* tree-outof-ssa.c: Fix a comment typo.
[gcc.git] / gcc / tree-outof-ssa.c
1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004 Free Software Foundation, Inc.
3 Contributed by Andrew Macleod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "ggc.h"
31 #include "langhooks.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "output.h"
35 #include "errors.h"
36 #include "expr.h"
37 #include "function.h"
38 #include "diagnostic.h"
39 #include "bitmap.h"
40 #include "tree-flow.h"
41 #include "tree-gimple.h"
42 #include "tree-inline.h"
43 #include "varray.h"
44 #include "timevar.h"
45 #include "hashtab.h"
46 #include "tree-dump.h"
47 #include "tree-ssa-live.h"
48 #include "tree-pass.h"
49
50 /* Flags to pass to remove_ssa_form. */
51
52 #define SSANORM_PERFORM_TER 0x1
53 #define SSANORM_COMBINE_TEMPS 0x2
54 #define SSANORM_REMOVE_ALL_PHIS 0x4
55 #define SSANORM_COALESCE_PARTITIONS 0x8
56 #define SSANORM_USE_COALESCE_LIST 0x10
57
58 /* Used to hold all the components required to do SSA PHI elimination.
59 The node and pred/succ list is a simple linear list of nodes and
60 edges represented as pairs of nodes.
61
62 The predecessor and successor list: Nodes are entered in pairs, where
63 [0] ->PRED, [1]->SUCC. All the even indexes in the array represent
64 predecessors, all the odd elements are successors.
65
66 Rationale:
67 When implemented as bitmaps, very large programs SSA->Normal times were
68 being dominated by clearing the interference graph.
69
70 Typically this list of edges is extremely small since it only includes
71 PHI results and uses from a single edge which have not coalesced with
72 each other. This means that no virtual PHI nodes are included, and
73 empirical evidence suggests that the number of edges rarely exceed
74 3, and in a bootstrap of GCC, the maximum size encountered was 7.
75 This also limits the number of possible nodes that are involved to
76 rarely more than 6, and in the bootstrap of gcc, the maximum number
77 of nodes encountered was 12. */
78
79 typedef struct _elim_graph {
80 /* Size of the elimination vectors. */
81 int size;
82
83 /* List of nodes in the elimination graph. */
84 varray_type nodes;
85
86 /* The predecessor and successor edge list. */
87 varray_type edge_list;
88
89 /* Visited vector. */
90 sbitmap visited;
91
92 /* Stack for visited nodes. */
93 varray_type stack;
94
95 /* The variable partition map. */
96 var_map map;
97
98 /* Edge being eliminated by this graph. */
99 edge e;
100
101 /* List of constant copies to emit. These are pushed on in pairs. */
102 varray_type const_copies;
103 } *elim_graph;
104
105
106 /* Local functions. */
107 static tree create_temp (tree);
108 static void insert_copy_on_edge (edge, tree, tree);
109 static elim_graph new_elim_graph (int);
110 static inline void delete_elim_graph (elim_graph);
111 static inline void clear_elim_graph (elim_graph);
112 static inline int elim_graph_size (elim_graph);
113 static inline void elim_graph_add_node (elim_graph, tree);
114 static inline void elim_graph_add_edge (elim_graph, int, int);
115 static inline int elim_graph_remove_succ_edge (elim_graph, int);
116
117 static inline void eliminate_name (elim_graph, tree);
118 static void eliminate_build (elim_graph, basic_block, int);
119 static void elim_forward (elim_graph, int);
120 static int elim_unvisited_predecessor (elim_graph, int);
121 static void elim_backward (elim_graph, int);
122 static void elim_create (elim_graph, int);
123 static void eliminate_phi (edge, int, elim_graph);
124 static tree_live_info_p coalesce_ssa_name (var_map, int);
125 static void assign_vars (var_map);
126 static bool replace_use_variable (var_map, use_operand_p, tree *);
127 static bool replace_def_variable (var_map, def_operand_p, tree *);
128 static void eliminate_virtual_phis (void);
129 static void coalesce_abnormal_edges (var_map, conflict_graph, root_var_p);
130 static void print_exprs (FILE *, const char *, tree, const char *, tree,
131 const char *);
132 static void print_exprs_edge (FILE *, edge, const char *, tree, const char *,
133 tree);
134
135
136 /* Create a temporary variable based on the type of variable T. Use T's name
137 as the prefix. */
138
139 static tree
140 create_temp (tree t)
141 {
142 tree tmp;
143 const char *name = NULL;
144 tree type;
145
146 if (TREE_CODE (t) == SSA_NAME)
147 t = SSA_NAME_VAR (t);
148
149 gcc_assert (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL);
150
151 type = TREE_TYPE (t);
152 tmp = DECL_NAME (t);
153 if (tmp)
154 name = IDENTIFIER_POINTER (tmp);
155
156 if (name == NULL)
157 name = "temp";
158 tmp = create_tmp_var (type, name);
159 DECL_ARTIFICIAL (tmp) = DECL_ARTIFICIAL (t);
160 add_referenced_tmp_var (tmp);
161
162 /* add_referenced_tmp_var will create the annotation and set up some
163 of the flags in the annotation. However, some flags we need to
164 inherit from our original variable. */
165 var_ann (tmp)->type_mem_tag = var_ann (t)->type_mem_tag;
166 if (is_call_clobbered (t))
167 mark_call_clobbered (tmp);
168
169 return tmp;
170 }
171
172
173 /* This helper function fill insert a copy from a constant or variable SRC to
174 variable DEST on edge E. */
175
176 static void
177 insert_copy_on_edge (edge e, tree dest, tree src)
178 {
179 tree copy;
180
181 copy = build (MODIFY_EXPR, TREE_TYPE (dest), dest, src);
182 set_is_used (dest);
183
184 if (TREE_CODE (src) == ADDR_EXPR)
185 src = TREE_OPERAND (src, 0);
186 if (TREE_CODE (src) == VAR_DECL || TREE_CODE (src) == PARM_DECL)
187 set_is_used (src);
188
189 if (dump_file && (dump_flags & TDF_DETAILS))
190 {
191 fprintf (dump_file,
192 "Inserting a copy on edge BB%d->BB%d :",
193 e->src->index,
194 e->dest->index);
195 print_generic_expr (dump_file, copy, dump_flags);
196 fprintf (dump_file, "\n");
197 }
198
199 bsi_insert_on_edge (e, copy);
200 }
201
202
203 /* Create an elimination graph with SIZE nodes and associated data
204 structures. */
205
206 static elim_graph
207 new_elim_graph (int size)
208 {
209 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
210
211 VARRAY_TREE_INIT (g->nodes, 30, "Elimination Node List");
212 VARRAY_TREE_INIT (g->const_copies, 20, "Elimination Constant Copies");
213 VARRAY_INT_INIT (g->edge_list, 20, "Elimination Edge List");
214 VARRAY_INT_INIT (g->stack, 30, " Elimination Stack");
215
216 g->visited = sbitmap_alloc (size);
217
218 return g;
219 }
220
221
222 /* Empty elimination graph G. */
223
224 static inline void
225 clear_elim_graph (elim_graph g)
226 {
227 VARRAY_POP_ALL (g->nodes);
228 VARRAY_POP_ALL (g->edge_list);
229 }
230
231
232 /* Delete elimination graph G. */
233
234 static inline void
235 delete_elim_graph (elim_graph g)
236 {
237 sbitmap_free (g->visited);
238 free (g);
239 }
240
241
242 /* Return the number of nodes in graph G. */
243
244 static inline int
245 elim_graph_size (elim_graph g)
246 {
247 return VARRAY_ACTIVE_SIZE (g->nodes);
248 }
249
250
251 /* Add NODE to graph G, if it doesn't exist already. */
252
253 static inline void
254 elim_graph_add_node (elim_graph g, tree node)
255 {
256 int x;
257 for (x = 0; x < elim_graph_size (g); x++)
258 if (VARRAY_TREE (g->nodes, x) == node)
259 return;
260 VARRAY_PUSH_TREE (g->nodes, node);
261 }
262
263
264 /* Add the edge PRED->SUCC to graph G. */
265
266 static inline void
267 elim_graph_add_edge (elim_graph g, int pred, int succ)
268 {
269 VARRAY_PUSH_INT (g->edge_list, pred);
270 VARRAY_PUSH_INT (g->edge_list, succ);
271 }
272
273
274 /* Remove an edge from graph G for which NODE is the predecessor, and
275 return the successor node. -1 is returned if there is no such edge. */
276
277 static inline int
278 elim_graph_remove_succ_edge (elim_graph g, int node)
279 {
280 int y;
281 unsigned x;
282 for (x = 0; x < VARRAY_ACTIVE_SIZE (g->edge_list); x += 2)
283 if (VARRAY_INT (g->edge_list, x) == node)
284 {
285 VARRAY_INT (g->edge_list, x) = -1;
286 y = VARRAY_INT (g->edge_list, x + 1);
287 VARRAY_INT (g->edge_list, x + 1) = -1;
288 return y;
289 }
290 return -1;
291 }
292
293
294 /* Find all the nodes in GRAPH which are successors to NODE in the
295 edge list. VAR will hold the partition number found. CODE is the
296 code fragment executed for every node found. */
297
298 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, CODE) \
299 do { \
300 unsigned x_; \
301 int y_; \
302 for (x_ = 0; x_ < VARRAY_ACTIVE_SIZE ((GRAPH)->edge_list); x_ += 2) \
303 { \
304 y_ = VARRAY_INT ((GRAPH)->edge_list, x_); \
305 if (y_ != (NODE)) \
306 continue; \
307 (VAR) = VARRAY_INT ((GRAPH)->edge_list, x_ + 1); \
308 CODE; \
309 } \
310 } while (0)
311
312
313 /* Find all the nodes which are predecessors of NODE in the edge list for
314 GRAPH. VAR will hold the partition number found. CODE is the
315 code fragment executed for every node found. */
316
317 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, CODE) \
318 do { \
319 unsigned x_; \
320 int y_; \
321 for (x_ = 0; x_ < VARRAY_ACTIVE_SIZE ((GRAPH)->edge_list); x_ += 2) \
322 { \
323 y_ = VARRAY_INT ((GRAPH)->edge_list, x_ + 1); \
324 if (y_ != (NODE)) \
325 continue; \
326 (VAR) = VARRAY_INT ((GRAPH)->edge_list, x_); \
327 CODE; \
328 } \
329 } while (0)
330
331
332 /* Add T to elimination graph G. */
333
334 static inline void
335 eliminate_name (elim_graph g, tree T)
336 {
337 elim_graph_add_node (g, T);
338 }
339
340
341 /* Build elimination graph G for basic block BB on incoming PHI edge I. */
342
343 static void
344 eliminate_build (elim_graph g, basic_block B, int i)
345 {
346 tree phi;
347 tree T0, Ti;
348 int p0, pi;
349
350 clear_elim_graph (g);
351
352 for (phi = phi_nodes (B); phi; phi = PHI_CHAIN (phi))
353 {
354 T0 = var_to_partition_to_var (g->map, PHI_RESULT (phi));
355
356 /* Ignore results which are not in partitions. */
357 if (T0 == NULL_TREE)
358 continue;
359
360 if (PHI_ARG_EDGE (phi, i) == g->e)
361 Ti = PHI_ARG_DEF (phi, i);
362 else
363 {
364 /* On rare occasions, a PHI node may not have the arguments
365 in the same order as all of the other PHI nodes. If they don't
366 match, find the appropriate index here. */
367 pi = phi_arg_from_edge (phi, g->e);
368 gcc_assert (pi != -1);
369 Ti = PHI_ARG_DEF (phi, pi);
370 }
371
372 /* If this argument is a constant, or a SSA_NAME which is being
373 left in SSA form, just queue a copy to be emitted on this
374 edge. */
375 if (!phi_ssa_name_p (Ti)
376 || (TREE_CODE (Ti) == SSA_NAME
377 && var_to_partition (g->map, Ti) == NO_PARTITION))
378 {
379 /* Save constant copies until all other copies have been emitted
380 on this edge. */
381 VARRAY_PUSH_TREE (g->const_copies, T0);
382 VARRAY_PUSH_TREE (g->const_copies, Ti);
383 }
384 else
385 {
386 Ti = var_to_partition_to_var (g->map, Ti);
387 if (T0 != Ti)
388 {
389 eliminate_name (g, T0);
390 eliminate_name (g, Ti);
391 p0 = var_to_partition (g->map, T0);
392 pi = var_to_partition (g->map, Ti);
393 elim_graph_add_edge (g, p0, pi);
394 }
395 }
396 }
397 }
398
399
400 /* Push successors of T onto the elimination stack for G. */
401
402 static void
403 elim_forward (elim_graph g, int T)
404 {
405 int S;
406 SET_BIT (g->visited, T);
407 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S,
408 {
409 if (!TEST_BIT (g->visited, S))
410 elim_forward (g, S);
411 });
412 VARRAY_PUSH_INT (g->stack, T);
413 }
414
415
416 /* Return 1 if there unvisited predecessors of T in graph G. */
417
418 static int
419 elim_unvisited_predecessor (elim_graph g, int T)
420 {
421 int P;
422 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
423 {
424 if (!TEST_BIT (g->visited, P))
425 return 1;
426 });
427 return 0;
428 }
429
430 /* Process predecessors first, and insert a copy. */
431
432 static void
433 elim_backward (elim_graph g, int T)
434 {
435 int P;
436 SET_BIT (g->visited, T);
437 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
438 {
439 if (!TEST_BIT (g->visited, P))
440 {
441 elim_backward (g, P);
442 insert_copy_on_edge (g->e,
443 partition_to_var (g->map, P),
444 partition_to_var (g->map, T));
445 }
446 });
447 }
448
449 /* Insert required copies for T in graph G. Check for a strongly connected
450 region, and create a temporary to break the cycle if one is found. */
451
452 static void
453 elim_create (elim_graph g, int T)
454 {
455 tree U;
456 int P, S;
457
458 if (elim_unvisited_predecessor (g, T))
459 {
460 U = create_temp (partition_to_var (g->map, T));
461 insert_copy_on_edge (g->e, U, partition_to_var (g->map, T));
462 FOR_EACH_ELIM_GRAPH_PRED (g, T, P,
463 {
464 if (!TEST_BIT (g->visited, P))
465 {
466 elim_backward (g, P);
467 insert_copy_on_edge (g->e, partition_to_var (g->map, P), U);
468 }
469 });
470 }
471 else
472 {
473 S = elim_graph_remove_succ_edge (g, T);
474 if (S != -1)
475 {
476 SET_BIT (g->visited, T);
477 insert_copy_on_edge (g->e,
478 partition_to_var (g->map, T),
479 partition_to_var (g->map, S));
480 }
481 }
482
483 }
484
485 /* Eliminate all the phi nodes on edge E in graph G. I is the usual PHI
486 index that edge E's values are found on. */
487
488 static void
489 eliminate_phi (edge e, int i, elim_graph g)
490 {
491 int num_nodes = 0;
492 int x;
493 basic_block B = e->dest;
494
495 gcc_assert (i != -1);
496 gcc_assert (VARRAY_ACTIVE_SIZE (g->const_copies) == 0);
497
498 /* Abnormal edges already have everything coalesced, or the coalescer
499 would have aborted. */
500 if (e->flags & EDGE_ABNORMAL)
501 return;
502
503 num_nodes = num_var_partitions (g->map);
504 g->e = e;
505
506 eliminate_build (g, B, i);
507
508 if (elim_graph_size (g) != 0)
509 {
510 sbitmap_zero (g->visited);
511 VARRAY_POP_ALL (g->stack);
512
513 for (x = 0; x < elim_graph_size (g); x++)
514 {
515 tree var = VARRAY_TREE (g->nodes, x);
516 int p = var_to_partition (g->map, var);
517 if (!TEST_BIT (g->visited, p))
518 elim_forward (g, p);
519 }
520
521 sbitmap_zero (g->visited);
522 while (VARRAY_ACTIVE_SIZE (g->stack) > 0)
523 {
524 x = VARRAY_TOP_INT (g->stack);
525 VARRAY_POP (g->stack);
526 if (!TEST_BIT (g->visited, x))
527 elim_create (g, x);
528 }
529 }
530
531 /* If there are any pending constant copies, issue them now. */
532 while (VARRAY_ACTIVE_SIZE (g->const_copies) > 0)
533 {
534 tree src, dest;
535 src = VARRAY_TOP_TREE (g->const_copies);
536 VARRAY_POP (g->const_copies);
537 dest = VARRAY_TOP_TREE (g->const_copies);
538 VARRAY_POP (g->const_copies);
539 insert_copy_on_edge (e, dest, src);
540 }
541 }
542
543
544 /* Shortcut routine to print messages to file F of the form:
545 "STR1 EXPR1 STR2 EXPR2 STR3." */
546
547 static void
548 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
549 tree expr2, const char *str3)
550 {
551 fprintf (f, "%s", str1);
552 print_generic_expr (f, expr1, TDF_SLIM);
553 fprintf (f, "%s", str2);
554 print_generic_expr (f, expr2, TDF_SLIM);
555 fprintf (f, "%s", str3);
556 }
557
558
559 /* Shortcut routine to print abnormal edge messages to file F of the form:
560 "STR1 EXPR1 STR2 EXPR2 across edge E. */
561
562 static void
563 print_exprs_edge (FILE *f, edge e, const char *str1, tree expr1,
564 const char *str2, tree expr2)
565 {
566 print_exprs (f, str1, expr1, str2, expr2, " across an abnormal edge");
567 fprintf (f, " from BB%d->BB%d\n", e->src->index,
568 e->dest->index);
569 }
570
571
572 /* Coalesce partitions in MAP which are live across abnormal edges in GRAPH.
573 RV is the root variable groupings of the partitions in MAP. Since code
574 cannot be inserted on these edges, failure to coalesce something across
575 an abnormal edge is an error. */
576
577 static void
578 coalesce_abnormal_edges (var_map map, conflict_graph graph, root_var_p rv)
579 {
580 basic_block bb;
581 edge e;
582 tree phi, var, tmp;
583 int x, y;
584 edge_iterator ei;
585
586 /* Code cannot be inserted on abnormal edges. Look for all abnormal
587 edges, and coalesce any PHI results with their arguments across
588 that edge. */
589
590 FOR_EACH_BB (bb)
591 FOR_EACH_EDGE (e, ei, bb->succs)
592 if (e->dest != EXIT_BLOCK_PTR && e->flags & EDGE_ABNORMAL)
593 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
594 {
595 /* Visit each PHI on the destination side of this abnormal
596 edge, and attempt to coalesce the argument with the result. */
597 var = PHI_RESULT (phi);
598 x = var_to_partition (map, var);
599
600 /* Ignore results which are not relevant. */
601 if (x == NO_PARTITION)
602 continue;
603
604 y = phi_arg_from_edge (phi, e);
605 gcc_assert (y != -1);
606
607 tmp = PHI_ARG_DEF (phi, y);
608 #ifdef ENABLE_CHECKING
609 if (!phi_ssa_name_p (tmp))
610 {
611 print_exprs_edge (stderr, e,
612 "\nConstant argument in PHI. Can't insert :",
613 var, " = ", tmp);
614 internal_error ("SSA corruption");
615 }
616 #else
617 gcc_assert (phi_ssa_name_p (tmp));
618 #endif
619 y = var_to_partition (map, tmp);
620 gcc_assert (x != NO_PARTITION);
621 gcc_assert (y != NO_PARTITION);
622 #ifdef ENABLE_CHECKING
623 if (root_var_find (rv, x) != root_var_find (rv, y))
624 {
625 print_exprs_edge (stderr, e, "\nDifferent root vars: ",
626 root_var (rv, root_var_find (rv, x)),
627 " and ",
628 root_var (rv, root_var_find (rv, y)));
629 internal_error ("SSA corruption");
630 }
631 #else
632 gcc_assert (root_var_find (rv, x) == root_var_find (rv, y));
633 #endif
634
635 if (x != y)
636 {
637 #ifdef ENABLE_CHECKING
638 if (conflict_graph_conflict_p (graph, x, y))
639 {
640 print_exprs_edge (stderr, e, "\n Conflict ",
641 partition_to_var (map, x),
642 " and ", partition_to_var (map, y));
643 internal_error ("SSA corruption");
644 }
645 #else
646 gcc_assert (!conflict_graph_conflict_p (graph, x, y));
647 #endif
648
649 /* Now map the partitions back to their real variables. */
650 var = partition_to_var (map, x);
651 tmp = partition_to_var (map, y);
652 if (dump_file && (dump_flags & TDF_DETAILS))
653 {
654 print_exprs_edge (dump_file, e,
655 "ABNORMAL: Coalescing ",
656 var, " and ", tmp);
657 }
658 #ifdef ENABLE_CHECKING
659 if (var_union (map, var, tmp) == NO_PARTITION)
660 {
661 print_exprs_edge (stderr, e, "\nUnable to coalesce",
662 partition_to_var (map, x), " and ",
663 partition_to_var (map, y));
664 internal_error ("SSA corruption");
665 }
666 #else
667 gcc_assert (var_union (map, var, tmp) != NO_PARTITION);
668 #endif
669 conflict_graph_merge_regs (graph, x, y);
670 }
671 }
672 }
673
674
675 /* Reduce the number of live ranges in MAP. Live range information is
676 returned if FLAGS indicates that we are combining temporaries, otherwise
677 NULL is returned. The only partitions which are associated with actual
678 variables at this point are those which are forced to be coalesced for
679 various reason. (live on entry, live across abnormal edges, etc.). */
680
681 static tree_live_info_p
682 coalesce_ssa_name (var_map map, int flags)
683 {
684 unsigned num, x, i;
685 sbitmap live;
686 tree var, phi;
687 root_var_p rv;
688 tree_live_info_p liveinfo;
689 var_ann_t ann;
690 conflict_graph graph;
691 basic_block bb;
692 coalesce_list_p cl = NULL;
693
694 if (num_var_partitions (map) <= 1)
695 return NULL;
696
697 /* If no preference given, use cheap coalescing of all partitions. */
698 if ((flags & (SSANORM_COALESCE_PARTITIONS | SSANORM_USE_COALESCE_LIST)) == 0)
699 flags |= SSANORM_COALESCE_PARTITIONS;
700
701 liveinfo = calculate_live_on_entry (map);
702 calculate_live_on_exit (liveinfo);
703 rv = root_var_init (map);
704
705 /* Remove single element variable from the list. */
706 root_var_compact (rv);
707
708 if (flags & SSANORM_USE_COALESCE_LIST)
709 {
710 cl = create_coalesce_list (map);
711
712 /* Add all potential copies via PHI arguments to the list. */
713 FOR_EACH_BB (bb)
714 {
715 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
716 {
717 tree res = PHI_RESULT (phi);
718 int p = var_to_partition (map, res);
719 if (p == NO_PARTITION)
720 continue;
721 for (x = 0; x < (unsigned)PHI_NUM_ARGS (phi); x++)
722 {
723 tree arg = PHI_ARG_DEF (phi, x);
724 int p2;
725
726 if (TREE_CODE (arg) != SSA_NAME)
727 continue;
728 if (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg))
729 continue;
730 p2 = var_to_partition (map, PHI_ARG_DEF (phi, x));
731 if (p2 != NO_PARTITION)
732 add_coalesce (cl, p, p2, 1);
733 }
734 }
735 }
736
737 /* Coalesce all the result decls together. */
738 var = NULL_TREE;
739 i = 0;
740 for (x = 0; x < num_var_partitions (map); x++)
741 {
742 tree p = partition_to_var (map, x);
743 if (TREE_CODE (SSA_NAME_VAR(p)) == RESULT_DECL)
744 {
745 if (var == NULL_TREE)
746 {
747 var = p;
748 i = x;
749 }
750 else
751 add_coalesce (cl, i, x, 1);
752 }
753 }
754 }
755
756 /* Build a conflict graph. */
757 graph = build_tree_conflict_graph (liveinfo, rv, cl);
758
759 if (cl)
760 {
761 if (dump_file && (dump_flags & TDF_DETAILS))
762 {
763 fprintf (dump_file, "Before sorting:\n");
764 dump_coalesce_list (dump_file, cl);
765 }
766
767 sort_coalesce_list (cl);
768
769 if (dump_file && (dump_flags & TDF_DETAILS))
770 {
771 fprintf (dump_file, "\nAfter sorting:\n");
772 dump_coalesce_list (dump_file, cl);
773 }
774 }
775
776 /* Put the single element variables back in. */
777 root_var_decompact (rv);
778
779 /* First, coalesce all live on entry variables to their root variable.
780 This will ensure the first use is coming from the correct location. */
781
782 live = sbitmap_alloc (num_var_partitions (map));
783 sbitmap_zero (live);
784
785 /* Set 'live' vector to indicate live on entry partitions. */
786 num = num_var_partitions (map);
787 for (x = 0 ; x < num; x++)
788 {
789 var = partition_to_var (map, x);
790 if (default_def (SSA_NAME_VAR (var)) == var)
791 SET_BIT (live, x);
792 }
793
794 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
795 {
796 delete_tree_live_info (liveinfo);
797 liveinfo = NULL;
798 }
799
800 /* Assign root variable as partition representative for each live on entry
801 partition. */
802 EXECUTE_IF_SET_IN_SBITMAP (live, 0, x,
803 {
804 var = root_var (rv, root_var_find (rv, x));
805 ann = var_ann (var);
806 /* If these aren't already coalesced... */
807 if (partition_to_var (map, x) != var)
808 {
809 /* This root variable should have not already been assigned
810 to another partition which is not coalesced with this one. */
811 gcc_assert (!ann->out_of_ssa_tag);
812
813 if (dump_file && (dump_flags & TDF_DETAILS))
814 {
815 print_exprs (dump_file, "Must coalesce ",
816 partition_to_var (map, x),
817 " with the root variable ", var, ".\n");
818 }
819
820 change_partition_var (map, var, x);
821 }
822 });
823
824 sbitmap_free (live);
825
826 /* Coalesce partitions live across abnormal edges. */
827 coalesce_abnormal_edges (map, graph, rv);
828
829 if (dump_file && (dump_flags & TDF_DETAILS))
830 dump_var_map (dump_file, map);
831
832 /* Coalesce partitions. */
833 if (flags & SSANORM_USE_COALESCE_LIST)
834 coalesce_tpa_members (rv, graph, map, cl,
835 ((dump_flags & TDF_DETAILS) ? dump_file
836 : NULL));
837
838
839 if (flags & SSANORM_COALESCE_PARTITIONS)
840 coalesce_tpa_members (rv, graph, map, NULL,
841 ((dump_flags & TDF_DETAILS) ? dump_file
842 : NULL));
843 if (cl)
844 delete_coalesce_list (cl);
845 root_var_delete (rv);
846 conflict_graph_delete (graph);
847
848 return liveinfo;
849 }
850
851
852 /* Take the ssa-name var_map MAP, and assign real variables to each
853 partition. */
854
855 static void
856 assign_vars (var_map map)
857 {
858 int x, i, num, rep;
859 tree t, var;
860 var_ann_t ann;
861 root_var_p rv;
862
863 rv = root_var_init (map);
864 if (!rv)
865 return;
866
867 /* Coalescing may already have forced some partitions to their root
868 variable. Find these and tag them. */
869
870 num = num_var_partitions (map);
871 for (x = 0; x < num; x++)
872 {
873 var = partition_to_var (map, x);
874 if (TREE_CODE (var) != SSA_NAME)
875 {
876 /* Coalescing will already have verified that more than one
877 partition doesn't have the same root variable. Simply marked
878 the variable as assigned. */
879 ann = var_ann (var);
880 ann->out_of_ssa_tag = 1;
881 if (dump_file && (dump_flags & TDF_DETAILS))
882 {
883 fprintf (dump_file, "partition %d has variable ", x);
884 print_generic_expr (dump_file, var, TDF_SLIM);
885 fprintf (dump_file, " assigned to it.\n");
886 }
887
888 }
889 }
890
891 num = root_var_num (rv);
892 for (x = 0; x < num; x++)
893 {
894 var = root_var (rv, x);
895 ann = var_ann (var);
896 for (i = root_var_first_partition (rv, x);
897 i != ROOT_VAR_NONE;
898 i = root_var_next_partition (rv, i))
899 {
900 t = partition_to_var (map, i);
901
902 if (t == var || TREE_CODE (t) != SSA_NAME)
903 continue;
904
905 rep = var_to_partition (map, t);
906
907 if (!ann->out_of_ssa_tag)
908 {
909 if (dump_file && (dump_flags & TDF_DETAILS))
910 print_exprs (dump_file, "", t, " --> ", var, "\n");
911 change_partition_var (map, var, rep);
912 continue;
913 }
914
915 if (dump_file && (dump_flags & TDF_DETAILS))
916 print_exprs (dump_file, "", t, " not coalesced with ", var,
917 "");
918
919 var = create_temp (t);
920 change_partition_var (map, var, rep);
921 ann = var_ann (var);
922
923 if (dump_file && (dump_flags & TDF_DETAILS))
924 {
925 fprintf (dump_file, " --> New temp: '");
926 print_generic_expr (dump_file, var, TDF_SLIM);
927 fprintf (dump_file, "'\n");
928 }
929 }
930 }
931
932 root_var_delete (rv);
933 }
934
935
936 /* Replace use operand P with whatever variable it has been rewritten to based
937 on the partitions in MAP. EXPR is an optional expression vector over SSA
938 versions which is used to replace P with an expression instead of a variable.
939 If the stmt is changed, return true. */
940
941 static inline bool
942 replace_use_variable (var_map map, use_operand_p p, tree *expr)
943 {
944 tree new_var;
945 tree var = USE_FROM_PTR (p);
946
947 /* Check if we are replacing this variable with an expression. */
948 if (expr)
949 {
950 int version = SSA_NAME_VERSION (var);
951 if (expr[version])
952 {
953 tree new_expr = TREE_OPERAND (expr[version], 1);
954 SET_USE (p, new_expr);
955 /* Clear the stmt's RHS, or GC might bite us. */
956 TREE_OPERAND (expr[version], 1) = NULL_TREE;
957 return true;
958 }
959 }
960
961 new_var = var_to_partition_to_var (map, var);
962 if (new_var)
963 {
964 SET_USE (p, new_var);
965 set_is_used (new_var);
966 return true;
967 }
968 return false;
969 }
970
971
972 /* Replace def operand DEF_P with whatever variable it has been rewritten to
973 based on the partitions in MAP. EXPR is an optional expression vector over
974 SSA versions which is used to replace DEF_P with an expression instead of a
975 variable. If the stmt is changed, return true. */
976
977 static inline bool
978 replace_def_variable (var_map map, def_operand_p def_p, tree *expr)
979 {
980 tree new_var;
981 tree var = DEF_FROM_PTR (def_p);
982
983 /* Check if we are replacing this variable with an expression. */
984 if (expr)
985 {
986 int version = SSA_NAME_VERSION (var);
987 if (expr[version])
988 {
989 tree new_expr = TREE_OPERAND (expr[version], 1);
990 SET_DEF (def_p, new_expr);
991 /* Clear the stmt's RHS, or GC might bite us. */
992 TREE_OPERAND (expr[version], 1) = NULL_TREE;
993 return true;
994 }
995 }
996
997 new_var = var_to_partition_to_var (map, var);
998 if (new_var)
999 {
1000 SET_DEF (def_p, new_var);
1001 set_is_used (new_var);
1002 return true;
1003 }
1004 return false;
1005 }
1006
1007
1008 /* Remove any PHI node which is a virtual PHI. */
1009
1010 static void
1011 eliminate_virtual_phis (void)
1012 {
1013 basic_block bb;
1014 tree phi, next;
1015
1016 FOR_EACH_BB (bb)
1017 {
1018 for (phi = phi_nodes (bb); phi; phi = next)
1019 {
1020 next = PHI_CHAIN (phi);
1021 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1022 {
1023 #ifdef ENABLE_CHECKING
1024 int i;
1025 /* There should be no arguments of this PHI which are in
1026 the partition list, or we get incorrect results. */
1027 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1028 {
1029 tree arg = PHI_ARG_DEF (phi, i);
1030 if (TREE_CODE (arg) == SSA_NAME
1031 && is_gimple_reg (SSA_NAME_VAR (arg)))
1032 {
1033 fprintf (stderr, "Argument of PHI is not virtual (");
1034 print_generic_expr (stderr, arg, TDF_SLIM);
1035 fprintf (stderr, "), but the result is :");
1036 print_generic_stmt (stderr, phi, TDF_SLIM);
1037 internal_error ("SSA corruption");
1038 }
1039 }
1040 #endif
1041 remove_phi_node (phi, NULL_TREE, bb);
1042 }
1043 }
1044 }
1045 }
1046
1047
1048 /* This routine will coalesce variables in MAP of the same type which do not
1049 interfere with each other. LIVEINFO is the live range info for variables
1050 of interest. This will both reduce the memory footprint of the stack, and
1051 allow us to coalesce together local copies of globals and scalarized
1052 component refs. */
1053
1054 static void
1055 coalesce_vars (var_map map, tree_live_info_p liveinfo)
1056 {
1057 basic_block bb;
1058 type_var_p tv;
1059 tree var;
1060 unsigned x, p, p2;
1061 coalesce_list_p cl;
1062 conflict_graph graph;
1063
1064 cl = create_coalesce_list (map);
1065
1066 /* Merge all the live on entry vectors for coalesced partitions. */
1067 for (x = 0; x < num_var_partitions (map); x++)
1068 {
1069 var = partition_to_var (map, x);
1070 p = var_to_partition (map, var);
1071 if (p != x)
1072 live_merge_and_clear (liveinfo, p, x);
1073 }
1074
1075 /* When PHI nodes are turned into copies, the result of each PHI node
1076 becomes live on entry to the block. Mark these now. */
1077 FOR_EACH_BB (bb)
1078 {
1079 tree phi, arg;
1080 unsigned p;
1081
1082 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1083 {
1084 p = var_to_partition (map, PHI_RESULT (phi));
1085
1086 /* Skip virtual PHI nodes. */
1087 if (p == (unsigned)NO_PARTITION)
1088 continue;
1089
1090 make_live_on_entry (liveinfo, bb, p);
1091
1092 /* Each argument is a potential copy operation. Add any arguments
1093 which are not coalesced to the result to the coalesce list. */
1094 for (x = 0; x < (unsigned)PHI_NUM_ARGS (phi); x++)
1095 {
1096 arg = PHI_ARG_DEF (phi, x);
1097 if (!phi_ssa_name_p (arg))
1098 continue;
1099 p2 = var_to_partition (map, arg);
1100 if (p2 == (unsigned)NO_PARTITION)
1101 continue;
1102 if (p != p2)
1103 add_coalesce (cl, p, p2, 1);
1104 }
1105 }
1106 }
1107
1108
1109 /* Re-calculate live on exit info. */
1110 calculate_live_on_exit (liveinfo);
1111
1112 if (dump_file && (dump_flags & TDF_DETAILS))
1113 {
1114 fprintf (dump_file, "Live range info for variable memory coalescing.\n");
1115 dump_live_info (dump_file, liveinfo, LIVEDUMP_ALL);
1116
1117 fprintf (dump_file, "Coalesce list from phi nodes:\n");
1118 dump_coalesce_list (dump_file, cl);
1119 }
1120
1121
1122 tv = type_var_init (map);
1123 if (dump_file)
1124 type_var_dump (dump_file, tv);
1125 type_var_compact (tv);
1126 if (dump_file)
1127 type_var_dump (dump_file, tv);
1128
1129 graph = build_tree_conflict_graph (liveinfo, tv, cl);
1130
1131 type_var_decompact (tv);
1132 if (dump_file && (dump_flags & TDF_DETAILS))
1133 {
1134 fprintf (dump_file, "type var list now looks like:n");
1135 type_var_dump (dump_file, tv);
1136
1137 fprintf (dump_file, "Coalesce list after conflict graph build:\n");
1138 dump_coalesce_list (dump_file, cl);
1139 }
1140
1141 sort_coalesce_list (cl);
1142 if (dump_file && (dump_flags & TDF_DETAILS))
1143 {
1144 fprintf (dump_file, "Coalesce list after sorting:\n");
1145 dump_coalesce_list (dump_file, cl);
1146 }
1147
1148 coalesce_tpa_members (tv, graph, map, cl,
1149 ((dump_flags & TDF_DETAILS) ? dump_file : NULL));
1150
1151 type_var_delete (tv);
1152 delete_coalesce_list (cl);
1153 }
1154
1155
1156 /* Temporary Expression Replacement (TER)
1157
1158 Replace SSA version variables during out-of-ssa with their defining
1159 expression if there is only one use of the variable.
1160
1161 A pass is made through the function, one block at a time. No cross block
1162 information is tracked.
1163
1164 Variables which only have one use, and whose defining stmt is considered
1165 a replaceable expression (see check_replaceable) are entered into
1166 consideration by adding a list of dependent partitions to the version_info
1167 vector for that ssa_name_version. This information comes from the partition
1168 mapping for each USE. At the same time, the partition_dep_list vector for
1169 these partitions have this version number entered into their lists.
1170
1171 When the use of a replaceable ssa_variable is encountered, the dependence
1172 list in version_info[] is moved to the "pending_dependence" list in case
1173 the current expression is also replaceable. (To be determined later in
1174 processing this stmt.) version_info[] for the version is then updated to
1175 point to the defining stmt and the 'replaceable' bit is set.
1176
1177 Any partition which is defined by a statement 'kills' any expression which
1178 is dependent on this partition. Every ssa version in the partitions'
1179 dependence list is removed from future consideration.
1180
1181 All virtual references are lumped together. Any expression which is
1182 dependent on any virtual variable (via a VUSE) has a dependence added
1183 to the special partition defined by VIRTUAL_PARTITION.
1184
1185 Whenever a V_MAY_DEF is seen, all expressions dependent this
1186 VIRTUAL_PARTITION are removed from consideration.
1187
1188 At the end of a basic block, all expression are removed from consideration
1189 in preparation for the next block.
1190
1191 The end result is a vector over SSA_NAME_VERSION which is passed back to
1192 rewrite_out_of_ssa. As the SSA variables are being rewritten, instead of
1193 replacing the SSA_NAME tree element with the partition it was assigned,
1194 it is replaced with the RHS of the defining expression. */
1195
1196
1197 /* Dependency list element. This can contain either a partition index or a
1198 version number, depending on which list it is in. */
1199
1200 typedef struct value_expr_d
1201 {
1202 int value;
1203 struct value_expr_d *next;
1204 } *value_expr_p;
1205
1206
1207 /* Temporary Expression Replacement (TER) table information. */
1208
1209 typedef struct temp_expr_table_d
1210 {
1211 var_map map;
1212 void **version_info;
1213 value_expr_p *partition_dep_list;
1214 bitmap replaceable;
1215 bool saw_replaceable;
1216 int virtual_partition;
1217 bitmap partition_in_use;
1218 value_expr_p free_list;
1219 value_expr_p pending_dependence;
1220 } *temp_expr_table_p;
1221
1222 /* Used to indicate a dependency on V_MAY_DEFs. */
1223 #define VIRTUAL_PARTITION(table) (table->virtual_partition)
1224
1225 static temp_expr_table_p new_temp_expr_table (var_map);
1226 static tree *free_temp_expr_table (temp_expr_table_p);
1227 static inline value_expr_p new_value_expr (temp_expr_table_p);
1228 static inline void free_value_expr (temp_expr_table_p, value_expr_p);
1229 static inline value_expr_p find_value_in_list (value_expr_p, int,
1230 value_expr_p *);
1231 static inline void add_value_to_list (temp_expr_table_p, value_expr_p *, int);
1232 static inline void add_info_to_list (temp_expr_table_p, value_expr_p *,
1233 value_expr_p);
1234 static value_expr_p remove_value_from_list (value_expr_p *, int);
1235 static void add_dependance (temp_expr_table_p, int, tree);
1236 static bool check_replaceable (temp_expr_table_p, tree);
1237 static void finish_expr (temp_expr_table_p, int, bool);
1238 static void mark_replaceable (temp_expr_table_p, tree);
1239 static inline void kill_expr (temp_expr_table_p, int, bool);
1240 static inline void kill_virtual_exprs (temp_expr_table_p, bool);
1241 static void find_replaceable_in_bb (temp_expr_table_p, basic_block);
1242 static tree *find_replaceable_exprs (var_map);
1243 static void dump_replaceable_exprs (FILE *, tree *);
1244
1245
1246 /* Create a new TER table for MAP. */
1247
1248 static temp_expr_table_p
1249 new_temp_expr_table (var_map map)
1250 {
1251 temp_expr_table_p t;
1252
1253 t = (temp_expr_table_p) xmalloc (sizeof (struct temp_expr_table_d));
1254 t->map = map;
1255
1256 t->version_info = xcalloc (num_ssa_names + 1, sizeof (void *));
1257 t->partition_dep_list = xcalloc (num_var_partitions (map) + 1,
1258 sizeof (value_expr_p));
1259
1260 t->replaceable = BITMAP_XMALLOC ();
1261 t->partition_in_use = BITMAP_XMALLOC ();
1262
1263 t->saw_replaceable = false;
1264 t->virtual_partition = num_var_partitions (map);
1265 t->free_list = NULL;
1266 t->pending_dependence = NULL;
1267
1268 return t;
1269 }
1270
1271
1272 /* Free TER table T. If there are valid replacements, return the expression
1273 vector. */
1274
1275 static tree *
1276 free_temp_expr_table (temp_expr_table_p t)
1277 {
1278 value_expr_p p;
1279 tree *ret = NULL;
1280
1281 #ifdef ENABLE_CHECKING
1282 unsigned x;
1283 for (x = 0; x <= num_var_partitions (t->map); x++)
1284 gcc_assert (!t->partition_dep_list[x]);
1285 #endif
1286
1287 while ((p = t->free_list))
1288 {
1289 t->free_list = p->next;
1290 free (p);
1291 }
1292
1293 BITMAP_XFREE (t->partition_in_use);
1294 BITMAP_XFREE (t->replaceable);
1295
1296 free (t->partition_dep_list);
1297 if (t->saw_replaceable)
1298 ret = (tree *)t->version_info;
1299 else
1300 free (t->version_info);
1301
1302 free (t);
1303 return ret;
1304 }
1305
1306
1307 /* Allocate a new value list node. Take it from the free list in TABLE if
1308 possible. */
1309
1310 static inline value_expr_p
1311 new_value_expr (temp_expr_table_p table)
1312 {
1313 value_expr_p p;
1314 if (table->free_list)
1315 {
1316 p = table->free_list;
1317 table->free_list = p->next;
1318 }
1319 else
1320 p = (value_expr_p) xmalloc (sizeof (struct value_expr_d));
1321
1322 return p;
1323 }
1324
1325
1326 /* Add value list node P to the free list in TABLE. */
1327
1328 static inline void
1329 free_value_expr (temp_expr_table_p table, value_expr_p p)
1330 {
1331 p->next = table->free_list;
1332 table->free_list = p;
1333 }
1334
1335
1336 /* Find VALUE if it's in LIST. Return a pointer to the list object if found,
1337 else return NULL. If LAST_PTR is provided, it will point to the previous
1338 item upon return, or NULL if this is the first item in the list. */
1339
1340 static inline value_expr_p
1341 find_value_in_list (value_expr_p list, int value, value_expr_p *last_ptr)
1342 {
1343 value_expr_p curr;
1344 value_expr_p last = NULL;
1345
1346 for (curr = list; curr; last = curr, curr = curr->next)
1347 {
1348 if (curr->value == value)
1349 break;
1350 }
1351 if (last_ptr)
1352 *last_ptr = last;
1353 return curr;
1354 }
1355
1356
1357 /* Add VALUE to LIST, if it isn't already present. TAB is the expression
1358 table */
1359
1360 static inline void
1361 add_value_to_list (temp_expr_table_p tab, value_expr_p *list, int value)
1362 {
1363 value_expr_p info;
1364
1365 if (!find_value_in_list (*list, value, NULL))
1366 {
1367 info = new_value_expr (tab);
1368 info->value = value;
1369 info->next = *list;
1370 *list = info;
1371 }
1372 }
1373
1374
1375 /* Add value node INFO if it's value isn't already in LIST. Free INFO if
1376 it is already in the list. TAB is the expression table. */
1377
1378 static inline void
1379 add_info_to_list (temp_expr_table_p tab, value_expr_p *list, value_expr_p info)
1380 {
1381 if (find_value_in_list (*list, info->value, NULL))
1382 free_value_expr (tab, info);
1383 else
1384 {
1385 info->next = *list;
1386 *list = info;
1387 }
1388 }
1389
1390
1391 /* Look for VALUE in LIST. If found, remove it from the list and return it's
1392 pointer. */
1393
1394 static value_expr_p
1395 remove_value_from_list (value_expr_p *list, int value)
1396 {
1397 value_expr_p info, last;
1398
1399 info = find_value_in_list (*list, value, &last);
1400 if (!info)
1401 return NULL;
1402 if (!last)
1403 *list = info->next;
1404 else
1405 last->next = info->next;
1406
1407 return info;
1408 }
1409
1410
1411 /* Add a dependency between the def of ssa VERSION and VAR. If VAR is
1412 replaceable by an expression, add a dependence each of the elements of the
1413 expression. These are contained in the pending list. TAB is the
1414 expression table. */
1415
1416 static void
1417 add_dependance (temp_expr_table_p tab, int version, tree var)
1418 {
1419 int i, x;
1420 value_expr_p info;
1421
1422 i = SSA_NAME_VERSION (var);
1423 if (bitmap_bit_p (tab->replaceable, i))
1424 {
1425 /* This variable is being substituted, so use whatever dependences
1426 were queued up when we marked this as replaceable earlier. */
1427 while ((info = tab->pending_dependence))
1428 {
1429 tab->pending_dependence = info->next;
1430 /* Get the partition this variable was dependent on. Reuse this
1431 object to represent the current expression instead. */
1432 x = info->value;
1433 info->value = version;
1434 add_info_to_list (tab, &(tab->partition_dep_list[x]), info);
1435 add_value_to_list (tab,
1436 (value_expr_p *)&(tab->version_info[version]), x);
1437 bitmap_set_bit (tab->partition_in_use, x);
1438 }
1439 }
1440 else
1441 {
1442 i = var_to_partition (tab->map, var);
1443 gcc_assert (i != NO_PARTITION);
1444 add_value_to_list (tab, &(tab->partition_dep_list[i]), version);
1445 add_value_to_list (tab,
1446 (value_expr_p *)&(tab->version_info[version]), i);
1447 bitmap_set_bit (tab->partition_in_use, i);
1448 }
1449 }
1450
1451
1452 /* Check if expression STMT is suitable for replacement in table TAB. If so,
1453 create an expression entry. Return true if this stmt is replaceable. */
1454
1455 static bool
1456 check_replaceable (temp_expr_table_p tab, tree stmt)
1457 {
1458 stmt_ann_t ann;
1459 vuse_optype vuseops;
1460 def_optype defs;
1461 use_optype uses;
1462 tree var, def;
1463 int num_use_ops, version;
1464 var_map map = tab->map;
1465 ssa_op_iter iter;
1466
1467 if (TREE_CODE (stmt) != MODIFY_EXPR)
1468 return false;
1469
1470 ann = stmt_ann (stmt);
1471 defs = DEF_OPS (ann);
1472
1473 /* Punt if there is more than 1 def, or more than 1 use. */
1474 if (NUM_DEFS (defs) != 1)
1475 return false;
1476 def = DEF_OP (defs, 0);
1477 if (version_ref_count (map, def) != 1)
1478 return false;
1479
1480 /* There must be no V_MAY_DEFS. */
1481 if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) != 0)
1482 return false;
1483
1484 /* There must be no V_MUST_DEFS. */
1485 if (NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) != 0)
1486 return false;
1487
1488 /* Float expressions must go through memory if float-store is on. */
1489 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (stmt, 1))))
1490 return false;
1491
1492 uses = USE_OPS (ann);
1493 num_use_ops = NUM_USES (uses);
1494 vuseops = VUSE_OPS (ann);
1495
1496 /* Any expression which has no virtual operands and no real operands
1497 should have been propagated if it's possible to do anything with them.
1498 If this happens here, it probably exists that way for a reason, so we
1499 won't touch it. An example is:
1500 b_4 = &tab
1501 There are no virtual uses nor any real uses, so we just leave this
1502 alone to be safe. */
1503
1504 if (num_use_ops == 0 && NUM_VUSES (vuseops) == 0)
1505 return false;
1506
1507 version = SSA_NAME_VERSION (def);
1508
1509 /* Add this expression to the dependency list for each use partition. */
1510 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
1511 {
1512 add_dependance (tab, version, var);
1513 }
1514
1515 /* If there are VUSES, add a dependence on virtual defs. */
1516 if (NUM_VUSES (vuseops) != 0)
1517 {
1518 add_value_to_list (tab, (value_expr_p *)&(tab->version_info[version]),
1519 VIRTUAL_PARTITION (tab));
1520 add_value_to_list (tab,
1521 &(tab->partition_dep_list[VIRTUAL_PARTITION (tab)]),
1522 version);
1523 bitmap_set_bit (tab->partition_in_use, VIRTUAL_PARTITION (tab));
1524 }
1525
1526 return true;
1527 }
1528
1529
1530 /* This function will remove the expression for VERSION from replacement
1531 consideration.n table TAB If 'replace' is true, it is marked as
1532 replaceable, otherwise not. */
1533
1534 static void
1535 finish_expr (temp_expr_table_p tab, int version, bool replace)
1536 {
1537 value_expr_p info, tmp;
1538 int partition;
1539
1540 /* Remove this expression from its dependent lists. The partition dependence
1541 list is retained and transfered later to whomever uses this version. */
1542 for (info = (value_expr_p) tab->version_info[version]; info; info = tmp)
1543 {
1544 partition = info->value;
1545 gcc_assert (tab->partition_dep_list[partition]);
1546 tmp = remove_value_from_list (&(tab->partition_dep_list[partition]),
1547 version);
1548 gcc_assert (tmp);
1549 free_value_expr (tab, tmp);
1550 /* Only clear the bit when the dependency list is emptied via
1551 a replacement. Otherwise kill_expr will take care of it. */
1552 if (!(tab->partition_dep_list[partition]) && replace)
1553 bitmap_clear_bit (tab->partition_in_use, partition);
1554 tmp = info->next;
1555 if (!replace)
1556 free_value_expr (tab, info);
1557 }
1558
1559 if (replace)
1560 {
1561 tab->saw_replaceable = true;
1562 bitmap_set_bit (tab->replaceable, version);
1563 }
1564 else
1565 {
1566 gcc_assert (!bitmap_bit_p (tab->replaceable, version));
1567 tab->version_info[version] = NULL;
1568 }
1569 }
1570
1571
1572 /* Mark the expression associated with VAR as replaceable, and enter
1573 the defining stmt into the version_info table TAB. */
1574
1575 static void
1576 mark_replaceable (temp_expr_table_p tab, tree var)
1577 {
1578 value_expr_p info;
1579 int version = SSA_NAME_VERSION (var);
1580 finish_expr (tab, version, true);
1581
1582 /* Move the dependence list to the pending list. */
1583 if (tab->version_info[version])
1584 {
1585 info = (value_expr_p) tab->version_info[version];
1586 for ( ; info->next; info = info->next)
1587 continue;
1588 info->next = tab->pending_dependence;
1589 tab->pending_dependence = (value_expr_p)tab->version_info[version];
1590 }
1591
1592 tab->version_info[version] = SSA_NAME_DEF_STMT (var);
1593 }
1594
1595
1596 /* This function marks any expression in TAB which is dependent on PARTITION
1597 as NOT replaceable. CLEAR_BIT is used to determine whether partition_in_use
1598 should have its bit cleared. Since this routine can be called within an
1599 EXECUTE_IF_SET_IN_BITMAP, the bit can't always be cleared. */
1600
1601 static inline void
1602 kill_expr (temp_expr_table_p tab, int partition, bool clear_bit)
1603 {
1604 value_expr_p ptr;
1605
1606 /* Mark every active expr dependent on this var as not replaceable. */
1607 while ((ptr = tab->partition_dep_list[partition]) != NULL)
1608 finish_expr (tab, ptr->value, false);
1609
1610 if (clear_bit)
1611 bitmap_clear_bit (tab->partition_in_use, partition);
1612 }
1613
1614
1615 /* This function kills all expressions in TAB which are dependent on virtual
1616 DEFs. CLEAR_BIT determines whether partition_in_use gets cleared. */
1617
1618 static inline void
1619 kill_virtual_exprs (temp_expr_table_p tab, bool clear_bit)
1620 {
1621 kill_expr (tab, VIRTUAL_PARTITION (tab), clear_bit);
1622 }
1623
1624
1625 /* This function processes basic block BB, and looks for variables which can
1626 be replaced by their expressions. Results are stored in TAB. */
1627
1628 static void
1629 find_replaceable_in_bb (temp_expr_table_p tab, basic_block bb)
1630 {
1631 block_stmt_iterator bsi;
1632 tree stmt, def;
1633 stmt_ann_t ann;
1634 int partition;
1635 var_map map = tab->map;
1636 value_expr_p p;
1637 ssa_op_iter iter;
1638
1639 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1640 {
1641 stmt = bsi_stmt (bsi);
1642 ann = stmt_ann (stmt);
1643
1644 /* Determine if this stmt finishes an existing expression. */
1645 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_USE)
1646 {
1647 if (tab->version_info[SSA_NAME_VERSION (def)])
1648 {
1649 /* Mark expression as replaceable unless stmt is volatile. */
1650 if (!ann->has_volatile_ops)
1651 mark_replaceable (tab, def);
1652 else
1653 finish_expr (tab, SSA_NAME_VERSION (def), false);
1654 }
1655 }
1656
1657 /* Next, see if this stmt kills off an active expression. */
1658 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
1659 {
1660 partition = var_to_partition (map, def);
1661 if (partition != NO_PARTITION && tab->partition_dep_list[partition])
1662 kill_expr (tab, partition, true);
1663 }
1664
1665 /* Now see if we are creating a new expression or not. */
1666 if (!ann->has_volatile_ops)
1667 check_replaceable (tab, stmt);
1668
1669 /* Free any unused dependency lists. */
1670 while ((p = tab->pending_dependence))
1671 {
1672 tab->pending_dependence = p->next;
1673 free_value_expr (tab, p);
1674 }
1675
1676 /* A V_MAY_DEF kills any expression using a virtual operand. */
1677 if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) > 0)
1678 kill_virtual_exprs (tab, true);
1679
1680 /* A V_MUST_DEF kills any expression using a virtual operand. */
1681 if (NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) > 0)
1682 kill_virtual_exprs (tab, true);
1683 }
1684 }
1685
1686
1687 /* This function is the driver routine for replacement of temporary expressions
1688 in the SSA->normal phase, operating on MAP. If there are replaceable
1689 expressions, a table is returned which maps SSA versions to the
1690 expressions they should be replaced with. A NULL_TREE indicates no
1691 replacement should take place. If there are no replacements at all,
1692 NULL is returned by the function, otherwise an expression vector indexed
1693 by SSA_NAME version numbers. */
1694
1695 static tree *
1696 find_replaceable_exprs (var_map map)
1697 {
1698 basic_block bb;
1699 unsigned i;
1700 temp_expr_table_p table;
1701 tree *ret;
1702
1703 table = new_temp_expr_table (map);
1704 FOR_EACH_BB (bb)
1705 {
1706 bitmap_iterator bi;
1707
1708 find_replaceable_in_bb (table, bb);
1709 EXECUTE_IF_SET_IN_BITMAP ((table->partition_in_use), 0, i, bi)
1710 {
1711 kill_expr (table, i, false);
1712 }
1713 }
1714
1715 ret = free_temp_expr_table (table);
1716 return ret;
1717 }
1718
1719
1720 /* Dump TER expression table EXPR to file F. */
1721
1722 static void
1723 dump_replaceable_exprs (FILE *f, tree *expr)
1724 {
1725 tree stmt, var;
1726 int x;
1727 fprintf (f, "\nReplacing Expressions\n");
1728 for (x = 0; x < (int)num_ssa_names + 1; x++)
1729 if (expr[x])
1730 {
1731 stmt = expr[x];
1732 var = DEF_OP (STMT_DEF_OPS (stmt), 0);
1733 print_generic_expr (f, var, TDF_SLIM);
1734 fprintf (f, " replace with --> ");
1735 print_generic_expr (f, TREE_OPERAND (stmt, 1), TDF_SLIM);
1736 fprintf (f, "\n");
1737 }
1738 fprintf (f, "\n");
1739 }
1740
1741
1742 /* Helper function for discover_nonconstant_array_refs.
1743 Look for ARRAY_REF nodes with non-constant indexes and mark them
1744 addressable. */
1745
1746 static tree
1747 discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
1748 void *data ATTRIBUTE_UNUSED)
1749 {
1750 tree t = *tp;
1751
1752 if (IS_TYPE_OR_DECL_P (t))
1753 *walk_subtrees = 0;
1754 else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1755 {
1756 while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1757 && is_gimple_min_invariant (TREE_OPERAND (t, 1))
1758 && (!TREE_OPERAND (t, 2)
1759 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
1760 || (TREE_CODE (t) == COMPONENT_REF
1761 && (!TREE_OPERAND (t,2)
1762 || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
1763 || TREE_CODE (t) == BIT_FIELD_REF
1764 || TREE_CODE (t) == REALPART_EXPR
1765 || TREE_CODE (t) == IMAGPART_EXPR
1766 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1767 || TREE_CODE (t) == NOP_EXPR
1768 || TREE_CODE (t) == CONVERT_EXPR)
1769 t = TREE_OPERAND (t, 0);
1770
1771 if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
1772 {
1773 t = get_base_address (t);
1774 if (t && DECL_P (t))
1775 TREE_ADDRESSABLE (t) = 1;
1776 }
1777
1778 *walk_subtrees = 0;
1779 }
1780
1781 return NULL_TREE;
1782 }
1783
1784
1785 /* RTL expansion is not able to compile array references with variable
1786 offsets for arrays stored in single register. Discover such
1787 expressions and mark variables as addressable to avoid this
1788 scenario. */
1789
1790 static void
1791 discover_nonconstant_array_refs (void)
1792 {
1793 basic_block bb;
1794 block_stmt_iterator bsi;
1795
1796 FOR_EACH_BB (bb)
1797 {
1798 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
1799 walk_tree (bsi_stmt_ptr (bsi), discover_nonconstant_array_refs_r,
1800 NULL , NULL);
1801 }
1802 }
1803
1804
1805 /* This function will rewrite the current program using the variable mapping
1806 found in MAP. If the replacement vector VALUES is provided, any
1807 occurrences of partitions with non-null entries in the vector will be
1808 replaced with the expression in the vector instead of its mapped
1809 variable. */
1810
1811 static void
1812 rewrite_trees (var_map map, tree *values)
1813 {
1814 elim_graph g;
1815 basic_block bb;
1816 block_stmt_iterator si;
1817 edge e;
1818 tree phi;
1819 bool changed;
1820
1821 #ifdef ENABLE_CHECKING
1822 /* Search for PHIs where the destination has no partition, but one
1823 or more arguments has a partition. This should not happen and can
1824 create incorrect code. */
1825 FOR_EACH_BB (bb)
1826 {
1827 tree phi;
1828
1829 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1830 {
1831 tree T0 = var_to_partition_to_var (map, PHI_RESULT (phi));
1832
1833 if (T0 == NULL_TREE)
1834 {
1835 int i;
1836
1837 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1838 {
1839 tree arg = PHI_ARG_DEF (phi, i);
1840
1841 if (TREE_CODE (arg) == SSA_NAME
1842 && var_to_partition (map, arg) != NO_PARTITION)
1843 {
1844 fprintf (stderr, "Argument of PHI is in a partition :(");
1845 print_generic_expr (stderr, arg, TDF_SLIM);
1846 fprintf (stderr, "), but the result is not :");
1847 print_generic_stmt (stderr, phi, TDF_SLIM);
1848 internal_error ("SSA corruption");
1849 }
1850 }
1851 }
1852 }
1853 }
1854 #endif
1855
1856 /* Replace PHI nodes with any required copies. */
1857 g = new_elim_graph (map->num_partitions);
1858 g->map = map;
1859 FOR_EACH_BB (bb)
1860 {
1861 for (si = bsi_start (bb); !bsi_end_p (si); )
1862 {
1863 size_t num_uses, num_defs;
1864 use_optype uses;
1865 def_optype defs;
1866 tree stmt = bsi_stmt (si);
1867 use_operand_p use_p;
1868 def_operand_p def_p;
1869 int remove = 0, is_copy = 0;
1870 stmt_ann_t ann;
1871 ssa_op_iter iter;
1872
1873 get_stmt_operands (stmt);
1874 ann = stmt_ann (stmt);
1875 changed = false;
1876
1877 if (TREE_CODE (stmt) == MODIFY_EXPR
1878 && (TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME))
1879 is_copy = 1;
1880
1881 uses = USE_OPS (ann);
1882 num_uses = NUM_USES (uses);
1883 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1884 {
1885 if (replace_use_variable (map, use_p, values))
1886 changed = true;
1887 }
1888
1889 defs = DEF_OPS (ann);
1890 num_defs = NUM_DEFS (defs);
1891
1892 /* Mark this stmt for removal if it is the list of replaceable
1893 expressions. */
1894 if (values && num_defs == 1)
1895 {
1896 tree def = DEF_OP (defs, 0);
1897 tree val;
1898 val = values[SSA_NAME_VERSION (def)];
1899 if (val)
1900 remove = 1;
1901 }
1902 if (!remove)
1903 {
1904 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1905 {
1906 if (replace_def_variable (map, def_p, NULL))
1907 changed = true;
1908
1909 /* If both SSA_NAMEs coalesce to the same variable,
1910 mark the now redundant copy for removal. */
1911 if (is_copy
1912 && num_uses == 1
1913 && (DEF_FROM_PTR (def_p) == USE_OP (uses, 0)))
1914 remove = 1;
1915 }
1916 if (changed & !remove)
1917 modify_stmt (stmt);
1918 }
1919
1920 /* Remove any stmts marked for removal. */
1921 if (remove)
1922 bsi_remove (&si);
1923 else
1924 bsi_next (&si);
1925 }
1926
1927 phi = phi_nodes (bb);
1928 if (phi)
1929 {
1930 edge_iterator ei;
1931 FOR_EACH_EDGE (e, ei, bb->preds)
1932 eliminate_phi (e, phi_arg_from_edge (phi, e), g);
1933 }
1934 }
1935
1936 delete_elim_graph (g);
1937 }
1938
1939
1940 /* These are the local work structures used to determine the best place to
1941 insert the copies that were placed on edges by the SSA->normal pass.. */
1942 static varray_type edge_leader = NULL;
1943 static varray_type GTY(()) stmt_list = NULL;
1944 static bitmap leader_has_match = NULL;
1945 static edge leader_match = NULL;
1946
1947
1948 /* Pass this function to make_forwarder_block so that all the edges with
1949 matching PENDING_STMT lists to 'curr_stmt_list' get redirected. */
1950 static bool
1951 same_stmt_list_p (edge e)
1952 {
1953 return (e->aux == (PTR) leader_match) ? true : false;
1954 }
1955
1956
1957 /* Return TRUE if S1 and S2 are equivalent copies. */
1958 static inline bool
1959 identical_copies_p (tree s1, tree s2)
1960 {
1961 #ifdef ENABLE_CHECKING
1962 gcc_assert (TREE_CODE (s1) == MODIFY_EXPR);
1963 gcc_assert (TREE_CODE (s2) == MODIFY_EXPR);
1964 gcc_assert (DECL_P (TREE_OPERAND (s1, 0)));
1965 gcc_assert (DECL_P (TREE_OPERAND (s2, 0)));
1966 #endif
1967
1968 if (TREE_OPERAND (s1, 0) != TREE_OPERAND (s2, 0))
1969 return false;
1970
1971 s1 = TREE_OPERAND (s1, 1);
1972 s2 = TREE_OPERAND (s2, 1);
1973
1974 if (s1 != s2)
1975 return false;
1976
1977 return true;
1978 }
1979
1980
1981 /* Compare the PENDING_STMT list for two edges, and return true if the lists
1982 contain the same sequence of copies. */
1983
1984 static inline bool
1985 identical_stmt_lists_p (edge e1, edge e2)
1986 {
1987 tree t1 = PENDING_STMT (e1);
1988 tree t2 = PENDING_STMT (e2);
1989 tree_stmt_iterator tsi1, tsi2;
1990
1991 gcc_assert (TREE_CODE (t1) == STATEMENT_LIST);
1992 gcc_assert (TREE_CODE (t2) == STATEMENT_LIST);
1993
1994 for (tsi1 = tsi_start (t1), tsi2 = tsi_start (t2);
1995 !tsi_end_p (tsi1) && !tsi_end_p (tsi2);
1996 tsi_next (&tsi1), tsi_next (&tsi2))
1997 {
1998 if (!identical_copies_p (tsi_stmt (tsi1), tsi_stmt (tsi2)))
1999 break;
2000 }
2001
2002 if (!tsi_end_p (tsi1) || ! tsi_end_p (tsi2))
2003 return false;
2004
2005 return true;
2006 }
2007
2008
2009 /* Look at all the incoming edges to block BB, and decide where the best place
2010 to insert the stmts on each edge are, and perform those insertions. Output
2011 any debug information to DEBUG_FILE. Return true if anything other than a
2012 standard edge insertion is done. */
2013
2014 static bool
2015 analyze_edges_for_bb (basic_block bb, FILE *debug_file)
2016 {
2017 edge e;
2018 edge_iterator ei;
2019 int count;
2020 unsigned int x;
2021 bool have_opportunity;
2022 block_stmt_iterator bsi;
2023 tree stmt;
2024 edge single_edge = NULL;
2025 bool is_label;
2026
2027 count = 0;
2028
2029 /* Blocks which contain at least one abnormal edge cannot use
2030 make_forwarder_block. Look for these blocks, and commit any PENDING_STMTs
2031 found on edges in these block. */
2032 have_opportunity = true;
2033 FOR_EACH_EDGE (e, ei, bb->preds)
2034 if (e->flags & EDGE_ABNORMAL)
2035 {
2036 have_opportunity = false;
2037 break;
2038 }
2039
2040 if (!have_opportunity)
2041 {
2042 FOR_EACH_EDGE (e, ei, bb->preds)
2043 if (PENDING_STMT (e))
2044 bsi_commit_one_edge_insert (e, NULL);
2045 return false;
2046 }
2047 /* Find out how many edges there are with interesting pending stmts on them.
2048 Commit the stmts on edges we are not interested in. */
2049 FOR_EACH_EDGE (e, ei, bb->preds)
2050 {
2051 if (PENDING_STMT (e))
2052 {
2053 gcc_assert (!(e->flags & EDGE_ABNORMAL));
2054 if (e->flags & EDGE_FALLTHRU)
2055 {
2056 bsi = bsi_start (e->src);
2057 if (!bsi_end_p (bsi))
2058 {
2059 stmt = bsi_stmt (bsi);
2060 bsi_next (&bsi);
2061 gcc_assert (stmt != NULL_TREE);
2062 is_label = (TREE_CODE (stmt) == LABEL_EXPR);
2063 /* Punt if it has non-label stmts, or isn't local. */
2064 if (!is_label || DECL_NONLOCAL (TREE_OPERAND (stmt, 0))
2065 || !bsi_end_p (bsi))
2066 {
2067 bsi_commit_one_edge_insert (e, NULL);
2068 continue;
2069 }
2070 }
2071 }
2072 single_edge = e;
2073 count++;
2074 }
2075 }
2076
2077 /* If there aren't at least 2 edges, no sharing will happen. */
2078 if (count < 2)
2079 {
2080 if (single_edge)
2081 bsi_commit_one_edge_insert (single_edge, NULL);
2082 return false;
2083 }
2084
2085 /* Ensure that we have empty worklists. */
2086 if (edge_leader == NULL)
2087 {
2088 VARRAY_EDGE_INIT (edge_leader, 25, "edge_leader");
2089 VARRAY_TREE_INIT (stmt_list, 25, "stmt_list");
2090 leader_has_match = BITMAP_XMALLOC ();
2091 }
2092 else
2093 {
2094 #ifdef ENABLE_CHECKING
2095 gcc_assert (VARRAY_ACTIVE_SIZE (edge_leader) == 0);
2096 gcc_assert (VARRAY_ACTIVE_SIZE (stmt_list) == 0);
2097 gcc_assert (bitmap_empty_p (leader_has_match));
2098 #endif
2099 }
2100
2101 /* Find the "leader" block for each set of unique stmt lists. Preference is
2102 given to FALLTHRU blocks since they would need a GOTO to arrive at another
2103 block. The leader edge destination is the block which all the other edges
2104 with the same stmt list will be redirected to. */
2105 have_opportunity = false;
2106 FOR_EACH_EDGE (e, ei, bb->preds)
2107 {
2108 if (PENDING_STMT (e))
2109 {
2110 bool found = false;
2111
2112 /* Look for the same stmt list in edge leaders list. */
2113 for (x = 0; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2114 {
2115 edge leader = VARRAY_EDGE (edge_leader, x);
2116 if (identical_stmt_lists_p (leader, e))
2117 {
2118 /* Give this edge the same stmt list pointer. */
2119 PENDING_STMT (e) = NULL;
2120 e->aux = leader;
2121 bitmap_set_bit (leader_has_match, x);
2122 have_opportunity = found = true;
2123 break;
2124 }
2125 }
2126
2127 /* If no similar stmt list, add this edge to the leader list. */
2128 if (!found)
2129 {
2130 VARRAY_PUSH_EDGE (edge_leader, e);
2131 VARRAY_PUSH_TREE (stmt_list, PENDING_STMT (e));
2132 }
2133 }
2134 }
2135
2136 /* If there are no similar lists, just issue the stmts. */
2137 if (!have_opportunity)
2138 {
2139 for (x = 0; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2140 bsi_commit_one_edge_insert (VARRAY_EDGE (edge_leader, x), NULL);
2141 VARRAY_POP_ALL (edge_leader);
2142 VARRAY_POP_ALL (stmt_list);
2143 bitmap_clear (leader_has_match);
2144 return false;
2145 }
2146
2147
2148 if (debug_file)
2149 fprintf (debug_file, "\nOpportunities in BB %d for stmt/block reduction:\n",
2150 bb->index);
2151
2152
2153 /* For each common list, create a forwarding block and issue the stmt's
2154 in that block. */
2155 for (x = 0 ; x < VARRAY_ACTIVE_SIZE (edge_leader); x++)
2156 if (bitmap_bit_p (leader_has_match, x))
2157 {
2158 edge new_edge, leader_edge;
2159 block_stmt_iterator bsi;
2160 tree curr_stmt_list;
2161
2162 leader_match = leader_edge = VARRAY_EDGE (edge_leader, x);
2163
2164 /* The tree_* cfg manipulation routines use the PENDING_EDGE field
2165 for various PHI manipulations, so it gets cleared whhen calls are
2166 made to make_forwarder_block(). So make sure the edge is clear,
2167 and use the saved stmt list. */
2168 PENDING_STMT (leader_edge) = NULL;
2169 leader_edge->aux = leader_edge;
2170 curr_stmt_list = VARRAY_TREE (stmt_list, x);
2171
2172 new_edge = make_forwarder_block (leader_edge->dest, same_stmt_list_p,
2173 NULL);
2174 bb = new_edge->dest;
2175 if (debug_file)
2176 {
2177 fprintf (debug_file, "Splitting BB %d for Common stmt list. ",
2178 leader_edge->dest->index);
2179 fprintf (debug_file, "Original block is now BB%d.\n", bb->index);
2180 print_generic_stmt (debug_file, curr_stmt_list, TDF_VOPS);
2181 }
2182
2183 FOR_EACH_EDGE (e, ei, new_edge->src->preds)
2184 {
2185 e->aux = NULL;
2186 if (debug_file)
2187 fprintf (debug_file, " Edge (%d->%d) lands here.\n",
2188 e->src->index, e->dest->index);
2189 }
2190
2191 bsi = bsi_last (leader_edge->dest);
2192 bsi_insert_after (&bsi, curr_stmt_list, BSI_NEW_STMT);
2193
2194 leader_match = NULL;
2195 /* We should never get a new block now. */
2196 }
2197 else
2198 {
2199 e = VARRAY_EDGE (edge_leader, x);
2200 PENDING_STMT (e) = VARRAY_TREE (stmt_list, x);
2201 bsi_commit_one_edge_insert (e, NULL);
2202 }
2203
2204
2205 /* Clear the working data structures. */
2206 VARRAY_POP_ALL (edge_leader);
2207 VARRAY_POP_ALL (stmt_list);
2208 bitmap_clear (leader_has_match);
2209
2210 return true;
2211 }
2212
2213
2214 /* This function will analyze the insertions which were performed on edges,
2215 and decide whether they should be left on that edge, or whether it is more
2216 efficient to emit some subset of them in a single block. All stmts are
2217 inserted somewhere, and if non-NULL, debug information is printed via
2218 DUMP_FILE. */
2219
2220 static void
2221 perform_edge_inserts (FILE *dump_file)
2222 {
2223 basic_block bb;
2224 bool changed = false;
2225
2226 if (dump_file)
2227 fprintf(dump_file, "Analyzing Edge Insertions.\n");
2228
2229 FOR_EACH_BB (bb)
2230 changed |= analyze_edges_for_bb (bb, dump_file);
2231
2232 changed |= analyze_edges_for_bb (EXIT_BLOCK_PTR, dump_file);
2233
2234 /* Clear out any tables which were created. */
2235 edge_leader = NULL;
2236 if (leader_has_match != NULL)
2237 {
2238 free (leader_has_match);
2239 leader_has_match = NULL;
2240 }
2241
2242 if (changed)
2243 {
2244 free_dominance_info (CDI_DOMINATORS);
2245 free_dominance_info (CDI_POST_DOMINATORS);
2246 }
2247
2248 #ifdef ENABLE_CHECKING
2249 {
2250 edge_iterator ei;
2251 edge e;
2252 FOR_EACH_BB (bb)
2253 {
2254 FOR_EACH_EDGE (e, ei, bb->preds)
2255 {
2256 if (PENDING_STMT (e))
2257 error (" Pending stmts not issued on PRED edge (%d, %d)\n",
2258 e->src->index, e->dest->index);
2259 }
2260 FOR_EACH_EDGE (e, ei, bb->succs)
2261 {
2262 if (PENDING_STMT (e))
2263 error (" Pending stmts not issued on SUCC edge (%d, %d)\n",
2264 e->src->index, e->dest->index);
2265 }
2266 }
2267 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2268 {
2269 if (PENDING_STMT (e))
2270 error (" Pending stmts not issued on ENTRY edge (%d, %d)\n",
2271 e->src->index, e->dest->index);
2272 }
2273 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
2274 {
2275 if (PENDING_STMT (e))
2276 error (" Pending stmts not issued on EXIT edge (%d, %d)\n",
2277 e->src->index, e->dest->index);
2278 }
2279 }
2280 #endif
2281 }
2282
2283
2284 /* Remove the variables specified in MAP from SSA form. Any debug information
2285 is sent to DUMP. FLAGS indicate what options should be used. */
2286
2287 static void
2288 remove_ssa_form (FILE *dump, var_map map, int flags)
2289 {
2290 tree_live_info_p liveinfo;
2291 basic_block bb;
2292 tree phi, next;
2293 FILE *save;
2294 tree *values = NULL;
2295
2296 save = dump_file;
2297 dump_file = dump;
2298
2299 /* If we are not combining temps, don't calculate live ranges for variables
2300 with only one SSA version. */
2301 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
2302 compact_var_map (map, VARMAP_NO_SINGLE_DEFS);
2303 else
2304 compact_var_map (map, VARMAP_NORMAL);
2305
2306 if (dump_file && (dump_flags & TDF_DETAILS))
2307 dump_var_map (dump_file, map);
2308
2309 liveinfo = coalesce_ssa_name (map, flags);
2310
2311 /* Make sure even single occurrence variables are in the list now. */
2312 if ((flags & SSANORM_COMBINE_TEMPS) == 0)
2313 compact_var_map (map, VARMAP_NORMAL);
2314
2315 if (dump_file && (dump_flags & TDF_DETAILS))
2316 {
2317 fprintf (dump_file, "After Coalescing:\n");
2318 dump_var_map (dump_file, map);
2319 }
2320
2321 if (flags & SSANORM_PERFORM_TER)
2322 {
2323 values = find_replaceable_exprs (map);
2324 if (values && dump_file && (dump_flags & TDF_DETAILS))
2325 dump_replaceable_exprs (dump_file, values);
2326 }
2327
2328 /* Assign real variables to the partitions now. */
2329 assign_vars (map);
2330
2331 if (dump_file && (dump_flags & TDF_DETAILS))
2332 {
2333 fprintf (dump_file, "After Root variable replacement:\n");
2334 dump_var_map (dump_file, map);
2335 }
2336
2337 if ((flags & SSANORM_COMBINE_TEMPS) && liveinfo)
2338 {
2339 coalesce_vars (map, liveinfo);
2340 if (dump_file && (dump_flags & TDF_DETAILS))
2341 {
2342 fprintf (dump_file, "After variable memory coalescing:\n");
2343 dump_var_map (dump_file, map);
2344 }
2345 }
2346
2347 if (liveinfo)
2348 delete_tree_live_info (liveinfo);
2349
2350 rewrite_trees (map, values);
2351
2352 if (values)
2353 free (values);
2354
2355 /* Remove phi nodes which have been translated back to real variables. */
2356 FOR_EACH_BB (bb)
2357 {
2358 for (phi = phi_nodes (bb); phi; phi = next)
2359 {
2360 next = PHI_CHAIN (phi);
2361 if ((flags & SSANORM_REMOVE_ALL_PHIS)
2362 || var_to_partition (map, PHI_RESULT (phi)) != NO_PARTITION)
2363 remove_phi_node (phi, NULL_TREE, bb);
2364 }
2365 }
2366
2367 /* If any copies were inserted on edges, analyze and insert them now. */
2368 perform_edge_inserts (dump_file);
2369
2370 dump_file = save;
2371 }
2372
2373 /* Take the current function out of SSA form, as described in
2374 R. Morgan, ``Building an Optimizing Compiler'',
2375 Butterworth-Heinemann, Boston, MA, 1998. pp 176-186. */
2376
2377 static void
2378 rewrite_out_of_ssa (void)
2379 {
2380 var_map map;
2381 int var_flags = 0;
2382 int ssa_flags = (SSANORM_REMOVE_ALL_PHIS | SSANORM_USE_COALESCE_LIST);
2383
2384 if (!flag_tree_live_range_split)
2385 ssa_flags |= SSANORM_COALESCE_PARTITIONS;
2386
2387 eliminate_virtual_phis ();
2388
2389 if (dump_file && (dump_flags & TDF_DETAILS))
2390 dump_tree_cfg (dump_file, dump_flags & ~TDF_DETAILS);
2391
2392 /* We cannot allow unssa to un-gimplify trees before we instrument them. */
2393 if (flag_tree_ter && !flag_mudflap)
2394 var_flags = SSA_VAR_MAP_REF_COUNT;
2395
2396 map = create_ssa_var_map (var_flags);
2397
2398 if (flag_tree_combine_temps)
2399 ssa_flags |= SSANORM_COMBINE_TEMPS;
2400 if (flag_tree_ter && !flag_mudflap)
2401 ssa_flags |= SSANORM_PERFORM_TER;
2402
2403 remove_ssa_form (dump_file, map, ssa_flags);
2404
2405 if (dump_file && (dump_flags & TDF_DETAILS))
2406 dump_tree_cfg (dump_file, dump_flags & ~TDF_DETAILS);
2407
2408 /* Do some cleanups which reduce the amount of data the
2409 tree->rtl expanders deal with. */
2410 cfg_remove_useless_stmts ();
2411
2412 /* Flush out flow graph and SSA data. */
2413 delete_var_map (map);
2414
2415 /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE. */
2416 discover_nonconstant_array_refs ();
2417 }
2418
2419
2420 /* Define the parameters of the out of SSA pass. */
2421
2422 struct tree_opt_pass pass_del_ssa =
2423 {
2424 "optimized", /* name */
2425 NULL, /* gate */
2426 rewrite_out_of_ssa, /* execute */
2427 NULL, /* sub */
2428 NULL, /* next */
2429 0, /* static_pass_number */
2430 TV_TREE_SSA_TO_NORMAL, /* tv_id */
2431 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2432 0, /* properties_provided */
2433 /* ??? If TER is enabled, we also kill gimple. */
2434 PROP_ssa, /* properties_destroyed */
2435 TODO_verify_ssa | TODO_verify_flow
2436 | TODO_verify_stmts, /* todo_flags_start */
2437 TODO_dump_func | TODO_ggc_collect, /* todo_flags_finish */
2438 0 /* letter */
2439 };