tree-outof-ssa.c (insert_backedge_copies): New function.
[gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "langhooks.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "errors.h"
36 #include "expr.h"
37 #include "function.h"
38 #include "diagnostic.h"
39 #include "bitmap.h"
40 #include "tree-flow.h"
41 #include "tree-gimple.h"
42 #include "tree-inline.h"
43 #include "varray.h"
44 #include "timevar.h"
45 #include "hashtab.h"
46 #include "tree-dump.h"
47 #include "tree-ssa-live.h"
48 #include "tree-pass.h"
49
50 /* Flags to pass to remove_ssa_form. */
51
52 #define SSANORM_PERFORM_TER 0x1
53 #define SSANORM_COMBINE_TEMPS 0x2
54 #define SSANORM_REMOVE_ALL_PHIS 0x4
55 #define SSANORM_COALESCE_PARTITIONS 0x8
56 #define SSANORM_USE_COALESCE_LIST 0x10
57
58 /* Used to hold all the components required to do SSA PHI elimination.
59 The node and pred/succ list is a simple linear list of nodes and
60 edges represented as pairs of nodes.
61
62 The predecessor and successor list: Nodes are entered in pairs, where
63 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
64 predecessors, all the odd elements are successors.
65
66 Rationale:
67 When implemented as bitmaps, very large programs SSA->Normal times were
68 being dominated by clearing the interference graph.
69
70 Typically this list of edges is extremely small since it only includes
71 PHI results and uses from a single edge which have not coalesced with
72 each other. This means that no virtual PHI nodes are included, and
73 empirical evidence suggests that the number of edges rarely exceed
74 3, and in a bootstrap of GCC, the maximum size encountered was 7.
75 This also limits the number of possible nodes that are involved to
76 rarely more than 6, and in the bootstrap of gcc, the maximum number
77 of nodes encountered was 12. */
78
79 typedef struct _elim_graph {
80 /* Size of the elimination vectors. */
81 int size;
82
83 /* List of nodes in the elimination graph. */
84 varray_type nodes;
85
86 /* The predecessor and successor edge list. */
87 varray_type edge_list;
88
89 /* Visited vector. */
90 sbitmap visited;
91
92 /* Stack for visited nodes. */
93 varray_type stack;
94
95 /* The variable partition map. */
96 var_map map;
97
98 /* Edge being eliminated by this graph. */
99 edge e;
100
101 /* List of constant copies to emit. These are pushed on in pairs. */
102 varray_type const_copies;
103 } *elim_graph;
104
105
106 /* Local functions. */
107 static tree create_temp (tree);
108 static void insert_copy_on_edge (edge, tree, tree);
109 static elim_graph new_elim_graph (int);
110 static inline void delete_elim_graph (elim_graph);
111 static inline void clear_elim_graph (elim_graph);
112 static inline int elim_graph_size (elim_graph);
113 static inline void elim_graph_add_node (elim_graph, tree);
114 static inline void elim_graph_add_edge (elim_graph, int, int);
115 static inline int elim_graph_remove_succ_edge (elim_graph, int);
116
117 static inline void eliminate_name (elim_graph, tree);
118 static void eliminate_build (elim_graph, basic_block);
119 static void elim_forward (elim_graph, int);
120 static int elim_unvisited_predecessor (elim_graph, int);
121 static void elim_backward (elim_graph, int);
122 static void elim_create (elim_graph, int);
123 static void eliminate_phi (edge, elim_graph);
124 static tree_live_info_p coalesce_ssa_name (var_map, int);
125 static void assign_vars (var_map);
126 static bool replace_use_variable (var_map, use_operand_p, tree *);
127 static bool replace_def_variable (var_map, def_operand_p, tree *);
128 static void eliminate_virtual_phis (void);
129 static void coalesce_abnormal_edges (var_map, conflict_graph, root_var_p);
130 static void print_exprs (FILE *, const char *, tree, const char *, tree,
131 const char *);
132 static void print_exprs_edge (FILE *, edge, const char *, tree, const char *,
133 tree);
134
135
136 /* Create a temporary variable based on the type of variable T. Use T's name
137 as the prefix. */
138
139 static tree
140 create_temp (tree t)
141 {
142 tree tmp;
143 const char *name = NULL;
144 tree type;
145
146 if (TREE_CODE (t) == SSA_NAME)
147 t = SSA_NAME_VAR (t);
148
149 gcc_assert (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL);
150
151 type = TREE_TYPE (t);
152 tmp = DECL_NAME (t);
153 if (tmp)
154 name = IDENTIFIER_POINTER (tmp);
155
156 if (name == NULL)
157 name = "temp";
158 tmp = create_tmp_var (type, name);
159
160 if (DECL_DEBUG_ALIAS_OF (t))
161 DECL_DEBUG_ALIAS_OF (tmp) = DECL_DEBUG_ALIAS_OF (t);
162 else if (!DECL_IGNORED_P (t))
163 DECL_DEBUG_ALIAS_OF (tmp) = t;
164 DECL_ARTIFICIAL (tmp) = DECL_ARTIFICIAL (t);
165 add_referenced_tmp_var (tmp);
166
167 /* add_referenced_tmp_var will create the annotation and set up some
168 of the flags in the annotation. However, some flags we need to
169 inherit from our original variable. */
170 var_ann (tmp)->type_mem_tag = var_ann (t)->type_mem_tag;
171 if (is_call_clobbered (t))
172 mark_call_clobbered (tmp);
173
174 return tmp;
175 }
176
177
178 /* This helper function fill insert a copy from a constant or variable SRC to
179 variable DEST on edge E. */
180
181 static void
182 insert_copy_on_edge (edge e, tree dest, tree src)
183 {
184 tree copy;
185
186 copy = build (MODIFY_EXPR, TREE_TYPE (dest), dest, src);
187 set_is_used (dest);
188
189 if (TREE_CODE (src) == ADDR_EXPR)
190 src = TREE_OPERAND (src, 0);
191 if (TREE_CODE (src) == VAR_DECL || TREE_CODE (src) == PARM_DECL)
192 set_is_used (src);
193
194 if (dump_file && (dump_flags & TDF_DETAILS))
195 {
196 fprintf (dump_file,
197 "Inserting a copy on edge BB%d->BB%d :",
198 e->src->index,
199 e->dest->index);
200 print_generic_expr (dump_file, copy, dump_flags);
201 fprintf (dump_file, "\n");
202 }
203
204 bsi_insert_on_edge (e, copy);
205 }
206
207
208 /* Create an elimination graph with SIZE nodes and associated data
209 structures. */
210
211 static elim_graph
212 new_elim_graph (int size)
213 {
214 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
215
216 VARRAY_TREE_INIT (g->nodes, 30, "Elimination Node List");
217 VARRAY_TREE_INIT (g->const_copies, 20, "Elimination Constant Copies");
218 VARRAY_INT_INIT (g->edge_list, 20, "Elimination Edge List");
219 VARRAY_INT_INIT (g->stack, 30, " Elimination Stack");
220
221 g->visited = sbitmap_alloc (size);
222
223 return g;
224 }
225
226
227 /* Empty elimination graph G. */
228
229 static inline void
230 clear_elim_graph (elim_graph g)
231 {
232 VARRAY_POP_ALL (g->nodes);
233 VARRAY_POP_ALL (g->edge_list);
234 }
235
236
237 /* Delete elimination graph G. */
238
239 static inline void
240 delete_elim_graph (elim_graph g)
241 {
242 sbitmap_free (g->visited);
243 free (g);
244 }
245
246
247 /* Return the number of nodes in graph G. */
248
249 static inline int
250 elim_graph_size (elim_graph g)
251 {
252 return VARRAY_ACTIVE_SIZE (g->nodes);
253 }
254
255
256 /* Add NODE to graph G, if it doesn't exist already. */
257
258 static inline void
259 elim_graph_add_node (elim_graph g, tree node)
260 {
261 int x;
262 for (x = 0; x < elim_graph_size (g); x++)
263 if (VARRAY_TREE (g->nodes, x) == node)
264 return;
265 VARRAY_PUSH_TREE (g->nodes, node);
266 }
267
268
269 /* Add the edge PRED->SUCC to graph G. */
270
271 static inline void
272 elim_graph_add_edge (elim_graph g, int pred, int succ)
273 {
274 VARRAY_PUSH_INT (g->edge_list, pred);
275 VARRAY_PUSH_INT (g->edge_list, succ);
276 }
277
278
279 /* Remove an edge from graph G for which NODE is the predecessor, and
280 return the successor node. -1 is returned if there is no such edge. */
281
282 static inline int
283 elim_graph_remove_succ_edge (elim_graph g, int node)
284 {
285 int y;
286 unsigned x;
287 for (x = 0; x < VARRAY_ACTIVE_SIZE (g->edge_list); x += 2)
288 if (VARRAY_INT (g->edge_list, x) == node)
289 {
290 VARRAY_INT (g->edge_list, x) = -1;
291 y = VARRAY_INT (g->edge_list, x + 1);
292 VARRAY_INT (g->edge_list, x + 1) = -1;
293 return y;
294 }
295 return -1;
296 }
297
298
299 /* Find all the nodes in GRAPH which are successors to NODE in the
300 edge list. VAR will hold the partition number found. CODE is the
301 code fragment executed for every node found. */
302
303 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, CODE) \
304 do { \
305 unsigned x_; \
306 int y_; \
307 for (x_ = 0; x_ < VARRAY_ACTIVE_SIZE ((GRAPH)->edge_list); x_ += 2) \
308 { \
309 y_ = VARRAY_INT ((GRAPH)->edge_list, x_); \
310 if (y_ != (NODE)) \
311 continue; \
312 (VAR) = VARRAY_INT ((GRAPH)->edge_list, x_ + 1); \
313 CODE; \
314 } \
315 } while (0)
316
317
318 /* Find all the nodes which are predecessors of NODE in the edge list for
319 GRAPH. VAR will hold the partition number found. CODE is the
320 code fragment executed for every node found. */
321
322 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, CODE) \
323 do { \
324 unsigned x_; \
325 int y_; \
326 for (x_ = 0; x_ < VARRAY_ACTIVE_SIZE ((GRAPH)->edge_list); x_ += 2) \
327 { \
328 y_ = VARRAY_INT ((GRAPH)->edge_list, x_ + 1); \
329 if (y_ != (NODE)) \
330 continue; \
331 (VAR) = VARRAY_INT ((GRAPH)->edge_list, x_); \
332 CODE; \
333 } \
334 } while (0)
335
336
337 /* Add T to elimination graph G. */
338
339 static inline void
340 eliminate_name (elim_graph g, tree T)
341 {
342 elim_graph_add_node (g, T);
343 }
344
345
346 /* Build elimination graph G for basic block BB on incoming PHI edge
347 G->e. */
348
349 static void
350 eliminate_build (elim_graph g, basic_block B)
351 {
352 tree phi;
353 tree T0, Ti;
354 int p0, pi;
355
356 clear_elim_graph (g);
357
358 for (phi = phi_nodes (B); phi; phi = PHI_CHAIN (phi))
359 {
360 T0 = var_to_partition_to_var (g->map, PHI_RESULT (phi));
361
362 /* Ignore results which are not in partitions. */
363 if (T0 == NULL_TREE)
364 continue;
365
366 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
367
368 /* If this argument is a constant, or a SSA_NAME which is being
369 left in SSA form, just queue a copy to be emitted on this
370 edge. */
371 if (!phi_ssa_name_p (Ti)
372 || (TREE_CODE (Ti) == SSA_NAME
373 && var_to_partition (g->map, Ti) == NO_PARTITION))
374 {
375 /* Save constant copies until all other copies have been emitted
376 on this edge. */
377 VARRAY_PUSH_TREE (g->const_copies, T0);
378 VARRAY_PUSH_TREE (g->const_copies, Ti);
379 }
380 else
381 {
382 Ti = var_to_partition_to_var (g->map, Ti);
383 if (T0 != Ti)
384 {
385 eliminate_name (g, T0);
386 eliminate_name (g, Ti);
387 p0 = var_to_partition (g->map, T0);
388 pi = var_to_partition (g->map, Ti);
389 elim_graph_add_edge (g, p0, pi);
390 }
391 }
392 }
393 }
394
395
396 /* Push successors of T onto the elimination stack for G. */
397
398 static void
399 elim_forward (elim_graph g, int T)
400 {
401 int S;
402 SET_BIT (g->visited, T);
403 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S,
404 {
405 if (!TEST_BIT (g->visited, S))
406 elim_forward (g, S);
407 });
408 VARRAY_PUSH_INT (g->stack, T);
409 }
410
411
412 /* Return 1 if there unvisited predecessors of T in graph G. */
413
414 static int
415 elim_unvisited_predecessor (elim_graph g, int T)
416 {
417 int P;
418 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
419 {
420 if (!TEST_BIT (g->visited, P))
421 return 1;
422 });
423 return 0;
424 }
425
426 /* Process predecessors first, and insert a copy. */
427
428 static void
429 elim_backward (elim_graph g, int T)
430 {
431 int P;
432 SET_BIT (g->visited, T);
433 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
434 {
435 if (!TEST_BIT (g->visited, P))
436 {
437 elim_backward (g, P);
438 insert_copy_on_edge (g->e,
439 partition_to_var (g->map, P),
440 partition_to_var (g->map, T));
441 }
442 });
443 }
444
445 /* Insert required copies for T in graph G. Check for a strongly connected
446 region, and create a temporary to break the cycle if one is found. */
447
448 static void
449 elim_create (elim_graph g, int T)
450 {
451 tree U;
452 int P, S;
453
454 if (elim_unvisited_predecessor (g, T))
455 {
456 U = create_temp (partition_to_var (g->map, T));
457 insert_copy_on_edge (g->e, U, partition_to_var (g->map, T));
458 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
459 {
460 if (!TEST_BIT (g->visited, P))
461 {
462 elim_backward (g, P);
463 insert_copy_on_edge (g->e, partition_to_var (g->map, P), U);
464 }
465 });
466 }
467 else
468 {
469 S = elim_graph_remove_succ_edge (g, T);
470 if (S != -1)
471 {
472 SET_BIT (g->visited, T);
473 insert_copy_on_edge (g->e,
474 partition_to_var (g->map, T),
475 partition_to_var (g->map, S));
476 }
477 }
478
479 }
480
481 /* Eliminate all the phi nodes on edge E in graph G. */
482
483 static void
484 eliminate_phi (edge e, elim_graph g)
485 {
486 int num_nodes = 0;
487 int x;
488 basic_block B = e->dest;
489
490 gcc_assert (VARRAY_ACTIVE_SIZE (g->const_copies) == 0);
491
492 /* Abnormal edges already have everything coalesced, or the coalescer
493 would have aborted. */
494 if (e->flags & EDGE_ABNORMAL)
495 return;
496
497 num_nodes = num_var_partitions (g->map);
498 g->e = e;
499
500 eliminate_build (g, B);
501
502 if (elim_graph_size (g) != 0)
503 {
504 sbitmap_zero (g->visited);
505 VARRAY_POP_ALL (g->stack);
506
507 for (x = 0; x < elim_graph_size (g); x++)
508 {
509 tree var = VARRAY_TREE (g->nodes, x);
510 int p = var_to_partition (g->map, var);
511 if (!TEST_BIT (g->visited, p))
512 elim_forward (g, p);
513 }
514
515 sbitmap_zero (g->visited);
516 while (VARRAY_ACTIVE_SIZE (g->stack) > 0)
517 {
518 x = VARRAY_TOP_INT (g->stack);
519 VARRAY_POP (g->stack);
520 if (!TEST_BIT (g->visited, x))
521 elim_create (g, x);
522 }
523 }
524
525 /* If there are any pending constant copies, issue them now. */
526 while (VARRAY_ACTIVE_SIZE (g->const_copies) > 0)
527 {
528 tree src, dest;
529 src = VARRAY_TOP_TREE (g->const_copies);
530 VARRAY_POP (g->const_copies);
531 dest = VARRAY_TOP_TREE (g->const_copies);
532 VARRAY_POP (g->const_copies);
533 insert_copy_on_edge (e, dest, src);
534 }
535 }
536
537
538 /* Shortcut routine to print messages to file F of the form:
539 "STR1 EXPR1 STR2 EXPR2 STR3." */
540
541 static void
542 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
543 tree expr2, const char *str3)
544 {
545 fprintf (f, "%s", str1);
546 print_generic_expr (f, expr1, TDF_SLIM);
547 fprintf (f, "%s", str2);
548 print_generic_expr (f, expr2, TDF_SLIM);
549 fprintf (f, "%s", str3);
550 }
551
552
553 /* Shortcut routine to print abnormal edge messages to file F of the form:
554 "STR1 EXPR1 STR2 EXPR2 across edge E. */
555
556 static void
557 print_exprs_edge (FILE *f, edge e, const char *str1, tree expr1,
558 const char *str2, tree expr2)
559 {
560 print_exprs (f, str1, expr1, str2, expr2, " across an abnormal edge");
561 fprintf (f, " from BB%d->BB%d\n", e->src->index,
562 e->dest->index);
563 }
564
565
566 /* Coalesce partitions in MAP which are live across abnormal edges in GRAPH.
567 RV is the root variable groupings of the partitions in MAP. Since code
568 cannot be inserted on these edges, failure to coalesce something across
569 an abnormal edge is an error. */
570
571 static void
572 coalesce_abnormal_edges (var_map map, conflict_graph graph, root_var_p rv)
573 {
574 basic_block bb;
575 edge e;
576 tree phi, var, tmp;
577 int x, y, z;
578 edge_iterator ei;
579
580 /* Code cannot be inserted on abnormal edges. Look for all abnormal
581 edges, and coalesce any PHI results with their arguments across
582 that edge. */
583
584 FOR_EACH_BB (bb)
585 FOR_EACH_EDGE (e, ei, bb->succs)
586 if (e->dest != EXIT_BLOCK_PTR && e->flags & EDGE_ABNORMAL)
587 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
588 {
589 /* Visit each PHI on the destination side of this abnormal
590 edge, and attempt to coalesce the argument with the result. */
591 var = PHI_RESULT (phi);
592 x = var_to_partition (map, var);
593
594 /* Ignore results which are not relevant. */
595 if (x == NO_PARTITION)
596 continue;
597
598 tmp = PHI_ARG_DEF (phi, e->dest_idx);
599 #ifdef ENABLE_CHECKING
600 if (!phi_ssa_name_p (tmp))
601 {
602 print_exprs_edge (stderr, e,
603 "\nConstant argument in PHI. Can't insert :",
604 var, " = ", tmp);
605 internal_error ("SSA corruption");
606 }
607 #else
608 gcc_assert (phi_ssa_name_p (tmp));
609 #endif
610 y = var_to_partition (map, tmp);
611 gcc_assert (x != NO_PARTITION);
612 gcc_assert (y != NO_PARTITION);
613 #ifdef ENABLE_CHECKING
614 if (root_var_find (rv, x) != root_var_find (rv, y))
615 {
616 print_exprs_edge (stderr, e, "\nDifferent root vars: ",
617 root_var (rv, root_var_find (rv, x)),
618 " and ",
619 root_var (rv, root_var_find (rv, y)));
620 internal_error ("SSA corruption");
621 }
622 #else
623 gcc_assert (root_var_find (rv, x) == root_var_find (rv, y));
624 #endif
625
626 if (x != y)
627 {
628 #ifdef ENABLE_CHECKING
629 if (conflict_graph_conflict_p (graph, x, y))
630 {
631 print_exprs_edge (stderr, e, "\n Conflict ",
632 partition_to_var (map, x),
633 " and ", partition_to_var (map, y));
634 internal_error ("SSA corruption");
635 }
636 #else
637 gcc_assert (!conflict_graph_conflict_p (graph, x, y));
638 #endif
639
640 /* Now map the partitions back to their real variables. */
641 var = partition_to_var (map, x);
642 tmp = partition_to_var (map, y);
643 if (dump_file && (dump_flags & TDF_DETAILS))
644 {
645 print_exprs_edge (dump_file, e,
646 "ABNORMAL: Coalescing ",
647 var, " and ", tmp);
648 }
649 z = var_union (map, var, tmp);
650 #ifdef ENABLE_CHECKING
651 if (z == NO_PARTITION)
652 {
653 print_exprs_edge (stderr, e, "\nUnable to coalesce",
654 partition_to_var (map, x), " and ",
655 partition_to_var (map, y));
656 internal_error ("SSA corruption");
657 }
658 #else
659 gcc_assert (z != NO_PARTITION);
660 #endif
661 gcc_assert (z == x || z == y);
662 if (z == x)
663 conflict_graph_merge_regs (graph, x, y);
664 else
665 conflict_graph_merge_regs (graph, y, x);
666 }
667 }
668 }
669
670
671 /* Reduce the number of live ranges in MAP. Live range information is
672 returned if FLAGS indicates that we are combining temporaries, otherwise
673 NULL is returned. The only partitions which are associated with actual
674 variables at this point are those which are forced to be coalesced for
675 various reason. (live on entry, live across abnormal edges, etc.). */
676
677 static tree_live_info_p
678 coalesce_ssa_name (var_map map, int flags)
679 {
680 unsigned num, x, i;
681 sbitmap live;
682 tree var, phi;
683 root_var_p rv;
684 tree_live_info_p liveinfo;
685 var_ann_t ann;
686 conflict_graph graph;
687 basic_block bb;
688 coalesce_list_p cl = NULL;
689
690 if (num_var_partitions (map) <= 1)
691 return NULL;
692
693 /* If no preference given, use cheap coalescing of all partitions. */
694 if ((flags & (SSANORM_COALESCE_PARTITIONS | SSANORM_USE_COALESCE_LIST)) == 0)
695 flags |= SSANORM_COALESCE_PARTITIONS;
696
697 liveinfo = calculate_live_on_entry (map);
698 calculate_live_on_exit (liveinfo);
699 rv = root_var_init (map);
700
701 /* Remove single element variable from the list. */
702 root_var_compact (rv);
703
704 if (flags & SSANORM_USE_COALESCE_LIST)
705 {
706 cl = create_coalesce_list (map);
707
708 /* Add all potential copies via PHI arguments to the list. */
709 FOR_EACH_BB (bb)
710 {
711 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
712 {
713 tree res = PHI_RESULT (phi);
714 int p = var_to_partition (map, res);
715 if (p == NO_PARTITION)
716 continue;
717 for (x = 0; x < (unsigned)PHI_NUM_ARGS (phi); x++)
718 {
719 tree arg = PHI_ARG_DEF (phi, x);
720 int p2;
721
722 if (TREE_CODE (arg) != SSA_NAME)
723 continue;
724 if (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg))
725 continue;
726 p2 = var_to_partition (map, PHI_ARG_DEF (phi, x));
727 if (p2 != NO_PARTITION)
728 add_coalesce (cl, p, p2, 1);
729 }
730 }
731 }
732
733 /* Coalesce all the result decls together. */
734 var = NULL_TREE;
735 i = 0;
736 for (x = 0; x < num_var_partitions (map); x++)
737 {
738 tree p = partition_to_var (map, x);
739 if (TREE_CODE (SSA_NAME_VAR(p)) == RESULT_DECL)
740 {
741 if (var == NULL_TREE)
742 {
743 var = p;
744 i = x;
745 }
746 else
747 add_coalesce (cl, i, x, 1);
748 }
749 }
750 }
751
752 /* Build a conflict graph. */
753 graph = build_tree_conflict_graph (liveinfo, rv, cl);
754
755 if (cl)
756 {
757 if (dump_file && (dump_flags & TDF_DETAILS))
758 {
759 fprintf (dump_file, "Before sorting:\n");
760 dump_coalesce_list (dump_file, cl);
761 }
762
763 sort_coalesce_list (cl);
764
765 if (dump_file && (dump_flags & TDF_DETAILS))
766 {
767 fprintf (dump_file, "\nAfter sorting:\n");
768 dump_coalesce_list (dump_file, cl);
769 }
770 }
771
772 /* Put the single element variables back in. */
773 root_var_decompact (rv);
774
775 /* First, coalesce all live on entry variables to their root variable.
776 This will ensure the first use is coming from the correct location. */
777
778 live = sbitmap_alloc (num_var_partitions (map));
779 sbitmap_zero (live);
780
781 /* Set 'live' vector to indicate live on entry partitions. */
782 num = num_var_partitions (map);
783 for (x = 0 ; x < num; x++)
784 {
785 var = partition_to_var (map, x);
786 if (default_def (SSA_NAME_VAR (var)) == var)
787 SET_BIT (live, x);
788 }
789
790 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
791 {
792 delete_tree_live_info (liveinfo);
793 liveinfo = NULL;
794 }
795
796 /* Assign root variable as partition representative for each live on entry
797 partition. */
798 EXECUTE_IF_SET_IN_SBITMAP (live, 0, x,
799 {
800 var = root_var (rv, root_var_find (rv, x));
801 ann = var_ann (var);
802 /* If these aren't already coalesced... */
803 if (partition_to_var (map, x) != var)
804 {
805 /* This root variable should have not already been assigned
806 to another partition which is not coalesced with this one. */
807 gcc_assert (!ann->out_of_ssa_tag);
808
809 if (dump_file && (dump_flags & TDF_DETAILS))
810 {
811 print_exprs (dump_file, "Must coalesce ",
812 partition_to_var (map, x),
813 " with the root variable ", var, ".\n");
814 }
815
816 change_partition_var (map, var, x);
817 }
818 });
819
820 sbitmap_free (live);
821
822 /* Coalesce partitions live across abnormal edges. */
823 coalesce_abnormal_edges (map, graph, rv);
824
825 if (dump_file && (dump_flags & TDF_DETAILS))
826 dump_var_map (dump_file, map);
827
828 /* Coalesce partitions. */
829 if (flags & SSANORM_USE_COALESCE_LIST)
830 coalesce_tpa_members (rv, graph, map, cl,
831 ((dump_flags & TDF_DETAILS) ? dump_file
832 : NULL));
833
834
835 if (flags & SSANORM_COALESCE_PARTITIONS)
836 coalesce_tpa_members (rv, graph, map, NULL,
837 ((dump_flags & TDF_DETAILS) ? dump_file
838 : NULL));
839 if (cl)
840 delete_coalesce_list (cl);
841 root_var_delete (rv);
842 conflict_graph_delete (graph);
843
844 return liveinfo;
845 }
846
847
848 /* Take the ssa-name var_map MAP, and assign real variables to each
849 partition. */
850
851 static void
852 assign_vars (var_map map)
853 {
854 int x, i, num, rep;
855 tree t, var;
856 var_ann_t ann;
857 root_var_p rv;
858
859 rv = root_var_init (map);
860 if (!rv)
861 return;
862
863 /* Coalescing may already have forced some partitions to their root
864 variable. Find these and tag them. */
865
866 num = num_var_partitions (map);
867 for (x = 0; x < num; x++)
868 {
869 var = partition_to_var (map, x);
870 if (TREE_CODE (var) != SSA_NAME)
871 {
872 /* Coalescing will already have verified that more than one
873 partition doesn't have the same root variable. Simply marked
874 the variable as assigned. */
875 ann = var_ann (var);
876 ann->out_of_ssa_tag = 1;
877 if (dump_file && (dump_flags & TDF_DETAILS))
878 {
879 fprintf (dump_file, "partition %d has variable ", x);
880 print_generic_expr (dump_file, var, TDF_SLIM);
881 fprintf (dump_file, " assigned to it.\n");
882 }
883
884 }
885 }
886
887 num = root_var_num (rv);
888 for (x = 0; x < num; x++)
889 {
890 var = root_var (rv, x);
891 ann = var_ann (var);
892 for (i = root_var_first_partition (rv, x);
893 i != ROOT_VAR_NONE;
894 i = root_var_next_partition (rv, i))
895 {
896 t = partition_to_var (map, i);
897
898 if (t == var || TREE_CODE (t) != SSA_NAME)
899 continue;
900
901 rep = var_to_partition (map, t);
902
903 if (!ann->out_of_ssa_tag)
904 {
905 if (dump_file && (dump_flags & TDF_DETAILS))
906 print_exprs (dump_file, "", t, " --> ", var, "\n");
907 change_partition_var (map, var, rep);
908 continue;
909 }
910
911 if (dump_file && (dump_flags & TDF_DETAILS))
912 print_exprs (dump_file, "", t, " not coalesced with ", var,
913 "");
914
915 var = create_temp (t);
916 change_partition_var (map, var, rep);
917 ann = var_ann (var);
918
919 if (dump_file && (dump_flags & TDF_DETAILS))
920 {
921 fprintf (dump_file, " --> New temp: '");
922 print_generic_expr (dump_file, var, TDF_SLIM);
923 fprintf (dump_file, "'\n");
924 }
925 }
926 }
927
928 root_var_delete (rv);
929 }
930
931
932 /* Replace use operand P with whatever variable it has been rewritten to based
933 on the partitions in MAP. EXPR is an optional expression vector over SSA
934 versions which is used to replace P with an expression instead of a variable.
935 If the stmt is changed, return true. */
936
937 static inline bool
938 replace_use_variable (var_map map, use_operand_p p, tree *expr)
939 {
940 tree new_var;
941 tree var = USE_FROM_PTR (p);
942
943 /* Check if we are replacing this variable with an expression. */
944 if (expr)
945 {
946 int version = SSA_NAME_VERSION (var);
947 if (expr[version])
948 {
949 tree new_expr = TREE_OPERAND (expr[version], 1);
950 SET_USE (p, new_expr);
951 /* Clear the stmt's RHS, or GC might bite us. */
952 TREE_OPERAND (expr[version], 1) = NULL_TREE;
953 return true;
954 }
955 }
956
957 new_var = var_to_partition_to_var (map, var);
958 if (new_var)
959 {
960 SET_USE (p, new_var);
961 set_is_used (new_var);
962 return true;
963 }
964 return false;
965 }
966
967
968 /* Replace def operand DEF_P with whatever variable it has been rewritten to
969 based on the partitions in MAP. EXPR is an optional expression vector over
970 SSA versions which is used to replace DEF_P with an expression instead of a
971 variable. If the stmt is changed, return true. */
972
973 static inline bool
974 replace_def_variable (var_map map, def_operand_p def_p, tree *expr)
975 {
976 tree new_var;
977 tree var = DEF_FROM_PTR (def_p);
978
979 /* Check if we are replacing this variable with an expression. */
980 if (expr)
981 {
982 int version = SSA_NAME_VERSION (var);
983 if (expr[version])
984 {
985 tree new_expr = TREE_OPERAND (expr[version], 1);
986 SET_DEF (def_p, new_expr);
987 /* Clear the stmt's RHS, or GC might bite us. */
988 TREE_OPERAND (expr[version], 1) = NULL_TREE;
989 return true;
990 }
991 }
992
993 new_var = var_to_partition_to_var (map, var);
994 if (new_var)
995 {
996 SET_DEF (def_p, new_var);
997 set_is_used (new_var);
998 return true;
999 }
1000 return false;
1001 }
1002
1003
1004 /* Remove any PHI node which is a virtual PHI. */
1005
1006 static void
1007 eliminate_virtual_phis (void)
1008 {
1009 basic_block bb;
1010 tree phi, next;
1011
1012 FOR_EACH_BB (bb)
1013 {
1014 for (phi = phi_nodes (bb); phi; phi = next)
1015 {
1016 next = PHI_CHAIN (phi);
1017 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1018 {
1019 #ifdef ENABLE_CHECKING
1020 int i;
1021 /* There should be no arguments of this PHI which are in
1022 the partition list, or we get incorrect results. */
1023 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1024 {
1025 tree arg = PHI_ARG_DEF (phi, i);
1026 if (TREE_CODE (arg) == SSA_NAME
1027 && is_gimple_reg (SSA_NAME_VAR (arg)))
1028 {
1029 fprintf (stderr, "Argument of PHI is not virtual (");
1030 print_generic_expr (stderr, arg, TDF_SLIM);
1031 fprintf (stderr, "), but the result is :");
1032 print_generic_stmt (stderr, phi, TDF_SLIM);
1033 internal_error ("SSA corruption");
1034 }
1035 }
1036 #endif
1037 remove_phi_node (phi, NULL_TREE, bb);
1038 }
1039 }
1040 }
1041 }
1042
1043
1044 /* This routine will coalesce variables in MAP of the same type which do not
1045 interfere with each other. LIVEINFO is the live range info for variables
1046 of interest. This will both reduce the memory footprint of the stack, and
1047 allow us to coalesce together local copies of globals and scalarized
1048 component refs. */
1049
1050 static void
1051 coalesce_vars (var_map map, tree_live_info_p liveinfo)
1052 {
1053 basic_block bb;
1054 type_var_p tv;
1055 tree var;
1056 unsigned x, p, p2;
1057 coalesce_list_p cl;
1058 conflict_graph graph;
1059
1060 cl = create_coalesce_list (map);
1061
1062 /* Merge all the live on entry vectors for coalesced partitions. */
1063 for (x = 0; x < num_var_partitions (map); x++)
1064 {
1065 var = partition_to_var (map, x);
1066 p = var_to_partition (map, var);
1067 if (p != x)
1068 live_merge_and_clear (liveinfo, p, x);
1069 }
1070
1071 /* When PHI nodes are turned into copies, the result of each PHI node
1072 becomes live on entry to the block. Mark these now. */
1073 FOR_EACH_BB (bb)
1074 {
1075 tree phi, arg;
1076 unsigned p;
1077
1078 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1079 {
1080 p = var_to_partition (map, PHI_RESULT (phi));
1081
1082 /* Skip virtual PHI nodes. */
1083 if (p == (unsigned)NO_PARTITION)
1084 continue;
1085
1086 make_live_on_entry (liveinfo, bb, p);
1087
1088 /* Each argument is a potential copy operation. Add any arguments
1089 which are not coalesced to the result to the coalesce list. */
1090 for (x = 0; x < (unsigned)PHI_NUM_ARGS (phi); x++)
1091 {
1092 arg = PHI_ARG_DEF (phi, x);
1093 if (!phi_ssa_name_p (arg))
1094 continue;
1095 p2 = var_to_partition (map, arg);
1096 if (p2 == (unsigned)NO_PARTITION)
1097 continue;
1098 if (p != p2)
1099 add_coalesce (cl, p, p2, 1);
1100 }
1101 }
1102 }
1103
1104
1105 /* Re-calculate live on exit info. */
1106 calculate_live_on_exit (liveinfo);
1107
1108 if (dump_file && (dump_flags & TDF_DETAILS))
1109 {
1110 fprintf (dump_file, "Live range info for variable memory coalescing.\n");
1111 dump_live_info (dump_file, liveinfo, LIVEDUMP_ALL);
1112
1113 fprintf (dump_file, "Coalesce list from phi nodes:\n");
1114 dump_coalesce_list (dump_file, cl);
1115 }
1116
1117
1118 tv = type_var_init (map);
1119 if (dump_file)
1120 type_var_dump (dump_file, tv);
1121 type_var_compact (tv);
1122 if (dump_file)
1123 type_var_dump (dump_file, tv);
1124
1125 graph = build_tree_conflict_graph (liveinfo, tv, cl);
1126
1127 type_var_decompact (tv);
1128 if (dump_file && (dump_flags & TDF_DETAILS))
1129 {
1130 fprintf (dump_file, "type var list now looks like:n");
1131 type_var_dump (dump_file, tv);
1132
1133 fprintf (dump_file, "Coalesce list after conflict graph build:\n");
1134 dump_coalesce_list (dump_file, cl);
1135 }
1136
1137 sort_coalesce_list (cl);
1138 if (dump_file && (dump_flags & TDF_DETAILS))
1139 {
1140 fprintf (dump_file, "Coalesce list after sorting:\n");
1141 dump_coalesce_list (dump_file, cl);
1142 }
1143
1144 coalesce_tpa_members (tv, graph, map, cl,
1145 ((dump_flags & TDF_DETAILS) ? dump_file : NULL));
1146
1147 type_var_delete (tv);
1148 delete_coalesce_list (cl);
1149 }
1150
1151
1152 /* Temporary Expression Replacement (TER)
1153
1154 Replace SSA version variables during out-of-ssa with their defining
1155 expression if there is only one use of the variable.
1156
1157 A pass is made through the function, one block at a time. No cross block
1158 information is tracked.
1159
1160 Variables which only have one use, and whose defining stmt is considered
1161 a replaceable expression (see check_replaceable) are entered into
1162 consideration by adding a list of dependent partitions to the version_info
1163 vector for that ssa_name_version. This information comes from the partition
1164 mapping for each USE. At the same time, the partition_dep_list vector for
1165 these partitions have this version number entered into their lists.
1166
1167 When the use of a replaceable ssa_variable is encountered, the dependence
1168 list in version_info[] is moved to the "pending_dependence" list in case
1169 the current expression is also replaceable. (To be determined later in
1170 processing this stmt.) version_info[] for the version is then updated to
1171 point to the defining stmt and the 'replaceable' bit is set.
1172
1173 Any partition which is defined by a statement 'kills' any expression which
1174 is dependent on this partition. Every ssa version in the partitions'
1175 dependence list is removed from future consideration.
1176
1177 All virtual references are lumped together. Any expression which is
1178 dependent on any virtual variable (via a VUSE) has a dependence added
1179 to the special partition defined by VIRTUAL_PARTITION.
1180
1181 Whenever a V_MAY_DEF is seen, all expressions dependent this
1182 VIRTUAL_PARTITION are removed from consideration.
1183
1184 At the end of a basic block, all expression are removed from consideration
1185 in preparation for the next block.
1186
1187 The end result is a vector over SSA_NAME_VERSION which is passed back to
1188 rewrite_out_of_ssa. As the SSA variables are being rewritten, instead of
1189 replacing the SSA_NAME tree element with the partition it was assigned,
1190 it is replaced with the RHS of the defining expression. */
1191
1192
1193 /* Dependency list element. This can contain either a partition index or a
1194 version number, depending on which list it is in. */
1195
1196 typedef struct value_expr_d
1197 {
1198 int value;
1199 struct value_expr_d *next;
1200 } *value_expr_p;
1201
1202
1203 /* Temporary Expression Replacement (TER) table information. */
1204
1205 typedef struct temp_expr_table_d
1206 {
1207 var_map map;
1208 void **version_info;
1209 value_expr_p *partition_dep_list;
1210 bitmap replaceable;
1211 bool saw_replaceable;
1212 int virtual_partition;
1213 bitmap partition_in_use;
1214 value_expr_p free_list;
1215 value_expr_p pending_dependence;
1216 } *temp_expr_table_p;
1217
1218 /* Used to indicate a dependency on V_MAY_DEFs. */
1219 #define VIRTUAL_PARTITION(table) (table->virtual_partition)
1220
1221 static temp_expr_table_p new_temp_expr_table (var_map);
1222 static tree *free_temp_expr_table (temp_expr_table_p);
1223 static inline value_expr_p new_value_expr (temp_expr_table_p);
1224 static inline void free_value_expr (temp_expr_table_p, value_expr_p);
1225 static inline value_expr_p find_value_in_list (value_expr_p, int,
1226 value_expr_p *);
1227 static inline void add_value_to_list (temp_expr_table_p, value_expr_p *, int);
1228 static inline void add_info_to_list (temp_expr_table_p, value_expr_p *,
1229 value_expr_p);
1230 static value_expr_p remove_value_from_list (value_expr_p *, int);
1231 static void add_dependance (temp_expr_table_p, int, tree);
1232 static bool check_replaceable (temp_expr_table_p, tree);
1233 static void finish_expr (temp_expr_table_p, int, bool);
1234 static void mark_replaceable (temp_expr_table_p, tree);
1235 static inline void kill_expr (temp_expr_table_p, int, bool);
1236 static inline void kill_virtual_exprs (temp_expr_table_p, bool);
1237 static void find_replaceable_in_bb (temp_expr_table_p, basic_block);
1238 static tree *find_replaceable_exprs (var_map);
1239 static void dump_replaceable_exprs (FILE *, tree *);
1240
1241
1242 /* Create a new TER table for MAP. */
1243
1244 static temp_expr_table_p
1245 new_temp_expr_table (var_map map)
1246 {
1247 temp_expr_table_p t;
1248
1249 t = (temp_expr_table_p) xmalloc (sizeof (struct temp_expr_table_d));
1250 t->map = map;
1251
1252 t->version_info = xcalloc (num_ssa_names + 1, sizeof (void *));
1253 t->partition_dep_list = xcalloc (num_var_partitions (map) + 1,
1254 sizeof (value_expr_p));
1255
1256 t->replaceable = BITMAP_XMALLOC ();
1257 t->partition_in_use = BITMAP_XMALLOC ();
1258
1259 t->saw_replaceable = false;
1260 t->virtual_partition = num_var_partitions (map);
1261 t->free_list = NULL;
1262 t->pending_dependence = NULL;
1263
1264 return t;
1265 }
1266
1267
1268 /* Free TER table T. If there are valid replacements, return the expression
1269 vector. */
1270
1271 static tree *
1272 free_temp_expr_table (temp_expr_table_p t)
1273 {
1274 value_expr_p p;
1275 tree *ret = NULL;
1276
1277 #ifdef ENABLE_CHECKING
1278 unsigned x;
1279 for (x = 0; x <= num_var_partitions (t->map); x++)
1280 gcc_assert (!t->partition_dep_list[x]);
1281 #endif
1282
1283 while ((p = t->free_list))
1284 {
1285 t->free_list = p->next;
1286 free (p);
1287 }
1288
1289 BITMAP_XFREE (t->partition_in_use);
1290 BITMAP_XFREE (t->replaceable);
1291
1292 free (t->partition_dep_list);
1293 if (t->saw_replaceable)
1294 ret = (tree *)t->version_info;
1295 else
1296 free (t->version_info);
1297
1298 free (t);
1299 return ret;
1300 }
1301
1302
1303 /* Allocate a new value list node. Take it from the free list in TABLE if
1304 possible. */
1305
1306 static inline value_expr_p
1307 new_value_expr (temp_expr_table_p table)
1308 {
1309 value_expr_p p;
1310 if (table->free_list)
1311 {
1312 p = table->free_list;
1313 table->free_list = p->next;
1314 }
1315 else
1316 p = (value_expr_p) xmalloc (sizeof (struct value_expr_d));
1317
1318 return p;
1319 }
1320
1321
1322 /* Add value list node P to the free list in TABLE. */
1323
1324 static inline void
1325 free_value_expr (temp_expr_table_p table, value_expr_p p)
1326 {
1327 p->next = table->free_list;
1328 table->free_list = p;
1329 }
1330
1331
1332 /* Find VALUE if it's in LIST. Return a pointer to the list object if found,
1333 else return NULL. If LAST_PTR is provided, it will point to the previous
1334 item upon return, or NULL if this is the first item in the list. */
1335
1336 static inline value_expr_p
1337 find_value_in_list (value_expr_p list, int value, value_expr_p *last_ptr)
1338 {
1339 value_expr_p curr;
1340 value_expr_p last = NULL;
1341
1342 for (curr = list; curr; last = curr, curr = curr->next)
1343 {
1344 if (curr->value == value)
1345 break;
1346 }
1347 if (last_ptr)
1348 *last_ptr = last;
1349 return curr;
1350 }
1351
1352
1353 /* Add VALUE to LIST, if it isn't already present. TAB is the expression
1354 table */
1355
1356 static inline void
1357 add_value_to_list (temp_expr_table_p tab, value_expr_p *list, int value)
1358 {
1359 value_expr_p info;
1360
1361 if (!find_value_in_list (*list, value, NULL))
1362 {
1363 info = new_value_expr (tab);
1364 info->value = value;
1365 info->next = *list;
1366 *list = info;
1367 }
1368 }
1369
1370
1371 /* Add value node INFO if it's value isn't already in LIST. Free INFO if
1372 it is already in the list. TAB is the expression table. */
1373
1374 static inline void
1375 add_info_to_list (temp_expr_table_p tab, value_expr_p *list, value_expr_p info)
1376 {
1377 if (find_value_in_list (*list, info->value, NULL))
1378 free_value_expr (tab, info);
1379 else
1380 {
1381 info->next = *list;
1382 *list = info;
1383 }
1384 }
1385
1386
1387 /* Look for VALUE in LIST. If found, remove it from the list and return it's
1388 pointer. */
1389
1390 static value_expr_p
1391 remove_value_from_list (value_expr_p *list, int value)
1392 {
1393 value_expr_p info, last;
1394
1395 info = find_value_in_list (*list, value, &last);
1396 if (!info)
1397 return NULL;
1398 if (!last)
1399 *list = info->next;
1400 else
1401 last->next = info->next;
1402
1403 return info;
1404 }
1405
1406
1407 /* Add a dependency between the def of ssa VERSION and VAR. If VAR is
1408 replaceable by an expression, add a dependence each of the elements of the
1409 expression. These are contained in the pending list. TAB is the
1410 expression table. */
1411
1412 static void
1413 add_dependance (temp_expr_table_p tab, int version, tree var)
1414 {
1415 int i, x;
1416 value_expr_p info;
1417
1418 i = SSA_NAME_VERSION (var);
1419 if (bitmap_bit_p (tab->replaceable, i))
1420 {
1421 /* This variable is being substituted, so use whatever dependences
1422 were queued up when we marked this as replaceable earlier. */
1423 while ((info = tab->pending_dependence))
1424 {
1425 tab->pending_dependence = info->next;
1426 /* Get the partition this variable was dependent on. Reuse this
1427 object to represent the current expression instead. */
1428 x = info->value;
1429 info->value = version;
1430 add_info_to_list (tab, &(tab->partition_dep_list[x]), info);
1431 add_value_to_list (tab,
1432 (value_expr_p *)&(tab->version_info[version]), x);
1433 bitmap_set_bit (tab->partition_in_use, x);
1434 }
1435 }
1436 else
1437 {
1438 i = var_to_partition (tab->map, var);
1439 gcc_assert (i != NO_PARTITION);
1440 add_value_to_list (tab, &(tab->partition_dep_list[i]), version);
1441 add_value_to_list (tab,
1442 (value_expr_p *)&(tab->version_info[version]), i);
1443 bitmap_set_bit (tab->partition_in_use, i);
1444 }
1445 }
1446
1447
1448 /* Check if expression STMT is suitable for replacement in table TAB. If so,
1449 create an expression entry. Return true if this stmt is replaceable. */
1450
1451 static bool
1452 check_replaceable (temp_expr_table_p tab, tree stmt)
1453 {
1454 stmt_ann_t ann;
1455 vuse_optype vuseops;
1456 def_optype defs;
1457 use_optype uses;
1458 tree var, def;
1459 int num_use_ops, version;
1460 var_map map = tab->map;
1461 ssa_op_iter iter;
1462
1463 if (TREE_CODE (stmt) != MODIFY_EXPR)
1464 return false;
1465
1466 ann = stmt_ann (stmt);
1467 defs = DEF_OPS (ann);
1468
1469 /* Punt if there is more than 1 def, or more than 1 use. */
1470 if (NUM_DEFS (defs) != 1)
1471 return false;
1472 def = DEF_OP (defs, 0);
1473 if (version_ref_count (map, def) != 1)
1474 return false;
1475
1476 /* There must be no V_MAY_DEFS. */
1477 if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) != 0)
1478 return false;
1479
1480 /* There must be no V_MUST_DEFS. */
1481 if (NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) != 0)
1482 return false;
1483
1484 /* Float expressions must go through memory if float-store is on. */
1485 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
1486 return false;
1487
1488 uses = USE_OPS (ann);
1489 num_use_ops = NUM_USES (uses);
1490 vuseops = VUSE_OPS (ann);
1491
1492 /* Any expression which has no virtual operands and no real operands
1493 should have been propagated if it's possible to do anything with them.
1494 If this happens here, it probably exists that way for a reason, so we
1495 won't touch it. An example is:
1496 b_4 = &tab
1497 There are no virtual uses nor any real uses, so we just leave this
1498 alone to be safe. */
1499
1500 if (num_use_ops == 0 && NUM_VUSES (vuseops) == 0)
1501 return false;
1502
1503 version = SSA_NAME_VERSION (def);
1504
1505 /* Add this expression to the dependency list for each use partition. */
1506 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
1507 {
1508 add_dependance (tab, version, var);
1509 }
1510
1511 /* If there are VUSES, add a dependence on virtual defs. */
1512 if (NUM_VUSES (vuseops) != 0)
1513 {
1514 add_value_to_list (tab, (value_expr_p *)&(tab->version_info[version]),
1515 VIRTUAL_PARTITION (tab));
1516 add_value_to_list (tab,
1517 &(tab->partition_dep_list[VIRTUAL_PARTITION (tab)]),
1518 version);
1519 bitmap_set_bit (tab->partition_in_use, VIRTUAL_PARTITION (tab));
1520 }
1521
1522 return true;
1523 }
1524
1525
1526 /* This function will remove the expression for VERSION from replacement
1527 consideration.n table TAB If 'replace' is true, it is marked as
1528 replaceable, otherwise not. */
1529
1530 static void
1531 finish_expr (temp_expr_table_p tab, int version, bool replace)
1532 {
1533 value_expr_p info, tmp;
1534 int partition;
1535
1536 /* Remove this expression from its dependent lists. The partition dependence
1537 list is retained and transfered later to whomever uses this version. */
1538 for (info = (value_expr_p) tab->version_info[version]; info; info = tmp)
1539 {
1540 partition = info->value;
1541 gcc_assert (tab->partition_dep_list[partition]);
1542 tmp = remove_value_from_list (&(tab->partition_dep_list[partition]),
1543 version);
1544 gcc_assert (tmp);
1545 free_value_expr (tab, tmp);
1546 /* Only clear the bit when the dependency list is emptied via
1547 a replacement. Otherwise kill_expr will take care of it. */
1548 if (!(tab->partition_dep_list[partition]) && replace)
1549 bitmap_clear_bit (tab->partition_in_use, partition);
1550 tmp = info->next;
1551 if (!replace)
1552 free_value_expr (tab, info);
1553 }
1554
1555 if (replace)
1556 {
1557 tab->saw_replaceable = true;
1558 bitmap_set_bit (tab->replaceable, version);
1559 }
1560 else
1561 {
1562 gcc_assert (!bitmap_bit_p (tab->replaceable, version));
1563 tab->version_info[version] = NULL;
1564 }
1565 }
1566
1567
1568 /* Mark the expression associated with VAR as replaceable, and enter
1569 the defining stmt into the version_info table TAB. */
1570
1571 static void
1572 mark_replaceable (temp_expr_table_p tab, tree var)
1573 {
1574 value_expr_p info;
1575 int version = SSA_NAME_VERSION (var);
1576 finish_expr (tab, version, true);
1577
1578 /* Move the dependence list to the pending list. */
1579 if (tab->version_info[version])
1580 {
1581 info = (value_expr_p) tab->version_info[version];
1582 for ( ; info->next; info = info->next)
1583 continue;
1584 info->next = tab->pending_dependence;
1585 tab->pending_dependence = (value_expr_p)tab->version_info[version];
1586 }
1587
1588 tab->version_info[version] = SSA_NAME_DEF_STMT (var);
1589 }
1590
1591
1592 /* This function marks any expression in TAB which is dependent on PARTITION
1593 as NOT replaceable. CLEAR_BIT is used to determine whether partition_in_use
1594 should have its bit cleared. Since this routine can be called within an
1595 EXECUTE_IF_SET_IN_BITMAP, the bit can't always be cleared. */
1596
1597 static inline void
1598 kill_expr (temp_expr_table_p tab, int partition, bool clear_bit)
1599 {
1600 value_expr_p ptr;
1601
1602 /* Mark every active expr dependent on this var as not replaceable. */
1603 while ((ptr = tab->partition_dep_list[partition]) != NULL)
1604 finish_expr (tab, ptr->value, false);
1605
1606 if (clear_bit)
1607 bitmap_clear_bit (tab->partition_in_use, partition);
1608 }
1609
1610
1611 /* This function kills all expressions in TAB which are dependent on virtual
1612 DEFs. CLEAR_BIT determines whether partition_in_use gets cleared. */
1613
1614 static inline void
1615 kill_virtual_exprs (temp_expr_table_p tab, bool clear_bit)
1616 {
1617 kill_expr (tab, VIRTUAL_PARTITION (tab), clear_bit);
1618 }
1619
1620
1621 /* This function processes basic block BB, and looks for variables which can
1622 be replaced by their expressions. Results are stored in TAB. */
1623
1624 static void
1625 find_replaceable_in_bb (temp_expr_table_p tab, basic_block bb)
1626 {
1627 block_stmt_iterator bsi;
1628 tree stmt, def;
1629 stmt_ann_t ann;
1630 int partition;
1631 var_map map = tab->map;
1632 value_expr_p p;
1633 ssa_op_iter iter;
1634
1635 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1636 {
1637 stmt = bsi_stmt (bsi);
1638 ann = stmt_ann (stmt);
1639
1640 /* Determine if this stmt finishes an existing expression. */
1641 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_USE)
1642 {
1643 if (tab->version_info[SSA_NAME_VERSION (def)])
1644 {
1645 /* Mark expression as replaceable unless stmt is volatile. */
1646 if (!ann->has_volatile_ops)
1647 mark_replaceable (tab, def);
1648 else
1649 finish_expr (tab, SSA_NAME_VERSION (def), false);
1650 }
1651 }
1652
1653 /* Next, see if this stmt kills off an active expression. */
1654 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
1655 {
1656 partition = var_to_partition (map, def);
1657 if (partition != NO_PARTITION && tab->partition_dep_list[partition])
1658 kill_expr (tab, partition, true);
1659 }
1660
1661 /* Now see if we are creating a new expression or not. */
1662 if (!ann->has_volatile_ops)
1663 check_replaceable (tab, stmt);
1664
1665 /* Free any unused dependency lists. */
1666 while ((p = tab->pending_dependence))
1667 {
1668 tab->pending_dependence = p->next;
1669 free_value_expr (tab, p);
1670 }
1671
1672 /* A V_MAY_DEF kills any expression using a virtual operand. */
1673 if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) > 0)
1674 kill_virtual_exprs (tab, true);
1675
1676 /* A V_MUST_DEF kills any expression using a virtual operand. */
1677 if (NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) > 0)
1678 kill_virtual_exprs (tab, true);
1679 }
1680 }
1681
1682
1683 /* This function is the driver routine for replacement of temporary expressions
1684 in the SSA->normal phase, operating on MAP. If there are replaceable
1685 expressions, a table is returned which maps SSA versions to the
1686 expressions they should be replaced with. A NULL_TREE indicates no
1687 replacement should take place. If there are no replacements at all,
1688 NULL is returned by the function, otherwise an expression vector indexed
1689 by SSA_NAME version numbers. */
1690
1691 static tree *
1692 find_replaceable_exprs (var_map map)
1693 {
1694 basic_block bb;
1695 unsigned i;
1696 temp_expr_table_p table;
1697 tree *ret;
1698
1699 table = new_temp_expr_table (map);
1700 FOR_EACH_BB (bb)
1701 {
1702 bitmap_iterator bi;
1703
1704 find_replaceable_in_bb (table, bb);
1705 EXECUTE_IF_SET_IN_BITMAP ((table->partition_in_use), 0, i, bi)
1706 {
1707 kill_expr (table, i, false);
1708 }
1709 }
1710
1711 ret = free_temp_expr_table (table);
1712 return ret;
1713 }
1714
1715
1716 /* Dump TER expression table EXPR to file F. */
1717
1718 static void
1719 dump_replaceable_exprs (FILE *f, tree *expr)
1720 {
1721 tree stmt, var;
1722 int x;
1723 fprintf (f, "\nReplacing Expressions\n");
1724 for (x = 0; x < (int)num_ssa_names + 1; x++)
1725 if (expr[x])
1726 {
1727 stmt = expr[x];
1728 var = DEF_OP (STMT_DEF_OPS (stmt), 0);
1729 print_generic_expr (f, var, TDF_SLIM);
1730 fprintf (f, " replace with --> ");
1731 print_generic_expr (f, TREE_OPERAND (stmt, 1), TDF_SLIM);
1732 fprintf (f, "\n");
1733 }
1734 fprintf (f, "\n");
1735 }
1736
1737
1738 /* Helper function for discover_nonconstant_array_refs.
1739 Look for ARRAY_REF nodes with non-constant indexes and mark them
1740 addressable. */
1741
1742 static tree
1743 discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
1744 void *data ATTRIBUTE_UNUSED)
1745 {
1746 tree t = *tp;
1747
1748 if (IS_TYPE_OR_DECL_P (t))
1749 *walk_subtrees = 0;
1750 else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1751 {
1752 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1753 && is_gimple_min_invariant (TREE_OPERAND (t, 1))
1754 && (!TREE_OPERAND (t, 2)
1755 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
1756 || (TREE_CODE (t) == COMPONENT_REF
1757 && (!TREE_OPERAND (t,2)
1758 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
1759 || TREE_CODE (t) == BIT_FIELD_REF
1760 || TREE_CODE (t) == REALPART_EXPR
1761 || TREE_CODE (t) == IMAGPART_EXPR
1762 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1763 || TREE_CODE (t) == NOP_EXPR
1764 || TREE_CODE (t) == CONVERT_EXPR)
1765 t = TREE_OPERAND (t, 0);
1766
1767 if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1768 {
1769 t = get_base_address (t);
1770 if (t && DECL_P (t))
1771 TREE_ADDRESSABLE (t) = 1;
1772 }
1773
1774 *walk_subtrees = 0;
1775 }
1776
1777 return NULL_TREE;
1778 }
1779
1780
1781 /* RTL expansion is not able to compile array references with variable
1782 offsets for arrays stored in single register. Discover such
1783 expressions and mark variables as addressable to avoid this
1784 scenario. */
1785
1786 static void
1787 discover_nonconstant_array_refs (void)
1788 {
1789 basic_block bb;
1790 block_stmt_iterator bsi;
1791
1792 FOR_EACH_BB (bb)
1793 {
1794 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1795 walk_tree (bsi_stmt_ptr (bsi), discover_nonconstant_array_refs_r,
1796 NULL , NULL);
1797 }
1798 }
1799
1800
1801 /* This function will rewrite the current program using the variable mapping
1802 found in MAP. If the replacement vector VALUES is provided, any
1803 occurrences of partitions with non-null entries in the vector will be
1804 replaced with the expression in the vector instead of its mapped
1805 variable. */
1806
1807 static void
1808 rewrite_trees (var_map map, tree *values)
1809 {
1810 elim_graph g;
1811 basic_block bb;
1812 block_stmt_iterator si;
1813 edge e;
1814 tree phi;
1815 bool changed;
1816
1817 #ifdef ENABLE_CHECKING
1818 /* Search for PHIs where the destination has no partition, but one
1819 or more arguments has a partition. This should not happen and can
1820 create incorrect code. */
1821 FOR_EACH_BB (bb)
1822 {
1823 tree phi;
1824
1825 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1826 {
1827 tree T0 = var_to_partition_to_var (map, PHI_RESULT (phi));
1828
1829 if (T0 == NULL_TREE)
1830 {
1831 int i;
1832
1833 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1834 {
1835 tree arg = PHI_ARG_DEF (phi, i);
1836
1837 if (TREE_CODE (arg) == SSA_NAME
1838 && var_to_partition (map, arg) != NO_PARTITION)
1839 {
1840 fprintf (stderr, "Argument of PHI is in a partition :(");
1841 print_generic_expr (stderr, arg, TDF_SLIM);
1842 fprintf (stderr, "), but the result is not :");
1843 print_generic_stmt (stderr, phi, TDF_SLIM);
1844 internal_error ("SSA corruption");
1845 }
1846 }
1847 }
1848 }
1849 }
1850 #endif
1851
1852 /* Replace PHI nodes with any required copies. */
1853 g = new_elim_graph (map->num_partitions);
1854 g->map = map;
1855 FOR_EACH_BB (bb)
1856 {
1857 for (si = bsi_start (bb); !bsi_end_p (si); )
1858 {
1859 size_t num_uses, num_defs;
1860 use_optype uses;
1861 def_optype defs;
1862 tree stmt = bsi_stmt (si);
1863 use_operand_p use_p;
1864 def_operand_p def_p;
1865 int remove = 0, is_copy = 0;
1866 stmt_ann_t ann;
1867 ssa_op_iter iter;
1868
1869 get_stmt_operands (stmt);
1870 ann = stmt_ann (stmt);
1871 changed = false;
1872
1873 if (TREE_CODE (stmt) == MODIFY_EXPR
1874 && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME))
1875 is_copy = 1;
1876
1877 uses = USE_OPS (ann);
1878 num_uses = NUM_USES (uses);
1879 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1880 {
1881 if (replace_use_variable (map, use_p, values))
1882 changed = true;
1883 }
1884
1885 defs = DEF_OPS (ann);
1886 num_defs = NUM_DEFS (defs);
1887
1888 /* Mark this stmt for removal if it is the list of replaceable
1889 expressions. */
1890 if (values && num_defs == 1)
1891 {
1892 tree def = DEF_OP (defs, 0);
1893 tree val;
1894 val = values[SSA_NAME_VERSION (def)];
1895 if (val)
1896 remove = 1;
1897 }
1898 if (!remove)
1899 {
1900 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1901 {
1902 if (replace_def_variable (map, def_p, NULL))
1903 changed = true;
1904
1905 /* If both SSA_NAMEs coalesce to the same variable,
1906 mark the now redundant copy for removal. */
1907 if (is_copy
1908 && num_uses == 1
1909 && (DEF_FROM_PTR (def_p) == USE_OP (uses, 0)))
1910 remove = 1;
1911 }
1912 if (changed & !remove)
1913 modify_stmt (stmt);
1914 }
1915
1916 /* Remove any stmts marked for removal. */
1917 if (remove)
1918 bsi_remove (&si);
1919 else
1920 bsi_next (&si);
1921 }
1922
1923 phi = phi_nodes (bb);
1924 if (phi)
1925 {
1926 edge_iterator ei;
1927 FOR_EACH_EDGE (e, ei, bb->preds)
1928 eliminate_phi (e, g);
1929 }
1930 }
1931
1932 delete_elim_graph (g);
1933 }
1934
1935
1936 /* These are the local work structures used to determine the best place to
1937 insert the copies that were placed on edges by the SSA->normal pass.. */
1938 static varray_type edge_leader = NULL;
1939 static varray_type GTY(()) stmt_list = NULL;
1940 static bitmap leader_has_match = NULL;
1941 static edge leader_match = NULL;
1942
1943
1944 /* Pass this function to make_forwarder_block so that all the edges with
1945 matching PENDING_STMT lists to 'curr_stmt_list' get redirected. */
1946 static bool
1947 same_stmt_list_p (edge e)
1948 {
1949 return (e->aux == (PTR) leader_match) ? true : false;
1950 }
1951
1952
1953 /* Return TRUE if S1 and S2 are equivalent copies. */
1954 static inline bool
1955 identical_copies_p (tree s1, tree s2)
1956 {
1957 #ifdef ENABLE_CHECKING
1958 gcc_assert (TREE_CODE (s1) == MODIFY_EXPR);
1959 gcc_assert (TREE_CODE (s2) == MODIFY_EXPR);
1960 gcc_assert (DECL_P (TREE_OPERAND (s1, 0)));
1961 gcc_assert (DECL_P (TREE_OPERAND (s2, 0)));
1962 #endif
1963
1964 if (TREE_OPERAND (s1, 0) != TREE_OPERAND (s2, 0))
1965 return false;
1966
1967 s1 = TREE_OPERAND (s1, 1);
1968 s2 = TREE_OPERAND (s2, 1);
1969
1970 if (s1 != s2)
1971 return false;
1972
1973 return true;
1974 }
1975
1976
1977 /* Compare the PENDING_STMT list for two edges, and return true if the lists
1978 contain the same sequence of copies. */
1979
1980 static inline bool
1981 identical_stmt_lists_p (edge e1, edge e2)
1982 {
1983 tree t1 = PENDING_STMT (e1);
1984 tree t2 = PENDING_STMT (e2);
1985 tree_stmt_iterator tsi1, tsi2;
1986
1987 gcc_assert (TREE_CODE (t1) == STATEMENT_LIST);
1988 gcc_assert (TREE_CODE (t2) == STATEMENT_LIST);
1989
1990 for (tsi1 = tsi_start (t1), tsi2 = tsi_start (t2);
1991 !tsi_end_p (tsi1) && !tsi_end_p (tsi2);
1992 tsi_next (&tsi1), tsi_next (&tsi2))
1993 {
1994 if (!identical_copies_p (tsi_stmt (tsi1), tsi_stmt (tsi2)))
1995 break;
1996 }
1997
1998 if (!tsi_end_p (tsi1) || ! tsi_end_p (tsi2))
1999 return false;
2000
2001 return true;
2002 }
2003
2004
2005 /* Look at all the incoming edges to block BB, and decide where the best place
2006 to insert the stmts on each edge are, and perform those insertions. Output
2007 any debug information to DEBUG_FILE. Return true if anything other than a
2008 standard edge insertion is done. */
2009
2010 static bool
2011 analyze_edges_for_bb (basic_block bb, FILE *debug_file)
2012 {
2013 edge e;
2014 edge_iterator ei;
2015 int count;
2016 unsigned int x;
2017 bool have_opportunity;
2018 block_stmt_iterator bsi;
2019 tree stmt;
2020 edge single_edge = NULL;
2021 bool is_label;
2022
2023 count = 0;
2024
2025 /* Blocks which contain at least one abnormal edge cannot use
2026 make_forwarder_block. Look for these blocks, and commit any PENDING_STMTs
2027 found on edges in these block. */
2028 have_opportunity = true;
2029 FOR_EACH_EDGE (e, ei, bb->preds)
2030 if (e->flags & EDGE_ABNORMAL)
2031 {
2032 have_opportunity = false;
2033 break;
2034 }
2035
2036 if (!have_opportunity)
2037 {
2038 FOR_EACH_EDGE (e, ei, bb->preds)
2039 if (PENDING_STMT (e))
2040 bsi_commit_one_edge_insert (e, NULL);
2041 return false;
2042 }
2043 /* Find out how many edges there are with interesting pending stmts on them.
2044 Commit the stmts on edges we are not interested in. */
2045 FOR_EACH_EDGE (e, ei, bb->preds)
2046 {
2047 if (PENDING_STMT (e))
2048 {
2049 gcc_assert (!(e->flags & EDGE_ABNORMAL));
2050 if (e->flags & EDGE_FALLTHRU)
2051 {
2052 bsi = bsi_start (e->src);
2053 if (!bsi_end_p (bsi))
2054 {
2055 stmt = bsi_stmt (bsi);
2056 bsi_next (&bsi);
2057 gcc_assert (stmt != NULL_TREE);
2058 is_label = (TREE_CODE (stmt) == LABEL_EXPR);
2059 /* Punt if it has non-label stmts, or isn't local. */
2060 if (!is_label || DECL_NONLOCAL (TREE_OPERAND (stmt, 0))
2061 || !bsi_end_p (bsi))
2062 {
2063 bsi_commit_one_edge_insert (e, NULL);
2064 continue;
2065 }
2066 }
2067 }
2068 single_edge = e;
2069 count++;
2070 }
2071 }
2072
2073 /* If there aren't at least 2 edges, no sharing will happen. */
2074 if (count < 2)
2075 {
2076 if (single_edge)
2077 bsi_commit_one_edge_insert (single_edge, NULL);
2078 return false;
2079 }
2080
2081 /* Ensure that we have empty worklists. */
2082 if (edge_leader == NULL)
2083 {
2084 VARRAY_EDGE_INIT (edge_leader, 25, "edge_leader");
2085 VARRAY_TREE_INIT (stmt_list, 25, "stmt_list");
2086 leader_has_match = BITMAP_XMALLOC ();
2087 }
2088 else
2089 {
2090 #ifdef ENABLE_CHECKING
2091 gcc_assert (VARRAY_ACTIVE_SIZE (edge_leader) == 0);
2092 gcc_assert (VARRAY_ACTIVE_SIZE (stmt_list) == 0);
2093 gcc_assert (bitmap_empty_p (leader_has_match));
2094 #endif
2095 }
2096
2097 /* Find the "leader" block for each set of unique stmt lists. Preference is
2098 given to FALLTHRU blocks since they would need a GOTO to arrive at another
2099 block. The leader edge destination is the block which all the other edges
2100 with the same stmt list will be redirected to. */
2101 have_opportunity = false;
2102 FOR_EACH_EDGE (e, ei, bb->preds)
2103 {
2104 if (PENDING_STMT (e))
2105 {
2106 bool found = false;
2107
2108 /* Look for the same stmt list in edge leaders list. */
2109 for (x = 0; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2110 {
2111 edge leader = VARRAY_EDGE (edge_leader, x);
2112 if (identical_stmt_lists_p (leader, e))
2113 {
2114 /* Give this edge the same stmt list pointer. */
2115 PENDING_STMT (e) = NULL;
2116 e->aux = leader;
2117 bitmap_set_bit (leader_has_match, x);
2118 have_opportunity = found = true;
2119 break;
2120 }
2121 }
2122
2123 /* If no similar stmt list, add this edge to the leader list. */
2124 if (!found)
2125 {
2126 VARRAY_PUSH_EDGE (edge_leader, e);
2127 VARRAY_PUSH_TREE (stmt_list, PENDING_STMT (e));
2128 }
2129 }
2130 }
2131
2132 /* If there are no similar lists, just issue the stmts. */
2133 if (!have_opportunity)
2134 {
2135 for (x = 0; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2136 bsi_commit_one_edge_insert (VARRAY_EDGE (edge_leader, x), NULL);
2137 VARRAY_POP_ALL (edge_leader);
2138 VARRAY_POP_ALL (stmt_list);
2139 bitmap_clear (leader_has_match);
2140 return false;
2141 }
2142
2143
2144 if (debug_file)
2145 fprintf (debug_file, "\nOpportunities in BB %d for stmt/block reduction:\n",
2146 bb->index);
2147
2148
2149 /* For each common list, create a forwarding block and issue the stmt's
2150 in that block. */
2151 for (x = 0 ; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2152 if (bitmap_bit_p (leader_has_match, x))
2153 {
2154 edge new_edge, leader_edge;
2155 block_stmt_iterator bsi;
2156 tree curr_stmt_list;
2157
2158 leader_match = leader_edge = VARRAY_EDGE (edge_leader, x);
2159
2160 /* The tree_* cfg manipulation routines use the PENDING_EDGE field
2161 for various PHI manipulations, so it gets cleared whhen calls are
2162 made to make_forwarder_block(). So make sure the edge is clear,
2163 and use the saved stmt list. */
2164 PENDING_STMT (leader_edge) = NULL;
2165 leader_edge->aux = leader_edge;
2166 curr_stmt_list = VARRAY_TREE (stmt_list, x);
2167
2168 new_edge = make_forwarder_block (leader_edge->dest, same_stmt_list_p,
2169 NULL);
2170 bb = new_edge->dest;
2171 if (debug_file)
2172 {
2173 fprintf (debug_file, "Splitting BB %d for Common stmt list. ",
2174 leader_edge->dest->index);
2175 fprintf (debug_file, "Original block is now BB%d.\n", bb->index);
2176 print_generic_stmt (debug_file, curr_stmt_list, TDF_VOPS);
2177 }
2178
2179 FOR_EACH_EDGE (e, ei, new_edge->src->preds)
2180 {
2181 e->aux = NULL;
2182 if (debug_file)
2183 fprintf (debug_file, " Edge (%d->%d) lands here.\n",
2184 e->src->index, e->dest->index);
2185 }
2186
2187 bsi = bsi_last (leader_edge->dest);
2188 bsi_insert_after (&bsi, curr_stmt_list, BSI_NEW_STMT);
2189
2190 leader_match = NULL;
2191 /* We should never get a new block now. */
2192 }
2193 else
2194 {
2195 e = VARRAY_EDGE (edge_leader, x);
2196 PENDING_STMT (e) = VARRAY_TREE (stmt_list, x);
2197 bsi_commit_one_edge_insert (e, NULL);
2198 }
2199
2200
2201 /* Clear the working data structures. */
2202 VARRAY_POP_ALL (edge_leader);
2203 VARRAY_POP_ALL (stmt_list);
2204 bitmap_clear (leader_has_match);
2205
2206 return true;
2207 }
2208
2209
2210 /* This function will analyze the insertions which were performed on edges,
2211 and decide whether they should be left on that edge, or whether it is more
2212 efficient to emit some subset of them in a single block. All stmts are
2213 inserted somewhere, and if non-NULL, debug information is printed via
2214 DUMP_FILE. */
2215
2216 static void
2217 perform_edge_inserts (FILE *dump_file)
2218 {
2219 basic_block bb;
2220 bool changed = false;
2221
2222 if (dump_file)
2223 fprintf(dump_file, "Analyzing Edge Insertions.\n");
2224
2225 FOR_EACH_BB (bb)
2226 changed |= analyze_edges_for_bb (bb, dump_file);
2227
2228 changed |= analyze_edges_for_bb (EXIT_BLOCK_PTR, dump_file);
2229
2230 /* Clear out any tables which were created. */
2231 edge_leader = NULL;
2232 BITMAP_XFREE (leader_has_match);
2233
2234 if (changed)
2235 {
2236 free_dominance_info (CDI_DOMINATORS);
2237 free_dominance_info (CDI_POST_DOMINATORS);
2238 }
2239
2240 #ifdef ENABLE_CHECKING
2241 {
2242 edge_iterator ei;
2243 edge e;
2244 FOR_EACH_BB (bb)
2245 {
2246 FOR_EACH_EDGE (e, ei, bb->preds)
2247 {
2248 if (PENDING_STMT (e))
2249 error (" Pending stmts not issued on PRED edge (%d, %d)\n",
2250 e->src->index, e->dest->index);
2251 }
2252 FOR_EACH_EDGE (e, ei, bb->succs)
2253 {
2254 if (PENDING_STMT (e))
2255 error (" Pending stmts not issued on SUCC edge (%d, %d)\n",
2256 e->src->index, e->dest->index);
2257 }
2258 }
2259 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2260 {
2261 if (PENDING_STMT (e))
2262 error (" Pending stmts not issued on ENTRY edge (%d, %d)\n",
2263 e->src->index, e->dest->index);
2264 }
2265 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2266 {
2267 if (PENDING_STMT (e))
2268 error (" Pending stmts not issued on EXIT edge (%d, %d)\n",
2269 e->src->index, e->dest->index);
2270 }
2271 }
2272 #endif
2273 }
2274
2275
2276 /* Remove the variables specified in MAP from SSA form. Any debug information
2277 is sent to DUMP. FLAGS indicate what options should be used. */
2278
2279 static void
2280 remove_ssa_form (FILE *dump, var_map map, int flags)
2281 {
2282 tree_live_info_p liveinfo;
2283 basic_block bb;
2284 tree phi, next;
2285 FILE *save;
2286 tree *values = NULL;
2287
2288 save = dump_file;
2289 dump_file = dump;
2290
2291 /* If we are not combining temps, don't calculate live ranges for variables
2292 with only one SSA version. */
2293 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
2294 compact_var_map (map, VARMAP_NO_SINGLE_DEFS);
2295 else
2296 compact_var_map (map, VARMAP_NORMAL);
2297
2298 if (dump_file && (dump_flags & TDF_DETAILS))
2299 dump_var_map (dump_file, map);
2300
2301 liveinfo = coalesce_ssa_name (map, flags);
2302
2303 /* Make sure even single occurrence variables are in the list now. */
2304 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
2305 compact_var_map (map, VARMAP_NORMAL);
2306
2307 if (dump_file && (dump_flags & TDF_DETAILS))
2308 {
2309 fprintf (dump_file, "After Coalescing:\n");
2310 dump_var_map (dump_file, map);
2311 }
2312
2313 if (flags & SSANORM_PERFORM_TER)
2314 {
2315 values = find_replaceable_exprs (map);
2316 if (values && dump_file && (dump_flags & TDF_DETAILS))
2317 dump_replaceable_exprs (dump_file, values);
2318 }
2319
2320 /* Assign real variables to the partitions now. */
2321 assign_vars (map);
2322
2323 if (dump_file && (dump_flags & TDF_DETAILS))
2324 {
2325 fprintf (dump_file, "After Root variable replacement:\n");
2326 dump_var_map (dump_file, map);
2327 }
2328
2329 if ((flags & SSANORM_COMBINE_TEMPS) && liveinfo)
2330 {
2331 coalesce_vars (map, liveinfo);
2332 if (dump_file && (dump_flags & TDF_DETAILS))
2333 {
2334 fprintf (dump_file, "After variable memory coalescing:\n");
2335 dump_var_map (dump_file, map);
2336 }
2337 }
2338
2339 if (liveinfo)
2340 delete_tree_live_info (liveinfo);
2341
2342 rewrite_trees (map, values);
2343
2344 if (values)
2345 free (values);
2346
2347 /* Remove phi nodes which have been translated back to real variables. */
2348 FOR_EACH_BB (bb)
2349 {
2350 for (phi = phi_nodes (bb); phi; phi = next)
2351 {
2352 next = PHI_CHAIN (phi);
2353 if ((flags & SSANORM_REMOVE_ALL_PHIS)
2354 || var_to_partition (map, PHI_RESULT (phi)) != NO_PARTITION)
2355 remove_phi_node (phi, NULL_TREE, bb);
2356 }
2357 }
2358
2359 /* If any copies were inserted on edges, analyze and insert them now. */
2360 perform_edge_inserts (dump_file);
2361
2362 dump_file = save;
2363 }
2364
2365 /* Search every PHI node for arguments associated with backedges which
2366 we can trivially determine will need a copy (the argument is either
2367 not an SSA_NAME or the argument has a different underlying variable
2368 than the PHI result).
2369
2370 Insert a copy from the PHI argument to a new destination at the
2371 end of the block with the backedge to the top of the loop. Update
2372 the PHI argument to reference this new destination. */
2373
2374 static void
2375 insert_backedge_copies (void)
2376 {
2377 basic_block bb;
2378
2379 FOR_EACH_BB (bb)
2380 {
2381 tree phi;
2382
2383 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2384 {
2385 tree result = PHI_RESULT (phi);
2386 tree result_var;
2387 int i;
2388
2389 if (!is_gimple_reg (result))
2390 continue;
2391
2392 result_var = SSA_NAME_VAR (result);
2393 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
2394 {
2395 tree arg = PHI_ARG_DEF (phi, i);
2396 edge e = PHI_ARG_EDGE (phi, i);
2397
2398 /* If the argument is not an SSA_NAME, then we will
2399 need a constant initialization. If the argument is
2400 an SSA_NAME with a different underlying variable and
2401 we are not combining temporaries, then we will
2402 need a copy statement. */
2403 if ((e->flags & EDGE_DFS_BACK)
2404 && (TREE_CODE (arg) != SSA_NAME
2405 || (!flag_tree_combine_temps
2406 && SSA_NAME_VAR (arg) != result_var)))
2407 {
2408 tree stmt, name, last = NULL;
2409 block_stmt_iterator bsi;
2410
2411 bsi = bsi_last (PHI_ARG_EDGE (phi, i)->src);
2412 if (!bsi_end_p (bsi))
2413 last = bsi_stmt (bsi);
2414
2415 /* In theory the only way we ought to get back to the
2416 start of a loop should be with a COND_EXPR or GOTO_EXPR.
2417 However, better safe than sorry.
2418
2419 If the block ends with a control statment or
2420 something that might throw, then we have to
2421 insert this assignment before the last
2422 statement. Else insert it after the last statement. */
2423 if (last && stmt_ends_bb_p (last))
2424 {
2425 /* If the last statement in the block is the definition
2426 site of the PHI argument, then we can't insert
2427 anything after it. */
2428 if (TREE_CODE (arg) == SSA_NAME
2429 && SSA_NAME_DEF_STMT (arg) == last)
2430 continue;
2431 }
2432
2433 /* Create a new instance of the underlying
2434 variable of the PHI result. */
2435 stmt = build (MODIFY_EXPR, TREE_TYPE (result_var),
2436 NULL, PHI_ARG_DEF (phi, i));
2437 name = make_ssa_name (result_var, stmt);
2438 TREE_OPERAND (stmt, 0) = name;
2439
2440 /* Insert the new statement into the block and update
2441 the PHI node. */
2442 if (last && stmt_ends_bb_p (last))
2443 bsi_insert_before (&bsi, stmt, BSI_NEW_STMT);
2444 else
2445 bsi_insert_after (&bsi, stmt, BSI_NEW_STMT);
2446 modify_stmt (stmt);
2447 SET_PHI_ARG_DEF (phi, i, name);
2448 }
2449 }
2450 }
2451 }
2452 }
2453
2454 /* Take the current function out of SSA form, as described in
2455 R. Morgan, ``Building an Optimizing Compiler'',
2456 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
2457
2458 static void
2459 rewrite_out_of_ssa (void)
2460 {
2461 var_map map;
2462 int var_flags = 0;
2463 int ssa_flags = (SSANORM_REMOVE_ALL_PHIS | SSANORM_USE_COALESCE_LIST);
2464
2465 /* If elimination of a PHI requires inserting a copy on a backedge,
2466 then we will have to split the backedge which has numerous
2467 undesirable performance effects.
2468
2469 A significant number of such cases can be handled here by inserting
2470 copies into the loop itself. */
2471 insert_backedge_copies ();
2472
2473 if (!flag_tree_live_range_split)
2474 ssa_flags |= SSANORM_COALESCE_PARTITIONS;
2475
2476 eliminate_virtual_phis ();
2477
2478 if (dump_file && (dump_flags & TDF_DETAILS))
2479 dump_tree_cfg (dump_file, dump_flags & ~TDF_DETAILS);
2480
2481 /* We cannot allow unssa to un-gimplify trees before we instrument them. */
2482 if (flag_tree_ter && !flag_mudflap)
2483 var_flags = SSA_VAR_MAP_REF_COUNT;
2484
2485 map = create_ssa_var_map (var_flags);
2486
2487 if (flag_tree_combine_temps)
2488 ssa_flags |= SSANORM_COMBINE_TEMPS;
2489 if (flag_tree_ter && !flag_mudflap)
2490 ssa_flags |= SSANORM_PERFORM_TER;
2491
2492 remove_ssa_form (dump_file, map, ssa_flags);
2493
2494 if (dump_file && (dump_flags & TDF_DETAILS))
2495 dump_tree_cfg (dump_file, dump_flags & ~TDF_DETAILS);
2496
2497 /* Do some cleanups which reduce the amount of data the
2498 tree->rtl expanders deal with. */
2499 cfg_remove_useless_stmts ();
2500
2501 /* Flush out flow graph and SSA data. */
2502 delete_var_map (map);
2503
2504 /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */
2505 discover_nonconstant_array_refs ();
2506 }
2507
2508
2509 /* Define the parameters of the out of SSA pass. */
2510
2511 struct tree_opt_pass pass_del_ssa =
2512 {
2513 "optimized", /* name */
2514 NULL, /* gate */
2515 rewrite_out_of_ssa, /* execute */
2516 NULL, /* sub */
2517 NULL, /* next */
2518 0, /* static_pass_number */
2519 TV_TREE_SSA_TO_NORMAL, /* tv_id */
2520 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2521 0, /* properties_provided */
2522 /* ??? If TER is enabled, we also kill gimple. */
2523 PROP_ssa, /* properties_destroyed */
2524 TODO_verify_ssa | TODO_verify_flow
2525 | TODO_verify_stmts, /* todo_flags_start */
2526 TODO_dump_func | TODO_ggc_collect, /* todo_flags_finish */
2527 0 /* letter */
2528 };