re PR fortran/55618 (Failures with ISO_Varying_String test suite)
[gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
33
34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
67
68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 up to RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
136
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "gimple-pretty-print.h"
202 #include "tree-pass.h"
203 #include "tree-affine.h"
204 #include "tree-inline.h"
205
206 /* The maximum number of iterations between the considered memory
207 references. */
208
209 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210
211 /* Data references (or phi nodes that carry data reference values across
212 loop iterations). */
213
214 typedef struct dref_d
215 {
216 /* The reference itself. */
217 struct data_reference *ref;
218
219 /* The statement in that the reference appears. */
220 gimple stmt;
221
222 /* In case that STMT is a phi node, this field is set to the SSA name
223 defined by it in replace_phis_by_defined_names (in order to avoid
224 pointing to phi node that got reallocated in the meantime). */
225 tree name_defined_by_phi;
226
227 /* Distance of the reference from the root of the chain (in number of
228 iterations of the loop). */
229 unsigned distance;
230
231 /* Number of iterations offset from the first reference in the component. */
232 double_int offset;
233
234 /* Number of the reference in a component, in dominance ordering. */
235 unsigned pos;
236
237 /* True if the memory reference is always accessed when the loop is
238 entered. */
239 unsigned always_accessed : 1;
240 } *dref;
241
242
243 /* Type of the chain of the references. */
244
245 enum chain_type
246 {
247 /* The addresses of the references in the chain are constant. */
248 CT_INVARIANT,
249
250 /* There are only loads in the chain. */
251 CT_LOAD,
252
253 /* Root of the chain is store, the rest are loads. */
254 CT_STORE_LOAD,
255
256 /* A combination of two chains. */
257 CT_COMBINATION
258 };
259
260 /* Chains of data references. */
261
262 typedef struct chain
263 {
264 /* Type of the chain. */
265 enum chain_type type;
266
267 /* For combination chains, the operator and the two chains that are
268 combined, and the type of the result. */
269 enum tree_code op;
270 tree rslt_type;
271 struct chain *ch1, *ch2;
272
273 /* The references in the chain. */
274 vec<dref> refs;
275
276 /* The maximum distance of the reference in the chain from the root. */
277 unsigned length;
278
279 /* The variables used to copy the value throughout iterations. */
280 vec<tree> vars;
281
282 /* Initializers for the variables. */
283 vec<tree> inits;
284
285 /* True if there is a use of a variable with the maximal distance
286 that comes after the root in the loop. */
287 unsigned has_max_use_after : 1;
288
289 /* True if all the memory references in the chain are always accessed. */
290 unsigned all_always_accessed : 1;
291
292 /* True if this chain was combined together with some other chain. */
293 unsigned combined : 1;
294 } *chain_p;
295
296
297 /* Describes the knowledge about the step of the memory references in
298 the component. */
299
300 enum ref_step_type
301 {
302 /* The step is zero. */
303 RS_INVARIANT,
304
305 /* The step is nonzero. */
306 RS_NONZERO,
307
308 /* The step may or may not be nonzero. */
309 RS_ANY
310 };
311
312 /* Components of the data dependence graph. */
313
314 struct component
315 {
316 /* The references in the component. */
317 vec<dref> refs;
318
319 /* What we know about the step of the references in the component. */
320 enum ref_step_type comp_step;
321
322 /* Next component in the list. */
323 struct component *next;
324 };
325
326 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
327
328 static bitmap looparound_phis;
329
330 /* Cache used by tree_to_aff_combination_expand. */
331
332 static struct pointer_map_t *name_expansions;
333
334 /* Dumps data reference REF to FILE. */
335
336 extern void dump_dref (FILE *, dref);
337 void
338 dump_dref (FILE *file, dref ref)
339 {
340 if (ref->ref)
341 {
342 fprintf (file, " ");
343 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
344 fprintf (file, " (id %u%s)\n", ref->pos,
345 DR_IS_READ (ref->ref) ? "" : ", write");
346
347 fprintf (file, " offset ");
348 dump_double_int (file, ref->offset, false);
349 fprintf (file, "\n");
350
351 fprintf (file, " distance %u\n", ref->distance);
352 }
353 else
354 {
355 if (gimple_code (ref->stmt) == GIMPLE_PHI)
356 fprintf (file, " looparound ref\n");
357 else
358 fprintf (file, " combination ref\n");
359 fprintf (file, " in statement ");
360 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
361 fprintf (file, "\n");
362 fprintf (file, " distance %u\n", ref->distance);
363 }
364
365 }
366
367 /* Dumps CHAIN to FILE. */
368
369 extern void dump_chain (FILE *, chain_p);
370 void
371 dump_chain (FILE *file, chain_p chain)
372 {
373 dref a;
374 const char *chain_type;
375 unsigned i;
376 tree var;
377
378 switch (chain->type)
379 {
380 case CT_INVARIANT:
381 chain_type = "Load motion";
382 break;
383
384 case CT_LOAD:
385 chain_type = "Loads-only";
386 break;
387
388 case CT_STORE_LOAD:
389 chain_type = "Store-loads";
390 break;
391
392 case CT_COMBINATION:
393 chain_type = "Combination";
394 break;
395
396 default:
397 gcc_unreachable ();
398 }
399
400 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
401 chain->combined ? " (combined)" : "");
402 if (chain->type != CT_INVARIANT)
403 fprintf (file, " max distance %u%s\n", chain->length,
404 chain->has_max_use_after ? "" : ", may reuse first");
405
406 if (chain->type == CT_COMBINATION)
407 {
408 fprintf (file, " equal to %p %s %p in type ",
409 (void *) chain->ch1, op_symbol_code (chain->op),
410 (void *) chain->ch2);
411 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
412 fprintf (file, "\n");
413 }
414
415 if (chain->vars.exists ())
416 {
417 fprintf (file, " vars");
418 FOR_EACH_VEC_ELT (chain->vars, i, var)
419 {
420 fprintf (file, " ");
421 print_generic_expr (file, var, TDF_SLIM);
422 }
423 fprintf (file, "\n");
424 }
425
426 if (chain->inits.exists ())
427 {
428 fprintf (file, " inits");
429 FOR_EACH_VEC_ELT (chain->inits, i, var)
430 {
431 fprintf (file, " ");
432 print_generic_expr (file, var, TDF_SLIM);
433 }
434 fprintf (file, "\n");
435 }
436
437 fprintf (file, " references:\n");
438 FOR_EACH_VEC_ELT (chain->refs, i, a)
439 dump_dref (file, a);
440
441 fprintf (file, "\n");
442 }
443
444 /* Dumps CHAINS to FILE. */
445
446 extern void dump_chains (FILE *, vec<chain_p> );
447 void
448 dump_chains (FILE *file, vec<chain_p> chains)
449 {
450 chain_p chain;
451 unsigned i;
452
453 FOR_EACH_VEC_ELT (chains, i, chain)
454 dump_chain (file, chain);
455 }
456
457 /* Dumps COMP to FILE. */
458
459 extern void dump_component (FILE *, struct component *);
460 void
461 dump_component (FILE *file, struct component *comp)
462 {
463 dref a;
464 unsigned i;
465
466 fprintf (file, "Component%s:\n",
467 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
468 FOR_EACH_VEC_ELT (comp->refs, i, a)
469 dump_dref (file, a);
470 fprintf (file, "\n");
471 }
472
473 /* Dumps COMPS to FILE. */
474
475 extern void dump_components (FILE *, struct component *);
476 void
477 dump_components (FILE *file, struct component *comps)
478 {
479 struct component *comp;
480
481 for (comp = comps; comp; comp = comp->next)
482 dump_component (file, comp);
483 }
484
485 /* Frees a chain CHAIN. */
486
487 static void
488 release_chain (chain_p chain)
489 {
490 dref ref;
491 unsigned i;
492
493 if (chain == NULL)
494 return;
495
496 FOR_EACH_VEC_ELT (chain->refs, i, ref)
497 free (ref);
498
499 chain->refs.release ();
500 chain->vars.release ();
501 chain->inits.release ();
502
503 free (chain);
504 }
505
506 /* Frees CHAINS. */
507
508 static void
509 release_chains (vec<chain_p> chains)
510 {
511 unsigned i;
512 chain_p chain;
513
514 FOR_EACH_VEC_ELT (chains, i, chain)
515 release_chain (chain);
516 chains.release ();
517 }
518
519 /* Frees a component COMP. */
520
521 static void
522 release_component (struct component *comp)
523 {
524 comp->refs.release ();
525 free (comp);
526 }
527
528 /* Frees list of components COMPS. */
529
530 static void
531 release_components (struct component *comps)
532 {
533 struct component *act, *next;
534
535 for (act = comps; act; act = next)
536 {
537 next = act->next;
538 release_component (act);
539 }
540 }
541
542 /* Finds a root of tree given by FATHERS containing A, and performs path
543 shortening. */
544
545 static unsigned
546 component_of (unsigned fathers[], unsigned a)
547 {
548 unsigned root, n;
549
550 for (root = a; root != fathers[root]; root = fathers[root])
551 continue;
552
553 for (; a != root; a = n)
554 {
555 n = fathers[a];
556 fathers[a] = root;
557 }
558
559 return root;
560 }
561
562 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
563 components, A and B are components to merge. */
564
565 static void
566 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
567 {
568 unsigned ca = component_of (fathers, a);
569 unsigned cb = component_of (fathers, b);
570
571 if (ca == cb)
572 return;
573
574 if (sizes[ca] < sizes[cb])
575 {
576 sizes[cb] += sizes[ca];
577 fathers[ca] = cb;
578 }
579 else
580 {
581 sizes[ca] += sizes[cb];
582 fathers[cb] = ca;
583 }
584 }
585
586 /* Returns true if A is a reference that is suitable for predictive commoning
587 in the innermost loop that contains it. REF_STEP is set according to the
588 step of the reference A. */
589
590 static bool
591 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
592 {
593 tree ref = DR_REF (a), step = DR_STEP (a);
594
595 if (!step
596 || TREE_THIS_VOLATILE (ref)
597 || !is_gimple_reg_type (TREE_TYPE (ref))
598 || tree_could_throw_p (ref))
599 return false;
600
601 if (integer_zerop (step))
602 *ref_step = RS_INVARIANT;
603 else if (integer_nonzerop (step))
604 *ref_step = RS_NONZERO;
605 else
606 *ref_step = RS_ANY;
607
608 return true;
609 }
610
611 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
612
613 static void
614 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
615 {
616 tree type = TREE_TYPE (DR_OFFSET (dr));
617 aff_tree delta;
618
619 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
620 &name_expansions);
621 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
622 aff_combination_add (offset, &delta);
623 }
624
625 /* Determines number of iterations of the innermost enclosing loop before B
626 refers to exactly the same location as A and stores it to OFF. If A and
627 B do not have the same step, they never meet, or anything else fails,
628 returns false, otherwise returns true. Both A and B are assumed to
629 satisfy suitable_reference_p. */
630
631 static bool
632 determine_offset (struct data_reference *a, struct data_reference *b,
633 double_int *off)
634 {
635 aff_tree diff, baseb, step;
636 tree typea, typeb;
637
638 /* Check that both the references access the location in the same type. */
639 typea = TREE_TYPE (DR_REF (a));
640 typeb = TREE_TYPE (DR_REF (b));
641 if (!useless_type_conversion_p (typeb, typea))
642 return false;
643
644 /* Check whether the base address and the step of both references is the
645 same. */
646 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
647 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
648 return false;
649
650 if (integer_zerop (DR_STEP (a)))
651 {
652 /* If the references have loop invariant address, check that they access
653 exactly the same location. */
654 *off = double_int_zero;
655 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
656 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
657 }
658
659 /* Compare the offsets of the addresses, and check whether the difference
660 is a multiple of step. */
661 aff_combination_dr_offset (a, &diff);
662 aff_combination_dr_offset (b, &baseb);
663 aff_combination_scale (&baseb, double_int_minus_one);
664 aff_combination_add (&diff, &baseb);
665
666 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
667 &step, &name_expansions);
668 return aff_combination_constant_multiple_p (&diff, &step, off);
669 }
670
671 /* Returns the last basic block in LOOP for that we are sure that
672 it is executed whenever the loop is entered. */
673
674 static basic_block
675 last_always_executed_block (struct loop *loop)
676 {
677 unsigned i;
678 vec<edge> exits = get_loop_exit_edges (loop);
679 edge ex;
680 basic_block last = loop->latch;
681
682 FOR_EACH_VEC_ELT (exits, i, ex)
683 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
684 exits.release ();
685
686 return last;
687 }
688
689 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
690
691 static struct component *
692 split_data_refs_to_components (struct loop *loop,
693 vec<data_reference_p> datarefs,
694 vec<ddr_p> depends)
695 {
696 unsigned i, n = datarefs.length ();
697 unsigned ca, ia, ib, bad;
698 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
699 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
700 struct component **comps;
701 struct data_reference *dr, *dra, *drb;
702 struct data_dependence_relation *ddr;
703 struct component *comp_list = NULL, *comp;
704 dref dataref;
705 basic_block last_always_executed = last_always_executed_block (loop);
706
707 FOR_EACH_VEC_ELT (datarefs, i, dr)
708 {
709 if (!DR_REF (dr))
710 {
711 /* A fake reference for call or asm_expr that may clobber memory;
712 just fail. */
713 goto end;
714 }
715 dr->aux = (void *) (size_t) i;
716 comp_father[i] = i;
717 comp_size[i] = 1;
718 }
719
720 /* A component reserved for the "bad" data references. */
721 comp_father[n] = n;
722 comp_size[n] = 1;
723
724 FOR_EACH_VEC_ELT (datarefs, i, dr)
725 {
726 enum ref_step_type dummy;
727
728 if (!suitable_reference_p (dr, &dummy))
729 {
730 ia = (unsigned) (size_t) dr->aux;
731 merge_comps (comp_father, comp_size, n, ia);
732 }
733 }
734
735 FOR_EACH_VEC_ELT (depends, i, ddr)
736 {
737 double_int dummy_off;
738
739 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
740 continue;
741
742 dra = DDR_A (ddr);
743 drb = DDR_B (ddr);
744 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
745 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
746 if (ia == ib)
747 continue;
748
749 bad = component_of (comp_father, n);
750
751 /* If both A and B are reads, we may ignore unsuitable dependences. */
752 if (DR_IS_READ (dra) && DR_IS_READ (drb)
753 && (ia == bad || ib == bad
754 || !determine_offset (dra, drb, &dummy_off)))
755 continue;
756
757 merge_comps (comp_father, comp_size, ia, ib);
758 }
759
760 comps = XCNEWVEC (struct component *, n);
761 bad = component_of (comp_father, n);
762 FOR_EACH_VEC_ELT (datarefs, i, dr)
763 {
764 ia = (unsigned) (size_t) dr->aux;
765 ca = component_of (comp_father, ia);
766 if (ca == bad)
767 continue;
768
769 comp = comps[ca];
770 if (!comp)
771 {
772 comp = XCNEW (struct component);
773 comp->refs.create (comp_size[ca]);
774 comps[ca] = comp;
775 }
776
777 dataref = XCNEW (struct dref_d);
778 dataref->ref = dr;
779 dataref->stmt = DR_STMT (dr);
780 dataref->offset = double_int_zero;
781 dataref->distance = 0;
782
783 dataref->always_accessed
784 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
785 gimple_bb (dataref->stmt));
786 dataref->pos = comp->refs.length ();
787 comp->refs.quick_push (dataref);
788 }
789
790 for (i = 0; i < n; i++)
791 {
792 comp = comps[i];
793 if (comp)
794 {
795 comp->next = comp_list;
796 comp_list = comp;
797 }
798 }
799 free (comps);
800
801 end:
802 free (comp_father);
803 free (comp_size);
804 return comp_list;
805 }
806
807 /* Returns true if the component COMP satisfies the conditions
808 described in 2) at the beginning of this file. LOOP is the current
809 loop. */
810
811 static bool
812 suitable_component_p (struct loop *loop, struct component *comp)
813 {
814 unsigned i;
815 dref a, first;
816 basic_block ba, bp = loop->header;
817 bool ok, has_write = false;
818
819 FOR_EACH_VEC_ELT (comp->refs, i, a)
820 {
821 ba = gimple_bb (a->stmt);
822
823 if (!just_once_each_iteration_p (loop, ba))
824 return false;
825
826 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
827 bp = ba;
828
829 if (DR_IS_WRITE (a->ref))
830 has_write = true;
831 }
832
833 first = comp->refs[0];
834 ok = suitable_reference_p (first->ref, &comp->comp_step);
835 gcc_assert (ok);
836 first->offset = double_int_zero;
837
838 for (i = 1; comp->refs.iterate (i, &a); i++)
839 {
840 if (!determine_offset (first->ref, a->ref, &a->offset))
841 return false;
842
843 #ifdef ENABLE_CHECKING
844 {
845 enum ref_step_type a_step;
846 ok = suitable_reference_p (a->ref, &a_step);
847 gcc_assert (ok && a_step == comp->comp_step);
848 }
849 #endif
850 }
851
852 /* If there is a write inside the component, we must know whether the
853 step is nonzero or not -- we would not otherwise be able to recognize
854 whether the value accessed by reads comes from the OFFSET-th iteration
855 or the previous one. */
856 if (has_write && comp->comp_step == RS_ANY)
857 return false;
858
859 return true;
860 }
861
862 /* Check the conditions on references inside each of components COMPS,
863 and remove the unsuitable components from the list. The new list
864 of components is returned. The conditions are described in 2) at
865 the beginning of this file. LOOP is the current loop. */
866
867 static struct component *
868 filter_suitable_components (struct loop *loop, struct component *comps)
869 {
870 struct component **comp, *act;
871
872 for (comp = &comps; *comp; )
873 {
874 act = *comp;
875 if (suitable_component_p (loop, act))
876 comp = &act->next;
877 else
878 {
879 dref ref;
880 unsigned i;
881
882 *comp = act->next;
883 FOR_EACH_VEC_ELT (act->refs, i, ref)
884 free (ref);
885 release_component (act);
886 }
887 }
888
889 return comps;
890 }
891
892 /* Compares two drefs A and B by their offset and position. Callback for
893 qsort. */
894
895 static int
896 order_drefs (const void *a, const void *b)
897 {
898 const dref *const da = (const dref *) a;
899 const dref *const db = (const dref *) b;
900 int offcmp = (*da)->offset.scmp ((*db)->offset);
901
902 if (offcmp != 0)
903 return offcmp;
904
905 return (*da)->pos - (*db)->pos;
906 }
907
908 /* Returns root of the CHAIN. */
909
910 static inline dref
911 get_chain_root (chain_p chain)
912 {
913 return chain->refs[0];
914 }
915
916 /* Adds REF to the chain CHAIN. */
917
918 static void
919 add_ref_to_chain (chain_p chain, dref ref)
920 {
921 dref root = get_chain_root (chain);
922 double_int dist;
923
924 gcc_assert (root->offset.sle (ref->offset));
925 dist = ref->offset - root->offset;
926 if (double_int::from_uhwi (MAX_DISTANCE).ule (dist))
927 {
928 free (ref);
929 return;
930 }
931 gcc_assert (dist.fits_uhwi ());
932
933 chain->refs.safe_push (ref);
934
935 ref->distance = dist.to_uhwi ();
936
937 if (ref->distance >= chain->length)
938 {
939 chain->length = ref->distance;
940 chain->has_max_use_after = false;
941 }
942
943 if (ref->distance == chain->length
944 && ref->pos > root->pos)
945 chain->has_max_use_after = true;
946
947 chain->all_always_accessed &= ref->always_accessed;
948 }
949
950 /* Returns the chain for invariant component COMP. */
951
952 static chain_p
953 make_invariant_chain (struct component *comp)
954 {
955 chain_p chain = XCNEW (struct chain);
956 unsigned i;
957 dref ref;
958
959 chain->type = CT_INVARIANT;
960
961 chain->all_always_accessed = true;
962
963 FOR_EACH_VEC_ELT (comp->refs, i, ref)
964 {
965 chain->refs.safe_push (ref);
966 chain->all_always_accessed &= ref->always_accessed;
967 }
968
969 return chain;
970 }
971
972 /* Make a new chain rooted at REF. */
973
974 static chain_p
975 make_rooted_chain (dref ref)
976 {
977 chain_p chain = XCNEW (struct chain);
978
979 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
980
981 chain->refs.safe_push (ref);
982 chain->all_always_accessed = ref->always_accessed;
983
984 ref->distance = 0;
985
986 return chain;
987 }
988
989 /* Returns true if CHAIN is not trivial. */
990
991 static bool
992 nontrivial_chain_p (chain_p chain)
993 {
994 return chain != NULL && chain->refs.length () > 1;
995 }
996
997 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
998 is no such name. */
999
1000 static tree
1001 name_for_ref (dref ref)
1002 {
1003 tree name;
1004
1005 if (is_gimple_assign (ref->stmt))
1006 {
1007 if (!ref->ref || DR_IS_READ (ref->ref))
1008 name = gimple_assign_lhs (ref->stmt);
1009 else
1010 name = gimple_assign_rhs1 (ref->stmt);
1011 }
1012 else
1013 name = PHI_RESULT (ref->stmt);
1014
1015 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1016 }
1017
1018 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1019 iterations of the innermost enclosing loop). */
1020
1021 static bool
1022 valid_initializer_p (struct data_reference *ref,
1023 unsigned distance, struct data_reference *root)
1024 {
1025 aff_tree diff, base, step;
1026 double_int off;
1027
1028 /* Both REF and ROOT must be accessing the same object. */
1029 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1030 return false;
1031
1032 /* The initializer is defined outside of loop, hence its address must be
1033 invariant inside the loop. */
1034 gcc_assert (integer_zerop (DR_STEP (ref)));
1035
1036 /* If the address of the reference is invariant, initializer must access
1037 exactly the same location. */
1038 if (integer_zerop (DR_STEP (root)))
1039 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1040 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1041
1042 /* Verify that this index of REF is equal to the root's index at
1043 -DISTANCE-th iteration. */
1044 aff_combination_dr_offset (root, &diff);
1045 aff_combination_dr_offset (ref, &base);
1046 aff_combination_scale (&base, double_int_minus_one);
1047 aff_combination_add (&diff, &base);
1048
1049 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1050 &step, &name_expansions);
1051 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1052 return false;
1053
1054 if (off != double_int::from_uhwi (distance))
1055 return false;
1056
1057 return true;
1058 }
1059
1060 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1061 initial value is correct (equal to initial value of REF shifted by one
1062 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1063 is the root of the current chain. */
1064
1065 static gimple
1066 find_looparound_phi (struct loop *loop, dref ref, dref root)
1067 {
1068 tree name, init, init_ref;
1069 gimple phi = NULL, init_stmt;
1070 edge latch = loop_latch_edge (loop);
1071 struct data_reference init_dr;
1072 gimple_stmt_iterator psi;
1073
1074 if (is_gimple_assign (ref->stmt))
1075 {
1076 if (DR_IS_READ (ref->ref))
1077 name = gimple_assign_lhs (ref->stmt);
1078 else
1079 name = gimple_assign_rhs1 (ref->stmt);
1080 }
1081 else
1082 name = PHI_RESULT (ref->stmt);
1083 if (!name)
1084 return NULL;
1085
1086 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1087 {
1088 phi = gsi_stmt (psi);
1089 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1090 break;
1091 }
1092
1093 if (gsi_end_p (psi))
1094 return NULL;
1095
1096 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1097 if (TREE_CODE (init) != SSA_NAME)
1098 return NULL;
1099 init_stmt = SSA_NAME_DEF_STMT (init);
1100 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1101 return NULL;
1102 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1103
1104 init_ref = gimple_assign_rhs1 (init_stmt);
1105 if (!REFERENCE_CLASS_P (init_ref)
1106 && !DECL_P (init_ref))
1107 return NULL;
1108
1109 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1110 loop enclosing PHI). */
1111 memset (&init_dr, 0, sizeof (struct data_reference));
1112 DR_REF (&init_dr) = init_ref;
1113 DR_STMT (&init_dr) = phi;
1114 if (!dr_analyze_innermost (&init_dr, loop))
1115 return NULL;
1116
1117 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1118 return NULL;
1119
1120 return phi;
1121 }
1122
1123 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1124
1125 static void
1126 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1127 {
1128 dref nw = XCNEW (struct dref_d), aref;
1129 unsigned i;
1130
1131 nw->stmt = phi;
1132 nw->distance = ref->distance + 1;
1133 nw->always_accessed = 1;
1134
1135 FOR_EACH_VEC_ELT (chain->refs, i, aref)
1136 if (aref->distance >= nw->distance)
1137 break;
1138 chain->refs.safe_insert (i, nw);
1139
1140 if (nw->distance > chain->length)
1141 {
1142 chain->length = nw->distance;
1143 chain->has_max_use_after = false;
1144 }
1145 }
1146
1147 /* For references in CHAIN that are copied around the LOOP (created previously
1148 by PRE, or by user), add the results of such copies to the chain. This
1149 enables us to remove the copies by unrolling, and may need less registers
1150 (also, it may allow us to combine chains together). */
1151
1152 static void
1153 add_looparound_copies (struct loop *loop, chain_p chain)
1154 {
1155 unsigned i;
1156 dref ref, root = get_chain_root (chain);
1157 gimple phi;
1158
1159 FOR_EACH_VEC_ELT (chain->refs, i, ref)
1160 {
1161 phi = find_looparound_phi (loop, ref, root);
1162 if (!phi)
1163 continue;
1164
1165 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1166 insert_looparound_copy (chain, ref, phi);
1167 }
1168 }
1169
1170 /* Find roots of the values and determine distances in the component COMP.
1171 The references are redistributed into CHAINS. LOOP is the current
1172 loop. */
1173
1174 static void
1175 determine_roots_comp (struct loop *loop,
1176 struct component *comp,
1177 vec<chain_p> *chains)
1178 {
1179 unsigned i;
1180 dref a;
1181 chain_p chain = NULL;
1182 double_int last_ofs = double_int_zero;
1183
1184 /* Invariants are handled specially. */
1185 if (comp->comp_step == RS_INVARIANT)
1186 {
1187 chain = make_invariant_chain (comp);
1188 chains->safe_push (chain);
1189 return;
1190 }
1191
1192 comp->refs.qsort (order_drefs);
1193
1194 FOR_EACH_VEC_ELT (comp->refs, i, a)
1195 {
1196 if (!chain || DR_IS_WRITE (a->ref)
1197 || double_int::from_uhwi (MAX_DISTANCE).ule (a->offset - last_ofs))
1198 {
1199 if (nontrivial_chain_p (chain))
1200 {
1201 add_looparound_copies (loop, chain);
1202 chains->safe_push (chain);
1203 }
1204 else
1205 release_chain (chain);
1206 chain = make_rooted_chain (a);
1207 last_ofs = a->offset;
1208 continue;
1209 }
1210
1211 add_ref_to_chain (chain, a);
1212 }
1213
1214 if (nontrivial_chain_p (chain))
1215 {
1216 add_looparound_copies (loop, chain);
1217 chains->safe_push (chain);
1218 }
1219 else
1220 release_chain (chain);
1221 }
1222
1223 /* Find roots of the values and determine distances in components COMPS, and
1224 separates the references to CHAINS. LOOP is the current loop. */
1225
1226 static void
1227 determine_roots (struct loop *loop,
1228 struct component *comps, vec<chain_p> *chains)
1229 {
1230 struct component *comp;
1231
1232 for (comp = comps; comp; comp = comp->next)
1233 determine_roots_comp (loop, comp, chains);
1234 }
1235
1236 /* Replace the reference in statement STMT with temporary variable
1237 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1238 the reference in the statement. IN_LHS is true if the reference
1239 is in the lhs of STMT, false if it is in rhs. */
1240
1241 static void
1242 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1243 {
1244 tree val;
1245 gimple new_stmt;
1246 gimple_stmt_iterator bsi, psi;
1247
1248 if (gimple_code (stmt) == GIMPLE_PHI)
1249 {
1250 gcc_assert (!in_lhs && !set);
1251
1252 val = PHI_RESULT (stmt);
1253 bsi = gsi_after_labels (gimple_bb (stmt));
1254 psi = gsi_for_stmt (stmt);
1255 remove_phi_node (&psi, false);
1256
1257 /* Turn the phi node into GIMPLE_ASSIGN. */
1258 new_stmt = gimple_build_assign (val, new_tree);
1259 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1260 return;
1261 }
1262
1263 /* Since the reference is of gimple_reg type, it should only
1264 appear as lhs or rhs of modify statement. */
1265 gcc_assert (is_gimple_assign (stmt));
1266
1267 bsi = gsi_for_stmt (stmt);
1268
1269 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1270 if (!set)
1271 {
1272 gcc_assert (!in_lhs);
1273 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1274 stmt = gsi_stmt (bsi);
1275 update_stmt (stmt);
1276 return;
1277 }
1278
1279 if (in_lhs)
1280 {
1281 /* We have statement
1282
1283 OLD = VAL
1284
1285 If OLD is a memory reference, then VAL is gimple_val, and we transform
1286 this to
1287
1288 OLD = VAL
1289 NEW = VAL
1290
1291 Otherwise, we are replacing a combination chain,
1292 VAL is the expression that performs the combination, and OLD is an
1293 SSA name. In this case, we transform the assignment to
1294
1295 OLD = VAL
1296 NEW = OLD
1297
1298 */
1299
1300 val = gimple_assign_lhs (stmt);
1301 if (TREE_CODE (val) != SSA_NAME)
1302 {
1303 val = gimple_assign_rhs1 (stmt);
1304 gcc_assert (gimple_assign_single_p (stmt));
1305 if (TREE_CLOBBER_P (val))
1306 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1307 else
1308 gcc_assert (gimple_assign_copy_p (stmt));
1309 }
1310 }
1311 else
1312 {
1313 /* VAL = OLD
1314
1315 is transformed to
1316
1317 VAL = OLD
1318 NEW = VAL */
1319
1320 val = gimple_assign_lhs (stmt);
1321 }
1322
1323 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1324 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1325 }
1326
1327 /* Returns the reference to the address of REF in the ITER-th iteration of
1328 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1329 try to preserve the original shape of the reference (not rewrite it
1330 as an indirect ref to the address), to make tree_could_trap_p in
1331 prepare_initializers_chain return false more often. */
1332
1333 static tree
1334 ref_at_iteration (struct loop *loop, tree ref, int iter)
1335 {
1336 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1337 affine_iv iv;
1338 bool ok;
1339
1340 if (handled_component_p (ref))
1341 {
1342 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1343 if (!op0)
1344 return NULL_TREE;
1345 }
1346 else if (!INDIRECT_REF_P (ref)
1347 && TREE_CODE (ref) != MEM_REF)
1348 return unshare_expr (ref);
1349
1350 if (TREE_CODE (ref) == MEM_REF)
1351 {
1352 ret = unshare_expr (ref);
1353 idx = TREE_OPERAND (ref, 0);
1354 idx_p = &TREE_OPERAND (ret, 0);
1355 }
1356 else if (TREE_CODE (ref) == COMPONENT_REF)
1357 {
1358 /* Check that the offset is loop invariant. */
1359 if (TREE_OPERAND (ref, 2)
1360 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1361 return NULL_TREE;
1362
1363 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1364 unshare_expr (TREE_OPERAND (ref, 1)),
1365 unshare_expr (TREE_OPERAND (ref, 2)));
1366 }
1367 else if (TREE_CODE (ref) == ARRAY_REF)
1368 {
1369 /* Check that the lower bound and the step are loop invariant. */
1370 if (TREE_OPERAND (ref, 2)
1371 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1372 return NULL_TREE;
1373 if (TREE_OPERAND (ref, 3)
1374 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1375 return NULL_TREE;
1376
1377 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1378 unshare_expr (TREE_OPERAND (ref, 2)),
1379 unshare_expr (TREE_OPERAND (ref, 3)));
1380 idx = TREE_OPERAND (ref, 1);
1381 idx_p = &TREE_OPERAND (ret, 1);
1382 }
1383 else
1384 return NULL_TREE;
1385
1386 ok = simple_iv (loop, loop, idx, &iv, true);
1387 if (!ok)
1388 return NULL_TREE;
1389 iv.base = expand_simple_operations (iv.base);
1390 if (integer_zerop (iv.step))
1391 *idx_p = unshare_expr (iv.base);
1392 else
1393 {
1394 type = TREE_TYPE (iv.base);
1395 if (POINTER_TYPE_P (type))
1396 {
1397 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1398 size_int (iter));
1399 val = fold_build_pointer_plus (iv.base, val);
1400 }
1401 else
1402 {
1403 val = fold_build2 (MULT_EXPR, type, iv.step,
1404 build_int_cst_type (type, iter));
1405 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1406 }
1407 *idx_p = unshare_expr (val);
1408 }
1409
1410 return ret;
1411 }
1412
1413 /* Get the initialization expression for the INDEX-th temporary variable
1414 of CHAIN. */
1415
1416 static tree
1417 get_init_expr (chain_p chain, unsigned index)
1418 {
1419 if (chain->type == CT_COMBINATION)
1420 {
1421 tree e1 = get_init_expr (chain->ch1, index);
1422 tree e2 = get_init_expr (chain->ch2, index);
1423
1424 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1425 }
1426 else
1427 return chain->inits[index];
1428 }
1429
1430 /* Returns a new temporary variable used for the I-th variable carrying
1431 value of REF. The variable's uid is marked in TMP_VARS. */
1432
1433 static tree
1434 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1435 {
1436 tree type = TREE_TYPE (ref);
1437 /* We never access the components of the temporary variable in predictive
1438 commoning. */
1439 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1440 bitmap_set_bit (tmp_vars, DECL_UID (var));
1441 return var;
1442 }
1443
1444 /* Creates the variables for CHAIN, as well as phi nodes for them and
1445 initialization on entry to LOOP. Uids of the newly created
1446 temporary variables are marked in TMP_VARS. */
1447
1448 static void
1449 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1450 {
1451 unsigned i;
1452 unsigned n = chain->length;
1453 dref root = get_chain_root (chain);
1454 bool reuse_first = !chain->has_max_use_after;
1455 tree ref, init, var, next;
1456 gimple phi;
1457 gimple_seq stmts;
1458 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1459
1460 /* If N == 0, then all the references are within the single iteration. And
1461 since this is an nonempty chain, reuse_first cannot be true. */
1462 gcc_assert (n > 0 || !reuse_first);
1463
1464 chain->vars.create (n + 1);
1465
1466 if (chain->type == CT_COMBINATION)
1467 ref = gimple_assign_lhs (root->stmt);
1468 else
1469 ref = DR_REF (root->ref);
1470
1471 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1472 {
1473 var = predcom_tmp_var (ref, i, tmp_vars);
1474 chain->vars.quick_push (var);
1475 }
1476 if (reuse_first)
1477 chain->vars.quick_push (chain->vars[0]);
1478
1479 FOR_EACH_VEC_ELT (chain->vars, i, var)
1480 chain->vars[i] = make_ssa_name (var, NULL);
1481
1482 for (i = 0; i < n; i++)
1483 {
1484 var = chain->vars[i];
1485 next = chain->vars[i + 1];
1486 init = get_init_expr (chain, i);
1487
1488 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1489 if (stmts)
1490 gsi_insert_seq_on_edge_immediate (entry, stmts);
1491
1492 phi = create_phi_node (var, loop->header);
1493 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1494 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1495 }
1496 }
1497
1498 /* Create the variables and initialization statement for root of chain
1499 CHAIN. Uids of the newly created temporary variables are marked
1500 in TMP_VARS. */
1501
1502 static void
1503 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1504 {
1505 dref root = get_chain_root (chain);
1506 bool in_lhs = (chain->type == CT_STORE_LOAD
1507 || chain->type == CT_COMBINATION);
1508
1509 initialize_root_vars (loop, chain, tmp_vars);
1510 replace_ref_with (root->stmt,
1511 chain->vars[chain->length],
1512 true, in_lhs);
1513 }
1514
1515 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1516 initialization on entry to LOOP if necessary. The ssa name for the variable
1517 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1518 around the loop is created. Uid of the newly created temporary variable
1519 is marked in TMP_VARS. INITS is the list containing the (single)
1520 initializer. */
1521
1522 static void
1523 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1524 vec<tree> *vars, vec<tree> inits,
1525 bitmap tmp_vars)
1526 {
1527 unsigned i;
1528 tree ref = DR_REF (root->ref), init, var, next;
1529 gimple_seq stmts;
1530 gimple phi;
1531 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1532
1533 /* Find the initializer for the variable, and check that it cannot
1534 trap. */
1535 init = inits[0];
1536
1537 vars->create (written ? 2 : 1);
1538 var = predcom_tmp_var (ref, 0, tmp_vars);
1539 vars->quick_push (var);
1540 if (written)
1541 vars->quick_push ((*vars)[0]);
1542
1543 FOR_EACH_VEC_ELT (*vars, i, var)
1544 (*vars)[i] = make_ssa_name (var, NULL);
1545
1546 var = (*vars)[0];
1547
1548 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1549 if (stmts)
1550 gsi_insert_seq_on_edge_immediate (entry, stmts);
1551
1552 if (written)
1553 {
1554 next = (*vars)[1];
1555 phi = create_phi_node (var, loop->header);
1556 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1557 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1558 }
1559 else
1560 {
1561 gimple init_stmt = gimple_build_assign (var, init);
1562 gsi_insert_on_edge_immediate (entry, init_stmt);
1563 }
1564 }
1565
1566
1567 /* Execute load motion for references in chain CHAIN. Uids of the newly
1568 created temporary variables are marked in TMP_VARS. */
1569
1570 static void
1571 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1572 {
1573 vec<tree> vars;
1574 dref a;
1575 unsigned n_writes = 0, ridx, i;
1576 tree var;
1577
1578 gcc_assert (chain->type == CT_INVARIANT);
1579 gcc_assert (!chain->combined);
1580 FOR_EACH_VEC_ELT (chain->refs, i, a)
1581 if (DR_IS_WRITE (a->ref))
1582 n_writes++;
1583
1584 /* If there are no reads in the loop, there is nothing to do. */
1585 if (n_writes == chain->refs.length ())
1586 return;
1587
1588 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1589 &vars, chain->inits, tmp_vars);
1590
1591 ridx = 0;
1592 FOR_EACH_VEC_ELT (chain->refs, i, a)
1593 {
1594 bool is_read = DR_IS_READ (a->ref);
1595
1596 if (DR_IS_WRITE (a->ref))
1597 {
1598 n_writes--;
1599 if (n_writes)
1600 {
1601 var = vars[0];
1602 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1603 vars[0] = var;
1604 }
1605 else
1606 ridx = 1;
1607 }
1608
1609 replace_ref_with (a->stmt, vars[ridx],
1610 !is_read, !is_read);
1611 }
1612
1613 vars.release ();
1614 }
1615
1616 /* Returns the single statement in that NAME is used, excepting
1617 the looparound phi nodes contained in one of the chains. If there is no
1618 such statement, or more statements, NULL is returned. */
1619
1620 static gimple
1621 single_nonlooparound_use (tree name)
1622 {
1623 use_operand_p use;
1624 imm_use_iterator it;
1625 gimple stmt, ret = NULL;
1626
1627 FOR_EACH_IMM_USE_FAST (use, it, name)
1628 {
1629 stmt = USE_STMT (use);
1630
1631 if (gimple_code (stmt) == GIMPLE_PHI)
1632 {
1633 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1634 could not be processed anyway, so just fail for them. */
1635 if (bitmap_bit_p (looparound_phis,
1636 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1637 continue;
1638
1639 return NULL;
1640 }
1641 else if (is_gimple_debug (stmt))
1642 continue;
1643 else if (ret != NULL)
1644 return NULL;
1645 else
1646 ret = stmt;
1647 }
1648
1649 return ret;
1650 }
1651
1652 /* Remove statement STMT, as well as the chain of assignments in that it is
1653 used. */
1654
1655 static void
1656 remove_stmt (gimple stmt)
1657 {
1658 tree name;
1659 gimple next;
1660 gimple_stmt_iterator psi;
1661
1662 if (gimple_code (stmt) == GIMPLE_PHI)
1663 {
1664 name = PHI_RESULT (stmt);
1665 next = single_nonlooparound_use (name);
1666 reset_debug_uses (stmt);
1667 psi = gsi_for_stmt (stmt);
1668 remove_phi_node (&psi, true);
1669
1670 if (!next
1671 || !gimple_assign_ssa_name_copy_p (next)
1672 || gimple_assign_rhs1 (next) != name)
1673 return;
1674
1675 stmt = next;
1676 }
1677
1678 while (1)
1679 {
1680 gimple_stmt_iterator bsi;
1681
1682 bsi = gsi_for_stmt (stmt);
1683
1684 name = gimple_assign_lhs (stmt);
1685 gcc_assert (TREE_CODE (name) == SSA_NAME);
1686
1687 next = single_nonlooparound_use (name);
1688 reset_debug_uses (stmt);
1689
1690 unlink_stmt_vdef (stmt);
1691 gsi_remove (&bsi, true);
1692 release_defs (stmt);
1693
1694 if (!next
1695 || !gimple_assign_ssa_name_copy_p (next)
1696 || gimple_assign_rhs1 (next) != name)
1697 return;
1698
1699 stmt = next;
1700 }
1701 }
1702
1703 /* Perform the predictive commoning optimization for a chain CHAIN.
1704 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1705
1706 static void
1707 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1708 bitmap tmp_vars)
1709 {
1710 unsigned i;
1711 dref a;
1712 tree var;
1713
1714 if (chain->combined)
1715 {
1716 /* For combined chains, just remove the statements that are used to
1717 compute the values of the expression (except for the root one). */
1718 for (i = 1; chain->refs.iterate (i, &a); i++)
1719 remove_stmt (a->stmt);
1720 }
1721 else
1722 {
1723 /* For non-combined chains, set up the variables that hold its value,
1724 and replace the uses of the original references by these
1725 variables. */
1726 initialize_root (loop, chain, tmp_vars);
1727 for (i = 1; chain->refs.iterate (i, &a); i++)
1728 {
1729 var = chain->vars[chain->length - a->distance];
1730 replace_ref_with (a->stmt, var, false, false);
1731 }
1732 }
1733 }
1734
1735 /* Determines the unroll factor necessary to remove as many temporary variable
1736 copies as possible. CHAINS is the list of chains that will be
1737 optimized. */
1738
1739 static unsigned
1740 determine_unroll_factor (vec<chain_p> chains)
1741 {
1742 chain_p chain;
1743 unsigned factor = 1, af, nfactor, i;
1744 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1745
1746 FOR_EACH_VEC_ELT (chains, i, chain)
1747 {
1748 if (chain->type == CT_INVARIANT || chain->combined)
1749 continue;
1750
1751 /* The best unroll factor for this chain is equal to the number of
1752 temporary variables that we create for it. */
1753 af = chain->length;
1754 if (chain->has_max_use_after)
1755 af++;
1756
1757 nfactor = factor * af / gcd (factor, af);
1758 if (nfactor <= max)
1759 factor = nfactor;
1760 }
1761
1762 return factor;
1763 }
1764
1765 /* Perform the predictive commoning optimization for CHAINS.
1766 Uids of the newly created temporary variables are marked in TMP_VARS. */
1767
1768 static void
1769 execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
1770 bitmap tmp_vars)
1771 {
1772 chain_p chain;
1773 unsigned i;
1774
1775 FOR_EACH_VEC_ELT (chains, i, chain)
1776 {
1777 if (chain->type == CT_INVARIANT)
1778 execute_load_motion (loop, chain, tmp_vars);
1779 else
1780 execute_pred_commoning_chain (loop, chain, tmp_vars);
1781 }
1782
1783 update_ssa (TODO_update_ssa_only_virtuals);
1784 }
1785
1786 /* For each reference in CHAINS, if its defining statement is
1787 phi node, record the ssa name that is defined by it. */
1788
1789 static void
1790 replace_phis_by_defined_names (vec<chain_p> chains)
1791 {
1792 chain_p chain;
1793 dref a;
1794 unsigned i, j;
1795
1796 FOR_EACH_VEC_ELT (chains, i, chain)
1797 FOR_EACH_VEC_ELT (chain->refs, j, a)
1798 {
1799 if (gimple_code (a->stmt) == GIMPLE_PHI)
1800 {
1801 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1802 a->stmt = NULL;
1803 }
1804 }
1805 }
1806
1807 /* For each reference in CHAINS, if name_defined_by_phi is not
1808 NULL, use it to set the stmt field. */
1809
1810 static void
1811 replace_names_by_phis (vec<chain_p> chains)
1812 {
1813 chain_p chain;
1814 dref a;
1815 unsigned i, j;
1816
1817 FOR_EACH_VEC_ELT (chains, i, chain)
1818 FOR_EACH_VEC_ELT (chain->refs, j, a)
1819 if (a->stmt == NULL)
1820 {
1821 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1822 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1823 a->name_defined_by_phi = NULL_TREE;
1824 }
1825 }
1826
1827 /* Wrapper over execute_pred_commoning, to pass it as a callback
1828 to tree_transform_and_unroll_loop. */
1829
1830 struct epcc_data
1831 {
1832 vec<chain_p> chains;
1833 bitmap tmp_vars;
1834 };
1835
1836 static void
1837 execute_pred_commoning_cbck (struct loop *loop, void *data)
1838 {
1839 struct epcc_data *const dta = (struct epcc_data *) data;
1840
1841 /* Restore phi nodes that were replaced by ssa names before
1842 tree_transform_and_unroll_loop (see detailed description in
1843 tree_predictive_commoning_loop). */
1844 replace_names_by_phis (dta->chains);
1845 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1846 }
1847
1848 /* Base NAME and all the names in the chain of phi nodes that use it
1849 on variable VAR. The phi nodes are recognized by being in the copies of
1850 the header of the LOOP. */
1851
1852 static void
1853 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1854 {
1855 gimple stmt, phi;
1856 imm_use_iterator iter;
1857
1858 replace_ssa_name_symbol (name, var);
1859
1860 while (1)
1861 {
1862 phi = NULL;
1863 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1864 {
1865 if (gimple_code (stmt) == GIMPLE_PHI
1866 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1867 {
1868 phi = stmt;
1869 BREAK_FROM_IMM_USE_STMT (iter);
1870 }
1871 }
1872 if (!phi)
1873 return;
1874
1875 name = PHI_RESULT (phi);
1876 replace_ssa_name_symbol (name, var);
1877 }
1878 }
1879
1880 /* Given an unrolled LOOP after predictive commoning, remove the
1881 register copies arising from phi nodes by changing the base
1882 variables of SSA names. TMP_VARS is the set of the temporary variables
1883 for those we want to perform this. */
1884
1885 static void
1886 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1887 {
1888 edge e;
1889 gimple phi, stmt;
1890 tree name, use, var;
1891 gimple_stmt_iterator psi;
1892
1893 e = loop_latch_edge (loop);
1894 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1895 {
1896 phi = gsi_stmt (psi);
1897 name = PHI_RESULT (phi);
1898 var = SSA_NAME_VAR (name);
1899 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
1900 continue;
1901 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1902 gcc_assert (TREE_CODE (use) == SSA_NAME);
1903
1904 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1905 stmt = SSA_NAME_DEF_STMT (use);
1906 while (gimple_code (stmt) == GIMPLE_PHI
1907 /* In case we could not unroll the loop enough to eliminate
1908 all copies, we may reach the loop header before the defining
1909 statement (in that case, some register copies will be present
1910 in loop latch in the final code, corresponding to the newly
1911 created looparound phi nodes). */
1912 && gimple_bb (stmt) != loop->header)
1913 {
1914 gcc_assert (single_pred_p (gimple_bb (stmt)));
1915 use = PHI_ARG_DEF (stmt, 0);
1916 stmt = SSA_NAME_DEF_STMT (use);
1917 }
1918
1919 base_names_in_chain_on (loop, use, var);
1920 }
1921 }
1922
1923 /* Returns true if CHAIN is suitable to be combined. */
1924
1925 static bool
1926 chain_can_be_combined_p (chain_p chain)
1927 {
1928 return (!chain->combined
1929 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1930 }
1931
1932 /* Returns the modify statement that uses NAME. Skips over assignment
1933 statements, NAME is replaced with the actual name used in the returned
1934 statement. */
1935
1936 static gimple
1937 find_use_stmt (tree *name)
1938 {
1939 gimple stmt;
1940 tree rhs, lhs;
1941
1942 /* Skip over assignments. */
1943 while (1)
1944 {
1945 stmt = single_nonlooparound_use (*name);
1946 if (!stmt)
1947 return NULL;
1948
1949 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1950 return NULL;
1951
1952 lhs = gimple_assign_lhs (stmt);
1953 if (TREE_CODE (lhs) != SSA_NAME)
1954 return NULL;
1955
1956 if (gimple_assign_copy_p (stmt))
1957 {
1958 rhs = gimple_assign_rhs1 (stmt);
1959 if (rhs != *name)
1960 return NULL;
1961
1962 *name = lhs;
1963 }
1964 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1965 == GIMPLE_BINARY_RHS)
1966 return stmt;
1967 else
1968 return NULL;
1969 }
1970 }
1971
1972 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
1973
1974 static bool
1975 may_reassociate_p (tree type, enum tree_code code)
1976 {
1977 if (FLOAT_TYPE_P (type)
1978 && !flag_unsafe_math_optimizations)
1979 return false;
1980
1981 return (commutative_tree_code (code)
1982 && associative_tree_code (code));
1983 }
1984
1985 /* If the operation used in STMT is associative and commutative, go through the
1986 tree of the same operations and returns its root. Distance to the root
1987 is stored in DISTANCE. */
1988
1989 static gimple
1990 find_associative_operation_root (gimple stmt, unsigned *distance)
1991 {
1992 tree lhs;
1993 gimple next;
1994 enum tree_code code = gimple_assign_rhs_code (stmt);
1995 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1996 unsigned dist = 0;
1997
1998 if (!may_reassociate_p (type, code))
1999 return NULL;
2000
2001 while (1)
2002 {
2003 lhs = gimple_assign_lhs (stmt);
2004 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2005
2006 next = find_use_stmt (&lhs);
2007 if (!next
2008 || gimple_assign_rhs_code (next) != code)
2009 break;
2010
2011 stmt = next;
2012 dist++;
2013 }
2014
2015 if (distance)
2016 *distance = dist;
2017 return stmt;
2018 }
2019
2020 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2021 is no such statement, returns NULL_TREE. In case the operation used on
2022 NAME1 and NAME2 is associative and commutative, returns the root of the
2023 tree formed by this operation instead of the statement that uses NAME1 or
2024 NAME2. */
2025
2026 static gimple
2027 find_common_use_stmt (tree *name1, tree *name2)
2028 {
2029 gimple stmt1, stmt2;
2030
2031 stmt1 = find_use_stmt (name1);
2032 if (!stmt1)
2033 return NULL;
2034
2035 stmt2 = find_use_stmt (name2);
2036 if (!stmt2)
2037 return NULL;
2038
2039 if (stmt1 == stmt2)
2040 return stmt1;
2041
2042 stmt1 = find_associative_operation_root (stmt1, NULL);
2043 if (!stmt1)
2044 return NULL;
2045 stmt2 = find_associative_operation_root (stmt2, NULL);
2046 if (!stmt2)
2047 return NULL;
2048
2049 return (stmt1 == stmt2 ? stmt1 : NULL);
2050 }
2051
2052 /* Checks whether R1 and R2 are combined together using CODE, with the result
2053 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2054 if it is true. If CODE is ERROR_MARK, set these values instead. */
2055
2056 static bool
2057 combinable_refs_p (dref r1, dref r2,
2058 enum tree_code *code, bool *swap, tree *rslt_type)
2059 {
2060 enum tree_code acode;
2061 bool aswap;
2062 tree atype;
2063 tree name1, name2;
2064 gimple stmt;
2065
2066 name1 = name_for_ref (r1);
2067 name2 = name_for_ref (r2);
2068 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2069
2070 stmt = find_common_use_stmt (&name1, &name2);
2071
2072 if (!stmt)
2073 return false;
2074
2075 acode = gimple_assign_rhs_code (stmt);
2076 aswap = (!commutative_tree_code (acode)
2077 && gimple_assign_rhs1 (stmt) != name1);
2078 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2079
2080 if (*code == ERROR_MARK)
2081 {
2082 *code = acode;
2083 *swap = aswap;
2084 *rslt_type = atype;
2085 return true;
2086 }
2087
2088 return (*code == acode
2089 && *swap == aswap
2090 && *rslt_type == atype);
2091 }
2092
2093 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2094 an assignment of the remaining operand. */
2095
2096 static void
2097 remove_name_from_operation (gimple stmt, tree op)
2098 {
2099 tree other_op;
2100 gimple_stmt_iterator si;
2101
2102 gcc_assert (is_gimple_assign (stmt));
2103
2104 if (gimple_assign_rhs1 (stmt) == op)
2105 other_op = gimple_assign_rhs2 (stmt);
2106 else
2107 other_op = gimple_assign_rhs1 (stmt);
2108
2109 si = gsi_for_stmt (stmt);
2110 gimple_assign_set_rhs_from_tree (&si, other_op);
2111
2112 /* We should not have reallocated STMT. */
2113 gcc_assert (gsi_stmt (si) == stmt);
2114
2115 update_stmt (stmt);
2116 }
2117
2118 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2119 are combined in a single statement, and returns this statement. */
2120
2121 static gimple
2122 reassociate_to_the_same_stmt (tree name1, tree name2)
2123 {
2124 gimple stmt1, stmt2, root1, root2, s1, s2;
2125 gimple new_stmt, tmp_stmt;
2126 tree new_name, tmp_name, var, r1, r2;
2127 unsigned dist1, dist2;
2128 enum tree_code code;
2129 tree type = TREE_TYPE (name1);
2130 gimple_stmt_iterator bsi;
2131
2132 stmt1 = find_use_stmt (&name1);
2133 stmt2 = find_use_stmt (&name2);
2134 root1 = find_associative_operation_root (stmt1, &dist1);
2135 root2 = find_associative_operation_root (stmt2, &dist2);
2136 code = gimple_assign_rhs_code (stmt1);
2137
2138 gcc_assert (root1 && root2 && root1 == root2
2139 && code == gimple_assign_rhs_code (stmt2));
2140
2141 /* Find the root of the nearest expression in that both NAME1 and NAME2
2142 are used. */
2143 r1 = name1;
2144 s1 = stmt1;
2145 r2 = name2;
2146 s2 = stmt2;
2147
2148 while (dist1 > dist2)
2149 {
2150 s1 = find_use_stmt (&r1);
2151 r1 = gimple_assign_lhs (s1);
2152 dist1--;
2153 }
2154 while (dist2 > dist1)
2155 {
2156 s2 = find_use_stmt (&r2);
2157 r2 = gimple_assign_lhs (s2);
2158 dist2--;
2159 }
2160
2161 while (s1 != s2)
2162 {
2163 s1 = find_use_stmt (&r1);
2164 r1 = gimple_assign_lhs (s1);
2165 s2 = find_use_stmt (&r2);
2166 r2 = gimple_assign_lhs (s2);
2167 }
2168
2169 /* Remove NAME1 and NAME2 from the statements in that they are used
2170 currently. */
2171 remove_name_from_operation (stmt1, name1);
2172 remove_name_from_operation (stmt2, name2);
2173
2174 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2175 combine it with the rhs of S1. */
2176 var = create_tmp_reg (type, "predreastmp");
2177 new_name = make_ssa_name (var, NULL);
2178 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2179
2180 var = create_tmp_reg (type, "predreastmp");
2181 tmp_name = make_ssa_name (var, NULL);
2182
2183 /* Rhs of S1 may now be either a binary expression with operation
2184 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2185 so that name1 or name2 was removed from it). */
2186 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2187 tmp_name,
2188 gimple_assign_rhs1 (s1),
2189 gimple_assign_rhs2 (s1));
2190
2191 bsi = gsi_for_stmt (s1);
2192 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2193 s1 = gsi_stmt (bsi);
2194 update_stmt (s1);
2195
2196 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2197 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2198
2199 return new_stmt;
2200 }
2201
2202 /* Returns the statement that combines references R1 and R2. In case R1
2203 and R2 are not used in the same statement, but they are used with an
2204 associative and commutative operation in the same expression, reassociate
2205 the expression so that they are used in the same statement. */
2206
2207 static gimple
2208 stmt_combining_refs (dref r1, dref r2)
2209 {
2210 gimple stmt1, stmt2;
2211 tree name1 = name_for_ref (r1);
2212 tree name2 = name_for_ref (r2);
2213
2214 stmt1 = find_use_stmt (&name1);
2215 stmt2 = find_use_stmt (&name2);
2216 if (stmt1 == stmt2)
2217 return stmt1;
2218
2219 return reassociate_to_the_same_stmt (name1, name2);
2220 }
2221
2222 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2223 description of the new chain is returned, otherwise we return NULL. */
2224
2225 static chain_p
2226 combine_chains (chain_p ch1, chain_p ch2)
2227 {
2228 dref r1, r2, nw;
2229 enum tree_code op = ERROR_MARK;
2230 bool swap = false;
2231 chain_p new_chain;
2232 unsigned i;
2233 gimple root_stmt;
2234 tree rslt_type = NULL_TREE;
2235
2236 if (ch1 == ch2)
2237 return NULL;
2238 if (ch1->length != ch2->length)
2239 return NULL;
2240
2241 if (ch1->refs.length () != ch2->refs.length ())
2242 return NULL;
2243
2244 for (i = 0; (ch1->refs.iterate (i, &r1)
2245 && ch2->refs.iterate (i, &r2)); i++)
2246 {
2247 if (r1->distance != r2->distance)
2248 return NULL;
2249
2250 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2251 return NULL;
2252 }
2253
2254 if (swap)
2255 {
2256 chain_p tmp = ch1;
2257 ch1 = ch2;
2258 ch2 = tmp;
2259 }
2260
2261 new_chain = XCNEW (struct chain);
2262 new_chain->type = CT_COMBINATION;
2263 new_chain->op = op;
2264 new_chain->ch1 = ch1;
2265 new_chain->ch2 = ch2;
2266 new_chain->rslt_type = rslt_type;
2267 new_chain->length = ch1->length;
2268
2269 for (i = 0; (ch1->refs.iterate (i, &r1)
2270 && ch2->refs.iterate (i, &r2)); i++)
2271 {
2272 nw = XCNEW (struct dref_d);
2273 nw->stmt = stmt_combining_refs (r1, r2);
2274 nw->distance = r1->distance;
2275
2276 new_chain->refs.safe_push (nw);
2277 }
2278
2279 new_chain->has_max_use_after = false;
2280 root_stmt = get_chain_root (new_chain)->stmt;
2281 for (i = 1; new_chain->refs.iterate (i, &nw); i++)
2282 {
2283 if (nw->distance == new_chain->length
2284 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2285 {
2286 new_chain->has_max_use_after = true;
2287 break;
2288 }
2289 }
2290
2291 ch1->combined = true;
2292 ch2->combined = true;
2293 return new_chain;
2294 }
2295
2296 /* Try to combine the CHAINS. */
2297
2298 static void
2299 try_combine_chains (vec<chain_p> *chains)
2300 {
2301 unsigned i, j;
2302 chain_p ch1, ch2, cch;
2303 vec<chain_p> worklist = vNULL;
2304
2305 FOR_EACH_VEC_ELT (*chains, i, ch1)
2306 if (chain_can_be_combined_p (ch1))
2307 worklist.safe_push (ch1);
2308
2309 while (!worklist.is_empty ())
2310 {
2311 ch1 = worklist.pop ();
2312 if (!chain_can_be_combined_p (ch1))
2313 continue;
2314
2315 FOR_EACH_VEC_ELT (*chains, j, ch2)
2316 {
2317 if (!chain_can_be_combined_p (ch2))
2318 continue;
2319
2320 cch = combine_chains (ch1, ch2);
2321 if (cch)
2322 {
2323 worklist.safe_push (cch);
2324 chains->safe_push (cch);
2325 break;
2326 }
2327 }
2328 }
2329
2330 worklist.release ();
2331 }
2332
2333 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2334 impossible because one of these initializers may trap, true otherwise. */
2335
2336 static bool
2337 prepare_initializers_chain (struct loop *loop, chain_p chain)
2338 {
2339 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2340 struct data_reference *dr = get_chain_root (chain)->ref;
2341 tree init;
2342 gimple_seq stmts;
2343 dref laref;
2344 edge entry = loop_preheader_edge (loop);
2345
2346 /* Find the initializers for the variables, and check that they cannot
2347 trap. */
2348 chain->inits.create (n);
2349 for (i = 0; i < n; i++)
2350 chain->inits.quick_push (NULL_TREE);
2351
2352 /* If we have replaced some looparound phi nodes, use their initializers
2353 instead of creating our own. */
2354 FOR_EACH_VEC_ELT (chain->refs, i, laref)
2355 {
2356 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2357 continue;
2358
2359 gcc_assert (laref->distance > 0);
2360 chain->inits[n - laref->distance]
2361 = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
2362 }
2363
2364 for (i = 0; i < n; i++)
2365 {
2366 if (chain->inits[i] != NULL_TREE)
2367 continue;
2368
2369 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2370 if (!init)
2371 return false;
2372
2373 if (!chain->all_always_accessed && tree_could_trap_p (init))
2374 return false;
2375
2376 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2377 if (stmts)
2378 gsi_insert_seq_on_edge_immediate (entry, stmts);
2379
2380 chain->inits[i] = init;
2381 }
2382
2383 return true;
2384 }
2385
2386 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2387 be used because the initializers might trap. */
2388
2389 static void
2390 prepare_initializers (struct loop *loop, vec<chain_p> chains)
2391 {
2392 chain_p chain;
2393 unsigned i;
2394
2395 for (i = 0; i < chains.length (); )
2396 {
2397 chain = chains[i];
2398 if (prepare_initializers_chain (loop, chain))
2399 i++;
2400 else
2401 {
2402 release_chain (chain);
2403 chains.unordered_remove (i);
2404 }
2405 }
2406 }
2407
2408 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2409 unrolled. */
2410
2411 static bool
2412 tree_predictive_commoning_loop (struct loop *loop)
2413 {
2414 vec<loop_p> loop_nest;
2415 vec<data_reference_p> datarefs;
2416 vec<ddr_p> dependences;
2417 struct component *components;
2418 vec<chain_p> chains = vNULL;
2419 unsigned unroll_factor;
2420 struct tree_niter_desc desc;
2421 bool unroll = false;
2422 edge exit;
2423 bitmap tmp_vars;
2424
2425 if (dump_file && (dump_flags & TDF_DETAILS))
2426 fprintf (dump_file, "Processing loop %d\n", loop->num);
2427
2428 /* Find the data references and split them into components according to their
2429 dependence relations. */
2430 datarefs.create (10);
2431 dependences.create (10);
2432 loop_nest.create (3);
2433 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2434 &dependences))
2435 {
2436 if (dump_file && (dump_flags & TDF_DETAILS))
2437 fprintf (dump_file, "Cannot analyze data dependencies\n");
2438 loop_nest.release ();
2439 free_data_refs (datarefs);
2440 free_dependence_relations (dependences);
2441 return false;
2442 }
2443
2444 if (dump_file && (dump_flags & TDF_DETAILS))
2445 dump_data_dependence_relations (dump_file, dependences);
2446
2447 components = split_data_refs_to_components (loop, datarefs, dependences);
2448 loop_nest.release ();
2449 free_dependence_relations (dependences);
2450 if (!components)
2451 {
2452 free_data_refs (datarefs);
2453 return false;
2454 }
2455
2456 if (dump_file && (dump_flags & TDF_DETAILS))
2457 {
2458 fprintf (dump_file, "Initial state:\n\n");
2459 dump_components (dump_file, components);
2460 }
2461
2462 /* Find the suitable components and split them into chains. */
2463 components = filter_suitable_components (loop, components);
2464
2465 tmp_vars = BITMAP_ALLOC (NULL);
2466 looparound_phis = BITMAP_ALLOC (NULL);
2467 determine_roots (loop, components, &chains);
2468 release_components (components);
2469
2470 if (!chains.exists ())
2471 {
2472 if (dump_file && (dump_flags & TDF_DETAILS))
2473 fprintf (dump_file,
2474 "Predictive commoning failed: no suitable chains\n");
2475 goto end;
2476 }
2477 prepare_initializers (loop, chains);
2478
2479 /* Try to combine the chains that are always worked with together. */
2480 try_combine_chains (&chains);
2481
2482 if (dump_file && (dump_flags & TDF_DETAILS))
2483 {
2484 fprintf (dump_file, "Before commoning:\n\n");
2485 dump_chains (dump_file, chains);
2486 }
2487
2488 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2489 that its number of iterations is divisible by the factor. */
2490 unroll_factor = determine_unroll_factor (chains);
2491 scev_reset ();
2492 unroll = (unroll_factor > 1
2493 && can_unroll_loop_p (loop, unroll_factor, &desc));
2494 exit = single_dom_exit (loop);
2495
2496 /* Execute the predictive commoning transformations, and possibly unroll the
2497 loop. */
2498 if (unroll)
2499 {
2500 struct epcc_data dta;
2501
2502 if (dump_file && (dump_flags & TDF_DETAILS))
2503 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2504
2505 dta.chains = chains;
2506 dta.tmp_vars = tmp_vars;
2507
2508 update_ssa (TODO_update_ssa_only_virtuals);
2509
2510 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2511 execute_pred_commoning_cbck is called may cause phi nodes to be
2512 reallocated, which is a problem since CHAINS may point to these
2513 statements. To fix this, we store the ssa names defined by the
2514 phi nodes here instead of the phi nodes themselves, and restore
2515 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2516 replace_phis_by_defined_names (chains);
2517
2518 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2519 execute_pred_commoning_cbck, &dta);
2520 eliminate_temp_copies (loop, tmp_vars);
2521 }
2522 else
2523 {
2524 if (dump_file && (dump_flags & TDF_DETAILS))
2525 fprintf (dump_file,
2526 "Executing predictive commoning without unrolling.\n");
2527 execute_pred_commoning (loop, chains, tmp_vars);
2528 }
2529
2530 end: ;
2531 release_chains (chains);
2532 free_data_refs (datarefs);
2533 BITMAP_FREE (tmp_vars);
2534 BITMAP_FREE (looparound_phis);
2535
2536 free_affine_expand_cache (&name_expansions);
2537
2538 return unroll;
2539 }
2540
2541 /* Runs predictive commoning. */
2542
2543 unsigned
2544 tree_predictive_commoning (void)
2545 {
2546 bool unrolled = false;
2547 struct loop *loop;
2548 loop_iterator li;
2549 unsigned ret = 0;
2550
2551 initialize_original_copy_tables ();
2552 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2553 if (optimize_loop_for_speed_p (loop))
2554 {
2555 unrolled |= tree_predictive_commoning_loop (loop);
2556 }
2557
2558 if (unrolled)
2559 {
2560 scev_reset ();
2561 ret = TODO_cleanup_cfg;
2562 }
2563 free_original_copy_tables ();
2564
2565 return ret;
2566 }