New syntax for -fsanitize-recover.
[gcc.git] / gcc / tree-parloops.c
1 /* Loop autoparallelization.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tree.h"
26 #include "basic-block.h"
27 #include "tree-ssa-alias.h"
28 #include "internal-fn.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "gimplify.h"
33 #include "gimple-iterator.h"
34 #include "gimplify-me.h"
35 #include "gimple-walk.h"
36 #include "stor-layout.h"
37 #include "tree-nested.h"
38 #include "gimple-ssa.h"
39 #include "tree-cfg.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "cfgloop.h"
50 #include "tree-data-ref.h"
51 #include "tree-scalar-evolution.h"
52 #include "gimple-pretty-print.h"
53 #include "tree-pass.h"
54 #include "langhooks.h"
55 #include "tree-vectorizer.h"
56 #include "tree-hasher.h"
57 #include "tree-parloops.h"
58 #include "omp-low.h"
59 #include "tree-nested.h"
60
61 /* This pass tries to distribute iterations of loops into several threads.
62 The implementation is straightforward -- for each loop we test whether its
63 iterations are independent, and if it is the case (and some additional
64 conditions regarding profitability and correctness are satisfied), we
65 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
66 machinery do its job.
67
68 The most of the complexity is in bringing the code into shape expected
69 by the omp expanders:
70 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
71 variable and that the exit test is at the start of the loop body
72 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
73 variables by accesses through pointers, and breaking up ssa chains
74 by storing the values incoming to the parallelized loop to a structure
75 passed to the new function as an argument (something similar is done
76 in omp gimplification, unfortunately only a small part of the code
77 can be shared).
78
79 TODO:
80 -- if there are several parallelizable loops in a function, it may be
81 possible to generate the threads just once (using synchronization to
82 ensure that cross-loop dependences are obeyed).
83 -- handling of common reduction patterns for outer loops.
84
85 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
86 /*
87 Reduction handling:
88 currently we use vect_force_simple_reduction() to detect reduction patterns.
89 The code transformation will be introduced by an example.
90
91
92 parloop
93 {
94 int sum=1;
95
96 for (i = 0; i < N; i++)
97 {
98 x[i] = i + 3;
99 sum+=x[i];
100 }
101 }
102
103 gimple-like code:
104 header_bb:
105
106 # sum_29 = PHI <sum_11(5), 1(3)>
107 # i_28 = PHI <i_12(5), 0(3)>
108 D.1795_8 = i_28 + 3;
109 x[i_28] = D.1795_8;
110 sum_11 = D.1795_8 + sum_29;
111 i_12 = i_28 + 1;
112 if (N_6(D) > i_12)
113 goto header_bb;
114
115
116 exit_bb:
117
118 # sum_21 = PHI <sum_11(4)>
119 printf (&"%d"[0], sum_21);
120
121
122 after reduction transformation (only relevant parts):
123
124 parloop
125 {
126
127 ....
128
129
130 # Storing the initial value given by the user. #
131
132 .paral_data_store.32.sum.27 = 1;
133
134 #pragma omp parallel num_threads(4)
135
136 #pragma omp for schedule(static)
137
138 # The neutral element corresponding to the particular
139 reduction's operation, e.g. 0 for PLUS_EXPR,
140 1 for MULT_EXPR, etc. replaces the user's initial value. #
141
142 # sum.27_29 = PHI <sum.27_11, 0>
143
144 sum.27_11 = D.1827_8 + sum.27_29;
145
146 GIMPLE_OMP_CONTINUE
147
148 # Adding this reduction phi is done at create_phi_for_local_result() #
149 # sum.27_56 = PHI <sum.27_11, 0>
150 GIMPLE_OMP_RETURN
151
152 # Creating the atomic operation is done at
153 create_call_for_reduction_1() #
154
155 #pragma omp atomic_load
156 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
157 D.1840_60 = sum.27_56 + D.1839_59;
158 #pragma omp atomic_store (D.1840_60);
159
160 GIMPLE_OMP_RETURN
161
162 # collecting the result after the join of the threads is done at
163 create_loads_for_reductions().
164 The value computed by the threads is loaded from the
165 shared struct. #
166
167
168 .paral_data_load.33_52 = &.paral_data_store.32;
169 sum_37 = .paral_data_load.33_52->sum.27;
170 sum_43 = D.1795_41 + sum_37;
171
172 exit bb:
173 # sum_21 = PHI <sum_43, sum_26>
174 printf (&"%d"[0], sum_21);
175
176 ...
177
178 }
179
180 */
181
182 /* Minimal number of iterations of a loop that should be executed in each
183 thread. */
184 #define MIN_PER_THREAD 100
185
186 /* Element of the hashtable, representing a
187 reduction in the current loop. */
188 struct reduction_info
189 {
190 gimple reduc_stmt; /* reduction statement. */
191 gimple reduc_phi; /* The phi node defining the reduction. */
192 enum tree_code reduction_code;/* code for the reduction operation. */
193 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
194 result. */
195 gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
196 of the reduction variable when existing the loop. */
197 tree initial_value; /* The initial value of the reduction var before entering the loop. */
198 tree field; /* the name of the field in the parloop data structure intended for reduction. */
199 tree init; /* reduction initialization value. */
200 gimple new_phi; /* (helper field) Newly created phi node whose result
201 will be passed to the atomic operation. Represents
202 the local result each thread computed for the reduction
203 operation. */
204 };
205
206 /* Reduction info hashtable helpers. */
207
208 struct reduction_hasher : typed_free_remove <reduction_info>
209 {
210 typedef reduction_info value_type;
211 typedef reduction_info compare_type;
212 static inline hashval_t hash (const value_type *);
213 static inline bool equal (const value_type *, const compare_type *);
214 };
215
216 /* Equality and hash functions for hashtab code. */
217
218 inline bool
219 reduction_hasher::equal (const value_type *a, const compare_type *b)
220 {
221 return (a->reduc_phi == b->reduc_phi);
222 }
223
224 inline hashval_t
225 reduction_hasher::hash (const value_type *a)
226 {
227 return a->reduc_version;
228 }
229
230 typedef hash_table<reduction_hasher> reduction_info_table_type;
231
232
233 static struct reduction_info *
234 reduction_phi (reduction_info_table_type *reduction_list, gimple phi)
235 {
236 struct reduction_info tmpred, *red;
237
238 if (reduction_list->elements () == 0 || phi == NULL)
239 return NULL;
240
241 tmpred.reduc_phi = phi;
242 tmpred.reduc_version = gimple_uid (phi);
243 red = reduction_list->find (&tmpred);
244
245 return red;
246 }
247
248 /* Element of hashtable of names to copy. */
249
250 struct name_to_copy_elt
251 {
252 unsigned version; /* The version of the name to copy. */
253 tree new_name; /* The new name used in the copy. */
254 tree field; /* The field of the structure used to pass the
255 value. */
256 };
257
258 /* Name copies hashtable helpers. */
259
260 struct name_to_copy_hasher : typed_free_remove <name_to_copy_elt>
261 {
262 typedef name_to_copy_elt value_type;
263 typedef name_to_copy_elt compare_type;
264 static inline hashval_t hash (const value_type *);
265 static inline bool equal (const value_type *, const compare_type *);
266 };
267
268 /* Equality and hash functions for hashtab code. */
269
270 inline bool
271 name_to_copy_hasher::equal (const value_type *a, const compare_type *b)
272 {
273 return a->version == b->version;
274 }
275
276 inline hashval_t
277 name_to_copy_hasher::hash (const value_type *a)
278 {
279 return (hashval_t) a->version;
280 }
281
282 typedef hash_table<name_to_copy_hasher> name_to_copy_table_type;
283
284 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
285 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
286 represents the denominator for every element in the matrix. */
287 typedef struct lambda_trans_matrix_s
288 {
289 lambda_matrix matrix;
290 int rowsize;
291 int colsize;
292 int denominator;
293 } *lambda_trans_matrix;
294 #define LTM_MATRIX(T) ((T)->matrix)
295 #define LTM_ROWSIZE(T) ((T)->rowsize)
296 #define LTM_COLSIZE(T) ((T)->colsize)
297 #define LTM_DENOMINATOR(T) ((T)->denominator)
298
299 /* Allocate a new transformation matrix. */
300
301 static lambda_trans_matrix
302 lambda_trans_matrix_new (int colsize, int rowsize,
303 struct obstack * lambda_obstack)
304 {
305 lambda_trans_matrix ret;
306
307 ret = (lambda_trans_matrix)
308 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
309 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
310 LTM_ROWSIZE (ret) = rowsize;
311 LTM_COLSIZE (ret) = colsize;
312 LTM_DENOMINATOR (ret) = 1;
313 return ret;
314 }
315
316 /* Multiply a vector VEC by a matrix MAT.
317 MAT is an M*N matrix, and VEC is a vector with length N. The result
318 is stored in DEST which must be a vector of length M. */
319
320 static void
321 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
322 lambda_vector vec, lambda_vector dest)
323 {
324 int i, j;
325
326 lambda_vector_clear (dest, m);
327 for (i = 0; i < m; i++)
328 for (j = 0; j < n; j++)
329 dest[i] += matrix[i][j] * vec[j];
330 }
331
332 /* Return true if TRANS is a legal transformation matrix that respects
333 the dependence vectors in DISTS and DIRS. The conservative answer
334 is false.
335
336 "Wolfe proves that a unimodular transformation represented by the
337 matrix T is legal when applied to a loop nest with a set of
338 lexicographically non-negative distance vectors RDG if and only if
339 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
340 i.e.: if and only if it transforms the lexicographically positive
341 distance vectors to lexicographically positive vectors. Note that
342 a unimodular matrix must transform the zero vector (and only it) to
343 the zero vector." S.Muchnick. */
344
345 static bool
346 lambda_transform_legal_p (lambda_trans_matrix trans,
347 int nb_loops,
348 vec<ddr_p> dependence_relations)
349 {
350 unsigned int i, j;
351 lambda_vector distres;
352 struct data_dependence_relation *ddr;
353
354 gcc_assert (LTM_COLSIZE (trans) == nb_loops
355 && LTM_ROWSIZE (trans) == nb_loops);
356
357 /* When there are no dependences, the transformation is correct. */
358 if (dependence_relations.length () == 0)
359 return true;
360
361 ddr = dependence_relations[0];
362 if (ddr == NULL)
363 return true;
364
365 /* When there is an unknown relation in the dependence_relations, we
366 know that it is no worth looking at this loop nest: give up. */
367 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
368 return false;
369
370 distres = lambda_vector_new (nb_loops);
371
372 /* For each distance vector in the dependence graph. */
373 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
374 {
375 /* Don't care about relations for which we know that there is no
376 dependence, nor about read-read (aka. output-dependences):
377 these data accesses can happen in any order. */
378 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
379 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
380 continue;
381
382 /* Conservatively answer: "this transformation is not valid". */
383 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
384 return false;
385
386 /* If the dependence could not be captured by a distance vector,
387 conservatively answer that the transform is not valid. */
388 if (DDR_NUM_DIST_VECTS (ddr) == 0)
389 return false;
390
391 /* Compute trans.dist_vect */
392 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
393 {
394 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
395 DDR_DIST_VECT (ddr, j), distres);
396
397 if (!lambda_vector_lexico_pos (distres, nb_loops))
398 return false;
399 }
400 }
401 return true;
402 }
403
404 /* Data dependency analysis. Returns true if the iterations of LOOP
405 are independent on each other (that is, if we can execute them
406 in parallel). */
407
408 static bool
409 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
410 {
411 vec<ddr_p> dependence_relations;
412 vec<data_reference_p> datarefs;
413 lambda_trans_matrix trans;
414 bool ret = false;
415
416 if (dump_file && (dump_flags & TDF_DETAILS))
417 {
418 fprintf (dump_file, "Considering loop %d\n", loop->num);
419 if (!loop->inner)
420 fprintf (dump_file, "loop is innermost\n");
421 else
422 fprintf (dump_file, "loop NOT innermost\n");
423 }
424
425 /* Check for problems with dependences. If the loop can be reversed,
426 the iterations are independent. */
427 auto_vec<loop_p, 3> loop_nest;
428 datarefs.create (10);
429 dependence_relations.create (100);
430 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
431 &dependence_relations))
432 {
433 if (dump_file && (dump_flags & TDF_DETAILS))
434 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
435 ret = false;
436 goto end;
437 }
438 if (dump_file && (dump_flags & TDF_DETAILS))
439 dump_data_dependence_relations (dump_file, dependence_relations);
440
441 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
442 LTM_MATRIX (trans)[0][0] = -1;
443
444 if (lambda_transform_legal_p (trans, 1, dependence_relations))
445 {
446 ret = true;
447 if (dump_file && (dump_flags & TDF_DETAILS))
448 fprintf (dump_file, " SUCCESS: may be parallelized\n");
449 }
450 else if (dump_file && (dump_flags & TDF_DETAILS))
451 fprintf (dump_file,
452 " FAILED: data dependencies exist across iterations\n");
453
454 end:
455 free_dependence_relations (dependence_relations);
456 free_data_refs (datarefs);
457
458 return ret;
459 }
460
461 /* Return true when LOOP contains basic blocks marked with the
462 BB_IRREDUCIBLE_LOOP flag. */
463
464 static inline bool
465 loop_has_blocks_with_irreducible_flag (struct loop *loop)
466 {
467 unsigned i;
468 basic_block *bbs = get_loop_body_in_dom_order (loop);
469 bool res = true;
470
471 for (i = 0; i < loop->num_nodes; i++)
472 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
473 goto end;
474
475 res = false;
476 end:
477 free (bbs);
478 return res;
479 }
480
481 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
482 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
483 to their addresses that can be reused. The address of OBJ is known to
484 be invariant in the whole function. Other needed statements are placed
485 right before GSI. */
486
487 static tree
488 take_address_of (tree obj, tree type, edge entry,
489 int_tree_htab_type *decl_address, gimple_stmt_iterator *gsi)
490 {
491 int uid;
492 tree *var_p, name, addr;
493 gimple stmt;
494 gimple_seq stmts;
495
496 /* Since the address of OBJ is invariant, the trees may be shared.
497 Avoid rewriting unrelated parts of the code. */
498 obj = unshare_expr (obj);
499 for (var_p = &obj;
500 handled_component_p (*var_p);
501 var_p = &TREE_OPERAND (*var_p, 0))
502 continue;
503
504 /* Canonicalize the access to base on a MEM_REF. */
505 if (DECL_P (*var_p))
506 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
507
508 /* Assign a canonical SSA name to the address of the base decl used
509 in the address and share it for all accesses and addresses based
510 on it. */
511 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
512 int_tree_map elt;
513 elt.uid = uid;
514 int_tree_map *slot = decl_address->find_slot (elt, INSERT);
515 if (!slot->to)
516 {
517 if (gsi == NULL)
518 return NULL;
519 addr = TREE_OPERAND (*var_p, 0);
520 const char *obj_name
521 = get_name (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
522 if (obj_name)
523 name = make_temp_ssa_name (TREE_TYPE (addr), NULL, obj_name);
524 else
525 name = make_ssa_name (TREE_TYPE (addr), NULL);
526 stmt = gimple_build_assign (name, addr);
527 gsi_insert_on_edge_immediate (entry, stmt);
528
529 slot->uid = uid;
530 slot->to = name;
531 }
532 else
533 name = slot->to;
534
535 /* Express the address in terms of the canonical SSA name. */
536 TREE_OPERAND (*var_p, 0) = name;
537 if (gsi == NULL)
538 return build_fold_addr_expr_with_type (obj, type);
539
540 name = force_gimple_operand (build_addr (obj, current_function_decl),
541 &stmts, true, NULL_TREE);
542 if (!gimple_seq_empty_p (stmts))
543 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
544
545 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
546 {
547 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
548 NULL_TREE);
549 if (!gimple_seq_empty_p (stmts))
550 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
551 }
552
553 return name;
554 }
555
556 /* Callback for htab_traverse. Create the initialization statement
557 for reduction described in SLOT, and place it at the preheader of
558 the loop described in DATA. */
559
560 int
561 initialize_reductions (reduction_info **slot, struct loop *loop)
562 {
563 tree init, c;
564 tree bvar, type, arg;
565 edge e;
566
567 struct reduction_info *const reduc = *slot;
568
569 /* Create initialization in preheader:
570 reduction_variable = initialization value of reduction. */
571
572 /* In the phi node at the header, replace the argument coming
573 from the preheader with the reduction initialization value. */
574
575 /* Create a new variable to initialize the reduction. */
576 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
577 bvar = create_tmp_var (type, "reduction");
578
579 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
580 OMP_CLAUSE_REDUCTION);
581 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
582 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
583
584 init = omp_reduction_init (c, TREE_TYPE (bvar));
585 reduc->init = init;
586
587 /* Replace the argument representing the initialization value
588 with the initialization value for the reduction (neutral
589 element for the particular operation, e.g. 0 for PLUS_EXPR,
590 1 for MULT_EXPR, etc).
591 Keep the old value in a new variable "reduction_initial",
592 that will be taken in consideration after the parallel
593 computing is done. */
594
595 e = loop_preheader_edge (loop);
596 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
597 /* Create new variable to hold the initial value. */
598
599 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
600 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
601 reduc->initial_value = arg;
602 return 1;
603 }
604
605 struct elv_data
606 {
607 struct walk_stmt_info info;
608 edge entry;
609 int_tree_htab_type *decl_address;
610 gimple_stmt_iterator *gsi;
611 bool changed;
612 bool reset;
613 };
614
615 /* Eliminates references to local variables in *TP out of the single
616 entry single exit region starting at DTA->ENTRY.
617 DECL_ADDRESS contains addresses of the references that had their
618 address taken already. If the expression is changed, CHANGED is
619 set to true. Callback for walk_tree. */
620
621 static tree
622 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
623 {
624 struct elv_data *const dta = (struct elv_data *) data;
625 tree t = *tp, var, addr, addr_type, type, obj;
626
627 if (DECL_P (t))
628 {
629 *walk_subtrees = 0;
630
631 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
632 return NULL_TREE;
633
634 type = TREE_TYPE (t);
635 addr_type = build_pointer_type (type);
636 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
637 dta->gsi);
638 if (dta->gsi == NULL && addr == NULL_TREE)
639 {
640 dta->reset = true;
641 return NULL_TREE;
642 }
643
644 *tp = build_simple_mem_ref (addr);
645
646 dta->changed = true;
647 return NULL_TREE;
648 }
649
650 if (TREE_CODE (t) == ADDR_EXPR)
651 {
652 /* ADDR_EXPR may appear in two contexts:
653 -- as a gimple operand, when the address taken is a function invariant
654 -- as gimple rhs, when the resulting address in not a function
655 invariant
656 We do not need to do anything special in the latter case (the base of
657 the memory reference whose address is taken may be replaced in the
658 DECL_P case). The former case is more complicated, as we need to
659 ensure that the new address is still a gimple operand. Thus, it
660 is not sufficient to replace just the base of the memory reference --
661 we need to move the whole computation of the address out of the
662 loop. */
663 if (!is_gimple_val (t))
664 return NULL_TREE;
665
666 *walk_subtrees = 0;
667 obj = TREE_OPERAND (t, 0);
668 var = get_base_address (obj);
669 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
670 return NULL_TREE;
671
672 addr_type = TREE_TYPE (t);
673 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
674 dta->gsi);
675 if (dta->gsi == NULL && addr == NULL_TREE)
676 {
677 dta->reset = true;
678 return NULL_TREE;
679 }
680 *tp = addr;
681
682 dta->changed = true;
683 return NULL_TREE;
684 }
685
686 if (!EXPR_P (t))
687 *walk_subtrees = 0;
688
689 return NULL_TREE;
690 }
691
692 /* Moves the references to local variables in STMT at *GSI out of the single
693 entry single exit region starting at ENTRY. DECL_ADDRESS contains
694 addresses of the references that had their address taken
695 already. */
696
697 static void
698 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
699 int_tree_htab_type *decl_address)
700 {
701 struct elv_data dta;
702 gimple stmt = gsi_stmt (*gsi);
703
704 memset (&dta.info, '\0', sizeof (dta.info));
705 dta.entry = entry;
706 dta.decl_address = decl_address;
707 dta.changed = false;
708 dta.reset = false;
709
710 if (gimple_debug_bind_p (stmt))
711 {
712 dta.gsi = NULL;
713 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
714 eliminate_local_variables_1, &dta.info, NULL);
715 if (dta.reset)
716 {
717 gimple_debug_bind_reset_value (stmt);
718 dta.changed = true;
719 }
720 }
721 else if (gimple_clobber_p (stmt))
722 {
723 stmt = gimple_build_nop ();
724 gsi_replace (gsi, stmt, false);
725 dta.changed = true;
726 }
727 else
728 {
729 dta.gsi = gsi;
730 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
731 }
732
733 if (dta.changed)
734 update_stmt (stmt);
735 }
736
737 /* Eliminates the references to local variables from the single entry
738 single exit region between the ENTRY and EXIT edges.
739
740 This includes:
741 1) Taking address of a local variable -- these are moved out of the
742 region (and temporary variable is created to hold the address if
743 necessary).
744
745 2) Dereferencing a local variable -- these are replaced with indirect
746 references. */
747
748 static void
749 eliminate_local_variables (edge entry, edge exit)
750 {
751 basic_block bb;
752 auto_vec<basic_block, 3> body;
753 unsigned i;
754 gimple_stmt_iterator gsi;
755 bool has_debug_stmt = false;
756 int_tree_htab_type decl_address (10);
757 basic_block entry_bb = entry->src;
758 basic_block exit_bb = exit->dest;
759
760 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
761
762 FOR_EACH_VEC_ELT (body, i, bb)
763 if (bb != entry_bb && bb != exit_bb)
764 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
765 if (is_gimple_debug (gsi_stmt (gsi)))
766 {
767 if (gimple_debug_bind_p (gsi_stmt (gsi)))
768 has_debug_stmt = true;
769 }
770 else
771 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
772
773 if (has_debug_stmt)
774 FOR_EACH_VEC_ELT (body, i, bb)
775 if (bb != entry_bb && bb != exit_bb)
776 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
777 if (gimple_debug_bind_p (gsi_stmt (gsi)))
778 eliminate_local_variables_stmt (entry, &gsi, &decl_address);
779 }
780
781 /* Returns true if expression EXPR is not defined between ENTRY and
782 EXIT, i.e. if all its operands are defined outside of the region. */
783
784 static bool
785 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
786 {
787 basic_block entry_bb = entry->src;
788 basic_block exit_bb = exit->dest;
789 basic_block def_bb;
790
791 if (is_gimple_min_invariant (expr))
792 return true;
793
794 if (TREE_CODE (expr) == SSA_NAME)
795 {
796 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
797 if (def_bb
798 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
799 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
800 return false;
801
802 return true;
803 }
804
805 return false;
806 }
807
808 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
809 The copies are stored to NAME_COPIES, if NAME was already duplicated,
810 its duplicate stored in NAME_COPIES is returned.
811
812 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
813 duplicated, storing the copies in DECL_COPIES. */
814
815 static tree
816 separate_decls_in_region_name (tree name, name_to_copy_table_type *name_copies,
817 int_tree_htab_type *decl_copies,
818 bool copy_name_p)
819 {
820 tree copy, var, var_copy;
821 unsigned idx, uid, nuid;
822 struct int_tree_map ielt;
823 struct name_to_copy_elt elt, *nelt;
824 name_to_copy_elt **slot;
825 int_tree_map *dslot;
826
827 if (TREE_CODE (name) != SSA_NAME)
828 return name;
829
830 idx = SSA_NAME_VERSION (name);
831 elt.version = idx;
832 slot = name_copies->find_slot_with_hash (&elt, idx,
833 copy_name_p ? INSERT : NO_INSERT);
834 if (slot && *slot)
835 return (*slot)->new_name;
836
837 if (copy_name_p)
838 {
839 copy = duplicate_ssa_name (name, NULL);
840 nelt = XNEW (struct name_to_copy_elt);
841 nelt->version = idx;
842 nelt->new_name = copy;
843 nelt->field = NULL_TREE;
844 *slot = nelt;
845 }
846 else
847 {
848 gcc_assert (!slot);
849 copy = name;
850 }
851
852 var = SSA_NAME_VAR (name);
853 if (!var)
854 return copy;
855
856 uid = DECL_UID (var);
857 ielt.uid = uid;
858 dslot = decl_copies->find_slot_with_hash (ielt, uid, INSERT);
859 if (!dslot->to)
860 {
861 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
862 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
863 dslot->uid = uid;
864 dslot->to = var_copy;
865
866 /* Ensure that when we meet this decl next time, we won't duplicate
867 it again. */
868 nuid = DECL_UID (var_copy);
869 ielt.uid = nuid;
870 dslot = decl_copies->find_slot_with_hash (ielt, nuid, INSERT);
871 gcc_assert (!dslot->to);
872 dslot->uid = nuid;
873 dslot->to = var_copy;
874 }
875 else
876 var_copy = dslot->to;
877
878 replace_ssa_name_symbol (copy, var_copy);
879 return copy;
880 }
881
882 /* Finds the ssa names used in STMT that are defined outside the
883 region between ENTRY and EXIT and replaces such ssa names with
884 their duplicates. The duplicates are stored to NAME_COPIES. Base
885 decls of all ssa names used in STMT (including those defined in
886 LOOP) are replaced with the new temporary variables; the
887 replacement decls are stored in DECL_COPIES. */
888
889 static void
890 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
891 name_to_copy_table_type *name_copies,
892 int_tree_htab_type *decl_copies)
893 {
894 use_operand_p use;
895 def_operand_p def;
896 ssa_op_iter oi;
897 tree name, copy;
898 bool copy_name_p;
899
900 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
901 {
902 name = DEF_FROM_PTR (def);
903 gcc_assert (TREE_CODE (name) == SSA_NAME);
904 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
905 false);
906 gcc_assert (copy == name);
907 }
908
909 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
910 {
911 name = USE_FROM_PTR (use);
912 if (TREE_CODE (name) != SSA_NAME)
913 continue;
914
915 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
916 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
917 copy_name_p);
918 SET_USE (use, copy);
919 }
920 }
921
922 /* Finds the ssa names used in STMT that are defined outside the
923 region between ENTRY and EXIT and replaces such ssa names with
924 their duplicates. The duplicates are stored to NAME_COPIES. Base
925 decls of all ssa names used in STMT (including those defined in
926 LOOP) are replaced with the new temporary variables; the
927 replacement decls are stored in DECL_COPIES. */
928
929 static bool
930 separate_decls_in_region_debug (gimple stmt,
931 name_to_copy_table_type *name_copies,
932 int_tree_htab_type *decl_copies)
933 {
934 use_operand_p use;
935 ssa_op_iter oi;
936 tree var, name;
937 struct int_tree_map ielt;
938 struct name_to_copy_elt elt;
939 name_to_copy_elt **slot;
940 int_tree_map *dslot;
941
942 if (gimple_debug_bind_p (stmt))
943 var = gimple_debug_bind_get_var (stmt);
944 else if (gimple_debug_source_bind_p (stmt))
945 var = gimple_debug_source_bind_get_var (stmt);
946 else
947 return true;
948 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
949 return true;
950 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
951 ielt.uid = DECL_UID (var);
952 dslot = decl_copies->find_slot_with_hash (ielt, ielt.uid, NO_INSERT);
953 if (!dslot)
954 return true;
955 if (gimple_debug_bind_p (stmt))
956 gimple_debug_bind_set_var (stmt, dslot->to);
957 else if (gimple_debug_source_bind_p (stmt))
958 gimple_debug_source_bind_set_var (stmt, dslot->to);
959
960 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
961 {
962 name = USE_FROM_PTR (use);
963 if (TREE_CODE (name) != SSA_NAME)
964 continue;
965
966 elt.version = SSA_NAME_VERSION (name);
967 slot = name_copies->find_slot_with_hash (&elt, elt.version, NO_INSERT);
968 if (!slot)
969 {
970 gimple_debug_bind_reset_value (stmt);
971 update_stmt (stmt);
972 break;
973 }
974
975 SET_USE (use, (*slot)->new_name);
976 }
977
978 return false;
979 }
980
981 /* Callback for htab_traverse. Adds a field corresponding to the reduction
982 specified in SLOT. The type is passed in DATA. */
983
984 int
985 add_field_for_reduction (reduction_info **slot, tree type)
986 {
987
988 struct reduction_info *const red = *slot;
989 tree var = gimple_assign_lhs (red->reduc_stmt);
990 tree field = build_decl (gimple_location (red->reduc_stmt), FIELD_DECL,
991 SSA_NAME_IDENTIFIER (var), TREE_TYPE (var));
992
993 insert_field_into_struct (type, field);
994
995 red->field = field;
996
997 return 1;
998 }
999
1000 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
1001 described in SLOT. The type is passed in DATA. */
1002
1003 int
1004 add_field_for_name (name_to_copy_elt **slot, tree type)
1005 {
1006 struct name_to_copy_elt *const elt = *slot;
1007 tree name = ssa_name (elt->version);
1008 tree field = build_decl (UNKNOWN_LOCATION,
1009 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
1010 TREE_TYPE (name));
1011
1012 insert_field_into_struct (type, field);
1013 elt->field = field;
1014
1015 return 1;
1016 }
1017
1018 /* Callback for htab_traverse. A local result is the intermediate result
1019 computed by a single
1020 thread, or the initial value in case no iteration was executed.
1021 This function creates a phi node reflecting these values.
1022 The phi's result will be stored in NEW_PHI field of the
1023 reduction's data structure. */
1024
1025 int
1026 create_phi_for_local_result (reduction_info **slot, struct loop *loop)
1027 {
1028 struct reduction_info *const reduc = *slot;
1029 edge e;
1030 gimple new_phi;
1031 basic_block store_bb;
1032 tree local_res;
1033 source_location locus;
1034
1035 /* STORE_BB is the block where the phi
1036 should be stored. It is the destination of the loop exit.
1037 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1038 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1039
1040 /* STORE_BB has two predecessors. One coming from the loop
1041 (the reduction's result is computed at the loop),
1042 and another coming from a block preceding the loop,
1043 when no iterations
1044 are executed (the initial value should be taken). */
1045 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1046 e = EDGE_PRED (store_bb, 1);
1047 else
1048 e = EDGE_PRED (store_bb, 0);
1049 local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt), NULL);
1050 locus = gimple_location (reduc->reduc_stmt);
1051 new_phi = create_phi_node (local_res, store_bb);
1052 add_phi_arg (new_phi, reduc->init, e, locus);
1053 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1054 FALLTHRU_EDGE (loop->latch), locus);
1055 reduc->new_phi = new_phi;
1056
1057 return 1;
1058 }
1059
1060 struct clsn_data
1061 {
1062 tree store;
1063 tree load;
1064
1065 basic_block store_bb;
1066 basic_block load_bb;
1067 };
1068
1069 /* Callback for htab_traverse. Create an atomic instruction for the
1070 reduction described in SLOT.
1071 DATA annotates the place in memory the atomic operation relates to,
1072 and the basic block it needs to be generated in. */
1073
1074 int
1075 create_call_for_reduction_1 (reduction_info **slot, struct clsn_data *clsn_data)
1076 {
1077 struct reduction_info *const reduc = *slot;
1078 gimple_stmt_iterator gsi;
1079 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1080 tree load_struct;
1081 basic_block bb;
1082 basic_block new_bb;
1083 edge e;
1084 tree t, addr, ref, x;
1085 tree tmp_load, name;
1086 gimple load;
1087
1088 load_struct = build_simple_mem_ref (clsn_data->load);
1089 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1090
1091 addr = build_addr (t, current_function_decl);
1092
1093 /* Create phi node. */
1094 bb = clsn_data->load_bb;
1095
1096 e = split_block (bb, t);
1097 new_bb = e->dest;
1098
1099 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
1100 tmp_load = make_ssa_name (tmp_load, NULL);
1101 load = gimple_build_omp_atomic_load (tmp_load, addr);
1102 SSA_NAME_DEF_STMT (tmp_load) = load;
1103 gsi = gsi_start_bb (new_bb);
1104 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1105
1106 e = split_block (new_bb, load);
1107 new_bb = e->dest;
1108 gsi = gsi_start_bb (new_bb);
1109 ref = tmp_load;
1110 x = fold_build2 (reduc->reduction_code,
1111 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1112 PHI_RESULT (reduc->new_phi));
1113
1114 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1115 GSI_CONTINUE_LINKING);
1116
1117 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1118 return 1;
1119 }
1120
1121 /* Create the atomic operation at the join point of the threads.
1122 REDUCTION_LIST describes the reductions in the LOOP.
1123 LD_ST_DATA describes the shared data structure where
1124 shared data is stored in and loaded from. */
1125 static void
1126 create_call_for_reduction (struct loop *loop,
1127 reduction_info_table_type *reduction_list,
1128 struct clsn_data *ld_st_data)
1129 {
1130 reduction_list->traverse <struct loop *, create_phi_for_local_result> (loop);
1131 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1132 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1133 reduction_list
1134 ->traverse <struct clsn_data *, create_call_for_reduction_1> (ld_st_data);
1135 }
1136
1137 /* Callback for htab_traverse. Loads the final reduction value at the
1138 join point of all threads, and inserts it in the right place. */
1139
1140 int
1141 create_loads_for_reductions (reduction_info **slot, struct clsn_data *clsn_data)
1142 {
1143 struct reduction_info *const red = *slot;
1144 gimple stmt;
1145 gimple_stmt_iterator gsi;
1146 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1147 tree load_struct;
1148 tree name;
1149 tree x;
1150
1151 gsi = gsi_after_labels (clsn_data->load_bb);
1152 load_struct = build_simple_mem_ref (clsn_data->load);
1153 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1154 NULL_TREE);
1155
1156 x = load_struct;
1157 name = PHI_RESULT (red->keep_res);
1158 stmt = gimple_build_assign (name, x);
1159
1160 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1161
1162 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1163 !gsi_end_p (gsi); gsi_next (&gsi))
1164 if (gsi_stmt (gsi) == red->keep_res)
1165 {
1166 remove_phi_node (&gsi, false);
1167 return 1;
1168 }
1169 gcc_unreachable ();
1170 }
1171
1172 /* Load the reduction result that was stored in LD_ST_DATA.
1173 REDUCTION_LIST describes the list of reductions that the
1174 loads should be generated for. */
1175 static void
1176 create_final_loads_for_reduction (reduction_info_table_type *reduction_list,
1177 struct clsn_data *ld_st_data)
1178 {
1179 gimple_stmt_iterator gsi;
1180 tree t;
1181 gimple stmt;
1182
1183 gsi = gsi_after_labels (ld_st_data->load_bb);
1184 t = build_fold_addr_expr (ld_st_data->store);
1185 stmt = gimple_build_assign (ld_st_data->load, t);
1186
1187 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1188
1189 reduction_list
1190 ->traverse <struct clsn_data *, create_loads_for_reductions> (ld_st_data);
1191
1192 }
1193
1194 /* Callback for htab_traverse. Store the neutral value for the
1195 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1196 1 for MULT_EXPR, etc. into the reduction field.
1197 The reduction is specified in SLOT. The store information is
1198 passed in DATA. */
1199
1200 int
1201 create_stores_for_reduction (reduction_info **slot, struct clsn_data *clsn_data)
1202 {
1203 struct reduction_info *const red = *slot;
1204 tree t;
1205 gimple stmt;
1206 gimple_stmt_iterator gsi;
1207 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1208
1209 gsi = gsi_last_bb (clsn_data->store_bb);
1210 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1211 stmt = gimple_build_assign (t, red->initial_value);
1212 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1213
1214 return 1;
1215 }
1216
1217 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1218 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1219 specified in SLOT. */
1220
1221 int
1222 create_loads_and_stores_for_name (name_to_copy_elt **slot,
1223 struct clsn_data *clsn_data)
1224 {
1225 struct name_to_copy_elt *const elt = *slot;
1226 tree t;
1227 gimple stmt;
1228 gimple_stmt_iterator gsi;
1229 tree type = TREE_TYPE (elt->new_name);
1230 tree load_struct;
1231
1232 gsi = gsi_last_bb (clsn_data->store_bb);
1233 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1234 stmt = gimple_build_assign (t, ssa_name (elt->version));
1235 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1236
1237 gsi = gsi_last_bb (clsn_data->load_bb);
1238 load_struct = build_simple_mem_ref (clsn_data->load);
1239 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1240 stmt = gimple_build_assign (elt->new_name, t);
1241 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1242
1243 return 1;
1244 }
1245
1246 /* Moves all the variables used in LOOP and defined outside of it (including
1247 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1248 name) to a structure created for this purpose. The code
1249
1250 while (1)
1251 {
1252 use (a);
1253 use (b);
1254 }
1255
1256 is transformed this way:
1257
1258 bb0:
1259 old.a = a;
1260 old.b = b;
1261
1262 bb1:
1263 a' = new->a;
1264 b' = new->b;
1265 while (1)
1266 {
1267 use (a');
1268 use (b');
1269 }
1270
1271 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1272 pointer `new' is intentionally not initialized (the loop will be split to a
1273 separate function later, and `new' will be initialized from its arguments).
1274 LD_ST_DATA holds information about the shared data structure used to pass
1275 information among the threads. It is initialized here, and
1276 gen_parallel_loop will pass it to create_call_for_reduction that
1277 needs this information. REDUCTION_LIST describes the reductions
1278 in LOOP. */
1279
1280 static void
1281 separate_decls_in_region (edge entry, edge exit,
1282 reduction_info_table_type *reduction_list,
1283 tree *arg_struct, tree *new_arg_struct,
1284 struct clsn_data *ld_st_data)
1285
1286 {
1287 basic_block bb1 = split_edge (entry);
1288 basic_block bb0 = single_pred (bb1);
1289 name_to_copy_table_type name_copies (10);
1290 int_tree_htab_type decl_copies (10);
1291 unsigned i;
1292 tree type, type_name, nvar;
1293 gimple_stmt_iterator gsi;
1294 struct clsn_data clsn_data;
1295 auto_vec<basic_block, 3> body;
1296 basic_block bb;
1297 basic_block entry_bb = bb1;
1298 basic_block exit_bb = exit->dest;
1299 bool has_debug_stmt = false;
1300
1301 entry = single_succ_edge (entry_bb);
1302 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1303
1304 FOR_EACH_VEC_ELT (body, i, bb)
1305 {
1306 if (bb != entry_bb && bb != exit_bb)
1307 {
1308 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1309 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1310 &name_copies, &decl_copies);
1311
1312 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1313 {
1314 gimple stmt = gsi_stmt (gsi);
1315
1316 if (is_gimple_debug (stmt))
1317 has_debug_stmt = true;
1318 else
1319 separate_decls_in_region_stmt (entry, exit, stmt,
1320 &name_copies, &decl_copies);
1321 }
1322 }
1323 }
1324
1325 /* Now process debug bind stmts. We must not create decls while
1326 processing debug stmts, so we defer their processing so as to
1327 make sure we will have debug info for as many variables as
1328 possible (all of those that were dealt with in the loop above),
1329 and discard those for which we know there's nothing we can
1330 do. */
1331 if (has_debug_stmt)
1332 FOR_EACH_VEC_ELT (body, i, bb)
1333 if (bb != entry_bb && bb != exit_bb)
1334 {
1335 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1336 {
1337 gimple stmt = gsi_stmt (gsi);
1338
1339 if (is_gimple_debug (stmt))
1340 {
1341 if (separate_decls_in_region_debug (stmt, &name_copies,
1342 &decl_copies))
1343 {
1344 gsi_remove (&gsi, true);
1345 continue;
1346 }
1347 }
1348
1349 gsi_next (&gsi);
1350 }
1351 }
1352
1353 if (name_copies.elements () == 0 && reduction_list->elements () == 0)
1354 {
1355 /* It may happen that there is nothing to copy (if there are only
1356 loop carried and external variables in the loop). */
1357 *arg_struct = NULL;
1358 *new_arg_struct = NULL;
1359 }
1360 else
1361 {
1362 /* Create the type for the structure to store the ssa names to. */
1363 type = lang_hooks.types.make_type (RECORD_TYPE);
1364 type_name = build_decl (UNKNOWN_LOCATION,
1365 TYPE_DECL, create_tmp_var_name (".paral_data"),
1366 type);
1367 TYPE_NAME (type) = type_name;
1368
1369 name_copies.traverse <tree, add_field_for_name> (type);
1370 if (reduction_list && reduction_list->elements () > 0)
1371 {
1372 /* Create the fields for reductions. */
1373 reduction_list->traverse <tree, add_field_for_reduction> (type);
1374 }
1375 layout_type (type);
1376
1377 /* Create the loads and stores. */
1378 *arg_struct = create_tmp_var (type, ".paral_data_store");
1379 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1380 *new_arg_struct = make_ssa_name (nvar, NULL);
1381
1382 ld_st_data->store = *arg_struct;
1383 ld_st_data->load = *new_arg_struct;
1384 ld_st_data->store_bb = bb0;
1385 ld_st_data->load_bb = bb1;
1386
1387 name_copies
1388 .traverse <struct clsn_data *, create_loads_and_stores_for_name>
1389 (ld_st_data);
1390
1391 /* Load the calculation from memory (after the join of the threads). */
1392
1393 if (reduction_list && reduction_list->elements () > 0)
1394 {
1395 reduction_list
1396 ->traverse <struct clsn_data *, create_stores_for_reduction>
1397 (ld_st_data);
1398 clsn_data.load = make_ssa_name (nvar, NULL);
1399 clsn_data.load_bb = exit->dest;
1400 clsn_data.store = ld_st_data->store;
1401 create_final_loads_for_reduction (reduction_list, &clsn_data);
1402 }
1403 }
1404 }
1405
1406 /* Bitmap containing uids of functions created by parallelization. We cannot
1407 allocate it from the default obstack, as it must live across compilation
1408 of several functions; we make it gc allocated instead. */
1409
1410 static GTY(()) bitmap parallelized_functions;
1411
1412 /* Returns true if FN was created by create_loop_fn. */
1413
1414 bool
1415 parallelized_function_p (tree fn)
1416 {
1417 if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1418 return false;
1419
1420 return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1421 }
1422
1423 /* Creates and returns an empty function that will receive the body of
1424 a parallelized loop. */
1425
1426 static tree
1427 create_loop_fn (location_t loc)
1428 {
1429 char buf[100];
1430 char *tname;
1431 tree decl, type, name, t;
1432 struct function *act_cfun = cfun;
1433 static unsigned loopfn_num;
1434
1435 loc = LOCATION_LOCUS (loc);
1436 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1437 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1438 clean_symbol_name (tname);
1439 name = get_identifier (tname);
1440 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1441
1442 decl = build_decl (loc, FUNCTION_DECL, name, type);
1443 if (!parallelized_functions)
1444 parallelized_functions = BITMAP_GGC_ALLOC ();
1445 bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1446
1447 TREE_STATIC (decl) = 1;
1448 TREE_USED (decl) = 1;
1449 DECL_ARTIFICIAL (decl) = 1;
1450 DECL_IGNORED_P (decl) = 0;
1451 TREE_PUBLIC (decl) = 0;
1452 DECL_UNINLINABLE (decl) = 1;
1453 DECL_EXTERNAL (decl) = 0;
1454 DECL_CONTEXT (decl) = NULL_TREE;
1455 DECL_INITIAL (decl) = make_node (BLOCK);
1456
1457 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1458 DECL_ARTIFICIAL (t) = 1;
1459 DECL_IGNORED_P (t) = 1;
1460 DECL_RESULT (decl) = t;
1461
1462 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1463 ptr_type_node);
1464 DECL_ARTIFICIAL (t) = 1;
1465 DECL_ARG_TYPE (t) = ptr_type_node;
1466 DECL_CONTEXT (t) = decl;
1467 TREE_USED (t) = 1;
1468 DECL_ARGUMENTS (decl) = t;
1469
1470 allocate_struct_function (decl, false);
1471
1472 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1473 it. */
1474 set_cfun (act_cfun);
1475
1476 return decl;
1477 }
1478
1479 /* Moves the exit condition of LOOP to the beginning of its header, and
1480 duplicates the part of the last iteration that gets disabled to the
1481 exit of the loop. NIT is the number of iterations of the loop
1482 (used to initialize the variables in the duplicated part).
1483
1484 TODO: the common case is that latch of the loop is empty and immediately
1485 follows the loop exit. In this case, it would be better not to copy the
1486 body of the loop, but only move the entry of the loop directly before the
1487 exit check and increase the number of iterations of the loop by one.
1488 This may need some additional preconditioning in case NIT = ~0.
1489 REDUCTION_LIST describes the reductions in LOOP. */
1490
1491 static void
1492 transform_to_exit_first_loop (struct loop *loop,
1493 reduction_info_table_type *reduction_list,
1494 tree nit)
1495 {
1496 basic_block *bbs, *nbbs, ex_bb, orig_header;
1497 unsigned n;
1498 bool ok;
1499 edge exit = single_dom_exit (loop), hpred;
1500 tree control, control_name, res, t;
1501 gimple phi, nphi, cond_stmt, stmt, cond_nit;
1502 gimple_stmt_iterator gsi;
1503 tree nit_1;
1504
1505 split_block_after_labels (loop->header);
1506 orig_header = single_succ (loop->header);
1507 hpred = single_succ_edge (loop->header);
1508
1509 cond_stmt = last_stmt (exit->src);
1510 control = gimple_cond_lhs (cond_stmt);
1511 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1512
1513 /* Make sure that we have phi nodes on exit for all loop header phis
1514 (create_parallel_loop requires that). */
1515 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1516 {
1517 phi = gsi_stmt (gsi);
1518 res = PHI_RESULT (phi);
1519 t = copy_ssa_name (res, phi);
1520 SET_PHI_RESULT (phi, t);
1521 nphi = create_phi_node (res, orig_header);
1522 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1523
1524 if (res == control)
1525 {
1526 gimple_cond_set_lhs (cond_stmt, t);
1527 update_stmt (cond_stmt);
1528 control = t;
1529 }
1530 }
1531
1532 bbs = get_loop_body_in_dom_order (loop);
1533
1534 for (n = 0; bbs[n] != exit->src; n++)
1535 continue;
1536 nbbs = XNEWVEC (basic_block, n);
1537 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1538 bbs + 1, n, nbbs);
1539 gcc_assert (ok);
1540 free (bbs);
1541 ex_bb = nbbs[0];
1542 free (nbbs);
1543
1544 /* Other than reductions, the only gimple reg that should be copied
1545 out of the loop is the control variable. */
1546 exit = single_dom_exit (loop);
1547 control_name = NULL_TREE;
1548 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
1549 {
1550 phi = gsi_stmt (gsi);
1551 res = PHI_RESULT (phi);
1552 if (virtual_operand_p (res))
1553 {
1554 gsi_next (&gsi);
1555 continue;
1556 }
1557
1558 /* Check if it is a part of reduction. If it is,
1559 keep the phi at the reduction's keep_res field. The
1560 PHI_RESULT of this phi is the resulting value of the reduction
1561 variable when exiting the loop. */
1562
1563 if (reduction_list->elements () > 0)
1564 {
1565 struct reduction_info *red;
1566
1567 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1568 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1569 if (red)
1570 {
1571 red->keep_res = phi;
1572 gsi_next (&gsi);
1573 continue;
1574 }
1575 }
1576 gcc_assert (control_name == NULL_TREE
1577 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1578 control_name = res;
1579 remove_phi_node (&gsi, false);
1580 }
1581 gcc_assert (control_name != NULL_TREE);
1582
1583 /* Initialize the control variable to number of iterations
1584 according to the rhs of the exit condition. */
1585 gsi = gsi_after_labels (ex_bb);
1586 cond_nit = last_stmt (exit->src);
1587 nit_1 = gimple_cond_rhs (cond_nit);
1588 nit_1 = force_gimple_operand_gsi (&gsi,
1589 fold_convert (TREE_TYPE (control_name), nit_1),
1590 false, NULL_TREE, false, GSI_SAME_STMT);
1591 stmt = gimple_build_assign (control_name, nit_1);
1592 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1593 }
1594
1595 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1596 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1597 NEW_DATA is the variable that should be initialized from the argument
1598 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1599 basic block containing GIMPLE_OMP_PARALLEL tree. */
1600
1601 static basic_block
1602 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1603 tree new_data, unsigned n_threads, location_t loc)
1604 {
1605 gimple_stmt_iterator gsi;
1606 basic_block bb, paral_bb, for_bb, ex_bb;
1607 tree t, param;
1608 gimple stmt, for_stmt, phi, cond_stmt;
1609 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1610 edge exit, nexit, guard, end, e;
1611
1612 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1613 bb = loop_preheader_edge (loop)->src;
1614 paral_bb = single_pred (bb);
1615 gsi = gsi_last_bb (paral_bb);
1616
1617 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1618 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1619 = build_int_cst (integer_type_node, n_threads);
1620 stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1621 gimple_set_location (stmt, loc);
1622
1623 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1624
1625 /* Initialize NEW_DATA. */
1626 if (data)
1627 {
1628 gsi = gsi_after_labels (bb);
1629
1630 param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
1631 stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1632 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1633
1634 stmt = gimple_build_assign (new_data,
1635 fold_convert (TREE_TYPE (new_data), param));
1636 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1637 }
1638
1639 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1640 bb = split_loop_exit_edge (single_dom_exit (loop));
1641 gsi = gsi_last_bb (bb);
1642 stmt = gimple_build_omp_return (false);
1643 gimple_set_location (stmt, loc);
1644 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1645
1646 /* Extract data for GIMPLE_OMP_FOR. */
1647 gcc_assert (loop->header == single_dom_exit (loop)->src);
1648 cond_stmt = last_stmt (loop->header);
1649
1650 cvar = gimple_cond_lhs (cond_stmt);
1651 cvar_base = SSA_NAME_VAR (cvar);
1652 phi = SSA_NAME_DEF_STMT (cvar);
1653 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1654 initvar = copy_ssa_name (cvar, NULL);
1655 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1656 initvar);
1657 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1658
1659 gsi = gsi_last_nondebug_bb (loop->latch);
1660 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1661 gsi_remove (&gsi, true);
1662
1663 /* Prepare cfg. */
1664 for_bb = split_edge (loop_preheader_edge (loop));
1665 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1666 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1667 gcc_assert (exit == single_dom_exit (loop));
1668
1669 guard = make_edge (for_bb, ex_bb, 0);
1670 single_succ_edge (loop->latch)->flags = 0;
1671 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1672 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1673 {
1674 source_location locus;
1675 tree def;
1676 phi = gsi_stmt (gsi);
1677 stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
1678
1679 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
1680 locus = gimple_phi_arg_location_from_edge (stmt,
1681 loop_preheader_edge (loop));
1682 add_phi_arg (phi, def, guard, locus);
1683
1684 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
1685 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
1686 add_phi_arg (phi, def, end, locus);
1687 }
1688 e = redirect_edge_and_branch (exit, nexit->dest);
1689 PENDING_STMT (e) = NULL;
1690
1691 /* Emit GIMPLE_OMP_FOR. */
1692 gimple_cond_set_lhs (cond_stmt, cvar_base);
1693 type = TREE_TYPE (cvar);
1694 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
1695 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1696
1697 for_stmt = gimple_build_omp_for (NULL, GF_OMP_FOR_KIND_FOR, t, 1, NULL);
1698 gimple_set_location (for_stmt, loc);
1699 gimple_omp_for_set_index (for_stmt, 0, initvar);
1700 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1701 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1702 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1703 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1704 cvar_base,
1705 build_int_cst (type, 1)));
1706
1707 gsi = gsi_last_bb (for_bb);
1708 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1709 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1710
1711 /* Emit GIMPLE_OMP_CONTINUE. */
1712 gsi = gsi_last_bb (loop->latch);
1713 stmt = gimple_build_omp_continue (cvar_next, cvar);
1714 gimple_set_location (stmt, loc);
1715 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1716 SSA_NAME_DEF_STMT (cvar_next) = stmt;
1717
1718 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
1719 gsi = gsi_last_bb (ex_bb);
1720 stmt = gimple_build_omp_return (true);
1721 gimple_set_location (stmt, loc);
1722 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1723
1724 /* After the above dom info is hosed. Re-compute it. */
1725 free_dominance_info (CDI_DOMINATORS);
1726 calculate_dominance_info (CDI_DOMINATORS);
1727
1728 return paral_bb;
1729 }
1730
1731 /* Generates code to execute the iterations of LOOP in N_THREADS
1732 threads in parallel.
1733
1734 NITER describes number of iterations of LOOP.
1735 REDUCTION_LIST describes the reductions existent in the LOOP. */
1736
1737 static void
1738 gen_parallel_loop (struct loop *loop,
1739 reduction_info_table_type *reduction_list,
1740 unsigned n_threads, struct tree_niter_desc *niter)
1741 {
1742 tree many_iterations_cond, type, nit;
1743 tree arg_struct, new_arg_struct;
1744 gimple_seq stmts;
1745 basic_block parallel_head;
1746 edge entry, exit;
1747 struct clsn_data clsn_data;
1748 unsigned prob;
1749 location_t loc;
1750 gimple cond_stmt;
1751 unsigned int m_p_thread=2;
1752
1753 /* From
1754
1755 ---------------------------------------------------------------------
1756 loop
1757 {
1758 IV = phi (INIT, IV + STEP)
1759 BODY1;
1760 if (COND)
1761 break;
1762 BODY2;
1763 }
1764 ---------------------------------------------------------------------
1765
1766 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1767 we generate the following code:
1768
1769 ---------------------------------------------------------------------
1770
1771 if (MAY_BE_ZERO
1772 || NITER < MIN_PER_THREAD * N_THREADS)
1773 goto original;
1774
1775 BODY1;
1776 store all local loop-invariant variables used in body of the loop to DATA.
1777 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1778 load the variables from DATA.
1779 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1780 BODY2;
1781 BODY1;
1782 GIMPLE_OMP_CONTINUE;
1783 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
1784 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
1785 goto end;
1786
1787 original:
1788 loop
1789 {
1790 IV = phi (INIT, IV + STEP)
1791 BODY1;
1792 if (COND)
1793 break;
1794 BODY2;
1795 }
1796
1797 end:
1798
1799 */
1800
1801 /* Create two versions of the loop -- in the old one, we know that the
1802 number of iterations is large enough, and we will transform it into the
1803 loop that will be split to loop_fn, the new one will be used for the
1804 remaining iterations. */
1805
1806 /* We should compute a better number-of-iterations value for outer loops.
1807 That is, if we have
1808
1809 for (i = 0; i < n; ++i)
1810 for (j = 0; j < m; ++j)
1811 ...
1812
1813 we should compute nit = n * m, not nit = n.
1814 Also may_be_zero handling would need to be adjusted. */
1815
1816 type = TREE_TYPE (niter->niter);
1817 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1818 NULL_TREE);
1819 if (stmts)
1820 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1821
1822 if (loop->inner)
1823 m_p_thread=2;
1824 else
1825 m_p_thread=MIN_PER_THREAD;
1826
1827 many_iterations_cond =
1828 fold_build2 (GE_EXPR, boolean_type_node,
1829 nit, build_int_cst (type, m_p_thread * n_threads));
1830
1831 many_iterations_cond
1832 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1833 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1834 many_iterations_cond);
1835 many_iterations_cond
1836 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1837 if (stmts)
1838 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1839 if (!is_gimple_condexpr (many_iterations_cond))
1840 {
1841 many_iterations_cond
1842 = force_gimple_operand (many_iterations_cond, &stmts,
1843 true, NULL_TREE);
1844 if (stmts)
1845 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1846 }
1847
1848 initialize_original_copy_tables ();
1849
1850 /* We assume that the loop usually iterates a lot. */
1851 prob = 4 * REG_BR_PROB_BASE / 5;
1852 loop_version (loop, many_iterations_cond, NULL,
1853 prob, prob, REG_BR_PROB_BASE - prob, true);
1854 update_ssa (TODO_update_ssa);
1855 free_original_copy_tables ();
1856
1857 /* Base all the induction variables in LOOP on a single control one. */
1858 canonicalize_loop_ivs (loop, &nit, true);
1859
1860 /* Ensure that the exit condition is the first statement in the loop. */
1861 transform_to_exit_first_loop (loop, reduction_list, nit);
1862
1863 /* Generate initializations for reductions. */
1864 if (reduction_list->elements () > 0)
1865 reduction_list->traverse <struct loop *, initialize_reductions> (loop);
1866
1867 /* Eliminate the references to local variables from the loop. */
1868 gcc_assert (single_exit (loop));
1869 entry = loop_preheader_edge (loop);
1870 exit = single_dom_exit (loop);
1871
1872 eliminate_local_variables (entry, exit);
1873 /* In the old loop, move all variables non-local to the loop to a structure
1874 and back, and create separate decls for the variables used in loop. */
1875 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1876 &new_arg_struct, &clsn_data);
1877
1878 /* Create the parallel constructs. */
1879 loc = UNKNOWN_LOCATION;
1880 cond_stmt = last_stmt (loop->header);
1881 if (cond_stmt)
1882 loc = gimple_location (cond_stmt);
1883 parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
1884 new_arg_struct, n_threads, loc);
1885 if (reduction_list->elements () > 0)
1886 create_call_for_reduction (loop, reduction_list, &clsn_data);
1887
1888 scev_reset ();
1889
1890 /* Cancel the loop (it is simpler to do it here rather than to teach the
1891 expander to do it). */
1892 cancel_loop_tree (loop);
1893
1894 /* Free loop bound estimations that could contain references to
1895 removed statements. */
1896 FOR_EACH_LOOP (loop, 0)
1897 free_numbers_of_iterations_estimates_loop (loop);
1898
1899 /* Expand the parallel constructs. We do it directly here instead of running
1900 a separate expand_omp pass, since it is more efficient, and less likely to
1901 cause troubles with further analyses not being able to deal with the
1902 OMP trees. */
1903
1904 omp_expand_local (parallel_head);
1905 }
1906
1907 /* Returns true when LOOP contains vector phi nodes. */
1908
1909 static bool
1910 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1911 {
1912 unsigned i;
1913 basic_block *bbs = get_loop_body_in_dom_order (loop);
1914 gimple_stmt_iterator gsi;
1915 bool res = true;
1916
1917 for (i = 0; i < loop->num_nodes; i++)
1918 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1919 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
1920 goto end;
1921
1922 res = false;
1923 end:
1924 free (bbs);
1925 return res;
1926 }
1927
1928 /* Create a reduction_info struct, initialize it with REDUC_STMT
1929 and PHI, insert it to the REDUCTION_LIST. */
1930
1931 static void
1932 build_new_reduction (reduction_info_table_type *reduction_list,
1933 gimple reduc_stmt, gimple phi)
1934 {
1935 reduction_info **slot;
1936 struct reduction_info *new_reduction;
1937
1938 gcc_assert (reduc_stmt);
1939
1940 if (dump_file && (dump_flags & TDF_DETAILS))
1941 {
1942 fprintf (dump_file,
1943 "Detected reduction. reduction stmt is: \n");
1944 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
1945 fprintf (dump_file, "\n");
1946 }
1947
1948 new_reduction = XCNEW (struct reduction_info);
1949
1950 new_reduction->reduc_stmt = reduc_stmt;
1951 new_reduction->reduc_phi = phi;
1952 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
1953 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
1954 slot = reduction_list->find_slot (new_reduction, INSERT);
1955 *slot = new_reduction;
1956 }
1957
1958 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
1959
1960 int
1961 set_reduc_phi_uids (reduction_info **slot, void *data ATTRIBUTE_UNUSED)
1962 {
1963 struct reduction_info *const red = *slot;
1964 gimple_set_uid (red->reduc_phi, red->reduc_version);
1965 return 1;
1966 }
1967
1968 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
1969
1970 static void
1971 gather_scalar_reductions (loop_p loop, reduction_info_table_type *reduction_list)
1972 {
1973 gimple_stmt_iterator gsi;
1974 loop_vec_info simple_loop_info;
1975
1976 simple_loop_info = vect_analyze_loop_form (loop);
1977
1978 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1979 {
1980 gimple phi = gsi_stmt (gsi);
1981 affine_iv iv;
1982 tree res = PHI_RESULT (phi);
1983 bool double_reduc;
1984
1985 if (virtual_operand_p (res))
1986 continue;
1987
1988 if (!simple_iv (loop, loop, res, &iv, true)
1989 && simple_loop_info)
1990 {
1991 gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
1992 phi, true,
1993 &double_reduc);
1994 if (reduc_stmt && !double_reduc)
1995 build_new_reduction (reduction_list, reduc_stmt, phi);
1996 }
1997 }
1998 destroy_loop_vec_info (simple_loop_info, true);
1999
2000 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
2001 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
2002 only now. */
2003 reduction_list->traverse <void *, set_reduc_phi_uids> (NULL);
2004 }
2005
2006 /* Try to initialize NITER for code generation part. */
2007
2008 static bool
2009 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
2010 {
2011 edge exit = single_dom_exit (loop);
2012
2013 gcc_assert (exit);
2014
2015 /* We need to know # of iterations, and there should be no uses of values
2016 defined inside loop outside of it, unless the values are invariants of
2017 the loop. */
2018 if (!number_of_iterations_exit (loop, exit, niter, false))
2019 {
2020 if (dump_file && (dump_flags & TDF_DETAILS))
2021 fprintf (dump_file, " FAILED: number of iterations not known\n");
2022 return false;
2023 }
2024
2025 return true;
2026 }
2027
2028 /* Try to initialize REDUCTION_LIST for code generation part.
2029 REDUCTION_LIST describes the reductions. */
2030
2031 static bool
2032 try_create_reduction_list (loop_p loop,
2033 reduction_info_table_type *reduction_list)
2034 {
2035 edge exit = single_dom_exit (loop);
2036 gimple_stmt_iterator gsi;
2037
2038 gcc_assert (exit);
2039
2040 gather_scalar_reductions (loop, reduction_list);
2041
2042
2043 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2044 {
2045 gimple phi = gsi_stmt (gsi);
2046 struct reduction_info *red;
2047 imm_use_iterator imm_iter;
2048 use_operand_p use_p;
2049 gimple reduc_phi;
2050 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2051
2052 if (!virtual_operand_p (val))
2053 {
2054 if (dump_file && (dump_flags & TDF_DETAILS))
2055 {
2056 fprintf (dump_file, "phi is ");
2057 print_gimple_stmt (dump_file, phi, 0, 0);
2058 fprintf (dump_file, "arg of phi to exit: value ");
2059 print_generic_expr (dump_file, val, 0);
2060 fprintf (dump_file, " used outside loop\n");
2061 fprintf (dump_file,
2062 " checking if it a part of reduction pattern: \n");
2063 }
2064 if (reduction_list->elements () == 0)
2065 {
2066 if (dump_file && (dump_flags & TDF_DETAILS))
2067 fprintf (dump_file,
2068 " FAILED: it is not a part of reduction.\n");
2069 return false;
2070 }
2071 reduc_phi = NULL;
2072 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2073 {
2074 if (!gimple_debug_bind_p (USE_STMT (use_p))
2075 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2076 {
2077 reduc_phi = USE_STMT (use_p);
2078 break;
2079 }
2080 }
2081 red = reduction_phi (reduction_list, reduc_phi);
2082 if (red == NULL)
2083 {
2084 if (dump_file && (dump_flags & TDF_DETAILS))
2085 fprintf (dump_file,
2086 " FAILED: it is not a part of reduction.\n");
2087 return false;
2088 }
2089 if (dump_file && (dump_flags & TDF_DETAILS))
2090 {
2091 fprintf (dump_file, "reduction phi is ");
2092 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2093 fprintf (dump_file, "reduction stmt is ");
2094 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2095 }
2096 }
2097 }
2098
2099 /* The iterations of the loop may communicate only through bivs whose
2100 iteration space can be distributed efficiently. */
2101 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2102 {
2103 gimple phi = gsi_stmt (gsi);
2104 tree def = PHI_RESULT (phi);
2105 affine_iv iv;
2106
2107 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2108 {
2109 struct reduction_info *red;
2110
2111 red = reduction_phi (reduction_list, phi);
2112 if (red == NULL)
2113 {
2114 if (dump_file && (dump_flags & TDF_DETAILS))
2115 fprintf (dump_file,
2116 " FAILED: scalar dependency between iterations\n");
2117 return false;
2118 }
2119 }
2120 }
2121
2122
2123 return true;
2124 }
2125
2126 /* Detect parallel loops and generate parallel code using libgomp
2127 primitives. Returns true if some loop was parallelized, false
2128 otherwise. */
2129
2130 bool
2131 parallelize_loops (void)
2132 {
2133 unsigned n_threads = flag_tree_parallelize_loops;
2134 bool changed = false;
2135 struct loop *loop;
2136 struct tree_niter_desc niter_desc;
2137 struct obstack parloop_obstack;
2138 HOST_WIDE_INT estimated;
2139 source_location loop_loc;
2140
2141 /* Do not parallelize loops in the functions created by parallelization. */
2142 if (parallelized_function_p (cfun->decl))
2143 return false;
2144 if (cfun->has_nonlocal_label)
2145 return false;
2146
2147 gcc_obstack_init (&parloop_obstack);
2148 reduction_info_table_type reduction_list (10);
2149 init_stmt_vec_info_vec ();
2150
2151 FOR_EACH_LOOP (loop, 0)
2152 {
2153 reduction_list.empty ();
2154 if (dump_file && (dump_flags & TDF_DETAILS))
2155 {
2156 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2157 if (loop->inner)
2158 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2159 else
2160 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2161 }
2162
2163 /* If we use autopar in graphite pass, we use its marked dependency
2164 checking results. */
2165 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2166 {
2167 if (dump_file && (dump_flags & TDF_DETAILS))
2168 fprintf (dump_file, "loop is not parallel according to graphite\n");
2169 continue;
2170 }
2171
2172 if (!single_dom_exit (loop))
2173 {
2174
2175 if (dump_file && (dump_flags & TDF_DETAILS))
2176 fprintf (dump_file, "loop is !single_dom_exit\n");
2177
2178 continue;
2179 }
2180
2181 if (/* And of course, the loop must be parallelizable. */
2182 !can_duplicate_loop_p (loop)
2183 || loop_has_blocks_with_irreducible_flag (loop)
2184 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2185 /* FIXME: the check for vector phi nodes could be removed. */
2186 || loop_has_vector_phi_nodes (loop))
2187 continue;
2188
2189 estimated = estimated_stmt_executions_int (loop);
2190 if (estimated == -1)
2191 estimated = max_stmt_executions_int (loop);
2192 /* FIXME: Bypass this check as graphite doesn't update the
2193 count and frequency correctly now. */
2194 if (!flag_loop_parallelize_all
2195 && ((estimated != -1
2196 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2197 /* Do not bother with loops in cold areas. */
2198 || optimize_loop_nest_for_size_p (loop)))
2199 continue;
2200
2201 if (!try_get_loop_niter (loop, &niter_desc))
2202 continue;
2203
2204 if (!try_create_reduction_list (loop, &reduction_list))
2205 continue;
2206
2207 if (!flag_loop_parallelize_all
2208 && !loop_parallel_p (loop, &parloop_obstack))
2209 continue;
2210
2211 changed = true;
2212 if (dump_file && (dump_flags & TDF_DETAILS))
2213 {
2214 if (loop->inner)
2215 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2216 else
2217 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2218 loop_loc = find_loop_location (loop);
2219 if (loop_loc != UNKNOWN_LOCATION)
2220 fprintf (dump_file, "\nloop at %s:%d: ",
2221 LOCATION_FILE (loop_loc), LOCATION_LINE (loop_loc));
2222 }
2223 gen_parallel_loop (loop, &reduction_list,
2224 n_threads, &niter_desc);
2225 }
2226
2227 free_stmt_vec_info_vec ();
2228 obstack_free (&parloop_obstack, NULL);
2229
2230 /* Parallelization will cause new function calls to be inserted through
2231 which local variables will escape. Reset the points-to solution
2232 for ESCAPED. */
2233 if (changed)
2234 pt_solution_reset (&cfun->gimple_df->escaped);
2235
2236 return changed;
2237 }
2238
2239 /* Parallelization. */
2240
2241 namespace {
2242
2243 const pass_data pass_data_parallelize_loops =
2244 {
2245 GIMPLE_PASS, /* type */
2246 "parloops", /* name */
2247 OPTGROUP_LOOP, /* optinfo_flags */
2248 TV_TREE_PARALLELIZE_LOOPS, /* tv_id */
2249 ( PROP_cfg | PROP_ssa ), /* properties_required */
2250 0, /* properties_provided */
2251 0, /* properties_destroyed */
2252 0, /* todo_flags_start */
2253 0, /* todo_flags_finish */
2254 };
2255
2256 class pass_parallelize_loops : public gimple_opt_pass
2257 {
2258 public:
2259 pass_parallelize_loops (gcc::context *ctxt)
2260 : gimple_opt_pass (pass_data_parallelize_loops, ctxt)
2261 {}
2262
2263 /* opt_pass methods: */
2264 virtual bool gate (function *) { return flag_tree_parallelize_loops > 1; }
2265 virtual unsigned int execute (function *);
2266
2267 }; // class pass_parallelize_loops
2268
2269 unsigned
2270 pass_parallelize_loops::execute (function *fun)
2271 {
2272 if (number_of_loops (fun) <= 1)
2273 return 0;
2274
2275 if (parallelize_loops ())
2276 return TODO_cleanup_cfg | TODO_rebuild_alias;
2277 return 0;
2278 }
2279
2280 } // anon namespace
2281
2282 gimple_opt_pass *
2283 make_pass_parallelize_loops (gcc::context *ctxt)
2284 {
2285 return new pass_parallelize_loops (ctxt);
2286 }
2287
2288
2289 #include "gt-tree-parloops.h"