IA MCU psABI support: changes to libraries
[gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "alias.h"
26 #include "symtab.h"
27 #include "tree.h"
28 #include "fold-const.h"
29 #include "stor-layout.h"
30 #include "predict.h"
31 #include "hard-reg-set.h"
32 #include "function.h"
33 #include "dominance.h"
34 #include "cfg.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "basic-block.h"
38 #include "gimple-pretty-print.h"
39 #include "bitmap.h"
40 #include "sbitmap.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "tree-eh.h"
44 #include "gimple-expr.h"
45 #include "gimple.h"
46 #include "gimple-iterator.h"
47 #include "gimple-ssa.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "dumpfile.h"
54 #include "diagnostic-core.h"
55 #include "tree-ssa-live.h"
56 #include "tree-ssa-ter.h"
57 #include "tree-ssa-coalesce.h"
58 #include "tree-outof-ssa.h"
59
60 /* FIXME: A lot of code here deals with expanding to RTL. All that code
61 should be in cfgexpand.c. */
62 #include "rtl.h"
63 #include "flags.h"
64 #include "insn-config.h"
65 #include "expmed.h"
66 #include "dojump.h"
67 #include "explow.h"
68 #include "calls.h"
69 #include "emit-rtl.h"
70 #include "varasm.h"
71 #include "stmt.h"
72 #include "expr.h"
73
74 /* Return TRUE if expression STMT is suitable for replacement. */
75
76 bool
77 ssa_is_replaceable_p (gimple stmt)
78 {
79 use_operand_p use_p;
80 tree def;
81 gimple use_stmt;
82
83 /* Only consider modify stmts. */
84 if (!is_gimple_assign (stmt))
85 return false;
86
87 /* If the statement may throw an exception, it cannot be replaced. */
88 if (stmt_could_throw_p (stmt))
89 return false;
90
91 /* Punt if there is more than 1 def. */
92 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
93 if (!def)
94 return false;
95
96 /* Only consider definitions which have a single use. */
97 if (!single_imm_use (def, &use_p, &use_stmt))
98 return false;
99
100 /* Used in this block, but at the TOP of the block, not the end. */
101 if (gimple_code (use_stmt) == GIMPLE_PHI)
102 return false;
103
104 /* There must be no VDEFs. */
105 if (gimple_vdef (stmt))
106 return false;
107
108 /* Float expressions must go through memory if float-store is on. */
109 if (flag_float_store
110 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
111 return false;
112
113 /* An assignment with a register variable on the RHS is not
114 replaceable. */
115 if (gimple_assign_rhs_code (stmt) == VAR_DECL
116 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
117 return false;
118
119 /* No function calls can be replaced. */
120 if (is_gimple_call (stmt))
121 return false;
122
123 /* Leave any stmt with volatile operands alone as well. */
124 if (gimple_has_volatile_ops (stmt))
125 return false;
126
127 return true;
128 }
129
130
131 /* Used to hold all the components required to do SSA PHI elimination.
132 The node and pred/succ list is a simple linear list of nodes and
133 edges represented as pairs of nodes.
134
135 The predecessor and successor list: Nodes are entered in pairs, where
136 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
137 predecessors, all the odd elements are successors.
138
139 Rationale:
140 When implemented as bitmaps, very large programs SSA->Normal times were
141 being dominated by clearing the interference graph.
142
143 Typically this list of edges is extremely small since it only includes
144 PHI results and uses from a single edge which have not coalesced with
145 each other. This means that no virtual PHI nodes are included, and
146 empirical evidence suggests that the number of edges rarely exceed
147 3, and in a bootstrap of GCC, the maximum size encountered was 7.
148 This also limits the number of possible nodes that are involved to
149 rarely more than 6, and in the bootstrap of gcc, the maximum number
150 of nodes encountered was 12. */
151
152 typedef struct _elim_graph {
153 /* Size of the elimination vectors. */
154 int size;
155
156 /* List of nodes in the elimination graph. */
157 vec<int> nodes;
158
159 /* The predecessor and successor edge list. */
160 vec<int> edge_list;
161
162 /* Source locus on each edge */
163 vec<source_location> edge_locus;
164
165 /* Visited vector. */
166 sbitmap visited;
167
168 /* Stack for visited nodes. */
169 vec<int> stack;
170
171 /* The variable partition map. */
172 var_map map;
173
174 /* Edge being eliminated by this graph. */
175 edge e;
176
177 /* List of constant copies to emit. These are pushed on in pairs. */
178 vec<int> const_dests;
179 vec<tree> const_copies;
180
181 /* Source locations for any constant copies. */
182 vec<source_location> copy_locus;
183 } *elim_graph;
184
185
186 /* For an edge E find out a good source location to associate with
187 instructions inserted on edge E. If E has an implicit goto set,
188 use its location. Otherwise search instructions in predecessors
189 of E for a location, and use that one. That makes sense because
190 we insert on edges for PHI nodes, and effects of PHIs happen on
191 the end of the predecessor conceptually. */
192
193 static void
194 set_location_for_edge (edge e)
195 {
196 if (e->goto_locus)
197 {
198 set_curr_insn_location (e->goto_locus);
199 }
200 else
201 {
202 basic_block bb = e->src;
203 gimple_stmt_iterator gsi;
204
205 do
206 {
207 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
208 {
209 gimple stmt = gsi_stmt (gsi);
210 if (is_gimple_debug (stmt))
211 continue;
212 if (gimple_has_location (stmt) || gimple_block (stmt))
213 {
214 set_curr_insn_location (gimple_location (stmt));
215 return;
216 }
217 }
218 /* Nothing found in this basic block. Make a half-assed attempt
219 to continue with another block. */
220 if (single_pred_p (bb))
221 bb = single_pred (bb);
222 else
223 bb = e->src;
224 }
225 while (bb != e->src);
226 }
227 }
228
229 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
230 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
231 which we deduce the size to copy in that case. */
232
233 static inline rtx_insn *
234 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
235 {
236 start_sequence ();
237
238 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
239 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
240 if (GET_MODE (src) == BLKmode)
241 {
242 gcc_assert (GET_MODE (dest) == BLKmode);
243 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
244 }
245 else
246 emit_move_insn (dest, src);
247
248 rtx_insn *seq = get_insns ();
249 end_sequence ();
250
251 return seq;
252 }
253
254 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
255
256 static void
257 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
258 {
259 tree var;
260 if (dump_file && (dump_flags & TDF_DETAILS))
261 {
262 fprintf (dump_file,
263 "Inserting a partition copy on edge BB%d->BB%d :"
264 "PART.%d = PART.%d",
265 e->src->index,
266 e->dest->index, dest, src);
267 fprintf (dump_file, "\n");
268 }
269
270 gcc_assert (SA.partition_to_pseudo[dest]);
271 gcc_assert (SA.partition_to_pseudo[src]);
272
273 set_location_for_edge (e);
274 /* If a locus is provided, override the default. */
275 if (locus)
276 set_curr_insn_location (locus);
277
278 var = partition_to_var (SA.map, src);
279 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
280 copy_rtx (SA.partition_to_pseudo[src]),
281 TYPE_UNSIGNED (TREE_TYPE (var)),
282 var);
283
284 insert_insn_on_edge (seq, e);
285 }
286
287 /* Insert a copy instruction from expression SRC to partition DEST
288 onto edge E. */
289
290 static void
291 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
292 {
293 rtx dest_rtx, seq, x;
294 machine_mode dest_mode, src_mode;
295 int unsignedp;
296 tree var;
297
298 if (dump_file && (dump_flags & TDF_DETAILS))
299 {
300 fprintf (dump_file,
301 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
302 e->src->index,
303 e->dest->index, dest);
304 print_generic_expr (dump_file, src, TDF_SLIM);
305 fprintf (dump_file, "\n");
306 }
307
308 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
309 gcc_assert (dest_rtx);
310
311 set_location_for_edge (e);
312 /* If a locus is provided, override the default. */
313 if (locus)
314 set_curr_insn_location (locus);
315
316 start_sequence ();
317
318 var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
319 src_mode = TYPE_MODE (TREE_TYPE (src));
320 dest_mode = GET_MODE (dest_rtx);
321 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
322 gcc_assert (!REG_P (dest_rtx)
323 || dest_mode == promote_decl_mode (var, &unsignedp));
324
325 if (src_mode != dest_mode)
326 {
327 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
328 x = convert_modes (dest_mode, src_mode, x, unsignedp);
329 }
330 else if (src_mode == BLKmode)
331 {
332 x = dest_rtx;
333 store_expr (src, x, 0, false);
334 }
335 else
336 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
337
338 if (x != dest_rtx)
339 emit_move_insn (dest_rtx, x);
340 seq = get_insns ();
341 end_sequence ();
342
343 insert_insn_on_edge (seq, e);
344 }
345
346 /* Insert a copy instruction from RTL expression SRC to partition DEST
347 onto edge E. */
348
349 static void
350 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
351 source_location locus)
352 {
353 if (dump_file && (dump_flags & TDF_DETAILS))
354 {
355 fprintf (dump_file,
356 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
357 e->src->index,
358 e->dest->index, dest);
359 print_simple_rtl (dump_file, src);
360 fprintf (dump_file, "\n");
361 }
362
363 gcc_assert (SA.partition_to_pseudo[dest]);
364
365 set_location_for_edge (e);
366 /* If a locus is provided, override the default. */
367 if (locus)
368 set_curr_insn_location (locus);
369
370 /* We give the destination as sizeexp in case src/dest are BLKmode
371 mems. Usually we give the source. As we result from SSA names
372 the left and right size should be the same (and no WITH_SIZE_EXPR
373 involved), so it doesn't matter. */
374 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
375 src, unsignedsrcp,
376 partition_to_var (SA.map, dest));
377
378 insert_insn_on_edge (seq, e);
379 }
380
381 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
382 onto edge E. */
383
384 static void
385 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
386 {
387 tree var;
388 if (dump_file && (dump_flags & TDF_DETAILS))
389 {
390 fprintf (dump_file,
391 "Inserting a temp copy on edge BB%d->BB%d : ",
392 e->src->index,
393 e->dest->index);
394 print_simple_rtl (dump_file, dest);
395 fprintf (dump_file, "= PART.%d\n", src);
396 }
397
398 gcc_assert (SA.partition_to_pseudo[src]);
399
400 set_location_for_edge (e);
401 /* If a locus is provided, override the default. */
402 if (locus)
403 set_curr_insn_location (locus);
404
405 var = partition_to_var (SA.map, src);
406 rtx_insn *seq = emit_partition_copy (dest,
407 copy_rtx (SA.partition_to_pseudo[src]),
408 TYPE_UNSIGNED (TREE_TYPE (var)),
409 var);
410
411 insert_insn_on_edge (seq, e);
412 }
413
414
415 /* Create an elimination graph with SIZE nodes and associated data
416 structures. */
417
418 static elim_graph
419 new_elim_graph (int size)
420 {
421 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
422
423 g->nodes.create (30);
424 g->const_dests.create (20);
425 g->const_copies.create (20);
426 g->copy_locus.create (10);
427 g->edge_list.create (20);
428 g->edge_locus.create (10);
429 g->stack.create (30);
430
431 g->visited = sbitmap_alloc (size);
432
433 return g;
434 }
435
436
437 /* Empty elimination graph G. */
438
439 static inline void
440 clear_elim_graph (elim_graph g)
441 {
442 g->nodes.truncate (0);
443 g->edge_list.truncate (0);
444 g->edge_locus.truncate (0);
445 }
446
447
448 /* Delete elimination graph G. */
449
450 static inline void
451 delete_elim_graph (elim_graph g)
452 {
453 sbitmap_free (g->visited);
454 g->stack.release ();
455 g->edge_list.release ();
456 g->const_copies.release ();
457 g->const_dests.release ();
458 g->nodes.release ();
459 g->copy_locus.release ();
460 g->edge_locus.release ();
461
462 free (g);
463 }
464
465
466 /* Return the number of nodes in graph G. */
467
468 static inline int
469 elim_graph_size (elim_graph g)
470 {
471 return g->nodes.length ();
472 }
473
474
475 /* Add NODE to graph G, if it doesn't exist already. */
476
477 static inline void
478 elim_graph_add_node (elim_graph g, int node)
479 {
480 int x;
481 int t;
482
483 FOR_EACH_VEC_ELT (g->nodes, x, t)
484 if (t == node)
485 return;
486 g->nodes.safe_push (node);
487 }
488
489
490 /* Add the edge PRED->SUCC to graph G. */
491
492 static inline void
493 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
494 {
495 g->edge_list.safe_push (pred);
496 g->edge_list.safe_push (succ);
497 g->edge_locus.safe_push (locus);
498 }
499
500
501 /* Remove an edge from graph G for which NODE is the predecessor, and
502 return the successor node. -1 is returned if there is no such edge. */
503
504 static inline int
505 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
506 {
507 int y;
508 unsigned x;
509 for (x = 0; x < g->edge_list.length (); x += 2)
510 if (g->edge_list[x] == node)
511 {
512 g->edge_list[x] = -1;
513 y = g->edge_list[x + 1];
514 g->edge_list[x + 1] = -1;
515 *locus = g->edge_locus[x / 2];
516 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
517 return y;
518 }
519 *locus = UNKNOWN_LOCATION;
520 return -1;
521 }
522
523
524 /* Find all the nodes in GRAPH which are successors to NODE in the
525 edge list. VAR will hold the partition number found. CODE is the
526 code fragment executed for every node found. */
527
528 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
529 do { \
530 unsigned x_; \
531 int y_; \
532 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
533 { \
534 y_ = (GRAPH)->edge_list[x_]; \
535 if (y_ != (NODE)) \
536 continue; \
537 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
538 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
539 CODE; \
540 } \
541 } while (0)
542
543
544 /* Find all the nodes which are predecessors of NODE in the edge list for
545 GRAPH. VAR will hold the partition number found. CODE is the
546 code fragment executed for every node found. */
547
548 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
549 do { \
550 unsigned x_; \
551 int y_; \
552 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
553 { \
554 y_ = (GRAPH)->edge_list[x_ + 1]; \
555 if (y_ != (NODE)) \
556 continue; \
557 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
558 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
559 CODE; \
560 } \
561 } while (0)
562
563
564 /* Add T to elimination graph G. */
565
566 static inline void
567 eliminate_name (elim_graph g, int T)
568 {
569 elim_graph_add_node (g, T);
570 }
571
572 /* Return true if this phi argument T should have a copy queued when using
573 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
574 test for ssa_name is definitely simpler, but don't let invalid contents
575 slip through in the meantime. */
576
577 static inline bool
578 queue_phi_copy_p (var_map map, tree t)
579 {
580 if (TREE_CODE (t) == SSA_NAME)
581 {
582 if (var_to_partition (map, t) == NO_PARTITION)
583 return true;
584 return false;
585 }
586 gcc_checking_assert (is_gimple_min_invariant (t));
587 return true;
588 }
589
590 /* Build elimination graph G for basic block BB on incoming PHI edge
591 G->e. */
592
593 static void
594 eliminate_build (elim_graph g)
595 {
596 tree Ti;
597 int p0, pi;
598 gphi_iterator gsi;
599
600 clear_elim_graph (g);
601
602 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
603 {
604 gphi *phi = gsi.phi ();
605 source_location locus;
606
607 p0 = var_to_partition (g->map, gimple_phi_result (phi));
608 /* Ignore results which are not in partitions. */
609 if (p0 == NO_PARTITION)
610 continue;
611
612 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
613 locus = gimple_phi_arg_location_from_edge (phi, g->e);
614
615 /* If this argument is a constant, or a SSA_NAME which is being
616 left in SSA form, just queue a copy to be emitted on this
617 edge. */
618 if (queue_phi_copy_p (g->map, Ti))
619 {
620 /* Save constant copies until all other copies have been emitted
621 on this edge. */
622 g->const_dests.safe_push (p0);
623 g->const_copies.safe_push (Ti);
624 g->copy_locus.safe_push (locus);
625 }
626 else
627 {
628 pi = var_to_partition (g->map, Ti);
629 if (p0 != pi)
630 {
631 eliminate_name (g, p0);
632 eliminate_name (g, pi);
633 elim_graph_add_edge (g, p0, pi, locus);
634 }
635 }
636 }
637 }
638
639
640 /* Push successors of T onto the elimination stack for G. */
641
642 static void
643 elim_forward (elim_graph g, int T)
644 {
645 int S;
646 source_location locus;
647
648 bitmap_set_bit (g->visited, T);
649 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
650 {
651 if (!bitmap_bit_p (g->visited, S))
652 elim_forward (g, S);
653 });
654 g->stack.safe_push (T);
655 }
656
657
658 /* Return 1 if there unvisited predecessors of T in graph G. */
659
660 static int
661 elim_unvisited_predecessor (elim_graph g, int T)
662 {
663 int P;
664 source_location locus;
665
666 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
667 {
668 if (!bitmap_bit_p (g->visited, P))
669 return 1;
670 });
671 return 0;
672 }
673
674 /* Process predecessors first, and insert a copy. */
675
676 static void
677 elim_backward (elim_graph g, int T)
678 {
679 int P;
680 source_location locus;
681
682 bitmap_set_bit (g->visited, T);
683 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
684 {
685 if (!bitmap_bit_p (g->visited, P))
686 {
687 elim_backward (g, P);
688 insert_partition_copy_on_edge (g->e, P, T, locus);
689 }
690 });
691 }
692
693 /* Allocate a new pseudo register usable for storing values sitting
694 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
695
696 static rtx
697 get_temp_reg (tree name)
698 {
699 tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
700 tree type = TREE_TYPE (var);
701 int unsignedp;
702 machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
703 rtx x = gen_reg_rtx (reg_mode);
704 if (POINTER_TYPE_P (type))
705 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
706 return x;
707 }
708
709 /* Insert required copies for T in graph G. Check for a strongly connected
710 region, and create a temporary to break the cycle if one is found. */
711
712 static void
713 elim_create (elim_graph g, int T)
714 {
715 int P, S;
716 source_location locus;
717
718 if (elim_unvisited_predecessor (g, T))
719 {
720 tree var = partition_to_var (g->map, T);
721 rtx U = get_temp_reg (var);
722 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
723
724 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
725 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
726 {
727 if (!bitmap_bit_p (g->visited, P))
728 {
729 elim_backward (g, P);
730 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
731 }
732 });
733 }
734 else
735 {
736 S = elim_graph_remove_succ_edge (g, T, &locus);
737 if (S != -1)
738 {
739 bitmap_set_bit (g->visited, T);
740 insert_partition_copy_on_edge (g->e, T, S, locus);
741 }
742 }
743 }
744
745
746 /* Eliminate all the phi nodes on edge E in graph G. */
747
748 static void
749 eliminate_phi (edge e, elim_graph g)
750 {
751 int x;
752
753 gcc_assert (g->const_copies.length () == 0);
754 gcc_assert (g->copy_locus.length () == 0);
755
756 /* Abnormal edges already have everything coalesced. */
757 if (e->flags & EDGE_ABNORMAL)
758 return;
759
760 g->e = e;
761
762 eliminate_build (g);
763
764 if (elim_graph_size (g) != 0)
765 {
766 int part;
767
768 bitmap_clear (g->visited);
769 g->stack.truncate (0);
770
771 FOR_EACH_VEC_ELT (g->nodes, x, part)
772 {
773 if (!bitmap_bit_p (g->visited, part))
774 elim_forward (g, part);
775 }
776
777 bitmap_clear (g->visited);
778 while (g->stack.length () > 0)
779 {
780 x = g->stack.pop ();
781 if (!bitmap_bit_p (g->visited, x))
782 elim_create (g, x);
783 }
784 }
785
786 /* If there are any pending constant copies, issue them now. */
787 while (g->const_copies.length () > 0)
788 {
789 int dest;
790 tree src;
791 source_location locus;
792
793 src = g->const_copies.pop ();
794 dest = g->const_dests.pop ();
795 locus = g->copy_locus.pop ();
796 insert_value_copy_on_edge (e, dest, src, locus);
797 }
798 }
799
800
801 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
802 check to see if this allows another PHI node to be removed. */
803
804 static void
805 remove_gimple_phi_args (gphi *phi)
806 {
807 use_operand_p arg_p;
808 ssa_op_iter iter;
809
810 if (dump_file && (dump_flags & TDF_DETAILS))
811 {
812 fprintf (dump_file, "Removing Dead PHI definition: ");
813 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
814 }
815
816 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
817 {
818 tree arg = USE_FROM_PTR (arg_p);
819 if (TREE_CODE (arg) == SSA_NAME)
820 {
821 /* Remove the reference to the existing argument. */
822 SET_USE (arg_p, NULL_TREE);
823 if (has_zero_uses (arg))
824 {
825 gimple stmt;
826 gimple_stmt_iterator gsi;
827
828 stmt = SSA_NAME_DEF_STMT (arg);
829
830 /* Also remove the def if it is a PHI node. */
831 if (gimple_code (stmt) == GIMPLE_PHI)
832 {
833 remove_gimple_phi_args (as_a <gphi *> (stmt));
834 gsi = gsi_for_stmt (stmt);
835 remove_phi_node (&gsi, true);
836 }
837
838 }
839 }
840 }
841 }
842
843 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
844
845 static void
846 eliminate_useless_phis (void)
847 {
848 basic_block bb;
849 gphi_iterator gsi;
850 tree result;
851
852 FOR_EACH_BB_FN (bb, cfun)
853 {
854 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
855 {
856 gphi *phi = gsi.phi ();
857 result = gimple_phi_result (phi);
858 if (virtual_operand_p (result))
859 {
860 #ifdef ENABLE_CHECKING
861 size_t i;
862 /* There should be no arguments which are not virtual, or the
863 results will be incorrect. */
864 for (i = 0; i < gimple_phi_num_args (phi); i++)
865 {
866 tree arg = PHI_ARG_DEF (phi, i);
867 if (TREE_CODE (arg) == SSA_NAME
868 && !virtual_operand_p (arg))
869 {
870 fprintf (stderr, "Argument of PHI is not virtual (");
871 print_generic_expr (stderr, arg, TDF_SLIM);
872 fprintf (stderr, "), but the result is :");
873 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
874 internal_error ("SSA corruption");
875 }
876 }
877 #endif
878 remove_phi_node (&gsi, true);
879 }
880 else
881 {
882 /* Also remove real PHIs with no uses. */
883 if (has_zero_uses (result))
884 {
885 remove_gimple_phi_args (phi);
886 remove_phi_node (&gsi, true);
887 }
888 else
889 gsi_next (&gsi);
890 }
891 }
892 }
893 }
894
895
896 /* This function will rewrite the current program using the variable mapping
897 found in MAP. If the replacement vector VALUES is provided, any
898 occurrences of partitions with non-null entries in the vector will be
899 replaced with the expression in the vector instead of its mapped
900 variable. */
901
902 static void
903 rewrite_trees (var_map map ATTRIBUTE_UNUSED)
904 {
905 #ifdef ENABLE_CHECKING
906 basic_block bb;
907 /* Search for PHIs where the destination has no partition, but one
908 or more arguments has a partition. This should not happen and can
909 create incorrect code. */
910 FOR_EACH_BB_FN (bb, cfun)
911 {
912 gphi_iterator gsi;
913 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
914 {
915 gphi *phi = gsi.phi ();
916 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
917 if (T0 == NULL_TREE)
918 {
919 size_t i;
920 for (i = 0; i < gimple_phi_num_args (phi); i++)
921 {
922 tree arg = PHI_ARG_DEF (phi, i);
923
924 if (TREE_CODE (arg) == SSA_NAME
925 && var_to_partition (map, arg) != NO_PARTITION)
926 {
927 fprintf (stderr, "Argument of PHI is in a partition :(");
928 print_generic_expr (stderr, arg, TDF_SLIM);
929 fprintf (stderr, "), but the result is not :");
930 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
931 internal_error ("SSA corruption");
932 }
933 }
934 }
935 }
936 }
937 #endif
938 }
939
940 /* Given the out-of-ssa info object SA (with prepared partitions)
941 eliminate all phi nodes in all basic blocks. Afterwards no
942 basic block will have phi nodes anymore and there are possibly
943 some RTL instructions inserted on edges. */
944
945 void
946 expand_phi_nodes (struct ssaexpand *sa)
947 {
948 basic_block bb;
949 elim_graph g = new_elim_graph (sa->map->num_partitions);
950 g->map = sa->map;
951
952 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
953 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
954 if (!gimple_seq_empty_p (phi_nodes (bb)))
955 {
956 edge e;
957 edge_iterator ei;
958 FOR_EACH_EDGE (e, ei, bb->preds)
959 eliminate_phi (e, g);
960 set_phi_nodes (bb, NULL);
961 /* We can't redirect EH edges in RTL land, so we need to do this
962 here. Redirection happens only when splitting is necessary,
963 which it is only for critical edges, normally. For EH edges
964 it might also be necessary when the successor has more than
965 one predecessor. In that case the edge is either required to
966 be fallthru (which EH edges aren't), or the predecessor needs
967 to end with a jump (which again, isn't the case with EH edges).
968 Hence, split all EH edges on which we inserted instructions
969 and whose successor has multiple predecessors. */
970 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
971 {
972 if (e->insns.r && (e->flags & EDGE_EH)
973 && !single_pred_p (e->dest))
974 {
975 rtx_insn *insns = e->insns.r;
976 basic_block bb;
977 e->insns.r = NULL;
978 bb = split_edge (e);
979 single_pred_edge (bb)->insns.r = insns;
980 }
981 else
982 ei_next (&ei);
983 }
984 }
985
986 delete_elim_graph (g);
987 }
988
989
990 /* Remove the ssa-names in the current function and translate them into normal
991 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
992 should also be used. */
993
994 static void
995 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
996 {
997 bitmap values = NULL;
998 var_map map;
999 unsigned i;
1000
1001 map = coalesce_ssa_name ();
1002
1003 /* Return to viewing the variable list as just all reference variables after
1004 coalescing has been performed. */
1005 partition_view_normal (map, false);
1006
1007 if (dump_file && (dump_flags & TDF_DETAILS))
1008 {
1009 fprintf (dump_file, "After Coalescing:\n");
1010 dump_var_map (dump_file, map);
1011 }
1012
1013 if (perform_ter)
1014 {
1015 values = find_replaceable_exprs (map);
1016 if (values && dump_file && (dump_flags & TDF_DETAILS))
1017 dump_replaceable_exprs (dump_file, values);
1018 }
1019
1020 rewrite_trees (map);
1021
1022 sa->map = map;
1023 sa->values = values;
1024 sa->partition_has_default_def = BITMAP_ALLOC (NULL);
1025 for (i = 1; i < num_ssa_names; i++)
1026 {
1027 tree t = ssa_name (i);
1028 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
1029 {
1030 int p = var_to_partition (map, t);
1031 if (p != NO_PARTITION)
1032 bitmap_set_bit (sa->partition_has_default_def, p);
1033 }
1034 }
1035 }
1036
1037
1038 /* If not already done so for basic block BB, assign increasing uids
1039 to each of its instructions. */
1040
1041 static void
1042 maybe_renumber_stmts_bb (basic_block bb)
1043 {
1044 unsigned i = 0;
1045 gimple_stmt_iterator gsi;
1046
1047 if (!bb->aux)
1048 return;
1049 bb->aux = NULL;
1050 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1051 {
1052 gimple stmt = gsi_stmt (gsi);
1053 gimple_set_uid (stmt, i);
1054 i++;
1055 }
1056 }
1057
1058
1059 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1060 of a PHI node) and ARG (one of its arguments) conflict. Return false
1061 otherwise, also when we simply aren't sure. */
1062
1063 static bool
1064 trivially_conflicts_p (basic_block bb, tree result, tree arg)
1065 {
1066 use_operand_p use;
1067 imm_use_iterator imm_iter;
1068 gimple defa = SSA_NAME_DEF_STMT (arg);
1069
1070 /* If ARG isn't defined in the same block it's too complicated for
1071 our little mind. */
1072 if (gimple_bb (defa) != bb)
1073 return false;
1074
1075 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
1076 {
1077 gimple use_stmt = USE_STMT (use);
1078 if (is_gimple_debug (use_stmt))
1079 continue;
1080 /* Now, if there's a use of RESULT that lies outside this basic block,
1081 then there surely is a conflict with ARG. */
1082 if (gimple_bb (use_stmt) != bb)
1083 return true;
1084 if (gimple_code (use_stmt) == GIMPLE_PHI)
1085 continue;
1086 /* The use now is in a real stmt of BB, so if ARG was defined
1087 in a PHI node (like RESULT) both conflict. */
1088 if (gimple_code (defa) == GIMPLE_PHI)
1089 return true;
1090 maybe_renumber_stmts_bb (bb);
1091 /* If the use of RESULT occurs after the definition of ARG,
1092 the two conflict too. */
1093 if (gimple_uid (defa) < gimple_uid (use_stmt))
1094 return true;
1095 }
1096
1097 return false;
1098 }
1099
1100
1101 /* Search every PHI node for arguments associated with backedges which
1102 we can trivially determine will need a copy (the argument is either
1103 not an SSA_NAME or the argument has a different underlying variable
1104 than the PHI result).
1105
1106 Insert a copy from the PHI argument to a new destination at the
1107 end of the block with the backedge to the top of the loop. Update
1108 the PHI argument to reference this new destination. */
1109
1110 static void
1111 insert_backedge_copies (void)
1112 {
1113 basic_block bb;
1114 gphi_iterator gsi;
1115
1116 mark_dfs_back_edges ();
1117
1118 FOR_EACH_BB_FN (bb, cfun)
1119 {
1120 /* Mark block as possibly needing calculation of UIDs. */
1121 bb->aux = &bb->aux;
1122
1123 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1124 {
1125 gphi *phi = gsi.phi ();
1126 tree result = gimple_phi_result (phi);
1127 size_t i;
1128
1129 if (virtual_operand_p (result))
1130 continue;
1131
1132 for (i = 0; i < gimple_phi_num_args (phi); i++)
1133 {
1134 tree arg = gimple_phi_arg_def (phi, i);
1135 edge e = gimple_phi_arg_edge (phi, i);
1136
1137 /* If the argument is not an SSA_NAME, then we will need a
1138 constant initialization. If the argument is an SSA_NAME with
1139 a different underlying variable then a copy statement will be
1140 needed. */
1141 if ((e->flags & EDGE_DFS_BACK)
1142 && (TREE_CODE (arg) != SSA_NAME
1143 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1144 || trivially_conflicts_p (bb, result, arg)))
1145 {
1146 tree name;
1147 gassign *stmt;
1148 gimple last = NULL;
1149 gimple_stmt_iterator gsi2;
1150
1151 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1152 if (!gsi_end_p (gsi2))
1153 last = gsi_stmt (gsi2);
1154
1155 /* In theory the only way we ought to get back to the
1156 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1157 However, better safe than sorry.
1158 If the block ends with a control statement or
1159 something that might throw, then we have to
1160 insert this assignment before the last
1161 statement. Else insert it after the last statement. */
1162 if (last && stmt_ends_bb_p (last))
1163 {
1164 /* If the last statement in the block is the definition
1165 site of the PHI argument, then we can't insert
1166 anything after it. */
1167 if (TREE_CODE (arg) == SSA_NAME
1168 && SSA_NAME_DEF_STMT (arg) == last)
1169 continue;
1170 }
1171
1172 /* Create a new instance of the underlying variable of the
1173 PHI result. */
1174 name = copy_ssa_name (result);
1175 stmt = gimple_build_assign (name,
1176 gimple_phi_arg_def (phi, i));
1177
1178 /* copy location if present. */
1179 if (gimple_phi_arg_has_location (phi, i))
1180 gimple_set_location (stmt,
1181 gimple_phi_arg_location (phi, i));
1182
1183 /* Insert the new statement into the block and update
1184 the PHI node. */
1185 if (last && stmt_ends_bb_p (last))
1186 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1187 else
1188 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1189 SET_PHI_ARG_DEF (phi, i, name);
1190 }
1191 }
1192 }
1193
1194 /* Unmark this block again. */
1195 bb->aux = NULL;
1196 }
1197 }
1198
1199 /* Free all memory associated with going out of SSA form. SA is
1200 the outof-SSA info object. */
1201
1202 void
1203 finish_out_of_ssa (struct ssaexpand *sa)
1204 {
1205 free (sa->partition_to_pseudo);
1206 if (sa->values)
1207 BITMAP_FREE (sa->values);
1208 delete_var_map (sa->map);
1209 BITMAP_FREE (sa->partition_has_default_def);
1210 memset (sa, 0, sizeof *sa);
1211 }
1212
1213 /* Take the current function out of SSA form, translating PHIs as described in
1214 R. Morgan, ``Building an Optimizing Compiler'',
1215 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1216
1217 unsigned int
1218 rewrite_out_of_ssa (struct ssaexpand *sa)
1219 {
1220 /* If elimination of a PHI requires inserting a copy on a backedge,
1221 then we will have to split the backedge which has numerous
1222 undesirable performance effects.
1223
1224 A significant number of such cases can be handled here by inserting
1225 copies into the loop itself. */
1226 insert_backedge_copies ();
1227
1228
1229 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1230 eliminate_useless_phis ();
1231
1232 if (dump_file && (dump_flags & TDF_DETAILS))
1233 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1234
1235 remove_ssa_form (flag_tree_ter, sa);
1236
1237 if (dump_file && (dump_flags & TDF_DETAILS))
1238 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1239
1240 return 0;
1241 }