Add -static-libasan option to the GCC driver
[gcc.git] / gcc / tree-parloops.c
1 /* Loop autoparallelization.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 Zdenek Dvorak <dvorakz@suse.cz> and Razya Ladelsky <razya@il.ibm.com>.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tree-flow.h"
27 #include "cfgloop.h"
28 #include "tree-data-ref.h"
29 #include "tree-scalar-evolution.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-pass.h"
32 #include "langhooks.h"
33 #include "tree-vectorizer.h"
34
35 /* This pass tries to distribute iterations of loops into several threads.
36 The implementation is straightforward -- for each loop we test whether its
37 iterations are independent, and if it is the case (and some additional
38 conditions regarding profitability and correctness are satisfied), we
39 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
40 machinery do its job.
41
42 The most of the complexity is in bringing the code into shape expected
43 by the omp expanders:
44 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
45 variable and that the exit test is at the start of the loop body
46 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
47 variables by accesses through pointers, and breaking up ssa chains
48 by storing the values incoming to the parallelized loop to a structure
49 passed to the new function as an argument (something similar is done
50 in omp gimplification, unfortunately only a small part of the code
51 can be shared).
52
53 TODO:
54 -- if there are several parallelizable loops in a function, it may be
55 possible to generate the threads just once (using synchronization to
56 ensure that cross-loop dependences are obeyed).
57 -- handling of common reduction patterns for outer loops.
58
59 More info can also be found at http://gcc.gnu.org/wiki/AutoParInGCC */
60 /*
61 Reduction handling:
62 currently we use vect_force_simple_reduction() to detect reduction patterns.
63 The code transformation will be introduced by an example.
64
65
66 parloop
67 {
68 int sum=1;
69
70 for (i = 0; i < N; i++)
71 {
72 x[i] = i + 3;
73 sum+=x[i];
74 }
75 }
76
77 gimple-like code:
78 header_bb:
79
80 # sum_29 = PHI <sum_11(5), 1(3)>
81 # i_28 = PHI <i_12(5), 0(3)>
82 D.1795_8 = i_28 + 3;
83 x[i_28] = D.1795_8;
84 sum_11 = D.1795_8 + sum_29;
85 i_12 = i_28 + 1;
86 if (N_6(D) > i_12)
87 goto header_bb;
88
89
90 exit_bb:
91
92 # sum_21 = PHI <sum_11(4)>
93 printf (&"%d"[0], sum_21);
94
95
96 after reduction transformation (only relevant parts):
97
98 parloop
99 {
100
101 ....
102
103
104 # Storing the initial value given by the user. #
105
106 .paral_data_store.32.sum.27 = 1;
107
108 #pragma omp parallel num_threads(4)
109
110 #pragma omp for schedule(static)
111
112 # The neutral element corresponding to the particular
113 reduction's operation, e.g. 0 for PLUS_EXPR,
114 1 for MULT_EXPR, etc. replaces the user's initial value. #
115
116 # sum.27_29 = PHI <sum.27_11, 0>
117
118 sum.27_11 = D.1827_8 + sum.27_29;
119
120 GIMPLE_OMP_CONTINUE
121
122 # Adding this reduction phi is done at create_phi_for_local_result() #
123 # sum.27_56 = PHI <sum.27_11, 0>
124 GIMPLE_OMP_RETURN
125
126 # Creating the atomic operation is done at
127 create_call_for_reduction_1() #
128
129 #pragma omp atomic_load
130 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
131 D.1840_60 = sum.27_56 + D.1839_59;
132 #pragma omp atomic_store (D.1840_60);
133
134 GIMPLE_OMP_RETURN
135
136 # collecting the result after the join of the threads is done at
137 create_loads_for_reductions().
138 The value computed by the threads is loaded from the
139 shared struct. #
140
141
142 .paral_data_load.33_52 = &.paral_data_store.32;
143 sum_37 = .paral_data_load.33_52->sum.27;
144 sum_43 = D.1795_41 + sum_37;
145
146 exit bb:
147 # sum_21 = PHI <sum_43, sum_26>
148 printf (&"%d"[0], sum_21);
149
150 ...
151
152 }
153
154 */
155
156 /* Minimal number of iterations of a loop that should be executed in each
157 thread. */
158 #define MIN_PER_THREAD 100
159
160 /* Element of the hashtable, representing a
161 reduction in the current loop. */
162 struct reduction_info
163 {
164 gimple reduc_stmt; /* reduction statement. */
165 gimple reduc_phi; /* The phi node defining the reduction. */
166 enum tree_code reduction_code;/* code for the reduction operation. */
167 unsigned reduc_version; /* SSA_NAME_VERSION of original reduc_phi
168 result. */
169 gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
170 of the reduction variable when existing the loop. */
171 tree initial_value; /* The initial value of the reduction var before entering the loop. */
172 tree field; /* the name of the field in the parloop data structure intended for reduction. */
173 tree init; /* reduction initialization value. */
174 gimple new_phi; /* (helper field) Newly created phi node whose result
175 will be passed to the atomic operation. Represents
176 the local result each thread computed for the reduction
177 operation. */
178 };
179
180 /* Equality and hash functions for hashtab code. */
181
182 static int
183 reduction_info_eq (const void *aa, const void *bb)
184 {
185 const struct reduction_info *a = (const struct reduction_info *) aa;
186 const struct reduction_info *b = (const struct reduction_info *) bb;
187
188 return (a->reduc_phi == b->reduc_phi);
189 }
190
191 static hashval_t
192 reduction_info_hash (const void *aa)
193 {
194 const struct reduction_info *a = (const struct reduction_info *) aa;
195
196 return a->reduc_version;
197 }
198
199 static struct reduction_info *
200 reduction_phi (htab_t reduction_list, gimple phi)
201 {
202 struct reduction_info tmpred, *red;
203
204 if (htab_elements (reduction_list) == 0 || phi == NULL)
205 return NULL;
206
207 tmpred.reduc_phi = phi;
208 tmpred.reduc_version = gimple_uid (phi);
209 red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
210
211 return red;
212 }
213
214 /* Element of hashtable of names to copy. */
215
216 struct name_to_copy_elt
217 {
218 unsigned version; /* The version of the name to copy. */
219 tree new_name; /* The new name used in the copy. */
220 tree field; /* The field of the structure used to pass the
221 value. */
222 };
223
224 /* Equality and hash functions for hashtab code. */
225
226 static int
227 name_to_copy_elt_eq (const void *aa, const void *bb)
228 {
229 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
230 const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
231
232 return a->version == b->version;
233 }
234
235 static hashval_t
236 name_to_copy_elt_hash (const void *aa)
237 {
238 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
239
240 return (hashval_t) a->version;
241 }
242
243 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
244 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
245 represents the denominator for every element in the matrix. */
246 typedef struct lambda_trans_matrix_s
247 {
248 lambda_matrix matrix;
249 int rowsize;
250 int colsize;
251 int denominator;
252 } *lambda_trans_matrix;
253 #define LTM_MATRIX(T) ((T)->matrix)
254 #define LTM_ROWSIZE(T) ((T)->rowsize)
255 #define LTM_COLSIZE(T) ((T)->colsize)
256 #define LTM_DENOMINATOR(T) ((T)->denominator)
257
258 /* Allocate a new transformation matrix. */
259
260 static lambda_trans_matrix
261 lambda_trans_matrix_new (int colsize, int rowsize,
262 struct obstack * lambda_obstack)
263 {
264 lambda_trans_matrix ret;
265
266 ret = (lambda_trans_matrix)
267 obstack_alloc (lambda_obstack, sizeof (struct lambda_trans_matrix_s));
268 LTM_MATRIX (ret) = lambda_matrix_new (rowsize, colsize, lambda_obstack);
269 LTM_ROWSIZE (ret) = rowsize;
270 LTM_COLSIZE (ret) = colsize;
271 LTM_DENOMINATOR (ret) = 1;
272 return ret;
273 }
274
275 /* Multiply a vector VEC by a matrix MAT.
276 MAT is an M*N matrix, and VEC is a vector with length N. The result
277 is stored in DEST which must be a vector of length M. */
278
279 static void
280 lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
281 lambda_vector vec, lambda_vector dest)
282 {
283 int i, j;
284
285 lambda_vector_clear (dest, m);
286 for (i = 0; i < m; i++)
287 for (j = 0; j < n; j++)
288 dest[i] += matrix[i][j] * vec[j];
289 }
290
291 /* Return true if TRANS is a legal transformation matrix that respects
292 the dependence vectors in DISTS and DIRS. The conservative answer
293 is false.
294
295 "Wolfe proves that a unimodular transformation represented by the
296 matrix T is legal when applied to a loop nest with a set of
297 lexicographically non-negative distance vectors RDG if and only if
298 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
299 i.e.: if and only if it transforms the lexicographically positive
300 distance vectors to lexicographically positive vectors. Note that
301 a unimodular matrix must transform the zero vector (and only it) to
302 the zero vector." S.Muchnick. */
303
304 static bool
305 lambda_transform_legal_p (lambda_trans_matrix trans,
306 int nb_loops,
307 VEC (ddr_p, heap) *dependence_relations)
308 {
309 unsigned int i, j;
310 lambda_vector distres;
311 struct data_dependence_relation *ddr;
312
313 gcc_assert (LTM_COLSIZE (trans) == nb_loops
314 && LTM_ROWSIZE (trans) == nb_loops);
315
316 /* When there are no dependences, the transformation is correct. */
317 if (VEC_length (ddr_p, dependence_relations) == 0)
318 return true;
319
320 ddr = VEC_index (ddr_p, dependence_relations, 0);
321 if (ddr == NULL)
322 return true;
323
324 /* When there is an unknown relation in the dependence_relations, we
325 know that it is no worth looking at this loop nest: give up. */
326 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
327 return false;
328
329 distres = lambda_vector_new (nb_loops);
330
331 /* For each distance vector in the dependence graph. */
332 FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
333 {
334 /* Don't care about relations for which we know that there is no
335 dependence, nor about read-read (aka. output-dependences):
336 these data accesses can happen in any order. */
337 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
338 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
339 continue;
340
341 /* Conservatively answer: "this transformation is not valid". */
342 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
343 return false;
344
345 /* If the dependence could not be captured by a distance vector,
346 conservatively answer that the transform is not valid. */
347 if (DDR_NUM_DIST_VECTS (ddr) == 0)
348 return false;
349
350 /* Compute trans.dist_vect */
351 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
352 {
353 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
354 DDR_DIST_VECT (ddr, j), distres);
355
356 if (!lambda_vector_lexico_pos (distres, nb_loops))
357 return false;
358 }
359 }
360 return true;
361 }
362
363 /* Data dependency analysis. Returns true if the iterations of LOOP
364 are independent on each other (that is, if we can execute them
365 in parallel). */
366
367 static bool
368 loop_parallel_p (struct loop *loop, struct obstack * parloop_obstack)
369 {
370 VEC (loop_p, heap) *loop_nest;
371 VEC (ddr_p, heap) *dependence_relations;
372 VEC (data_reference_p, heap) *datarefs;
373 lambda_trans_matrix trans;
374 bool ret = false;
375
376 if (dump_file && (dump_flags & TDF_DETAILS))
377 {
378 fprintf (dump_file, "Considering loop %d\n", loop->num);
379 if (!loop->inner)
380 fprintf (dump_file, "loop is innermost\n");
381 else
382 fprintf (dump_file, "loop NOT innermost\n");
383 }
384
385 /* Check for problems with dependences. If the loop can be reversed,
386 the iterations are independent. */
387 datarefs = VEC_alloc (data_reference_p, heap, 10);
388 dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
389 loop_nest = VEC_alloc (loop_p, heap, 3);
390 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
391 &dependence_relations))
392 {
393 if (dump_file && (dump_flags & TDF_DETAILS))
394 fprintf (dump_file, " FAILED: cannot analyze data dependencies\n");
395 ret = false;
396 goto end;
397 }
398 if (dump_file && (dump_flags & TDF_DETAILS))
399 dump_data_dependence_relations (dump_file, dependence_relations);
400
401 trans = lambda_trans_matrix_new (1, 1, parloop_obstack);
402 LTM_MATRIX (trans)[0][0] = -1;
403
404 if (lambda_transform_legal_p (trans, 1, dependence_relations))
405 {
406 ret = true;
407 if (dump_file && (dump_flags & TDF_DETAILS))
408 fprintf (dump_file, " SUCCESS: may be parallelized\n");
409 }
410 else if (dump_file && (dump_flags & TDF_DETAILS))
411 fprintf (dump_file,
412 " FAILED: data dependencies exist across iterations\n");
413
414 end:
415 VEC_free (loop_p, heap, loop_nest);
416 free_dependence_relations (dependence_relations);
417 free_data_refs (datarefs);
418
419 return ret;
420 }
421
422 /* Return true when LOOP contains basic blocks marked with the
423 BB_IRREDUCIBLE_LOOP flag. */
424
425 static inline bool
426 loop_has_blocks_with_irreducible_flag (struct loop *loop)
427 {
428 unsigned i;
429 basic_block *bbs = get_loop_body_in_dom_order (loop);
430 bool res = true;
431
432 for (i = 0; i < loop->num_nodes; i++)
433 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
434 goto end;
435
436 res = false;
437 end:
438 free (bbs);
439 return res;
440 }
441
442 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
443 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
444 to their addresses that can be reused. The address of OBJ is known to
445 be invariant in the whole function. Other needed statements are placed
446 right before GSI. */
447
448 static tree
449 take_address_of (tree obj, tree type, edge entry, htab_t decl_address,
450 gimple_stmt_iterator *gsi)
451 {
452 int uid;
453 void **dslot;
454 struct int_tree_map ielt, *nielt;
455 tree *var_p, name, addr;
456 gimple stmt;
457 gimple_seq stmts;
458
459 /* Since the address of OBJ is invariant, the trees may be shared.
460 Avoid rewriting unrelated parts of the code. */
461 obj = unshare_expr (obj);
462 for (var_p = &obj;
463 handled_component_p (*var_p);
464 var_p = &TREE_OPERAND (*var_p, 0))
465 continue;
466
467 /* Canonicalize the access to base on a MEM_REF. */
468 if (DECL_P (*var_p))
469 *var_p = build_simple_mem_ref (build_fold_addr_expr (*var_p));
470
471 /* Assign a canonical SSA name to the address of the base decl used
472 in the address and share it for all accesses and addresses based
473 on it. */
474 uid = DECL_UID (TREE_OPERAND (TREE_OPERAND (*var_p, 0), 0));
475 ielt.uid = uid;
476 dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
477 if (!*dslot)
478 {
479 if (gsi == NULL)
480 return NULL;
481 addr = TREE_OPERAND (*var_p, 0);
482 name = make_temp_ssa_name (TREE_TYPE (addr), NULL,
483 get_name (TREE_OPERAND
484 (TREE_OPERAND (*var_p, 0), 0)));
485 stmt = gimple_build_assign (name, addr);
486 gsi_insert_on_edge_immediate (entry, stmt);
487
488 nielt = XNEW (struct int_tree_map);
489 nielt->uid = uid;
490 nielt->to = name;
491 *dslot = nielt;
492 }
493 else
494 name = ((struct int_tree_map *) *dslot)->to;
495
496 /* Express the address in terms of the canonical SSA name. */
497 TREE_OPERAND (*var_p, 0) = name;
498 if (gsi == NULL)
499 return build_fold_addr_expr_with_type (obj, type);
500
501 name = force_gimple_operand (build_addr (obj, current_function_decl),
502 &stmts, true, NULL_TREE);
503 if (!gimple_seq_empty_p (stmts))
504 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
505
506 if (!useless_type_conversion_p (type, TREE_TYPE (name)))
507 {
508 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
509 NULL_TREE);
510 if (!gimple_seq_empty_p (stmts))
511 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
512 }
513
514 return name;
515 }
516
517 /* Callback for htab_traverse. Create the initialization statement
518 for reduction described in SLOT, and place it at the preheader of
519 the loop described in DATA. */
520
521 static int
522 initialize_reductions (void **slot, void *data)
523 {
524 tree init, c;
525 tree bvar, type, arg;
526 edge e;
527
528 struct reduction_info *const reduc = (struct reduction_info *) *slot;
529 struct loop *loop = (struct loop *) data;
530
531 /* Create initialization in preheader:
532 reduction_variable = initialization value of reduction. */
533
534 /* In the phi node at the header, replace the argument coming
535 from the preheader with the reduction initialization value. */
536
537 /* Create a new variable to initialize the reduction. */
538 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
539 bvar = create_tmp_var (type, "reduction");
540
541 c = build_omp_clause (gimple_location (reduc->reduc_stmt),
542 OMP_CLAUSE_REDUCTION);
543 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
544 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
545
546 init = omp_reduction_init (c, TREE_TYPE (bvar));
547 reduc->init = init;
548
549 /* Replace the argument representing the initialization value
550 with the initialization value for the reduction (neutral
551 element for the particular operation, e.g. 0 for PLUS_EXPR,
552 1 for MULT_EXPR, etc).
553 Keep the old value in a new variable "reduction_initial",
554 that will be taken in consideration after the parallel
555 computing is done. */
556
557 e = loop_preheader_edge (loop);
558 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
559 /* Create new variable to hold the initial value. */
560
561 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
562 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
563 reduc->initial_value = arg;
564 return 1;
565 }
566
567 struct elv_data
568 {
569 struct walk_stmt_info info;
570 edge entry;
571 htab_t decl_address;
572 gimple_stmt_iterator *gsi;
573 bool changed;
574 bool reset;
575 };
576
577 /* Eliminates references to local variables in *TP out of the single
578 entry single exit region starting at DTA->ENTRY.
579 DECL_ADDRESS contains addresses of the references that had their
580 address taken already. If the expression is changed, CHANGED is
581 set to true. Callback for walk_tree. */
582
583 static tree
584 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
585 {
586 struct elv_data *const dta = (struct elv_data *) data;
587 tree t = *tp, var, addr, addr_type, type, obj;
588
589 if (DECL_P (t))
590 {
591 *walk_subtrees = 0;
592
593 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
594 return NULL_TREE;
595
596 type = TREE_TYPE (t);
597 addr_type = build_pointer_type (type);
598 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address,
599 dta->gsi);
600 if (dta->gsi == NULL && addr == NULL_TREE)
601 {
602 dta->reset = true;
603 return NULL_TREE;
604 }
605
606 *tp = build_simple_mem_ref (addr);
607
608 dta->changed = true;
609 return NULL_TREE;
610 }
611
612 if (TREE_CODE (t) == ADDR_EXPR)
613 {
614 /* ADDR_EXPR may appear in two contexts:
615 -- as a gimple operand, when the address taken is a function invariant
616 -- as gimple rhs, when the resulting address in not a function
617 invariant
618 We do not need to do anything special in the latter case (the base of
619 the memory reference whose address is taken may be replaced in the
620 DECL_P case). The former case is more complicated, as we need to
621 ensure that the new address is still a gimple operand. Thus, it
622 is not sufficient to replace just the base of the memory reference --
623 we need to move the whole computation of the address out of the
624 loop. */
625 if (!is_gimple_val (t))
626 return NULL_TREE;
627
628 *walk_subtrees = 0;
629 obj = TREE_OPERAND (t, 0);
630 var = get_base_address (obj);
631 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
632 return NULL_TREE;
633
634 addr_type = TREE_TYPE (t);
635 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address,
636 dta->gsi);
637 if (dta->gsi == NULL && addr == NULL_TREE)
638 {
639 dta->reset = true;
640 return NULL_TREE;
641 }
642 *tp = addr;
643
644 dta->changed = true;
645 return NULL_TREE;
646 }
647
648 if (!EXPR_P (t))
649 *walk_subtrees = 0;
650
651 return NULL_TREE;
652 }
653
654 /* Moves the references to local variables in STMT at *GSI out of the single
655 entry single exit region starting at ENTRY. DECL_ADDRESS contains
656 addresses of the references that had their address taken
657 already. */
658
659 static void
660 eliminate_local_variables_stmt (edge entry, gimple_stmt_iterator *gsi,
661 htab_t decl_address)
662 {
663 struct elv_data dta;
664 gimple stmt = gsi_stmt (*gsi);
665
666 memset (&dta.info, '\0', sizeof (dta.info));
667 dta.entry = entry;
668 dta.decl_address = decl_address;
669 dta.changed = false;
670 dta.reset = false;
671
672 if (gimple_debug_bind_p (stmt))
673 {
674 dta.gsi = NULL;
675 walk_tree (gimple_debug_bind_get_value_ptr (stmt),
676 eliminate_local_variables_1, &dta.info, NULL);
677 if (dta.reset)
678 {
679 gimple_debug_bind_reset_value (stmt);
680 dta.changed = true;
681 }
682 }
683 else
684 {
685 dta.gsi = gsi;
686 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
687 }
688
689 if (dta.changed)
690 update_stmt (stmt);
691 }
692
693 /* Eliminates the references to local variables from the single entry
694 single exit region between the ENTRY and EXIT edges.
695
696 This includes:
697 1) Taking address of a local variable -- these are moved out of the
698 region (and temporary variable is created to hold the address if
699 necessary).
700
701 2) Dereferencing a local variable -- these are replaced with indirect
702 references. */
703
704 static void
705 eliminate_local_variables (edge entry, edge exit)
706 {
707 basic_block bb;
708 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
709 unsigned i;
710 gimple_stmt_iterator gsi;
711 bool has_debug_stmt = false;
712 htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
713 free);
714 basic_block entry_bb = entry->src;
715 basic_block exit_bb = exit->dest;
716
717 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
718
719 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
720 if (bb != entry_bb && bb != exit_bb)
721 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
722 if (is_gimple_debug (gsi_stmt (gsi)))
723 {
724 if (gimple_debug_bind_p (gsi_stmt (gsi)))
725 has_debug_stmt = true;
726 }
727 else
728 eliminate_local_variables_stmt (entry, &gsi, decl_address);
729
730 if (has_debug_stmt)
731 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
732 if (bb != entry_bb && bb != exit_bb)
733 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
734 if (gimple_debug_bind_p (gsi_stmt (gsi)))
735 eliminate_local_variables_stmt (entry, &gsi, decl_address);
736
737 htab_delete (decl_address);
738 VEC_free (basic_block, heap, body);
739 }
740
741 /* Returns true if expression EXPR is not defined between ENTRY and
742 EXIT, i.e. if all its operands are defined outside of the region. */
743
744 static bool
745 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
746 {
747 basic_block entry_bb = entry->src;
748 basic_block exit_bb = exit->dest;
749 basic_block def_bb;
750
751 if (is_gimple_min_invariant (expr))
752 return true;
753
754 if (TREE_CODE (expr) == SSA_NAME)
755 {
756 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
757 if (def_bb
758 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
759 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
760 return false;
761
762 return true;
763 }
764
765 return false;
766 }
767
768 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
769 The copies are stored to NAME_COPIES, if NAME was already duplicated,
770 its duplicate stored in NAME_COPIES is returned.
771
772 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
773 duplicated, storing the copies in DECL_COPIES. */
774
775 static tree
776 separate_decls_in_region_name (tree name,
777 htab_t name_copies, htab_t decl_copies,
778 bool copy_name_p)
779 {
780 tree copy, var, var_copy;
781 unsigned idx, uid, nuid;
782 struct int_tree_map ielt, *nielt;
783 struct name_to_copy_elt elt, *nelt;
784 void **slot, **dslot;
785
786 if (TREE_CODE (name) != SSA_NAME)
787 return name;
788
789 idx = SSA_NAME_VERSION (name);
790 elt.version = idx;
791 slot = htab_find_slot_with_hash (name_copies, &elt, idx,
792 copy_name_p ? INSERT : NO_INSERT);
793 if (slot && *slot)
794 return ((struct name_to_copy_elt *) *slot)->new_name;
795
796 if (copy_name_p)
797 {
798 copy = duplicate_ssa_name (name, NULL);
799 nelt = XNEW (struct name_to_copy_elt);
800 nelt->version = idx;
801 nelt->new_name = copy;
802 nelt->field = NULL_TREE;
803 *slot = nelt;
804 }
805 else
806 {
807 gcc_assert (!slot);
808 copy = name;
809 }
810
811 var = SSA_NAME_VAR (name);
812 if (!var)
813 return copy;
814
815 uid = DECL_UID (var);
816 ielt.uid = uid;
817 dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
818 if (!*dslot)
819 {
820 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
821 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
822 nielt = XNEW (struct int_tree_map);
823 nielt->uid = uid;
824 nielt->to = var_copy;
825 *dslot = nielt;
826
827 /* Ensure that when we meet this decl next time, we won't duplicate
828 it again. */
829 nuid = DECL_UID (var_copy);
830 ielt.uid = nuid;
831 dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
832 gcc_assert (!*dslot);
833 nielt = XNEW (struct int_tree_map);
834 nielt->uid = nuid;
835 nielt->to = var_copy;
836 *dslot = nielt;
837 }
838 else
839 var_copy = ((struct int_tree_map *) *dslot)->to;
840
841 replace_ssa_name_symbol (copy, var_copy);
842 return copy;
843 }
844
845 /* Finds the ssa names used in STMT that are defined outside the
846 region between ENTRY and EXIT and replaces such ssa names with
847 their duplicates. The duplicates are stored to NAME_COPIES. Base
848 decls of all ssa names used in STMT (including those defined in
849 LOOP) are replaced with the new temporary variables; the
850 replacement decls are stored in DECL_COPIES. */
851
852 static void
853 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
854 htab_t name_copies, htab_t decl_copies)
855 {
856 use_operand_p use;
857 def_operand_p def;
858 ssa_op_iter oi;
859 tree name, copy;
860 bool copy_name_p;
861
862 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
863 {
864 name = DEF_FROM_PTR (def);
865 gcc_assert (TREE_CODE (name) == SSA_NAME);
866 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
867 false);
868 gcc_assert (copy == name);
869 }
870
871 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
872 {
873 name = USE_FROM_PTR (use);
874 if (TREE_CODE (name) != SSA_NAME)
875 continue;
876
877 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
878 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
879 copy_name_p);
880 SET_USE (use, copy);
881 }
882 }
883
884 /* Finds the ssa names used in STMT that are defined outside the
885 region between ENTRY and EXIT and replaces such ssa names with
886 their duplicates. The duplicates are stored to NAME_COPIES. Base
887 decls of all ssa names used in STMT (including those defined in
888 LOOP) are replaced with the new temporary variables; the
889 replacement decls are stored in DECL_COPIES. */
890
891 static bool
892 separate_decls_in_region_debug (gimple stmt, htab_t name_copies,
893 htab_t decl_copies)
894 {
895 use_operand_p use;
896 ssa_op_iter oi;
897 tree var, name;
898 struct int_tree_map ielt;
899 struct name_to_copy_elt elt;
900 void **slot, **dslot;
901
902 if (gimple_debug_bind_p (stmt))
903 var = gimple_debug_bind_get_var (stmt);
904 else if (gimple_debug_source_bind_p (stmt))
905 var = gimple_debug_source_bind_get_var (stmt);
906 else
907 return true;
908 if (TREE_CODE (var) == DEBUG_EXPR_DECL || TREE_CODE (var) == LABEL_DECL)
909 return true;
910 gcc_assert (DECL_P (var) && SSA_VAR_P (var));
911 ielt.uid = DECL_UID (var);
912 dslot = htab_find_slot_with_hash (decl_copies, &ielt, ielt.uid, NO_INSERT);
913 if (!dslot)
914 return true;
915 if (gimple_debug_bind_p (stmt))
916 gimple_debug_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
917 else if (gimple_debug_source_bind_p (stmt))
918 gimple_debug_source_bind_set_var (stmt, ((struct int_tree_map *) *dslot)->to);
919
920 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
921 {
922 name = USE_FROM_PTR (use);
923 if (TREE_CODE (name) != SSA_NAME)
924 continue;
925
926 elt.version = SSA_NAME_VERSION (name);
927 slot = htab_find_slot_with_hash (name_copies, &elt, elt.version, NO_INSERT);
928 if (!slot)
929 {
930 gimple_debug_bind_reset_value (stmt);
931 update_stmt (stmt);
932 break;
933 }
934
935 SET_USE (use, ((struct name_to_copy_elt *) *slot)->new_name);
936 }
937
938 return false;
939 }
940
941 /* Callback for htab_traverse. Adds a field corresponding to the reduction
942 specified in SLOT. The type is passed in DATA. */
943
944 static int
945 add_field_for_reduction (void **slot, void *data)
946 {
947
948 struct reduction_info *const red = (struct reduction_info *) *slot;
949 tree const type = (tree) data;
950 tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
951 tree field = build_decl (gimple_location (red->reduc_stmt),
952 FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
953
954 insert_field_into_struct (type, field);
955
956 red->field = field;
957
958 return 1;
959 }
960
961 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
962 described in SLOT. The type is passed in DATA. */
963
964 static int
965 add_field_for_name (void **slot, void *data)
966 {
967 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
968 tree type = (tree) data;
969 tree name = ssa_name (elt->version);
970 tree field = build_decl (UNKNOWN_LOCATION,
971 FIELD_DECL, SSA_NAME_IDENTIFIER (name),
972 TREE_TYPE (name));
973
974 insert_field_into_struct (type, field);
975 elt->field = field;
976
977 return 1;
978 }
979
980 /* Callback for htab_traverse. A local result is the intermediate result
981 computed by a single
982 thread, or the initial value in case no iteration was executed.
983 This function creates a phi node reflecting these values.
984 The phi's result will be stored in NEW_PHI field of the
985 reduction's data structure. */
986
987 static int
988 create_phi_for_local_result (void **slot, void *data)
989 {
990 struct reduction_info *const reduc = (struct reduction_info *) *slot;
991 const struct loop *const loop = (const struct loop *) data;
992 edge e;
993 gimple new_phi;
994 basic_block store_bb;
995 tree local_res;
996 source_location locus;
997
998 /* STORE_BB is the block where the phi
999 should be stored. It is the destination of the loop exit.
1000 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
1001 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
1002
1003 /* STORE_BB has two predecessors. One coming from the loop
1004 (the reduction's result is computed at the loop),
1005 and another coming from a block preceding the loop,
1006 when no iterations
1007 are executed (the initial value should be taken). */
1008 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
1009 e = EDGE_PRED (store_bb, 1);
1010 else
1011 e = EDGE_PRED (store_bb, 0);
1012 local_res = copy_ssa_name (gimple_assign_lhs (reduc->reduc_stmt), NULL);
1013 locus = gimple_location (reduc->reduc_stmt);
1014 new_phi = create_phi_node (local_res, store_bb);
1015 add_phi_arg (new_phi, reduc->init, e, locus);
1016 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
1017 FALLTHRU_EDGE (loop->latch), locus);
1018 reduc->new_phi = new_phi;
1019
1020 return 1;
1021 }
1022
1023 struct clsn_data
1024 {
1025 tree store;
1026 tree load;
1027
1028 basic_block store_bb;
1029 basic_block load_bb;
1030 };
1031
1032 /* Callback for htab_traverse. Create an atomic instruction for the
1033 reduction described in SLOT.
1034 DATA annotates the place in memory the atomic operation relates to,
1035 and the basic block it needs to be generated in. */
1036
1037 static int
1038 create_call_for_reduction_1 (void **slot, void *data)
1039 {
1040 struct reduction_info *const reduc = (struct reduction_info *) *slot;
1041 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1042 gimple_stmt_iterator gsi;
1043 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
1044 tree load_struct;
1045 basic_block bb;
1046 basic_block new_bb;
1047 edge e;
1048 tree t, addr, ref, x;
1049 tree tmp_load, name;
1050 gimple load;
1051
1052 load_struct = build_simple_mem_ref (clsn_data->load);
1053 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
1054
1055 addr = build_addr (t, current_function_decl);
1056
1057 /* Create phi node. */
1058 bb = clsn_data->load_bb;
1059
1060 e = split_block (bb, t);
1061 new_bb = e->dest;
1062
1063 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
1064 tmp_load = make_ssa_name (tmp_load, NULL);
1065 load = gimple_build_omp_atomic_load (tmp_load, addr);
1066 SSA_NAME_DEF_STMT (tmp_load) = load;
1067 gsi = gsi_start_bb (new_bb);
1068 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
1069
1070 e = split_block (new_bb, load);
1071 new_bb = e->dest;
1072 gsi = gsi_start_bb (new_bb);
1073 ref = tmp_load;
1074 x = fold_build2 (reduc->reduction_code,
1075 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
1076 PHI_RESULT (reduc->new_phi));
1077
1078 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
1079 GSI_CONTINUE_LINKING);
1080
1081 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
1082 return 1;
1083 }
1084
1085 /* Create the atomic operation at the join point of the threads.
1086 REDUCTION_LIST describes the reductions in the LOOP.
1087 LD_ST_DATA describes the shared data structure where
1088 shared data is stored in and loaded from. */
1089 static void
1090 create_call_for_reduction (struct loop *loop, htab_t reduction_list,
1091 struct clsn_data *ld_st_data)
1092 {
1093 htab_traverse (reduction_list, create_phi_for_local_result, loop);
1094 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1095 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1096 htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
1097 }
1098
1099 /* Callback for htab_traverse. Loads the final reduction value at the
1100 join point of all threads, and inserts it in the right place. */
1101
1102 static int
1103 create_loads_for_reductions (void **slot, void *data)
1104 {
1105 struct reduction_info *const red = (struct reduction_info *) *slot;
1106 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1107 gimple stmt;
1108 gimple_stmt_iterator gsi;
1109 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1110 tree load_struct;
1111 tree name;
1112 tree x;
1113
1114 gsi = gsi_after_labels (clsn_data->load_bb);
1115 load_struct = build_simple_mem_ref (clsn_data->load);
1116 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1117 NULL_TREE);
1118
1119 x = load_struct;
1120 name = PHI_RESULT (red->keep_res);
1121 stmt = gimple_build_assign (name, x);
1122 SSA_NAME_DEF_STMT (name) = stmt;
1123
1124 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1125
1126 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1127 !gsi_end_p (gsi); gsi_next (&gsi))
1128 if (gsi_stmt (gsi) == red->keep_res)
1129 {
1130 remove_phi_node (&gsi, false);
1131 return 1;
1132 }
1133 gcc_unreachable ();
1134 }
1135
1136 /* Load the reduction result that was stored in LD_ST_DATA.
1137 REDUCTION_LIST describes the list of reductions that the
1138 loads should be generated for. */
1139 static void
1140 create_final_loads_for_reduction (htab_t reduction_list,
1141 struct clsn_data *ld_st_data)
1142 {
1143 gimple_stmt_iterator gsi;
1144 tree t;
1145 gimple stmt;
1146
1147 gsi = gsi_after_labels (ld_st_data->load_bb);
1148 t = build_fold_addr_expr (ld_st_data->store);
1149 stmt = gimple_build_assign (ld_st_data->load, t);
1150
1151 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1152 SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
1153
1154 htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
1155
1156 }
1157
1158 /* Callback for htab_traverse. Store the neutral value for the
1159 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1160 1 for MULT_EXPR, etc. into the reduction field.
1161 The reduction is specified in SLOT. The store information is
1162 passed in DATA. */
1163
1164 static int
1165 create_stores_for_reduction (void **slot, void *data)
1166 {
1167 struct reduction_info *const red = (struct reduction_info *) *slot;
1168 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1169 tree t;
1170 gimple stmt;
1171 gimple_stmt_iterator gsi;
1172 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1173
1174 gsi = gsi_last_bb (clsn_data->store_bb);
1175 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1176 stmt = gimple_build_assign (t, red->initial_value);
1177 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1178
1179 return 1;
1180 }
1181
1182 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1183 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1184 specified in SLOT. */
1185
1186 static int
1187 create_loads_and_stores_for_name (void **slot, void *data)
1188 {
1189 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
1190 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1191 tree t;
1192 gimple stmt;
1193 gimple_stmt_iterator gsi;
1194 tree type = TREE_TYPE (elt->new_name);
1195 tree load_struct;
1196
1197 gsi = gsi_last_bb (clsn_data->store_bb);
1198 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1199 stmt = gimple_build_assign (t, ssa_name (elt->version));
1200 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1201
1202 gsi = gsi_last_bb (clsn_data->load_bb);
1203 load_struct = build_simple_mem_ref (clsn_data->load);
1204 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1205 stmt = gimple_build_assign (elt->new_name, t);
1206 SSA_NAME_DEF_STMT (elt->new_name) = stmt;
1207 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1208
1209 return 1;
1210 }
1211
1212 /* Moves all the variables used in LOOP and defined outside of it (including
1213 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1214 name) to a structure created for this purpose. The code
1215
1216 while (1)
1217 {
1218 use (a);
1219 use (b);
1220 }
1221
1222 is transformed this way:
1223
1224 bb0:
1225 old.a = a;
1226 old.b = b;
1227
1228 bb1:
1229 a' = new->a;
1230 b' = new->b;
1231 while (1)
1232 {
1233 use (a');
1234 use (b');
1235 }
1236
1237 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1238 pointer `new' is intentionally not initialized (the loop will be split to a
1239 separate function later, and `new' will be initialized from its arguments).
1240 LD_ST_DATA holds information about the shared data structure used to pass
1241 information among the threads. It is initialized here, and
1242 gen_parallel_loop will pass it to create_call_for_reduction that
1243 needs this information. REDUCTION_LIST describes the reductions
1244 in LOOP. */
1245
1246 static void
1247 separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
1248 tree *arg_struct, tree *new_arg_struct,
1249 struct clsn_data *ld_st_data)
1250
1251 {
1252 basic_block bb1 = split_edge (entry);
1253 basic_block bb0 = single_pred (bb1);
1254 htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
1255 name_to_copy_elt_eq, free);
1256 htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
1257 free);
1258 unsigned i;
1259 tree type, type_name, nvar;
1260 gimple_stmt_iterator gsi;
1261 struct clsn_data clsn_data;
1262 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
1263 basic_block bb;
1264 basic_block entry_bb = bb1;
1265 basic_block exit_bb = exit->dest;
1266 bool has_debug_stmt = false;
1267
1268 entry = single_succ_edge (entry_bb);
1269 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1270
1271 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
1272 {
1273 if (bb != entry_bb && bb != exit_bb)
1274 {
1275 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1276 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1277 name_copies, decl_copies);
1278
1279 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1280 {
1281 gimple stmt = gsi_stmt (gsi);
1282
1283 if (is_gimple_debug (stmt))
1284 has_debug_stmt = true;
1285 else
1286 separate_decls_in_region_stmt (entry, exit, stmt,
1287 name_copies, decl_copies);
1288 }
1289 }
1290 }
1291
1292 /* Now process debug bind stmts. We must not create decls while
1293 processing debug stmts, so we defer their processing so as to
1294 make sure we will have debug info for as many variables as
1295 possible (all of those that were dealt with in the loop above),
1296 and discard those for which we know there's nothing we can
1297 do. */
1298 if (has_debug_stmt)
1299 FOR_EACH_VEC_ELT (basic_block, body, i, bb)
1300 if (bb != entry_bb && bb != exit_bb)
1301 {
1302 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
1303 {
1304 gimple stmt = gsi_stmt (gsi);
1305
1306 if (is_gimple_debug (stmt))
1307 {
1308 if (separate_decls_in_region_debug (stmt, name_copies,
1309 decl_copies))
1310 {
1311 gsi_remove (&gsi, true);
1312 continue;
1313 }
1314 }
1315
1316 gsi_next (&gsi);
1317 }
1318 }
1319
1320 VEC_free (basic_block, heap, body);
1321
1322 if (htab_elements (name_copies) == 0 && htab_elements (reduction_list) == 0)
1323 {
1324 /* It may happen that there is nothing to copy (if there are only
1325 loop carried and external variables in the loop). */
1326 *arg_struct = NULL;
1327 *new_arg_struct = NULL;
1328 }
1329 else
1330 {
1331 /* Create the type for the structure to store the ssa names to. */
1332 type = lang_hooks.types.make_type (RECORD_TYPE);
1333 type_name = build_decl (UNKNOWN_LOCATION,
1334 TYPE_DECL, create_tmp_var_name (".paral_data"),
1335 type);
1336 TYPE_NAME (type) = type_name;
1337
1338 htab_traverse (name_copies, add_field_for_name, type);
1339 if (reduction_list && htab_elements (reduction_list) > 0)
1340 {
1341 /* Create the fields for reductions. */
1342 htab_traverse (reduction_list, add_field_for_reduction,
1343 type);
1344 }
1345 layout_type (type);
1346
1347 /* Create the loads and stores. */
1348 *arg_struct = create_tmp_var (type, ".paral_data_store");
1349 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1350 *new_arg_struct = make_ssa_name (nvar, NULL);
1351
1352 ld_st_data->store = *arg_struct;
1353 ld_st_data->load = *new_arg_struct;
1354 ld_st_data->store_bb = bb0;
1355 ld_st_data->load_bb = bb1;
1356
1357 htab_traverse (name_copies, create_loads_and_stores_for_name,
1358 ld_st_data);
1359
1360 /* Load the calculation from memory (after the join of the threads). */
1361
1362 if (reduction_list && htab_elements (reduction_list) > 0)
1363 {
1364 htab_traverse (reduction_list, create_stores_for_reduction,
1365 ld_st_data);
1366 clsn_data.load = make_ssa_name (nvar, NULL);
1367 clsn_data.load_bb = exit->dest;
1368 clsn_data.store = ld_st_data->store;
1369 create_final_loads_for_reduction (reduction_list, &clsn_data);
1370 }
1371 }
1372
1373 htab_delete (decl_copies);
1374 htab_delete (name_copies);
1375 }
1376
1377 /* Bitmap containing uids of functions created by parallelization. We cannot
1378 allocate it from the default obstack, as it must live across compilation
1379 of several functions; we make it gc allocated instead. */
1380
1381 static GTY(()) bitmap parallelized_functions;
1382
1383 /* Returns true if FN was created by create_loop_fn. */
1384
1385 bool
1386 parallelized_function_p (tree fn)
1387 {
1388 if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1389 return false;
1390
1391 return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1392 }
1393
1394 /* Creates and returns an empty function that will receive the body of
1395 a parallelized loop. */
1396
1397 static tree
1398 create_loop_fn (location_t loc)
1399 {
1400 char buf[100];
1401 char *tname;
1402 tree decl, type, name, t;
1403 struct function *act_cfun = cfun;
1404 static unsigned loopfn_num;
1405
1406 loc = LOCATION_LOCUS (loc);
1407 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1408 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1409 clean_symbol_name (tname);
1410 name = get_identifier (tname);
1411 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1412
1413 decl = build_decl (loc, FUNCTION_DECL, name, type);
1414 if (!parallelized_functions)
1415 parallelized_functions = BITMAP_GGC_ALLOC ();
1416 bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1417
1418 TREE_STATIC (decl) = 1;
1419 TREE_USED (decl) = 1;
1420 DECL_ARTIFICIAL (decl) = 1;
1421 DECL_IGNORED_P (decl) = 0;
1422 TREE_PUBLIC (decl) = 0;
1423 DECL_UNINLINABLE (decl) = 1;
1424 DECL_EXTERNAL (decl) = 0;
1425 DECL_CONTEXT (decl) = NULL_TREE;
1426 DECL_INITIAL (decl) = make_node (BLOCK);
1427
1428 t = build_decl (loc, RESULT_DECL, NULL_TREE, void_type_node);
1429 DECL_ARTIFICIAL (t) = 1;
1430 DECL_IGNORED_P (t) = 1;
1431 DECL_RESULT (decl) = t;
1432
1433 t = build_decl (loc, PARM_DECL, get_identifier (".paral_data_param"),
1434 ptr_type_node);
1435 DECL_ARTIFICIAL (t) = 1;
1436 DECL_ARG_TYPE (t) = ptr_type_node;
1437 DECL_CONTEXT (t) = decl;
1438 TREE_USED (t) = 1;
1439 DECL_ARGUMENTS (decl) = t;
1440
1441 allocate_struct_function (decl, false);
1442
1443 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1444 it. */
1445 set_cfun (act_cfun);
1446
1447 return decl;
1448 }
1449
1450 /* Moves the exit condition of LOOP to the beginning of its header, and
1451 duplicates the part of the last iteration that gets disabled to the
1452 exit of the loop. NIT is the number of iterations of the loop
1453 (used to initialize the variables in the duplicated part).
1454
1455 TODO: the common case is that latch of the loop is empty and immediately
1456 follows the loop exit. In this case, it would be better not to copy the
1457 body of the loop, but only move the entry of the loop directly before the
1458 exit check and increase the number of iterations of the loop by one.
1459 This may need some additional preconditioning in case NIT = ~0.
1460 REDUCTION_LIST describes the reductions in LOOP. */
1461
1462 static void
1463 transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
1464 {
1465 basic_block *bbs, *nbbs, ex_bb, orig_header;
1466 unsigned n;
1467 bool ok;
1468 edge exit = single_dom_exit (loop), hpred;
1469 tree control, control_name, res, t;
1470 gimple phi, nphi, cond_stmt, stmt, cond_nit;
1471 gimple_stmt_iterator gsi;
1472 tree nit_1;
1473
1474 split_block_after_labels (loop->header);
1475 orig_header = single_succ (loop->header);
1476 hpred = single_succ_edge (loop->header);
1477
1478 cond_stmt = last_stmt (exit->src);
1479 control = gimple_cond_lhs (cond_stmt);
1480 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1481
1482 /* Make sure that we have phi nodes on exit for all loop header phis
1483 (create_parallel_loop requires that). */
1484 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1485 {
1486 phi = gsi_stmt (gsi);
1487 res = PHI_RESULT (phi);
1488 t = copy_ssa_name (res, phi);
1489 SET_PHI_RESULT (phi, t);
1490 nphi = create_phi_node (res, orig_header);
1491 add_phi_arg (nphi, t, hpred, UNKNOWN_LOCATION);
1492
1493 if (res == control)
1494 {
1495 gimple_cond_set_lhs (cond_stmt, t);
1496 update_stmt (cond_stmt);
1497 control = t;
1498 }
1499 }
1500
1501 bbs = get_loop_body_in_dom_order (loop);
1502
1503 for (n = 0; bbs[n] != exit->src; n++)
1504 continue;
1505 nbbs = XNEWVEC (basic_block, n);
1506 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1507 bbs + 1, n, nbbs);
1508 gcc_assert (ok);
1509 free (bbs);
1510 ex_bb = nbbs[0];
1511 free (nbbs);
1512
1513 /* Other than reductions, the only gimple reg that should be copied
1514 out of the loop is the control variable. */
1515 exit = single_dom_exit (loop);
1516 control_name = NULL_TREE;
1517 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
1518 {
1519 phi = gsi_stmt (gsi);
1520 res = PHI_RESULT (phi);
1521 if (virtual_operand_p (res))
1522 {
1523 gsi_next (&gsi);
1524 continue;
1525 }
1526
1527 /* Check if it is a part of reduction. If it is,
1528 keep the phi at the reduction's keep_res field. The
1529 PHI_RESULT of this phi is the resulting value of the reduction
1530 variable when exiting the loop. */
1531
1532 if (htab_elements (reduction_list) > 0)
1533 {
1534 struct reduction_info *red;
1535
1536 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1537 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1538 if (red)
1539 {
1540 red->keep_res = phi;
1541 gsi_next (&gsi);
1542 continue;
1543 }
1544 }
1545 gcc_assert (control_name == NULL_TREE
1546 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1547 control_name = res;
1548 remove_phi_node (&gsi, false);
1549 }
1550 gcc_assert (control_name != NULL_TREE);
1551
1552 /* Initialize the control variable to number of iterations
1553 according to the rhs of the exit condition. */
1554 gsi = gsi_after_labels (ex_bb);
1555 cond_nit = last_stmt (exit->src);
1556 nit_1 = gimple_cond_rhs (cond_nit);
1557 nit_1 = force_gimple_operand_gsi (&gsi,
1558 fold_convert (TREE_TYPE (control_name), nit_1),
1559 false, NULL_TREE, false, GSI_SAME_STMT);
1560 stmt = gimple_build_assign (control_name, nit_1);
1561 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1562 SSA_NAME_DEF_STMT (control_name) = stmt;
1563 }
1564
1565 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1566 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1567 NEW_DATA is the variable that should be initialized from the argument
1568 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1569 basic block containing GIMPLE_OMP_PARALLEL tree. */
1570
1571 static basic_block
1572 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1573 tree new_data, unsigned n_threads, location_t loc)
1574 {
1575 gimple_stmt_iterator gsi;
1576 basic_block bb, paral_bb, for_bb, ex_bb;
1577 tree t, param;
1578 gimple stmt, for_stmt, phi, cond_stmt;
1579 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1580 edge exit, nexit, guard, end, e;
1581
1582 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1583 bb = loop_preheader_edge (loop)->src;
1584 paral_bb = single_pred (bb);
1585 gsi = gsi_last_bb (paral_bb);
1586
1587 t = build_omp_clause (loc, OMP_CLAUSE_NUM_THREADS);
1588 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1589 = build_int_cst (integer_type_node, n_threads);
1590 stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1591 gimple_set_location (stmt, loc);
1592
1593 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1594
1595 /* Initialize NEW_DATA. */
1596 if (data)
1597 {
1598 gsi = gsi_after_labels (bb);
1599
1600 param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
1601 stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1602 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1603 SSA_NAME_DEF_STMT (param) = stmt;
1604
1605 stmt = gimple_build_assign (new_data,
1606 fold_convert (TREE_TYPE (new_data), param));
1607 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1608 SSA_NAME_DEF_STMT (new_data) = stmt;
1609 }
1610
1611 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1612 bb = split_loop_exit_edge (single_dom_exit (loop));
1613 gsi = gsi_last_bb (bb);
1614 stmt = gimple_build_omp_return (false);
1615 gimple_set_location (stmt, loc);
1616 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1617
1618 /* Extract data for GIMPLE_OMP_FOR. */
1619 gcc_assert (loop->header == single_dom_exit (loop)->src);
1620 cond_stmt = last_stmt (loop->header);
1621
1622 cvar = gimple_cond_lhs (cond_stmt);
1623 cvar_base = SSA_NAME_VAR (cvar);
1624 phi = SSA_NAME_DEF_STMT (cvar);
1625 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1626 initvar = copy_ssa_name (cvar, NULL);
1627 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1628 initvar);
1629 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1630
1631 gsi = gsi_last_nondebug_bb (loop->latch);
1632 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1633 gsi_remove (&gsi, true);
1634
1635 /* Prepare cfg. */
1636 for_bb = split_edge (loop_preheader_edge (loop));
1637 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1638 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1639 gcc_assert (exit == single_dom_exit (loop));
1640
1641 guard = make_edge (for_bb, ex_bb, 0);
1642 single_succ_edge (loop->latch)->flags = 0;
1643 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1644 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1645 {
1646 source_location locus;
1647 tree def;
1648 phi = gsi_stmt (gsi);
1649 stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
1650
1651 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
1652 locus = gimple_phi_arg_location_from_edge (stmt,
1653 loop_preheader_edge (loop));
1654 add_phi_arg (phi, def, guard, locus);
1655
1656 def = PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop));
1657 locus = gimple_phi_arg_location_from_edge (stmt, loop_latch_edge (loop));
1658 add_phi_arg (phi, def, end, locus);
1659 }
1660 e = redirect_edge_and_branch (exit, nexit->dest);
1661 PENDING_STMT (e) = NULL;
1662
1663 /* Emit GIMPLE_OMP_FOR. */
1664 gimple_cond_set_lhs (cond_stmt, cvar_base);
1665 type = TREE_TYPE (cvar);
1666 t = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
1667 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1668
1669 for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
1670 gimple_set_location (for_stmt, loc);
1671 gimple_omp_for_set_index (for_stmt, 0, initvar);
1672 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1673 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1674 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1675 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1676 cvar_base,
1677 build_int_cst (type, 1)));
1678
1679 gsi = gsi_last_bb (for_bb);
1680 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1681 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1682
1683 /* Emit GIMPLE_OMP_CONTINUE. */
1684 gsi = gsi_last_bb (loop->latch);
1685 stmt = gimple_build_omp_continue (cvar_next, cvar);
1686 gimple_set_location (stmt, loc);
1687 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1688 SSA_NAME_DEF_STMT (cvar_next) = stmt;
1689
1690 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
1691 gsi = gsi_last_bb (ex_bb);
1692 stmt = gimple_build_omp_return (true);
1693 gimple_set_location (stmt, loc);
1694 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1695
1696 /* After the above dom info is hosed. Re-compute it. */
1697 free_dominance_info (CDI_DOMINATORS);
1698 calculate_dominance_info (CDI_DOMINATORS);
1699
1700 return paral_bb;
1701 }
1702
1703 /* Generates code to execute the iterations of LOOP in N_THREADS
1704 threads in parallel.
1705
1706 NITER describes number of iterations of LOOP.
1707 REDUCTION_LIST describes the reductions existent in the LOOP. */
1708
1709 static void
1710 gen_parallel_loop (struct loop *loop, htab_t reduction_list,
1711 unsigned n_threads, struct tree_niter_desc *niter)
1712 {
1713 loop_iterator li;
1714 tree many_iterations_cond, type, nit;
1715 tree arg_struct, new_arg_struct;
1716 gimple_seq stmts;
1717 basic_block parallel_head;
1718 edge entry, exit;
1719 struct clsn_data clsn_data;
1720 unsigned prob;
1721 location_t loc;
1722 gimple cond_stmt;
1723 unsigned int m_p_thread=2;
1724
1725 /* From
1726
1727 ---------------------------------------------------------------------
1728 loop
1729 {
1730 IV = phi (INIT, IV + STEP)
1731 BODY1;
1732 if (COND)
1733 break;
1734 BODY2;
1735 }
1736 ---------------------------------------------------------------------
1737
1738 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1739 we generate the following code:
1740
1741 ---------------------------------------------------------------------
1742
1743 if (MAY_BE_ZERO
1744 || NITER < MIN_PER_THREAD * N_THREADS)
1745 goto original;
1746
1747 BODY1;
1748 store all local loop-invariant variables used in body of the loop to DATA.
1749 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1750 load the variables from DATA.
1751 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1752 BODY2;
1753 BODY1;
1754 GIMPLE_OMP_CONTINUE;
1755 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
1756 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
1757 goto end;
1758
1759 original:
1760 loop
1761 {
1762 IV = phi (INIT, IV + STEP)
1763 BODY1;
1764 if (COND)
1765 break;
1766 BODY2;
1767 }
1768
1769 end:
1770
1771 */
1772
1773 /* Create two versions of the loop -- in the old one, we know that the
1774 number of iterations is large enough, and we will transform it into the
1775 loop that will be split to loop_fn, the new one will be used for the
1776 remaining iterations. */
1777
1778 /* We should compute a better number-of-iterations value for outer loops.
1779 That is, if we have
1780
1781 for (i = 0; i < n; ++i)
1782 for (j = 0; j < m; ++j)
1783 ...
1784
1785 we should compute nit = n * m, not nit = n.
1786 Also may_be_zero handling would need to be adjusted. */
1787
1788 type = TREE_TYPE (niter->niter);
1789 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1790 NULL_TREE);
1791 if (stmts)
1792 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1793
1794 if (loop->inner)
1795 m_p_thread=2;
1796 else
1797 m_p_thread=MIN_PER_THREAD;
1798
1799 many_iterations_cond =
1800 fold_build2 (GE_EXPR, boolean_type_node,
1801 nit, build_int_cst (type, m_p_thread * n_threads));
1802
1803 many_iterations_cond
1804 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1805 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1806 many_iterations_cond);
1807 many_iterations_cond
1808 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1809 if (stmts)
1810 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1811 if (!is_gimple_condexpr (many_iterations_cond))
1812 {
1813 many_iterations_cond
1814 = force_gimple_operand (many_iterations_cond, &stmts,
1815 true, NULL_TREE);
1816 if (stmts)
1817 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1818 }
1819
1820 initialize_original_copy_tables ();
1821
1822 /* We assume that the loop usually iterates a lot. */
1823 prob = 4 * REG_BR_PROB_BASE / 5;
1824 loop_version (loop, many_iterations_cond, NULL,
1825 prob, prob, REG_BR_PROB_BASE - prob, true);
1826 update_ssa (TODO_update_ssa);
1827 free_original_copy_tables ();
1828
1829 /* Base all the induction variables in LOOP on a single control one. */
1830 canonicalize_loop_ivs (loop, &nit, true);
1831
1832 /* Ensure that the exit condition is the first statement in the loop. */
1833 transform_to_exit_first_loop (loop, reduction_list, nit);
1834
1835 /* Generate initializations for reductions. */
1836 if (htab_elements (reduction_list) > 0)
1837 htab_traverse (reduction_list, initialize_reductions, loop);
1838
1839 /* Eliminate the references to local variables from the loop. */
1840 gcc_assert (single_exit (loop));
1841 entry = loop_preheader_edge (loop);
1842 exit = single_dom_exit (loop);
1843
1844 eliminate_local_variables (entry, exit);
1845 /* In the old loop, move all variables non-local to the loop to a structure
1846 and back, and create separate decls for the variables used in loop. */
1847 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1848 &new_arg_struct, &clsn_data);
1849
1850 /* Create the parallel constructs. */
1851 loc = UNKNOWN_LOCATION;
1852 cond_stmt = last_stmt (loop->header);
1853 if (cond_stmt)
1854 loc = gimple_location (cond_stmt);
1855 parallel_head = create_parallel_loop (loop, create_loop_fn (loc), arg_struct,
1856 new_arg_struct, n_threads, loc);
1857 if (htab_elements (reduction_list) > 0)
1858 create_call_for_reduction (loop, reduction_list, &clsn_data);
1859
1860 scev_reset ();
1861
1862 /* Cancel the loop (it is simpler to do it here rather than to teach the
1863 expander to do it). */
1864 cancel_loop_tree (loop);
1865
1866 /* Free loop bound estimations that could contain references to
1867 removed statements. */
1868 FOR_EACH_LOOP (li, loop, 0)
1869 free_numbers_of_iterations_estimates_loop (loop);
1870
1871 /* Expand the parallel constructs. We do it directly here instead of running
1872 a separate expand_omp pass, since it is more efficient, and less likely to
1873 cause troubles with further analyses not being able to deal with the
1874 OMP trees. */
1875
1876 omp_expand_local (parallel_head);
1877 }
1878
1879 /* Returns true when LOOP contains vector phi nodes. */
1880
1881 static bool
1882 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1883 {
1884 unsigned i;
1885 basic_block *bbs = get_loop_body_in_dom_order (loop);
1886 gimple_stmt_iterator gsi;
1887 bool res = true;
1888
1889 for (i = 0; i < loop->num_nodes; i++)
1890 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1891 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
1892 goto end;
1893
1894 res = false;
1895 end:
1896 free (bbs);
1897 return res;
1898 }
1899
1900 /* Create a reduction_info struct, initialize it with REDUC_STMT
1901 and PHI, insert it to the REDUCTION_LIST. */
1902
1903 static void
1904 build_new_reduction (htab_t reduction_list, gimple reduc_stmt, gimple phi)
1905 {
1906 PTR *slot;
1907 struct reduction_info *new_reduction;
1908
1909 gcc_assert (reduc_stmt);
1910
1911 if (dump_file && (dump_flags & TDF_DETAILS))
1912 {
1913 fprintf (dump_file,
1914 "Detected reduction. reduction stmt is: \n");
1915 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
1916 fprintf (dump_file, "\n");
1917 }
1918
1919 new_reduction = XCNEW (struct reduction_info);
1920
1921 new_reduction->reduc_stmt = reduc_stmt;
1922 new_reduction->reduc_phi = phi;
1923 new_reduction->reduc_version = SSA_NAME_VERSION (gimple_phi_result (phi));
1924 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
1925 slot = htab_find_slot (reduction_list, new_reduction, INSERT);
1926 *slot = new_reduction;
1927 }
1928
1929 /* Callback for htab_traverse. Sets gimple_uid of reduc_phi stmts. */
1930
1931 static int
1932 set_reduc_phi_uids (void **slot, void *data ATTRIBUTE_UNUSED)
1933 {
1934 struct reduction_info *const red = (struct reduction_info *) *slot;
1935 gimple_set_uid (red->reduc_phi, red->reduc_version);
1936 return 1;
1937 }
1938
1939 /* Detect all reductions in the LOOP, insert them into REDUCTION_LIST. */
1940
1941 static void
1942 gather_scalar_reductions (loop_p loop, htab_t reduction_list)
1943 {
1944 gimple_stmt_iterator gsi;
1945 loop_vec_info simple_loop_info;
1946
1947 simple_loop_info = vect_analyze_loop_form (loop);
1948
1949 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1950 {
1951 gimple phi = gsi_stmt (gsi);
1952 affine_iv iv;
1953 tree res = PHI_RESULT (phi);
1954 bool double_reduc;
1955
1956 if (virtual_operand_p (res))
1957 continue;
1958
1959 if (!simple_iv (loop, loop, res, &iv, true)
1960 && simple_loop_info)
1961 {
1962 gimple reduc_stmt = vect_force_simple_reduction (simple_loop_info,
1963 phi, true,
1964 &double_reduc);
1965 if (reduc_stmt && !double_reduc)
1966 build_new_reduction (reduction_list, reduc_stmt, phi);
1967 }
1968 }
1969 destroy_loop_vec_info (simple_loop_info, true);
1970
1971 /* As gimple_uid is used by the vectorizer in between vect_analyze_loop_form
1972 and destroy_loop_vec_info, we can set gimple_uid of reduc_phi stmts
1973 only now. */
1974 htab_traverse (reduction_list, set_reduc_phi_uids, NULL);
1975 }
1976
1977 /* Try to initialize NITER for code generation part. */
1978
1979 static bool
1980 try_get_loop_niter (loop_p loop, struct tree_niter_desc *niter)
1981 {
1982 edge exit = single_dom_exit (loop);
1983
1984 gcc_assert (exit);
1985
1986 /* We need to know # of iterations, and there should be no uses of values
1987 defined inside loop outside of it, unless the values are invariants of
1988 the loop. */
1989 if (!number_of_iterations_exit (loop, exit, niter, false))
1990 {
1991 if (dump_file && (dump_flags & TDF_DETAILS))
1992 fprintf (dump_file, " FAILED: number of iterations not known\n");
1993 return false;
1994 }
1995
1996 return true;
1997 }
1998
1999 /* Try to initialize REDUCTION_LIST for code generation part.
2000 REDUCTION_LIST describes the reductions. */
2001
2002 static bool
2003 try_create_reduction_list (loop_p loop, htab_t reduction_list)
2004 {
2005 edge exit = single_dom_exit (loop);
2006 gimple_stmt_iterator gsi;
2007
2008 gcc_assert (exit);
2009
2010 gather_scalar_reductions (loop, reduction_list);
2011
2012
2013 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2014 {
2015 gimple phi = gsi_stmt (gsi);
2016 struct reduction_info *red;
2017 imm_use_iterator imm_iter;
2018 use_operand_p use_p;
2019 gimple reduc_phi;
2020 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2021
2022 if (!virtual_operand_p (val))
2023 {
2024 if (dump_file && (dump_flags & TDF_DETAILS))
2025 {
2026 fprintf (dump_file, "phi is ");
2027 print_gimple_stmt (dump_file, phi, 0, 0);
2028 fprintf (dump_file, "arg of phi to exit: value ");
2029 print_generic_expr (dump_file, val, 0);
2030 fprintf (dump_file, " used outside loop\n");
2031 fprintf (dump_file,
2032 " checking if it a part of reduction pattern: \n");
2033 }
2034 if (htab_elements (reduction_list) == 0)
2035 {
2036 if (dump_file && (dump_flags & TDF_DETAILS))
2037 fprintf (dump_file,
2038 " FAILED: it is not a part of reduction.\n");
2039 return false;
2040 }
2041 reduc_phi = NULL;
2042 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
2043 {
2044 if (!gimple_debug_bind_p (USE_STMT (use_p))
2045 && flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
2046 {
2047 reduc_phi = USE_STMT (use_p);
2048 break;
2049 }
2050 }
2051 red = reduction_phi (reduction_list, reduc_phi);
2052 if (red == NULL)
2053 {
2054 if (dump_file && (dump_flags & TDF_DETAILS))
2055 fprintf (dump_file,
2056 " FAILED: it is not a part of reduction.\n");
2057 return false;
2058 }
2059 if (dump_file && (dump_flags & TDF_DETAILS))
2060 {
2061 fprintf (dump_file, "reduction phi is ");
2062 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
2063 fprintf (dump_file, "reduction stmt is ");
2064 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
2065 }
2066 }
2067 }
2068
2069 /* The iterations of the loop may communicate only through bivs whose
2070 iteration space can be distributed efficiently. */
2071 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
2072 {
2073 gimple phi = gsi_stmt (gsi);
2074 tree def = PHI_RESULT (phi);
2075 affine_iv iv;
2076
2077 if (!virtual_operand_p (def) && !simple_iv (loop, loop, def, &iv, true))
2078 {
2079 struct reduction_info *red;
2080
2081 red = reduction_phi (reduction_list, phi);
2082 if (red == NULL)
2083 {
2084 if (dump_file && (dump_flags & TDF_DETAILS))
2085 fprintf (dump_file,
2086 " FAILED: scalar dependency between iterations\n");
2087 return false;
2088 }
2089 }
2090 }
2091
2092
2093 return true;
2094 }
2095
2096 /* Detect parallel loops and generate parallel code using libgomp
2097 primitives. Returns true if some loop was parallelized, false
2098 otherwise. */
2099
2100 bool
2101 parallelize_loops (void)
2102 {
2103 unsigned n_threads = flag_tree_parallelize_loops;
2104 bool changed = false;
2105 struct loop *loop;
2106 struct tree_niter_desc niter_desc;
2107 loop_iterator li;
2108 htab_t reduction_list;
2109 struct obstack parloop_obstack;
2110 HOST_WIDE_INT estimated;
2111 LOC loop_loc;
2112
2113 /* Do not parallelize loops in the functions created by parallelization. */
2114 if (parallelized_function_p (cfun->decl))
2115 return false;
2116 if (cfun->has_nonlocal_label)
2117 return false;
2118
2119 gcc_obstack_init (&parloop_obstack);
2120 reduction_list = htab_create (10, reduction_info_hash,
2121 reduction_info_eq, free);
2122 init_stmt_vec_info_vec ();
2123
2124 FOR_EACH_LOOP (li, loop, 0)
2125 {
2126 htab_empty (reduction_list);
2127 if (dump_file && (dump_flags & TDF_DETAILS))
2128 {
2129 fprintf (dump_file, "Trying loop %d as candidate\n",loop->num);
2130 if (loop->inner)
2131 fprintf (dump_file, "loop %d is not innermost\n",loop->num);
2132 else
2133 fprintf (dump_file, "loop %d is innermost\n",loop->num);
2134 }
2135
2136 /* If we use autopar in graphite pass, we use its marked dependency
2137 checking results. */
2138 if (flag_loop_parallelize_all && !loop->can_be_parallel)
2139 {
2140 if (dump_file && (dump_flags & TDF_DETAILS))
2141 fprintf (dump_file, "loop is not parallel according to graphite\n");
2142 continue;
2143 }
2144
2145 if (!single_dom_exit (loop))
2146 {
2147
2148 if (dump_file && (dump_flags & TDF_DETAILS))
2149 fprintf (dump_file, "loop is !single_dom_exit\n");
2150
2151 continue;
2152 }
2153
2154 if (/* And of course, the loop must be parallelizable. */
2155 !can_duplicate_loop_p (loop)
2156 || loop_has_blocks_with_irreducible_flag (loop)
2157 || (loop_preheader_edge (loop)->src->flags & BB_IRREDUCIBLE_LOOP)
2158 /* FIXME: the check for vector phi nodes could be removed. */
2159 || loop_has_vector_phi_nodes (loop))
2160 continue;
2161
2162 estimated = estimated_stmt_executions_int (loop);
2163 if (estimated == -1)
2164 estimated = max_stmt_executions_int (loop);
2165 /* FIXME: Bypass this check as graphite doesn't update the
2166 count and frequency correctly now. */
2167 if (!flag_loop_parallelize_all
2168 && ((estimated != -1
2169 && estimated <= (HOST_WIDE_INT) n_threads * MIN_PER_THREAD)
2170 /* Do not bother with loops in cold areas. */
2171 || optimize_loop_nest_for_size_p (loop)))
2172 continue;
2173
2174 if (!try_get_loop_niter (loop, &niter_desc))
2175 continue;
2176
2177 if (!try_create_reduction_list (loop, reduction_list))
2178 continue;
2179
2180 if (!flag_loop_parallelize_all
2181 && !loop_parallel_p (loop, &parloop_obstack))
2182 continue;
2183
2184 changed = true;
2185 if (dump_file && (dump_flags & TDF_DETAILS))
2186 {
2187 if (loop->inner)
2188 fprintf (dump_file, "parallelizing outer loop %d\n",loop->header->index);
2189 else
2190 fprintf (dump_file, "parallelizing inner loop %d\n",loop->header->index);
2191 loop_loc = find_loop_location (loop);
2192 if (loop_loc != UNKNOWN_LOC)
2193 fprintf (dump_file, "\nloop at %s:%d: ",
2194 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
2195 }
2196 gen_parallel_loop (loop, reduction_list,
2197 n_threads, &niter_desc);
2198 #ifdef ENABLE_CHECKING
2199 verify_flow_info ();
2200 verify_loop_structure ();
2201 verify_loop_closed_ssa (true);
2202 #endif
2203 }
2204
2205 free_stmt_vec_info_vec ();
2206 htab_delete (reduction_list);
2207 obstack_free (&parloop_obstack, NULL);
2208
2209 /* Parallelization will cause new function calls to be inserted through
2210 which local variables will escape. Reset the points-to solution
2211 for ESCAPED. */
2212 if (changed)
2213 pt_solution_reset (&cfun->gimple_df->escaped);
2214
2215 return changed;
2216 }
2217
2218 #include "gt-tree-parloops.h"