if (gimple_code (use_stmt) == GIMPLE_PHI)
83 return false;
84
85 /* There must be no VDEFs. */
86 if (gimple_vdef (stmt))
87 return false;
88
89 /* Float expressions must go through memory if float-store is on. */
90 if (flag_float_store
91 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
92 return false;
93
94 /* An assignment with a register variable on the RHS is not
95 replaceable. */
96 if (gimple_assign_rhs_code (stmt) == VAR_DECL
97 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
98 return false;
99
100 /* No function calls can be replaced. */
101 if (is_gimple_call (stmt))
102 return false;
103
104 /* Leave any stmt with volatile operands alone as well. */
105 if (gimple_has_volatile_ops (stmt))
106 return false;
107
108 return true;
109 }
110
111
112 /* Used to hold all the components required to do SSA PHI elimination.
113 The node and pred/succ list is a simple linear list of nodes and
114 edges represented as pairs of nodes.
115
116 The predecessor and successor list: Nodes are entered in pairs, where
117 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
118 predecessors, all the odd elements are successors.
119
120 Rationale:
121 When implemented as bitmaps, very large programs SSA->Normal times were
122 being dominated by clearing the interference graph.
123
124 Typically this list of edges is extremely small since it only includes
125 PHI results and uses from a single edge which have not coalesced with
126 each other. This means that no virtual PHI nodes are included, and
127 empirical evidence suggests that the number of edges rarely exceed
128 3, and in a bootstrap of GCC, the maximum size encountered was 7.
129 This also limits the number of possible nodes that are involved to
130 rarely more than 6, and in the bootstrap of gcc, the maximum number
131 of nodes encountered was 12. */
132
133 typedef struct _elim_graph {
134 /* Size of the elimination vectors. */
135 int size;
136
137 /* List of nodes in the elimination graph. */
138 vec<int> nodes;
139
140 /* The predecessor and successor edge list. */
141 vec<int> edge_list;
142
143 /* Source locus on each edge */
144 vec<source_location> edge_locus;
145
146 /* Visited vector. */
147 sbitmap visited;
148
149 /* Stack for visited nodes. */
150 vec<int> stack;
151
152 /* The variable partition map. */
153 var_map map;
154
155 /* Edge being eliminated by this graph. */
156 edge e;
157
158 /* List of constant copies to emit. These are pushed on in pairs. */
159 vec<int> const_dests;
160 vec<tree> const_copies;
161
162 /* Source locations for any constant copies. */
163 vec<source_location> copy_locus;
164 } *elim_graph;
165
166
167 /* For an edge E find out a good source location to associate with
168 instructions inserted on edge E. If E has an implicit goto set,
169 use its location. Otherwise search instructions in predecessors
170 of E for a location, and use that one. That makes sense because
171 we insert on edges for PHI nodes, and effects of PHIs happen on
172 the end of the predecessor conceptually. */
173
174 static void
175 set_location_for_edge (edge e)
176 {
177 if (e->goto_locus)
178 {
179 set_curr_insn_location (e->goto_locus);
180 }
181 else
182 {
183 basic_block bb = e->src;
184 gimple_stmt_iterator gsi;
185
186 do
187 {
188 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
189 {
190 gimple stmt = gsi_stmt (gsi);
191 if (is_gimple_debug (stmt))
192 continue;
193 if (gimple_has_location (stmt) || gimple_block (stmt))
194 {
195 set_curr_insn_location (gimple_location (stmt));
196 return;
197 }
198 }
199 /* Nothing found in this basic block. Make a half-assed attempt
200 to continue with another block. */
201 if (single_pred_p (bb))
202 bb = single_pred (bb);
203 else
204 bb = e->src;
205 }
206 while (bb != e->src);
207 }
208 }
209
210 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
211 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
212 which we deduce the size to copy in that case. */
213
214 static inline rtx
215 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
216 {
217 rtx seq;
218
219 start_sequence ();
220
221 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
222 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
223 if (GET_MODE (src) == BLKmode)
224 {
225 gcc_assert (GET_MODE (dest) == BLKmode);
226 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
227 }
228 else
229 emit_move_insn (dest, src);
230
231 seq = get_insns ();
232 end_sequence ();
233
234 return seq;
235 }
236
237 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
238
239 static void
240 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
241 {
242 tree var;
243 rtx seq;
244 if (dump_file && (dump_flags & TDF_DETAILS))
245 {
246 fprintf (dump_file,
247 "Inserting a partition copy on edge BB%d->BB%d :"
248 "PART.%d = PART.%d",
249 e->src->index,
250 e->dest->index, dest, src);
251 fprintf (dump_file, "\n");
252 }
253
254 gcc_assert (SA.partition_to_pseudo[dest]);
255 gcc_assert (SA.partition_to_pseudo[src]);
256
257 set_location_for_edge (e);
258 /* If a locus is provided, override the default. */
259 if (locus)
260 set_curr_insn_location (locus);
261
262 var = partition_to_var (SA.map, src);
263 seq = emit_partition_copy (SA.partition_to_pseudo[dest],
264 SA.partition_to_pseudo[src],
265 TYPE_UNSIGNED (TREE_TYPE (var)),
266 var);
267
268 insert_insn_on_edge (seq, e);
269 }
270
271 /* Insert a copy instruction from expression SRC to partition DEST
272 onto edge E. */
273
274 static void
275 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
276 {
277 rtx seq, x;
278 enum machine_mode dest_mode, src_mode;
279 int unsignedp;
280 tree var;
281
282 if (dump_file && (dump_flags & TDF_DETAILS))
283 {
284 fprintf (dump_file,
285 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
286 e->src->index,
287 e->dest->index, dest);
288 print_generic_expr (dump_file, src, TDF_SLIM);
289 fprintf (dump_file, "\n");
290 }
291
292 gcc_assert (SA.partition_to_pseudo[dest]);
293
294 set_location_for_edge (e);
295 /* If a locus is provided, override the default. */
296 if (locus)
297 set_curr_insn_location (locus);
298
299 start_sequence ();
300
301 var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
302 src_mode = TYPE_MODE (TREE_TYPE (src));
303 dest_mode = GET_MODE (SA.partition_to_pseudo[dest]);
304 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
305 gcc_assert (!REG_P (SA.partition_to_pseudo[dest])
306 || dest_mode == promote_decl_mode (var, &unsignedp));
307
308 if (src_mode != dest_mode)
309 {
310 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
311 x = convert_modes (dest_mode, src_mode, x, unsignedp);
312 }
313 else if (src_mode == BLKmode)
314 {
315 x = SA.partition_to_pseudo[dest];
316 store_expr (src, x, 0, false);
317 }
318 else
319 x = expand_expr (src, SA.partition_to_pseudo[dest],
320 dest_mode, EXPAND_NORMAL);
321
322 if (x != SA.partition_to_pseudo[dest])
323 emit_move_insn (SA.partition_to_pseudo[dest], x);
324 seq = get_insns ();
325 end_sequence ();
326
327 insert_insn_on_edge (seq, e);
328 }
329
330 /* Insert a copy instruction from RTL expression SRC to partition DEST
331 onto edge E. */
332
333 static void
334 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
335 source_location locus)
336 {
337 rtx seq;
338 if (dump_file && (dump_flags & TDF_DETAILS))
339 {
340 fprintf (dump_file,
341 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
342 e->src->index,
343 e->dest->index, dest);
344 print_simple_rtl (dump_file, src);
345 fprintf (dump_file, "\n");
346 }
347
348 gcc_assert (SA.partition_to_pseudo[dest]);
349
350 set_location_for_edge (e);
351 /* If a locus is provided, override the default. */
352 if (locus)
353 set_curr_insn_location (locus);
354
355 /* We give the destination as sizeexp in case src/dest are BLKmode
356 mems. Usually we give the source. As we result from SSA names
357 the left and right size should be the same (and no WITH_SIZE_EXPR
358 involved), so it doesn't matter. */
359 seq = emit_partition_copy (SA.partition_to_pseudo[dest],
360 src, unsignedsrcp,
361 partition_to_var (SA.map, dest));
362
363 insert_insn_on_edge (seq, e);
364 }
365
366 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
367 onto edge E. */
368
369 static void
370 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
371 {
372 tree var;
373 rtx seq;
374 if (dump_file && (dump_flags & TDF_DETAILS))
375 {
376 fprintf (dump_file,
377 "Inserting a temp copy on edge BB%d->BB%d : ",
378 e->src->index,
379 e->dest->index);
380 print_simple_rtl (dump_file, dest);
381 fprintf (dump_file, "= PART.%d\n", src);
382 }
383
384 gcc_assert (SA.partition_to_pseudo[src]);
385
386 set_location_for_edge (e);
387 /* If a locus is provided, override the default. */
388 if (locus)
389 set_curr_insn_location (locus);
390
391 var = partition_to_var (SA.map, src);
392 seq = emit_partition_copy (dest,
393 SA.partition_to_pseudo[src],
394 TYPE_UNSIGNED (TREE_TYPE (var)),
395 var);
396
397 insert_insn_on_edge (seq, e);
398 }
399
400
401 /* Create an elimination graph with SIZE nodes and associated data
402 structures. */
403
404 static elim_graph
405 new_elim_graph (int size)
406 {
407 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
408
409 g->nodes.create (30);
410 g->const_dests.create (20);
411 g->const_copies.create (20);
412 g->copy_locus.create (10);
413 g->edge_list.create (20);
414 g->edge_locus.create (10);
415 g->stack.create (30);
416
417 g->visited = sbitmap_alloc (size);
418
419 return g;
420 }
421
422
423 /* Empty elimination graph G. */
424
425 static inline void
426 clear_elim_graph (elim_graph g)
427 {
428 g->nodes.truncate (0);
429 g->edge_list.truncate (0);
430 g->edge_locus.truncate (0);
431 }
432
433
434 /* Delete elimination graph G. */
435
436 static inline void
437 delete_elim_graph (elim_graph g)
438 {
439 sbitmap_free (g->visited);
440 g->stack.release ();
441 g->edge_list.release ();
442 g->const_copies.release ();
443 g->const_dests.release ();
444 g->nodes.release ();
445 g->copy_locus.release ();
446 g->edge_locus.release ();
447
448 free (g);
449 }
450
451
452 /* Return the number of nodes in graph G. */
453
454 static inline int
455 elim_graph_size (elim_graph g)
456 {
457 return g->nodes.length ();
458 }
459
460
461 /* Add NODE to graph G, if it doesn't exist already. */
462
463 static inline void
464 elim_graph_add_node (elim_graph g, int node)
465 {
466 int x;
467 int t;
468
469 FOR_EACH_VEC_ELT (g->nodes, x, t)
470 if (t == node)
471 return;
472 g->nodes.safe_push (node);
473 }
474
475
476 /* Add the edge PRED->SUCC to graph G. */
477
478 static inline void
479 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
480 {
481 g->edge_list.safe_push (pred);
482 g->edge_list.safe_push (succ);
483 g->edge_locus.safe_push (locus);
484 }
485
486
487 /* Remove an edge from graph G for which NODE is the predecessor, and
488 return the successor node. -1 is returned if there is no such edge. */
489
490 static inline int
491 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
492 {
493 int y;
494 unsigned x;
495 for (x = 0; x < g->edge_list.length (); x += 2)
496 if (g->edge_list[x] == node)
497 {
498 g->edge_list[x] = -1;
499 y = g->edge_list[x + 1];
500 g->edge_list[x + 1] = -1;
501 *locus = g->edge_locus[x / 2];
502 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
503 return y;
504 }
505 *locus = UNKNOWN_LOCATION;
506 return -1;
507 }
508
509
510 /* Find all the nodes in GRAPH which are successors to NODE in the
511 edge list. VAR will hold the partition number found. CODE is the
512 code fragment executed for every node found. */
513
514 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
515 do { \
516 unsigned x_; \
517 int y_; \
518 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
519 { \
520 y_ = (GRAPH)->edge_list[x_]; \
521 if (y_ != (NODE)) \
522 continue; \
523 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
524 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
525 CODE; \
526 } \
527 } while (0)
528
529
530 /* Find all the nodes which are predecessors of NODE in the edge list for
531 GRAPH. VAR will hold the partition number found. CODE is the
532 code fragment executed for every node found. */
533
534 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
535 do { \
536 unsigned x_; \
537 int y_; \
538 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
539 { \
540 y_ = (GRAPH)->edge_list[x_ + 1]; \
541 if (y_ != (NODE)) \
542 continue; \
543 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
544 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
545 CODE; \
546 } \
547 } while (0)
548
549
550 /* Add T to elimination graph G. */
551
552 static inline void
553 eliminate_name (elim_graph g, int T)
554 {
555 elim_graph_add_node (g, T);
556 }
557
558 /* Return true if this phi argument T should have a copy queued when using
559 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
560 test for ssa_name is definitely simpler, but don't let invalid contents
561 slip through in the meantime. */
562
563 static inline bool
564 queue_phi_copy_p (var_map map, tree t)
565 {
566 if (TREE_CODE (t) == SSA_NAME)
567 {
568 if (var_to_partition (map, t) == NO_PARTITION)
569 return true;
570 return false;
571 }
572 gcc_checking_assert (is_gimple_min_invariant (t));
573 return true;
574 }
575
576 /* Build elimination graph G for basic block BB on incoming PHI edge
577 G->e. */
578
579 static void
580 eliminate_build (elim_graph g)
581 {
582 tree Ti;
583 int p0, pi;
584 gimple_stmt_iterator gsi;
585
586 clear_elim_graph (g);
587
588 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
589 {
590 gimple phi = gsi_stmt (gsi);
591 source_location locus;
592
593 p0 = var_to_partition (g->map, gimple_phi_result (phi));
594 /* Ignore results which are not in partitions. */
595 if (p0 == NO_PARTITION)
596 continue;
597
598 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
599 locus = gimple_phi_arg_location_from_edge (phi, g->e);
600
601 /* If this argument is a constant, or a SSA_NAME which is being
602 left in SSA form, just queue a copy to be emitted on this
603 edge. */
604 if (queue_phi_copy_p (g->map, Ti))
605 {
606 /* Save constant copies until all other copies have been emitted
607 on this edge. */
608 g->const_dests.safe_push (p0);
609 g->const_copies.safe_push (Ti);
610 g->copy_locus.safe_push (locus);
611 }
612 else
613 {
614 pi = var_to_partition (g->map, Ti);
615 if (p0 != pi)
616 {
617 eliminate_name (g, p0);
618 eliminate_name (g, pi);
619 elim_graph_add_edge (g, p0, pi, locus);
620 }
621 }
622 }
623 }
624
625
626 /* Push successors of T onto the elimination stack for G. */
627
628 static void
629 elim_forward (elim_graph g, int T)
630 {
631 int S;
632 source_location locus;
633
634 bitmap_set_bit (g->visited, T);
635 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
636 {
637 if (!bitmap_bit_p (g->visited, S))
638 elim_forward (g, S);
639 });
640 g->stack.safe_push (T);
641 }
642
643
644 /* Return 1 if there unvisited predecessors of T in graph G. */
645
646 static int
647 elim_unvisited_predecessor (elim_graph g, int T)
648 {
649 int P;
650 source_location locus;
651
652 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
653 {
654 if (!bitmap_bit_p (g->visited, P))
655 return 1;
656 });
657 return 0;
658 }
659
660 /* Process predecessors first, and insert a copy. */
661
662 static void
663 elim_backward (elim_graph g, int T)
664 {
665 int P;
666 source_location locus;
667
668 bitmap_set_bit (g->visited, T);
669 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
670 {
671 if (!bitmap_bit_p (g->visited, P))
672 {
673 elim_backward (g, P);
674 insert_partition_copy_on_edge (g->e, P, T, locus);
675 }
676 });
677 }
678
679 /* Allocate a new pseudo register usable for storing values sitting
680 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
681
682 static rtx
683 get_temp_reg (tree name)
684 {
685 tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
686 tree type = TREE_TYPE (var);
687 int unsignedp;
688 enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
689 rtx x = gen_reg_rtx (reg_mode);
690 if (POINTER_TYPE_P (type))
691 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
692 return x;
693 }
694
695 /* Insert required copies for T in graph G. Check for a strongly connected
696 region, and create a temporary to break the cycle if one is found. */
697
698 static void
699 elim_create (elim_graph g, int T)
700 {
701 int P, S;
702 source_location locus;
703
704 if (elim_unvisited_predecessor (g, T))
705 {
706 tree var = partition_to_var (g->map, T);
707 rtx U = get_temp_reg (var);
708 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
709
710 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
711 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
712 {
713 if (!bitmap_bit_p (g->visited, P))
714 {
715 elim_backward (g, P);
716 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
717 }
718 });
719 }
720 else
721 {
722 S = elim_graph_remove_succ_edge (g, T, &locus);
723 if (S != -1)
724 {
725 bitmap_set_bit (g->visited, T);
726 insert_partition_copy_on_edge (g->e, T, S, locus);
727 }
728 }
729 }
730
731
732 /* Eliminate all the phi nodes on edge E in graph G. */
733
734 static void
735 eliminate_phi (edge e, elim_graph g)
736 {
737 int x;
738
739 gcc_assert (g->const_copies.length () == 0);
740 gcc_assert (g->copy_locus.length () == 0);
741
742 /* Abnormal edges already have everything coalesced. */
743 if (e->flags & EDGE_ABNORMAL)
744 return;
745
746 g->e = e;
747
748 eliminate_build (g);
749
750 if (elim_graph_size (g) != 0)
751 {
752 int part;
753
754 bitmap_clear (g->visited);
755 g->stack.truncate (0);
756
757 FOR_EACH_VEC_ELT (g->nodes, x, part)
758 {
759 if (!bitmap_bit_p (g->visited, part))
760 elim_forward (g, part);
761 }
762
763 bitmap_clear (g->visited);
764 while (g->stack.length () > 0)
765 {
766 x = g->stack.pop ();
767 if (!bitmap_bit_p (g->visited, x))
768 elim_create (g, x);
769 }
770 }
771
772 /* If there are any pending constant copies, issue them now. */
773 while (g->const_copies.length () > 0)
774 {
775 int dest;
776 tree src;
777 source_location locus;
778
779 src = g->const_copies.pop ();
780 dest = g->const_dests.pop ();
781 locus = g->copy_locus.pop ();
782 insert_value_copy_on_edge (e, dest, src, locus);
783 }
784 }
785
786
787 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
788 check to see if this allows another PHI node to be removed. */
789
790 static void
791 remove_gimple_phi_args (gimple phi)
792 {
793 use_operand_p arg_p;
794 ssa_op_iter iter;
795
796 if (dump_file && (dump_flags & TDF_DETAILS))
797 {
798 fprintf (dump_file, "Removing Dead PHI definition: ");
799 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
800 }
801
802 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
803 {
804 tree arg = USE_FROM_PTR (arg_p);
805 if (TREE_CODE (arg) == SSA_NAME)
806 {
807 /* Remove the reference to the existing argument. */
808 SET_USE (arg_p, NULL_TREE);
809 if (has_zero_uses (arg))
810 {
811 gimple stmt;
812 gimple_stmt_iterator gsi;
813
814 stmt = SSA_NAME_DEF_STMT (arg);
815
816 /* Also remove the def if it is a PHI node. */
817 if (gimple_code (stmt) == GIMPLE_PHI)
818 {
819 remove_gimple_phi_args (stmt);
820 gsi = gsi_for_stmt (stmt);
821 remove_phi_node (&gsi, true);
822 }
823
824 }
825 }
826 }
827 }
828
829 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
830
831 static void
832 eliminate_useless_phis (void)
833 {
834 basic_block bb;
835 gimple_stmt_iterator gsi;
836 tree result;
837
838 FOR_EACH_BB_FN (bb, cfun)
839 {
840 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
841 {
842 gimple phi = gsi_stmt (gsi);
843 result = gimple_phi_result (phi);
844 if (virtual_operand_p (result))
845 {
846 #ifdef ENABLE_CHECKING
847 size_t i;
848 /* There should be no arguments which are not virtual, or the
849 results will be incorrect. */
850 for (i = 0; i < gimple_phi_num_args (phi); i++)
851 {
852 tree arg = PHI_ARG_DEF (phi, i);
853 if (TREE_CODE (arg) == SSA_NAME
854 && !virtual_operand_p (arg))
855 {
856 fprintf (stderr, "Argument of PHI is not virtual (");
857 print_generic_expr (stderr, arg, TDF_SLIM);
858 fprintf (stderr, "), but the result is :");
859 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
860 internal_error ("SSA corruption");
861 }
862 }
863 #endif
864 remove_phi_node (&gsi, true);
865 }
866 else
867 {
868 /* Also remove real PHIs with no uses. */
869 if (has_zero_uses (result))
870 {
871 remove_gimple_phi_args (phi);
872 remove_phi_node (&gsi, true);
873 }
874 else
875 gsi_next (&gsi);
876 }
877 }
878 }
879 }
880
881
882 /* This function will rewrite the current program using the variable mapping
883 found in MAP. If the replacement vector VALUES is provided, any
884 occurrences of partitions with non-null entries in the vector will be
885 replaced with the expression in the vector instead of its mapped
886 variable. */
887
888 static void
889 rewrite_trees (var_map map ATTRIBUTE_UNUSED)
890 {
891 #ifdef ENABLE_CHECKING
892 basic_block bb;
893 /* Search for PHIs where the destination has no partition, but one
894 or more arguments has a partition. This should not happen and can
895 create incorrect code. */
896 FOR_EACH_BB_FN (bb, cfun)
897 {
898 gimple_stmt_iterator gsi;
899 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
900 {
901 gimple phi = gsi_stmt (gsi);
902 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
903 if (T0 == NULL_TREE)
904 {
905 size_t i;
906 for (i = 0; i < gimple_phi_num_args (phi); i++)
907 {
908 tree arg = PHI_ARG_DEF (phi, i);
909
910 if (TREE_CODE (arg) == SSA_NAME
911 && var_to_partition (map, arg) != NO_PARTITION)
912 {
913 fprintf (stderr, "Argument of PHI is in a partition :(");
914 print_generic_expr (stderr, arg, TDF_SLIM);
915 fprintf (stderr, "), but the result is not :");
916 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
917 internal_error ("SSA corruption");
918 }
919 }
920 }
921 }
922 }
923 #endif
924 }
925
926 /* Given the out-of-ssa info object SA (with prepared partitions)
927 eliminate all phi nodes in all basic blocks. Afterwards no
928 basic block will have phi nodes anymore and there are possibly
929 some RTL instructions inserted on edges. */
930
931 void
932 expand_phi_nodes (struct ssaexpand *sa)
933 {
934 basic_block bb;
935 elim_graph g = new_elim_graph (sa->map->num_partitions);
936 g->map = sa->map;
937
938 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
939 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
940 if (!gimple_seq_empty_p (phi_nodes (bb)))
941 {
942 edge e;
943 edge_iterator ei;
944 FOR_EACH_EDGE (e, ei, bb->preds)
945 eliminate_phi (e, g);
946 set_phi_nodes (bb, NULL);
947 /* We can't redirect EH edges in RTL land, so we need to do this
948 here. Redirection happens only when splitting is necessary,
949 which it is only for critical edges, normally. For EH edges
950 it might also be necessary when the successor has more than
951 one predecessor. In that case the edge is either required to
952 be fallthru (which EH edges aren't), or the predecessor needs
953 to end with a jump (which again, isn't the case with EH edges).
954 Hence, split all EH edges on which we inserted instructions
955 and whose successor has multiple predecessors. */
956 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
957 {
958 if (e->insns.r && (e->flags & EDGE_EH)
959 && !single_pred_p (e->dest))
960 {
961 rtx insns = e->insns.r;
962 basic_block bb;
963 e->insns.r = NULL_RTX;
964 bb = split_edge (e);
965 single_pred_edge (bb)->insns.r = insns;
966 }
967 else
968 ei_next (&ei);
969 }
970 }
971
972 delete_elim_graph (g);
973 }
974
975
976 /* Remove the ssa-names in the current function and translate them into normal
977 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
978 should also be used. */
979
980 static void
981 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
982 {
983 bitmap values = NULL;
984 var_map map;
985 unsigned i;
986
987 map = coalesce_ssa_name ();
988
989 /* Return to viewing the variable list as just all reference variables after
990 coalescing has been performed. */
991 partition_view_normal (map, false);
992
993 if (dump_file && (dump_flags & TDF_DETAILS))
994 {
995 fprintf (dump_file, "After Coalescing:\n");
996 dump_var_map (dump_file, map);
997 }
998
999 if (perform_ter)
1000 {
1001 values = find_replaceable_exprs (map);
1002 if (values && dump_file && (dump_flags & TDF_DETAILS))
1003 dump_replaceable_exprs (dump_file, values);
1004 }
1005
1006 rewrite_trees (map);
1007
1008 sa->map = map;
1009 sa->values = values;
1010 sa->partition_has_default_def = BITMAP_ALLOC (NULL);
1011 for (i = 1; i < num_ssa_names; i++)
1012 {
1013 tree t = ssa_name (i);
1014 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
1015 {
1016 int p = var_to_partition (map, t);
1017 if (p != NO_PARTITION)
1018 bitmap_set_bit (sa->partition_has_default_def, p);
1019 }
1020 }
1021 }
1022
1023
1024 /* If not already done so for basic block BB, assign increasing uids
1025 to each of its instructions. */
1026
1027 static void
1028 maybe_renumber_stmts_bb (basic_block bb)
1029 {
1030 unsigned i = 0;
1031 gimple_stmt_iterator gsi;
1032
1033 if (!bb->aux)
1034 return;
1035 bb->aux = NULL;
1036 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1037 {
1038 gimple stmt = gsi_stmt (gsi);
1039 gimple_set_uid (stmt, i);
1040 i++;
1041 }
1042 }
1043
1044
1045 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1046 of a PHI node) and ARG (one of its arguments) conflict. Return false
1047 otherwise, also when we simply aren't sure. */
1048
1049 static bool
1050 trivially_conflicts_p (basic_block bb, tree result, tree arg)
1051 {
1052 use_operand_p use;
1053 imm_use_iterator imm_iter;
1054 gimple defa = SSA_NAME_DEF_STMT (arg);
1055
1056 /* If ARG isn't defined in the same block it's too complicated for
1057 our little mind. */
1058 if (gimple_bb (defa) != bb)
1059 return false;
1060
1061 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
1062 {
1063 gimple use_stmt = USE_STMT (use);
1064 if (is_gimple_debug (use_stmt))
1065 continue;
1066 /* Now, if there's a use of RESULT that lies outside this basic block,
1067 then there surely is a conflict with ARG. */
1068 if (gimple_bb (use_stmt) != bb)
1069 return true;
1070 if (gimple_code (use_stmt) == GIMPLE_PHI)
1071 continue;
1072 /* The use now is in a real stmt of BB, so if ARG was defined
1073 in a PHI node (like RESULT) both conflict. */
1074 if (gimple_code (defa) == GIMPLE_PHI)
1075 return true;
1076 maybe_renumber_stmts_bb (bb);
1077 /* If the use of RESULT occurs after the definition of ARG,
1078 the two conflict too. */
1079 if (gimple_uid (defa) < gimple_uid (use_stmt))
1080 return true;
1081 }
1082
1083 return false;
1084 }
1085
1086
1087 /* Search every PHI node for arguments associated with backedges which
1088 we can trivially determine will need a copy (the argument is either
1089 not an SSA_NAME or the argument has a different underlying variable
1090 than the PHI result).
1091
1092 Insert a copy from the PHI argument to a new destination at the
1093 end of the block with the backedge to the top of the loop. Update
1094 the PHI argument to reference this new destination. */
1095
1096 static void
1097 insert_backedge_copies (void)
1098 {
1099 basic_block bb;
1100 gimple_stmt_iterator gsi;
1101
1102 mark_dfs_back_edges ();
1103
1104 FOR_EACH_BB_FN (bb, cfun)
1105 {
1106 /* Mark block as possibly needing calculation of UIDs. */
1107 bb->aux = &bb->aux;
1108
1109 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1110 {
1111 gimple phi = gsi_stmt (gsi);
1112 tree result = gimple_phi_result (phi);
1113 size_t i;
1114
1115 if (virtual_operand_p (result))
1116 continue;
1117
1118 for (i = 0; i < gimple_phi_num_args (phi); i++)
1119 {
1120 tree arg = gimple_phi_arg_def (phi, i);
1121 edge e = gimple_phi_arg_edge (phi, i);
1122
1123 /* If the argument is not an SSA_NAME, then we will need a
1124 constant initialization. If the argument is an SSA_NAME with
1125 a different underlying variable then a copy statement will be
1126 needed. */
1127 if ((e->flags & EDGE_DFS_BACK)
1128 && (TREE_CODE (arg) != SSA_NAME
1129 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1130 || trivially_conflicts_p (bb, result, arg)))
1131 {
1132 tree name;
1133 gimple stmt, last = NULL;
1134 gimple_stmt_iterator gsi2;
1135
1136 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1137 if (!gsi_end_p (gsi2))
1138 last = gsi_stmt (gsi2);
1139
1140 /* In theory the only way we ought to get back to the
1141 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1142 However, better safe than sorry.
1143 If the block ends with a control statement or
1144 something that might throw, then we have to
1145 insert this assignment before the last
1146 statement. Else insert it after the last statement. */
1147 if (last && stmt_ends_bb_p (last))
1148 {
1149 /* If the last statement in the block is the definition
1150 site of the PHI argument, then we can't insert
1151 anything after it. */
1152 if (TREE_CODE (arg) == SSA_NAME
1153 && SSA_NAME_DEF_STMT (arg) == last)
1154 continue;
1155 }
1156
1157 /* Create a new instance of the underlying variable of the
1158 PHI result. */
1159 name = copy_ssa_name (result, NULL);
1160 stmt = gimple_build_assign (name,
1161 gimple_phi_arg_def (phi, i));
1162
1163 /* copy location if present. */
1164 if (gimple_phi_arg_has_location (phi, i))
1165 gimple_set_location (stmt,
1166 gimple_phi_arg_location (phi, i));
1167
1168 /* Insert the new statement into the block and update
1169 the PHI node. */
1170 if (last && stmt_ends_bb_p (last))
1171 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1172 else
1173 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1174 SET_PHI_ARG_DEF (phi, i, name);
1175 }
1176 }
1177 }
1178
1179 /* Unmark this block again. */
1180 bb->aux = NULL;
1181 }
1182 }
1183
1184 /* Free all memory associated with going out of SSA form. SA is
1185 the outof-SSA info object. */
1186
1187 void
1188 finish_out_of_ssa (struct ssaexpand *sa)
1189 {
1190 free (sa->partition_to_pseudo);
1191 if (sa->values)
1192 BITMAP_FREE (sa->values);
1193 delete_var_map (sa->map);
1194 BITMAP_FREE (sa->partition_has_default_def);
1195 memset (sa, 0, sizeof *sa);
1196 }
1197
1198 /* Take the current function out of SSA form, translating PHIs as described in
1199 R. Morgan, ``Building an Optimizing Compiler'',
1200 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1201
1202 unsigned int
1203 rewrite_out_of_ssa (struct ssaexpand *sa)
1204 {
1205 /* If elimination of a PHI requires inserting a copy on a backedge,
1206 then we will have to split the backedge which has numerous
1207 undesirable performance effects.
1208
1209 A significant number of such cases can be handled here by inserting
1210 copies into the loop itself. */
1211 insert_backedge_copies ();
1212
1213
1214 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1215 eliminate_useless_phis ();
1216
1217 if (dump_file && (dump_flags & TDF_DETAILS))
1218 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1219
1220 remove_ssa_form (flag_tree_ter, sa);
1221
1222 if (dump_file && (dump_flags & TDF_DETAILS))
1223 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1224
1225 return 0;
1226 }