Revert "[PR64164] Drop copyrename, use coalescible partition as base when optimizing."
[gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004-2015 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "input.h"
26 #include "alias.h"
27 #include "symtab.h"
28 #include "tree.h"
29 #include "fold-const.h"
30 #include "stor-layout.h"
31 #include "predict.h"
32 #include "hard-reg-set.h"
33 #include "function.h"
34 #include "dominance.h"
35 #include "cfg.h"
36 #include "cfgrtl.h"
37 #include "cfganal.h"
38 #include "basic-block.h"
39 #include "gimple-pretty-print.h"
40 #include "bitmap.h"
41 #include "sbitmap.h"
42 #include "tree-ssa-alias.h"
43 #include "internal-fn.h"
44 #include "tree-eh.h"
45 #include "gimple-expr.h"
46 #include "is-a.h"
47 #include "gimple.h"
48 #include "gimple-iterator.h"
49 #include "gimple-ssa.h"
50 #include "tree-cfg.h"
51 #include "tree-phinodes.h"
52 #include "ssa-iterators.h"
53 #include "stringpool.h"
54 #include "tree-ssanames.h"
55 #include "dumpfile.h"
56 #include "diagnostic-core.h"
57 #include "tree-ssa-live.h"
58 #include "tree-ssa-ter.h"
59 #include "tree-ssa-coalesce.h"
60 #include "tree-outof-ssa.h"
61
62 /* FIXME: A lot of code here deals with expanding to RTL. All that code
63 should be in cfgexpand.c. */
64 #include "rtl.h"
65 #include "flags.h"
66 #include "insn-config.h"
67 #include "expmed.h"
68 #include "dojump.h"
69 #include "explow.h"
70 #include "calls.h"
71 #include "emit-rtl.h"
72 #include "varasm.h"
73 #include "stmt.h"
74 #include "expr.h"
75
76 /* Return TRUE if expression STMT is suitable for replacement. */
77
78 bool
79 ssa_is_replaceable_p (gimple stmt)
80 {
81 use_operand_p use_p;
82 tree def;
83 gimple use_stmt;
84
85 /* Only consider modify stmts. */
86 if (!is_gimple_assign (stmt))
87 return false;
88
89 /* If the statement may throw an exception, it cannot be replaced. */
90 if (stmt_could_throw_p (stmt))
91 return false;
92
93 /* Punt if there is more than 1 def. */
94 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
95 if (!def)
96 return false;
97
98 /* Only consider definitions which have a single use. */
99 if (!single_imm_use (def, &use_p, &use_stmt))
100 return false;
101
102 /* Used in this block, but at the TOP of the block, not the end. */
103 if (gimple_code (use_stmt) == GIMPLE_PHI)
104 return false;
105
106 /* There must be no VDEFs. */
107 if (gimple_vdef (stmt))
108 return false;
109
110 /* Float expressions must go through memory if float-store is on. */
111 if (flag_float_store
112 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
113 return false;
114
115 /* An assignment with a register variable on the RHS is not
116 replaceable. */
117 if (gimple_assign_rhs_code (stmt) == VAR_DECL
118 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
119 return false;
120
121 /* No function calls can be replaced. */
122 if (is_gimple_call (stmt))
123 return false;
124
125 /* Leave any stmt with volatile operands alone as well. */
126 if (gimple_has_volatile_ops (stmt))
127 return false;
128
129 return true;
130 }
131
132
133 /* Used to hold all the components required to do SSA PHI elimination.
134 The node and pred/succ list is a simple linear list of nodes and
135 edges represented as pairs of nodes.
136
137 The predecessor and successor list: Nodes are entered in pairs, where
138 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
139 predecessors, all the odd elements are successors.
140
141 Rationale:
142 When implemented as bitmaps, very large programs SSA->Normal times were
143 being dominated by clearing the interference graph.
144
145 Typically this list of edges is extremely small since it only includes
146 PHI results and uses from a single edge which have not coalesced with
147 each other. This means that no virtual PHI nodes are included, and
148 empirical evidence suggests that the number of edges rarely exceed
149 3, and in a bootstrap of GCC, the maximum size encountered was 7.
150 This also limits the number of possible nodes that are involved to
151 rarely more than 6, and in the bootstrap of gcc, the maximum number
152 of nodes encountered was 12. */
153
154 typedef struct _elim_graph {
155 /* Size of the elimination vectors. */
156 int size;
157
158 /* List of nodes in the elimination graph. */
159 vec<int> nodes;
160
161 /* The predecessor and successor edge list. */
162 vec<int> edge_list;
163
164 /* Source locus on each edge */
165 vec<source_location> edge_locus;
166
167 /* Visited vector. */
168 sbitmap visited;
169
170 /* Stack for visited nodes. */
171 vec<int> stack;
172
173 /* The variable partition map. */
174 var_map map;
175
176 /* Edge being eliminated by this graph. */
177 edge e;
178
179 /* List of constant copies to emit. These are pushed on in pairs. */
180 vec<int> const_dests;
181 vec<tree> const_copies;
182
183 /* Source locations for any constant copies. */
184 vec<source_location> copy_locus;
185 } *elim_graph;
186
187
188 /* For an edge E find out a good source location to associate with
189 instructions inserted on edge E. If E has an implicit goto set,
190 use its location. Otherwise search instructions in predecessors
191 of E for a location, and use that one. That makes sense because
192 we insert on edges for PHI nodes, and effects of PHIs happen on
193 the end of the predecessor conceptually. */
194
195 static void
196 set_location_for_edge (edge e)
197 {
198 if (e->goto_locus)
199 {
200 set_curr_insn_location (e->goto_locus);
201 }
202 else
203 {
204 basic_block bb = e->src;
205 gimple_stmt_iterator gsi;
206
207 do
208 {
209 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
210 {
211 gimple stmt = gsi_stmt (gsi);
212 if (is_gimple_debug (stmt))
213 continue;
214 if (gimple_has_location (stmt) || gimple_block (stmt))
215 {
216 set_curr_insn_location (gimple_location (stmt));
217 return;
218 }
219 }
220 /* Nothing found in this basic block. Make a half-assed attempt
221 to continue with another block. */
222 if (single_pred_p (bb))
223 bb = single_pred (bb);
224 else
225 bb = e->src;
226 }
227 while (bb != e->src);
228 }
229 }
230
231 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
232 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
233 which we deduce the size to copy in that case. */
234
235 static inline rtx_insn *
236 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
237 {
238 start_sequence ();
239
240 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
241 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
242 if (GET_MODE (src) == BLKmode)
243 {
244 gcc_assert (GET_MODE (dest) == BLKmode);
245 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
246 }
247 else
248 emit_move_insn (dest, src);
249
250 rtx_insn *seq = get_insns ();
251 end_sequence ();
252
253 return seq;
254 }
255
256 /* Insert a copy instruction from partition SRC to DEST onto edge E. */
257
258 static void
259 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
260 {
261 tree var;
262 if (dump_file && (dump_flags & TDF_DETAILS))
263 {
264 fprintf (dump_file,
265 "Inserting a partition copy on edge BB%d->BB%d :"
266 "PART.%d = PART.%d",
267 e->src->index,
268 e->dest->index, dest, src);
269 fprintf (dump_file, "\n");
270 }
271
272 gcc_assert (SA.partition_to_pseudo[dest]);
273 gcc_assert (SA.partition_to_pseudo[src]);
274
275 set_location_for_edge (e);
276 /* If a locus is provided, override the default. */
277 if (locus)
278 set_curr_insn_location (locus);
279
280 var = partition_to_var (SA.map, src);
281 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
282 copy_rtx (SA.partition_to_pseudo[src]),
283 TYPE_UNSIGNED (TREE_TYPE (var)),
284 var);
285
286 insert_insn_on_edge (seq, e);
287 }
288
289 /* Insert a copy instruction from expression SRC to partition DEST
290 onto edge E. */
291
292 static void
293 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
294 {
295 rtx dest_rtx, seq, x;
296 machine_mode dest_mode, src_mode;
297 int unsignedp;
298 tree var;
299
300 if (dump_file && (dump_flags & TDF_DETAILS))
301 {
302 fprintf (dump_file,
303 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
304 e->src->index,
305 e->dest->index, dest);
306 print_generic_expr (dump_file, src, TDF_SLIM);
307 fprintf (dump_file, "\n");
308 }
309
310 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
311 gcc_assert (dest_rtx);
312
313 set_location_for_edge (e);
314 /* If a locus is provided, override the default. */
315 if (locus)
316 set_curr_insn_location (locus);
317
318 start_sequence ();
319
320 var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
321 src_mode = TYPE_MODE (TREE_TYPE (src));
322 dest_mode = GET_MODE (dest_rtx);
323 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
324 gcc_assert (!REG_P (dest_rtx)
325 || dest_mode == promote_decl_mode (var, &unsignedp));
326
327 if (src_mode != dest_mode)
328 {
329 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
330 x = convert_modes (dest_mode, src_mode, x, unsignedp);
331 }
332 else if (src_mode == BLKmode)
333 {
334 x = dest_rtx;
335 store_expr (src, x, 0, false);
336 }
337 else
338 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
339
340 if (x != dest_rtx)
341 emit_move_insn (dest_rtx, x);
342 seq = get_insns ();
343 end_sequence ();
344
345 insert_insn_on_edge (seq, e);
346 }
347
348 /* Insert a copy instruction from RTL expression SRC to partition DEST
349 onto edge E. */
350
351 static void
352 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
353 source_location locus)
354 {
355 if (dump_file && (dump_flags & TDF_DETAILS))
356 {
357 fprintf (dump_file,
358 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
359 e->src->index,
360 e->dest->index, dest);
361 print_simple_rtl (dump_file, src);
362 fprintf (dump_file, "\n");
363 }
364
365 gcc_assert (SA.partition_to_pseudo[dest]);
366
367 set_location_for_edge (e);
368 /* If a locus is provided, override the default. */
369 if (locus)
370 set_curr_insn_location (locus);
371
372 /* We give the destination as sizeexp in case src/dest are BLKmode
373 mems. Usually we give the source. As we result from SSA names
374 the left and right size should be the same (and no WITH_SIZE_EXPR
375 involved), so it doesn't matter. */
376 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
377 src, unsignedsrcp,
378 partition_to_var (SA.map, dest));
379
380 insert_insn_on_edge (seq, e);
381 }
382
383 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
384 onto edge E. */
385
386 static void
387 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
388 {
389 tree var;
390 if (dump_file && (dump_flags & TDF_DETAILS))
391 {
392 fprintf (dump_file,
393 "Inserting a temp copy on edge BB%d->BB%d : ",
394 e->src->index,
395 e->dest->index);
396 print_simple_rtl (dump_file, dest);
397 fprintf (dump_file, "= PART.%d\n", src);
398 }
399
400 gcc_assert (SA.partition_to_pseudo[src]);
401
402 set_location_for_edge (e);
403 /* If a locus is provided, override the default. */
404 if (locus)
405 set_curr_insn_location (locus);
406
407 var = partition_to_var (SA.map, src);
408 rtx_insn *seq = emit_partition_copy (dest,
409 copy_rtx (SA.partition_to_pseudo[src]),
410 TYPE_UNSIGNED (TREE_TYPE (var)),
411 var);
412
413 insert_insn_on_edge (seq, e);
414 }
415
416
417 /* Create an elimination graph with SIZE nodes and associated data
418 structures. */
419
420 static elim_graph
421 new_elim_graph (int size)
422 {
423 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
424
425 g->nodes.create (30);
426 g->const_dests.create (20);
427 g->const_copies.create (20);
428 g->copy_locus.create (10);
429 g->edge_list.create (20);
430 g->edge_locus.create (10);
431 g->stack.create (30);
432
433 g->visited = sbitmap_alloc (size);
434
435 return g;
436 }
437
438
439 /* Empty elimination graph G. */
440
441 static inline void
442 clear_elim_graph (elim_graph g)
443 {
444 g->nodes.truncate (0);
445 g->edge_list.truncate (0);
446 g->edge_locus.truncate (0);
447 }
448
449
450 /* Delete elimination graph G. */
451
452 static inline void
453 delete_elim_graph (elim_graph g)
454 {
455 sbitmap_free (g->visited);
456 g->stack.release ();
457 g->edge_list.release ();
458 g->const_copies.release ();
459 g->const_dests.release ();
460 g->nodes.release ();
461 g->copy_locus.release ();
462 g->edge_locus.release ();
463
464 free (g);
465 }
466
467
468 /* Return the number of nodes in graph G. */
469
470 static inline int
471 elim_graph_size (elim_graph g)
472 {
473 return g->nodes.length ();
474 }
475
476
477 /* Add NODE to graph G, if it doesn't exist already. */
478
479 static inline void
480 elim_graph_add_node (elim_graph g, int node)
481 {
482 int x;
483 int t;
484
485 FOR_EACH_VEC_ELT (g->nodes, x, t)
486 if (t == node)
487 return;
488 g->nodes.safe_push (node);
489 }
490
491
492 /* Add the edge PRED->SUCC to graph G. */
493
494 static inline void
495 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
496 {
497 g->edge_list.safe_push (pred);
498 g->edge_list.safe_push (succ);
499 g->edge_locus.safe_push (locus);
500 }
501
502
503 /* Remove an edge from graph G for which NODE is the predecessor, and
504 return the successor node. -1 is returned if there is no such edge. */
505
506 static inline int
507 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
508 {
509 int y;
510 unsigned x;
511 for (x = 0; x < g->edge_list.length (); x += 2)
512 if (g->edge_list[x] == node)
513 {
514 g->edge_list[x] = -1;
515 y = g->edge_list[x + 1];
516 g->edge_list[x + 1] = -1;
517 *locus = g->edge_locus[x / 2];
518 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
519 return y;
520 }
521 *locus = UNKNOWN_LOCATION;
522 return -1;
523 }
524
525
526 /* Find all the nodes in GRAPH which are successors to NODE in the
527 edge list. VAR will hold the partition number found. CODE is the
528 code fragment executed for every node found. */
529
530 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
531 do { \
532 unsigned x_; \
533 int y_; \
534 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
535 { \
536 y_ = (GRAPH)->edge_list[x_]; \
537 if (y_ != (NODE)) \
538 continue; \
539 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
540 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
541 CODE; \
542 } \
543 } while (0)
544
545
546 /* Find all the nodes which are predecessors of NODE in the edge list for
547 GRAPH. VAR will hold the partition number found. CODE is the
548 code fragment executed for every node found. */
549
550 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
551 do { \
552 unsigned x_; \
553 int y_; \
554 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
555 { \
556 y_ = (GRAPH)->edge_list[x_ + 1]; \
557 if (y_ != (NODE)) \
558 continue; \
559 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
560 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
561 CODE; \
562 } \
563 } while (0)
564
565
566 /* Add T to elimination graph G. */
567
568 static inline void
569 eliminate_name (elim_graph g, int T)
570 {
571 elim_graph_add_node (g, T);
572 }
573
574 /* Return true if this phi argument T should have a copy queued when using
575 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
576 test for ssa_name is definitely simpler, but don't let invalid contents
577 slip through in the meantime. */
578
579 static inline bool
580 queue_phi_copy_p (var_map map, tree t)
581 {
582 if (TREE_CODE (t) == SSA_NAME)
583 {
584 if (var_to_partition (map, t) == NO_PARTITION)
585 return true;
586 return false;
587 }
588 gcc_checking_assert (is_gimple_min_invariant (t));
589 return true;
590 }
591
592 /* Build elimination graph G for basic block BB on incoming PHI edge
593 G->e. */
594
595 static void
596 eliminate_build (elim_graph g)
597 {
598 tree Ti;
599 int p0, pi;
600 gphi_iterator gsi;
601
602 clear_elim_graph (g);
603
604 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
605 {
606 gphi *phi = gsi.phi ();
607 source_location locus;
608
609 p0 = var_to_partition (g->map, gimple_phi_result (phi));
610 /* Ignore results which are not in partitions. */
611 if (p0 == NO_PARTITION)
612 continue;
613
614 Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
615 locus = gimple_phi_arg_location_from_edge (phi, g->e);
616
617 /* If this argument is a constant, or a SSA_NAME which is being
618 left in SSA form, just queue a copy to be emitted on this
619 edge. */
620 if (queue_phi_copy_p (g->map, Ti))
621 {
622 /* Save constant copies until all other copies have been emitted
623 on this edge. */
624 g->const_dests.safe_push (p0);
625 g->const_copies.safe_push (Ti);
626 g->copy_locus.safe_push (locus);
627 }
628 else
629 {
630 pi = var_to_partition (g->map, Ti);
631 if (p0 != pi)
632 {
633 eliminate_name (g, p0);
634 eliminate_name (g, pi);
635 elim_graph_add_edge (g, p0, pi, locus);
636 }
637 }
638 }
639 }
640
641
642 /* Push successors of T onto the elimination stack for G. */
643
644 static void
645 elim_forward (elim_graph g, int T)
646 {
647 int S;
648 source_location locus;
649
650 bitmap_set_bit (g->visited, T);
651 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
652 {
653 if (!bitmap_bit_p (g->visited, S))
654 elim_forward (g, S);
655 });
656 g->stack.safe_push (T);
657 }
658
659
660 /* Return 1 if there unvisited predecessors of T in graph G. */
661
662 static int
663 elim_unvisited_predecessor (elim_graph g, int T)
664 {
665 int P;
666 source_location locus;
667
668 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
669 {
670 if (!bitmap_bit_p (g->visited, P))
671 return 1;
672 });
673 return 0;
674 }
675
676 /* Process predecessors first, and insert a copy. */
677
678 static void
679 elim_backward (elim_graph g, int T)
680 {
681 int P;
682 source_location locus;
683
684 bitmap_set_bit (g->visited, T);
685 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
686 {
687 if (!bitmap_bit_p (g->visited, P))
688 {
689 elim_backward (g, P);
690 insert_partition_copy_on_edge (g->e, P, T, locus);
691 }
692 });
693 }
694
695 /* Allocate a new pseudo register usable for storing values sitting
696 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
697
698 static rtx
699 get_temp_reg (tree name)
700 {
701 tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
702 tree type = TREE_TYPE (var);
703 int unsignedp;
704 machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
705 rtx x = gen_reg_rtx (reg_mode);
706 if (POINTER_TYPE_P (type))
707 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
708 return x;
709 }
710
711 /* Insert required copies for T in graph G. Check for a strongly connected
712 region, and create a temporary to break the cycle if one is found. */
713
714 static void
715 elim_create (elim_graph g, int T)
716 {
717 int P, S;
718 source_location locus;
719
720 if (elim_unvisited_predecessor (g, T))
721 {
722 tree var = partition_to_var (g->map, T);
723 rtx U = get_temp_reg (var);
724 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
725
726 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
727 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
728 {
729 if (!bitmap_bit_p (g->visited, P))
730 {
731 elim_backward (g, P);
732 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
733 }
734 });
735 }
736 else
737 {
738 S = elim_graph_remove_succ_edge (g, T, &locus);
739 if (S != -1)
740 {
741 bitmap_set_bit (g->visited, T);
742 insert_partition_copy_on_edge (g->e, T, S, locus);
743 }
744 }
745 }
746
747
748 /* Eliminate all the phi nodes on edge E in graph G. */
749
750 static void
751 eliminate_phi (edge e, elim_graph g)
752 {
753 int x;
754
755 gcc_assert (g->const_copies.length () == 0);
756 gcc_assert (g->copy_locus.length () == 0);
757
758 /* Abnormal edges already have everything coalesced. */
759 if (e->flags & EDGE_ABNORMAL)
760 return;
761
762 g->e = e;
763
764 eliminate_build (g);
765
766 if (elim_graph_size (g) != 0)
767 {
768 int part;
769
770 bitmap_clear (g->visited);
771 g->stack.truncate (0);
772
773 FOR_EACH_VEC_ELT (g->nodes, x, part)
774 {
775 if (!bitmap_bit_p (g->visited, part))
776 elim_forward (g, part);
777 }
778
779 bitmap_clear (g->visited);
780 while (g->stack.length () > 0)
781 {
782 x = g->stack.pop ();
783 if (!bitmap_bit_p (g->visited, x))
784 elim_create (g, x);
785 }
786 }
787
788 /* If there are any pending constant copies, issue them now. */
789 while (g->const_copies.length () > 0)
790 {
791 int dest;
792 tree src;
793 source_location locus;
794
795 src = g->const_copies.pop ();
796 dest = g->const_dests.pop ();
797 locus = g->copy_locus.pop ();
798 insert_value_copy_on_edge (e, dest, src, locus);
799 }
800 }
801
802
803 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
804 check to see if this allows another PHI node to be removed. */
805
806 static void
807 remove_gimple_phi_args (gphi *phi)
808 {
809 use_operand_p arg_p;
810 ssa_op_iter iter;
811
812 if (dump_file && (dump_flags & TDF_DETAILS))
813 {
814 fprintf (dump_file, "Removing Dead PHI definition: ");
815 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
816 }
817
818 FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
819 {
820 tree arg = USE_FROM_PTR (arg_p);
821 if (TREE_CODE (arg) == SSA_NAME)
822 {
823 /* Remove the reference to the existing argument. */
824 SET_USE (arg_p, NULL_TREE);
825 if (has_zero_uses (arg))
826 {
827 gimple stmt;
828 gimple_stmt_iterator gsi;
829
830 stmt = SSA_NAME_DEF_STMT (arg);
831
832 /* Also remove the def if it is a PHI node. */
833 if (gimple_code (stmt) == GIMPLE_PHI)
834 {
835 remove_gimple_phi_args (as_a <gphi *> (stmt));
836 gsi = gsi_for_stmt (stmt);
837 remove_phi_node (&gsi, true);
838 }
839
840 }
841 }
842 }
843 }
844
845 /* Remove any PHI node which is a virtual PHI, or a PHI with no uses. */
846
847 static void
848 eliminate_useless_phis (void)
849 {
850 basic_block bb;
851 gphi_iterator gsi;
852 tree result;
853
854 FOR_EACH_BB_FN (bb, cfun)
855 {
856 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
857 {
858 gphi *phi = gsi.phi ();
859 result = gimple_phi_result (phi);
860 if (virtual_operand_p (result))
861 {
862 #ifdef ENABLE_CHECKING
863 size_t i;
864 /* There should be no arguments which are not virtual, or the
865 results will be incorrect. */
866 for (i = 0; i < gimple_phi_num_args (phi); i++)
867 {
868 tree arg = PHI_ARG_DEF (phi, i);
869 if (TREE_CODE (arg) == SSA_NAME
870 && !virtual_operand_p (arg))
871 {
872 fprintf (stderr, "Argument of PHI is not virtual (");
873 print_generic_expr (stderr, arg, TDF_SLIM);
874 fprintf (stderr, "), but the result is :");
875 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
876 internal_error ("SSA corruption");
877 }
878 }
879 #endif
880 remove_phi_node (&gsi, true);
881 }
882 else
883 {
884 /* Also remove real PHIs with no uses. */
885 if (has_zero_uses (result))
886 {
887 remove_gimple_phi_args (phi);
888 remove_phi_node (&gsi, true);
889 }
890 else
891 gsi_next (&gsi);
892 }
893 }
894 }
895 }
896
897
898 /* This function will rewrite the current program using the variable mapping
899 found in MAP. If the replacement vector VALUES is provided, any
900 occurrences of partitions with non-null entries in the vector will be
901 replaced with the expression in the vector instead of its mapped
902 variable. */
903
904 static void
905 rewrite_trees (var_map map ATTRIBUTE_UNUSED)
906 {
907 #ifdef ENABLE_CHECKING
908 basic_block bb;
909 /* Search for PHIs where the destination has no partition, but one
910 or more arguments has a partition. This should not happen and can
911 create incorrect code. */
912 FOR_EACH_BB_FN (bb, cfun)
913 {
914 gphi_iterator gsi;
915 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
916 {
917 gphi *phi = gsi.phi ();
918 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
919 if (T0 == NULL_TREE)
920 {
921 size_t i;
922 for (i = 0; i < gimple_phi_num_args (phi); i++)
923 {
924 tree arg = PHI_ARG_DEF (phi, i);
925
926 if (TREE_CODE (arg) == SSA_NAME
927 && var_to_partition (map, arg) != NO_PARTITION)
928 {
929 fprintf (stderr, "Argument of PHI is in a partition :(");
930 print_generic_expr (stderr, arg, TDF_SLIM);
931 fprintf (stderr, "), but the result is not :");
932 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
933 internal_error ("SSA corruption");
934 }
935 }
936 }
937 }
938 }
939 #endif
940 }
941
942 /* Given the out-of-ssa info object SA (with prepared partitions)
943 eliminate all phi nodes in all basic blocks. Afterwards no
944 basic block will have phi nodes anymore and there are possibly
945 some RTL instructions inserted on edges. */
946
947 void
948 expand_phi_nodes (struct ssaexpand *sa)
949 {
950 basic_block bb;
951 elim_graph g = new_elim_graph (sa->map->num_partitions);
952 g->map = sa->map;
953
954 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
955 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
956 if (!gimple_seq_empty_p (phi_nodes (bb)))
957 {
958 edge e;
959 edge_iterator ei;
960 FOR_EACH_EDGE (e, ei, bb->preds)
961 eliminate_phi (e, g);
962 set_phi_nodes (bb, NULL);
963 /* We can't redirect EH edges in RTL land, so we need to do this
964 here. Redirection happens only when splitting is necessary,
965 which it is only for critical edges, normally. For EH edges
966 it might also be necessary when the successor has more than
967 one predecessor. In that case the edge is either required to
968 be fallthru (which EH edges aren't), or the predecessor needs
969 to end with a jump (which again, isn't the case with EH edges).
970 Hence, split all EH edges on which we inserted instructions
971 and whose successor has multiple predecessors. */
972 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
973 {
974 if (e->insns.r && (e->flags & EDGE_EH)
975 && !single_pred_p (e->dest))
976 {
977 rtx_insn *insns = e->insns.r;
978 basic_block bb;
979 e->insns.r = NULL;
980 bb = split_edge (e);
981 single_pred_edge (bb)->insns.r = insns;
982 }
983 else
984 ei_next (&ei);
985 }
986 }
987
988 delete_elim_graph (g);
989 }
990
991
992 /* Remove the ssa-names in the current function and translate them into normal
993 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
994 should also be used. */
995
996 static void
997 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
998 {
999 bitmap values = NULL;
1000 var_map map;
1001 unsigned i;
1002
1003 map = coalesce_ssa_name ();
1004
1005 /* Return to viewing the variable list as just all reference variables after
1006 coalescing has been performed. */
1007 partition_view_normal (map, false);
1008
1009 if (dump_file && (dump_flags & TDF_DETAILS))
1010 {
1011 fprintf (dump_file, "After Coalescing:\n");
1012 dump_var_map (dump_file, map);
1013 }
1014
1015 if (perform_ter)
1016 {
1017 values = find_replaceable_exprs (map);
1018 if (values && dump_file && (dump_flags & TDF_DETAILS))
1019 dump_replaceable_exprs (dump_file, values);
1020 }
1021
1022 rewrite_trees (map);
1023
1024 sa->map = map;
1025 sa->values = values;
1026 sa->partition_has_default_def = BITMAP_ALLOC (NULL);
1027 for (i = 1; i < num_ssa_names; i++)
1028 {
1029 tree t = ssa_name (i);
1030 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
1031 {
1032 int p = var_to_partition (map, t);
1033 if (p != NO_PARTITION)
1034 bitmap_set_bit (sa->partition_has_default_def, p);
1035 }
1036 }
1037 }
1038
1039
1040 /* If not already done so for basic block BB, assign increasing uids
1041 to each of its instructions. */
1042
1043 static void
1044 maybe_renumber_stmts_bb (basic_block bb)
1045 {
1046 unsigned i = 0;
1047 gimple_stmt_iterator gsi;
1048
1049 if (!bb->aux)
1050 return;
1051 bb->aux = NULL;
1052 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1053 {
1054 gimple stmt = gsi_stmt (gsi);
1055 gimple_set_uid (stmt, i);
1056 i++;
1057 }
1058 }
1059
1060
1061 /* Return true if we can determine that the SSA_NAMEs RESULT (a result
1062 of a PHI node) and ARG (one of its arguments) conflict. Return false
1063 otherwise, also when we simply aren't sure. */
1064
1065 static bool
1066 trivially_conflicts_p (basic_block bb, tree result, tree arg)
1067 {
1068 use_operand_p use;
1069 imm_use_iterator imm_iter;
1070 gimple defa = SSA_NAME_DEF_STMT (arg);
1071
1072 /* If ARG isn't defined in the same block it's too complicated for
1073 our little mind. */
1074 if (gimple_bb (defa) != bb)
1075 return false;
1076
1077 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
1078 {
1079 gimple use_stmt = USE_STMT (use);
1080 if (is_gimple_debug (use_stmt))
1081 continue;
1082 /* Now, if there's a use of RESULT that lies outside this basic block,
1083 then there surely is a conflict with ARG. */
1084 if (gimple_bb (use_stmt) != bb)
1085 return true;
1086 if (gimple_code (use_stmt) == GIMPLE_PHI)
1087 continue;
1088 /* The use now is in a real stmt of BB, so if ARG was defined
1089 in a PHI node (like RESULT) both conflict. */
1090 if (gimple_code (defa) == GIMPLE_PHI)
1091 return true;
1092 maybe_renumber_stmts_bb (bb);
1093 /* If the use of RESULT occurs after the definition of ARG,
1094 the two conflict too. */
1095 if (gimple_uid (defa) < gimple_uid (use_stmt))
1096 return true;
1097 }
1098
1099 return false;
1100 }
1101
1102
1103 /* Search every PHI node for arguments associated with backedges which
1104 we can trivially determine will need a copy (the argument is either
1105 not an SSA_NAME or the argument has a different underlying variable
1106 than the PHI result).
1107
1108 Insert a copy from the PHI argument to a new destination at the
1109 end of the block with the backedge to the top of the loop. Update
1110 the PHI argument to reference this new destination. */
1111
1112 static void
1113 insert_backedge_copies (void)
1114 {
1115 basic_block bb;
1116 gphi_iterator gsi;
1117
1118 mark_dfs_back_edges ();
1119
1120 FOR_EACH_BB_FN (bb, cfun)
1121 {
1122 /* Mark block as possibly needing calculation of UIDs. */
1123 bb->aux = &bb->aux;
1124
1125 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1126 {
1127 gphi *phi = gsi.phi ();
1128 tree result = gimple_phi_result (phi);
1129 size_t i;
1130
1131 if (virtual_operand_p (result))
1132 continue;
1133
1134 for (i = 0; i < gimple_phi_num_args (phi); i++)
1135 {
1136 tree arg = gimple_phi_arg_def (phi, i);
1137 edge e = gimple_phi_arg_edge (phi, i);
1138
1139 /* If the argument is not an SSA_NAME, then we will need a
1140 constant initialization. If the argument is an SSA_NAME with
1141 a different underlying variable then a copy statement will be
1142 needed. */
1143 if ((e->flags & EDGE_DFS_BACK)
1144 && (TREE_CODE (arg) != SSA_NAME
1145 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1146 || trivially_conflicts_p (bb, result, arg)))
1147 {
1148 tree name;
1149 gassign *stmt;
1150 gimple last = NULL;
1151 gimple_stmt_iterator gsi2;
1152
1153 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1154 if (!gsi_end_p (gsi2))
1155 last = gsi_stmt (gsi2);
1156
1157 /* In theory the only way we ought to get back to the
1158 start of a loop should be with a COND_EXPR or GOTO_EXPR.
1159 However, better safe than sorry.
1160 If the block ends with a control statement or
1161 something that might throw, then we have to
1162 insert this assignment before the last
1163 statement. Else insert it after the last statement. */
1164 if (last && stmt_ends_bb_p (last))
1165 {
1166 /* If the last statement in the block is the definition
1167 site of the PHI argument, then we can't insert
1168 anything after it. */
1169 if (TREE_CODE (arg) == SSA_NAME
1170 && SSA_NAME_DEF_STMT (arg) == last)
1171 continue;
1172 }
1173
1174 /* Create a new instance of the underlying variable of the
1175 PHI result. */
1176 name = copy_ssa_name (result);
1177 stmt = gimple_build_assign (name,
1178 gimple_phi_arg_def (phi, i));
1179
1180 /* copy location if present. */
1181 if (gimple_phi_arg_has_location (phi, i))
1182 gimple_set_location (stmt,
1183 gimple_phi_arg_location (phi, i));
1184
1185 /* Insert the new statement into the block and update
1186 the PHI node. */
1187 if (last && stmt_ends_bb_p (last))
1188 gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
1189 else
1190 gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
1191 SET_PHI_ARG_DEF (phi, i, name);
1192 }
1193 }
1194 }
1195
1196 /* Unmark this block again. */
1197 bb->aux = NULL;
1198 }
1199 }
1200
1201 /* Free all memory associated with going out of SSA form. SA is
1202 the outof-SSA info object. */
1203
1204 void
1205 finish_out_of_ssa (struct ssaexpand *sa)
1206 {
1207 free (sa->partition_to_pseudo);
1208 if (sa->values)
1209 BITMAP_FREE (sa->values);
1210 delete_var_map (sa->map);
1211 BITMAP_FREE (sa->partition_has_default_def);
1212 memset (sa, 0, sizeof *sa);
1213 }
1214
1215 /* Take the current function out of SSA form, translating PHIs as described in
1216 R. Morgan, ``Building an Optimizing Compiler'',
1217 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
1218
1219 unsigned int
1220 rewrite_out_of_ssa (struct ssaexpand *sa)
1221 {
1222 /* If elimination of a PHI requires inserting a copy on a backedge,
1223 then we will have to split the backedge which has numerous
1224 undesirable performance effects.
1225
1226 A significant number of such cases can be handled here by inserting
1227 copies into the loop itself. */
1228 insert_backedge_copies ();
1229
1230
1231 /* Eliminate PHIs which are of no use, such as virtual or dead phis. */
1232 eliminate_useless_phis ();
1233
1234 if (dump_file && (dump_flags & TDF_DETAILS))
1235 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1236
1237 remove_ssa_form (flag_tree_ter, sa);
1238
1239 if (dump_file && (dump_flags & TDF_DETAILS))
1240 gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
1241
1242 return 0;
1243 }