* g++.dg/cpp0x/nullptr21.c: Remove printfs, make self-checking.
[gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
33
34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
67
68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 up to RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
136
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "gimple-pretty-print.h"
202 #include "tree-pass.h"
203 #include "tree-affine.h"
204 #include "tree-inline.h"
205
206 /* The maximum number of iterations between the considered memory
207 references. */
208
209 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
210
211 /* Data references (or phi nodes that carry data reference values across
212 loop iterations). */
213
214 typedef struct dref_d
215 {
216 /* The reference itself. */
217 struct data_reference *ref;
218
219 /* The statement in that the reference appears. */
220 gimple stmt;
221
222 /* In case that STMT is a phi node, this field is set to the SSA name
223 defined by it in replace_phis_by_defined_names (in order to avoid
224 pointing to phi node that got reallocated in the meantime). */
225 tree name_defined_by_phi;
226
227 /* Distance of the reference from the root of the chain (in number of
228 iterations of the loop). */
229 unsigned distance;
230
231 /* Number of iterations offset from the first reference in the component. */
232 double_int offset;
233
234 /* Number of the reference in a component, in dominance ordering. */
235 unsigned pos;
236
237 /* True if the memory reference is always accessed when the loop is
238 entered. */
239 unsigned always_accessed : 1;
240 } *dref;
241
242 DEF_VEC_P (dref);
243 DEF_VEC_ALLOC_P (dref, heap);
244
245 /* Type of the chain of the references. */
246
247 enum chain_type
248 {
249 /* The addresses of the references in the chain are constant. */
250 CT_INVARIANT,
251
252 /* There are only loads in the chain. */
253 CT_LOAD,
254
255 /* Root of the chain is store, the rest are loads. */
256 CT_STORE_LOAD,
257
258 /* A combination of two chains. */
259 CT_COMBINATION
260 };
261
262 /* Chains of data references. */
263
264 typedef struct chain
265 {
266 /* Type of the chain. */
267 enum chain_type type;
268
269 /* For combination chains, the operator and the two chains that are
270 combined, and the type of the result. */
271 enum tree_code op;
272 tree rslt_type;
273 struct chain *ch1, *ch2;
274
275 /* The references in the chain. */
276 VEC(dref,heap) *refs;
277
278 /* The maximum distance of the reference in the chain from the root. */
279 unsigned length;
280
281 /* The variables used to copy the value throughout iterations. */
282 VEC(tree,heap) *vars;
283
284 /* Initializers for the variables. */
285 VEC(tree,heap) *inits;
286
287 /* True if there is a use of a variable with the maximal distance
288 that comes after the root in the loop. */
289 unsigned has_max_use_after : 1;
290
291 /* True if all the memory references in the chain are always accessed. */
292 unsigned all_always_accessed : 1;
293
294 /* True if this chain was combined together with some other chain. */
295 unsigned combined : 1;
296 } *chain_p;
297
298 DEF_VEC_P (chain_p);
299 DEF_VEC_ALLOC_P (chain_p, heap);
300
301 /* Describes the knowledge about the step of the memory references in
302 the component. */
303
304 enum ref_step_type
305 {
306 /* The step is zero. */
307 RS_INVARIANT,
308
309 /* The step is nonzero. */
310 RS_NONZERO,
311
312 /* The step may or may not be nonzero. */
313 RS_ANY
314 };
315
316 /* Components of the data dependence graph. */
317
318 struct component
319 {
320 /* The references in the component. */
321 VEC(dref,heap) *refs;
322
323 /* What we know about the step of the references in the component. */
324 enum ref_step_type comp_step;
325
326 /* Next component in the list. */
327 struct component *next;
328 };
329
330 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
331
332 static bitmap looparound_phis;
333
334 /* Cache used by tree_to_aff_combination_expand. */
335
336 static struct pointer_map_t *name_expansions;
337
338 /* Dumps data reference REF to FILE. */
339
340 extern void dump_dref (FILE *, dref);
341 void
342 dump_dref (FILE *file, dref ref)
343 {
344 if (ref->ref)
345 {
346 fprintf (file, " ");
347 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
348 fprintf (file, " (id %u%s)\n", ref->pos,
349 DR_IS_READ (ref->ref) ? "" : ", write");
350
351 fprintf (file, " offset ");
352 dump_double_int (file, ref->offset, false);
353 fprintf (file, "\n");
354
355 fprintf (file, " distance %u\n", ref->distance);
356 }
357 else
358 {
359 if (gimple_code (ref->stmt) == GIMPLE_PHI)
360 fprintf (file, " looparound ref\n");
361 else
362 fprintf (file, " combination ref\n");
363 fprintf (file, " in statement ");
364 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
365 fprintf (file, "\n");
366 fprintf (file, " distance %u\n", ref->distance);
367 }
368
369 }
370
371 /* Dumps CHAIN to FILE. */
372
373 extern void dump_chain (FILE *, chain_p);
374 void
375 dump_chain (FILE *file, chain_p chain)
376 {
377 dref a;
378 const char *chain_type;
379 unsigned i;
380 tree var;
381
382 switch (chain->type)
383 {
384 case CT_INVARIANT:
385 chain_type = "Load motion";
386 break;
387
388 case CT_LOAD:
389 chain_type = "Loads-only";
390 break;
391
392 case CT_STORE_LOAD:
393 chain_type = "Store-loads";
394 break;
395
396 case CT_COMBINATION:
397 chain_type = "Combination";
398 break;
399
400 default:
401 gcc_unreachable ();
402 }
403
404 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
405 chain->combined ? " (combined)" : "");
406 if (chain->type != CT_INVARIANT)
407 fprintf (file, " max distance %u%s\n", chain->length,
408 chain->has_max_use_after ? "" : ", may reuse first");
409
410 if (chain->type == CT_COMBINATION)
411 {
412 fprintf (file, " equal to %p %s %p in type ",
413 (void *) chain->ch1, op_symbol_code (chain->op),
414 (void *) chain->ch2);
415 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
416 fprintf (file, "\n");
417 }
418
419 if (chain->vars)
420 {
421 fprintf (file, " vars");
422 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
423 {
424 fprintf (file, " ");
425 print_generic_expr (file, var, TDF_SLIM);
426 }
427 fprintf (file, "\n");
428 }
429
430 if (chain->inits)
431 {
432 fprintf (file, " inits");
433 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
434 {
435 fprintf (file, " ");
436 print_generic_expr (file, var, TDF_SLIM);
437 }
438 fprintf (file, "\n");
439 }
440
441 fprintf (file, " references:\n");
442 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
443 dump_dref (file, a);
444
445 fprintf (file, "\n");
446 }
447
448 /* Dumps CHAINS to FILE. */
449
450 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
451 void
452 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
453 {
454 chain_p chain;
455 unsigned i;
456
457 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
458 dump_chain (file, chain);
459 }
460
461 /* Dumps COMP to FILE. */
462
463 extern void dump_component (FILE *, struct component *);
464 void
465 dump_component (FILE *file, struct component *comp)
466 {
467 dref a;
468 unsigned i;
469
470 fprintf (file, "Component%s:\n",
471 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
472 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
473 dump_dref (file, a);
474 fprintf (file, "\n");
475 }
476
477 /* Dumps COMPS to FILE. */
478
479 extern void dump_components (FILE *, struct component *);
480 void
481 dump_components (FILE *file, struct component *comps)
482 {
483 struct component *comp;
484
485 for (comp = comps; comp; comp = comp->next)
486 dump_component (file, comp);
487 }
488
489 /* Frees a chain CHAIN. */
490
491 static void
492 release_chain (chain_p chain)
493 {
494 dref ref;
495 unsigned i;
496
497 if (chain == NULL)
498 return;
499
500 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
501 free (ref);
502
503 VEC_free (dref, heap, chain->refs);
504 VEC_free (tree, heap, chain->vars);
505 VEC_free (tree, heap, chain->inits);
506
507 free (chain);
508 }
509
510 /* Frees CHAINS. */
511
512 static void
513 release_chains (VEC (chain_p, heap) *chains)
514 {
515 unsigned i;
516 chain_p chain;
517
518 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
519 release_chain (chain);
520 VEC_free (chain_p, heap, chains);
521 }
522
523 /* Frees a component COMP. */
524
525 static void
526 release_component (struct component *comp)
527 {
528 VEC_free (dref, heap, comp->refs);
529 free (comp);
530 }
531
532 /* Frees list of components COMPS. */
533
534 static void
535 release_components (struct component *comps)
536 {
537 struct component *act, *next;
538
539 for (act = comps; act; act = next)
540 {
541 next = act->next;
542 release_component (act);
543 }
544 }
545
546 /* Finds a root of tree given by FATHERS containing A, and performs path
547 shortening. */
548
549 static unsigned
550 component_of (unsigned fathers[], unsigned a)
551 {
552 unsigned root, n;
553
554 for (root = a; root != fathers[root]; root = fathers[root])
555 continue;
556
557 for (; a != root; a = n)
558 {
559 n = fathers[a];
560 fathers[a] = root;
561 }
562
563 return root;
564 }
565
566 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
567 components, A and B are components to merge. */
568
569 static void
570 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
571 {
572 unsigned ca = component_of (fathers, a);
573 unsigned cb = component_of (fathers, b);
574
575 if (ca == cb)
576 return;
577
578 if (sizes[ca] < sizes[cb])
579 {
580 sizes[cb] += sizes[ca];
581 fathers[ca] = cb;
582 }
583 else
584 {
585 sizes[ca] += sizes[cb];
586 fathers[cb] = ca;
587 }
588 }
589
590 /* Returns true if A is a reference that is suitable for predictive commoning
591 in the innermost loop that contains it. REF_STEP is set according to the
592 step of the reference A. */
593
594 static bool
595 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
596 {
597 tree ref = DR_REF (a), step = DR_STEP (a);
598
599 if (!step
600 || TREE_THIS_VOLATILE (ref)
601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
603 return false;
604
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
611
612 return true;
613 }
614
615 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616
617 static void
618 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
619 {
620 tree type = TREE_TYPE (DR_OFFSET (dr));
621 aff_tree delta;
622
623 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
624 &name_expansions);
625 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
626 aff_combination_add (offset, &delta);
627 }
628
629 /* Determines number of iterations of the innermost enclosing loop before B
630 refers to exactly the same location as A and stores it to OFF. If A and
631 B do not have the same step, they never meet, or anything else fails,
632 returns false, otherwise returns true. Both A and B are assumed to
633 satisfy suitable_reference_p. */
634
635 static bool
636 determine_offset (struct data_reference *a, struct data_reference *b,
637 double_int *off)
638 {
639 aff_tree diff, baseb, step;
640 tree typea, typeb;
641
642 /* Check that both the references access the location in the same type. */
643 typea = TREE_TYPE (DR_REF (a));
644 typeb = TREE_TYPE (DR_REF (b));
645 if (!useless_type_conversion_p (typeb, typea))
646 return false;
647
648 /* Check whether the base address and the step of both references is the
649 same. */
650 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
651 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
652 return false;
653
654 if (integer_zerop (DR_STEP (a)))
655 {
656 /* If the references have loop invariant address, check that they access
657 exactly the same location. */
658 *off = double_int_zero;
659 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
660 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
661 }
662
663 /* Compare the offsets of the addresses, and check whether the difference
664 is a multiple of step. */
665 aff_combination_dr_offset (a, &diff);
666 aff_combination_dr_offset (b, &baseb);
667 aff_combination_scale (&baseb, double_int_minus_one);
668 aff_combination_add (&diff, &baseb);
669
670 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
671 &step, &name_expansions);
672 return aff_combination_constant_multiple_p (&diff, &step, off);
673 }
674
675 /* Returns the last basic block in LOOP for that we are sure that
676 it is executed whenever the loop is entered. */
677
678 static basic_block
679 last_always_executed_block (struct loop *loop)
680 {
681 unsigned i;
682 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
683 edge ex;
684 basic_block last = loop->latch;
685
686 FOR_EACH_VEC_ELT (edge, exits, i, ex)
687 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
688 VEC_free (edge, heap, exits);
689
690 return last;
691 }
692
693 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
694
695 static struct component *
696 split_data_refs_to_components (struct loop *loop,
697 VEC (data_reference_p, heap) *datarefs,
698 VEC (ddr_p, heap) *depends)
699 {
700 unsigned i, n = VEC_length (data_reference_p, datarefs);
701 unsigned ca, ia, ib, bad;
702 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
703 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
704 struct component **comps;
705 struct data_reference *dr, *dra, *drb;
706 struct data_dependence_relation *ddr;
707 struct component *comp_list = NULL, *comp;
708 dref dataref;
709 basic_block last_always_executed = last_always_executed_block (loop);
710
711 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
712 {
713 if (!DR_REF (dr))
714 {
715 /* A fake reference for call or asm_expr that may clobber memory;
716 just fail. */
717 goto end;
718 }
719 dr->aux = (void *) (size_t) i;
720 comp_father[i] = i;
721 comp_size[i] = 1;
722 }
723
724 /* A component reserved for the "bad" data references. */
725 comp_father[n] = n;
726 comp_size[n] = 1;
727
728 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
729 {
730 enum ref_step_type dummy;
731
732 if (!suitable_reference_p (dr, &dummy))
733 {
734 ia = (unsigned) (size_t) dr->aux;
735 merge_comps (comp_father, comp_size, n, ia);
736 }
737 }
738
739 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
740 {
741 double_int dummy_off;
742
743 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
744 continue;
745
746 dra = DDR_A (ddr);
747 drb = DDR_B (ddr);
748 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
749 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
750 if (ia == ib)
751 continue;
752
753 bad = component_of (comp_father, n);
754
755 /* If both A and B are reads, we may ignore unsuitable dependences. */
756 if (DR_IS_READ (dra) && DR_IS_READ (drb)
757 && (ia == bad || ib == bad
758 || !determine_offset (dra, drb, &dummy_off)))
759 continue;
760
761 merge_comps (comp_father, comp_size, ia, ib);
762 }
763
764 comps = XCNEWVEC (struct component *, n);
765 bad = component_of (comp_father, n);
766 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
767 {
768 ia = (unsigned) (size_t) dr->aux;
769 ca = component_of (comp_father, ia);
770 if (ca == bad)
771 continue;
772
773 comp = comps[ca];
774 if (!comp)
775 {
776 comp = XCNEW (struct component);
777 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
778 comps[ca] = comp;
779 }
780
781 dataref = XCNEW (struct dref_d);
782 dataref->ref = dr;
783 dataref->stmt = DR_STMT (dr);
784 dataref->offset = double_int_zero;
785 dataref->distance = 0;
786
787 dataref->always_accessed
788 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
789 gimple_bb (dataref->stmt));
790 dataref->pos = VEC_length (dref, comp->refs);
791 VEC_quick_push (dref, comp->refs, dataref);
792 }
793
794 for (i = 0; i < n; i++)
795 {
796 comp = comps[i];
797 if (comp)
798 {
799 comp->next = comp_list;
800 comp_list = comp;
801 }
802 }
803 free (comps);
804
805 end:
806 free (comp_father);
807 free (comp_size);
808 return comp_list;
809 }
810
811 /* Returns true if the component COMP satisfies the conditions
812 described in 2) at the beginning of this file. LOOP is the current
813 loop. */
814
815 static bool
816 suitable_component_p (struct loop *loop, struct component *comp)
817 {
818 unsigned i;
819 dref a, first;
820 basic_block ba, bp = loop->header;
821 bool ok, has_write = false;
822
823 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
824 {
825 ba = gimple_bb (a->stmt);
826
827 if (!just_once_each_iteration_p (loop, ba))
828 return false;
829
830 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
831 bp = ba;
832
833 if (DR_IS_WRITE (a->ref))
834 has_write = true;
835 }
836
837 first = VEC_index (dref, comp->refs, 0);
838 ok = suitable_reference_p (first->ref, &comp->comp_step);
839 gcc_assert (ok);
840 first->offset = double_int_zero;
841
842 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
843 {
844 if (!determine_offset (first->ref, a->ref, &a->offset))
845 return false;
846
847 #ifdef ENABLE_CHECKING
848 {
849 enum ref_step_type a_step;
850 ok = suitable_reference_p (a->ref, &a_step);
851 gcc_assert (ok && a_step == comp->comp_step);
852 }
853 #endif
854 }
855
856 /* If there is a write inside the component, we must know whether the
857 step is nonzero or not -- we would not otherwise be able to recognize
858 whether the value accessed by reads comes from the OFFSET-th iteration
859 or the previous one. */
860 if (has_write && comp->comp_step == RS_ANY)
861 return false;
862
863 return true;
864 }
865
866 /* Check the conditions on references inside each of components COMPS,
867 and remove the unsuitable components from the list. The new list
868 of components is returned. The conditions are described in 2) at
869 the beginning of this file. LOOP is the current loop. */
870
871 static struct component *
872 filter_suitable_components (struct loop *loop, struct component *comps)
873 {
874 struct component **comp, *act;
875
876 for (comp = &comps; *comp; )
877 {
878 act = *comp;
879 if (suitable_component_p (loop, act))
880 comp = &act->next;
881 else
882 {
883 dref ref;
884 unsigned i;
885
886 *comp = act->next;
887 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
888 free (ref);
889 release_component (act);
890 }
891 }
892
893 return comps;
894 }
895
896 /* Compares two drefs A and B by their offset and position. Callback for
897 qsort. */
898
899 static int
900 order_drefs (const void *a, const void *b)
901 {
902 const dref *const da = (const dref *) a;
903 const dref *const db = (const dref *) b;
904 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
905
906 if (offcmp != 0)
907 return offcmp;
908
909 return (*da)->pos - (*db)->pos;
910 }
911
912 /* Returns root of the CHAIN. */
913
914 static inline dref
915 get_chain_root (chain_p chain)
916 {
917 return VEC_index (dref, chain->refs, 0);
918 }
919
920 /* Adds REF to the chain CHAIN. */
921
922 static void
923 add_ref_to_chain (chain_p chain, dref ref)
924 {
925 dref root = get_chain_root (chain);
926 double_int dist;
927
928 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
929 dist = double_int_sub (ref->offset, root->offset);
930 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
931 {
932 free (ref);
933 return;
934 }
935 gcc_assert (double_int_fits_in_uhwi_p (dist));
936
937 VEC_safe_push (dref, heap, chain->refs, ref);
938
939 ref->distance = double_int_to_uhwi (dist);
940
941 if (ref->distance >= chain->length)
942 {
943 chain->length = ref->distance;
944 chain->has_max_use_after = false;
945 }
946
947 if (ref->distance == chain->length
948 && ref->pos > root->pos)
949 chain->has_max_use_after = true;
950
951 chain->all_always_accessed &= ref->always_accessed;
952 }
953
954 /* Returns the chain for invariant component COMP. */
955
956 static chain_p
957 make_invariant_chain (struct component *comp)
958 {
959 chain_p chain = XCNEW (struct chain);
960 unsigned i;
961 dref ref;
962
963 chain->type = CT_INVARIANT;
964
965 chain->all_always_accessed = true;
966
967 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
968 {
969 VEC_safe_push (dref, heap, chain->refs, ref);
970 chain->all_always_accessed &= ref->always_accessed;
971 }
972
973 return chain;
974 }
975
976 /* Make a new chain rooted at REF. */
977
978 static chain_p
979 make_rooted_chain (dref ref)
980 {
981 chain_p chain = XCNEW (struct chain);
982
983 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
984
985 VEC_safe_push (dref, heap, chain->refs, ref);
986 chain->all_always_accessed = ref->always_accessed;
987
988 ref->distance = 0;
989
990 return chain;
991 }
992
993 /* Returns true if CHAIN is not trivial. */
994
995 static bool
996 nontrivial_chain_p (chain_p chain)
997 {
998 return chain != NULL && VEC_length (dref, chain->refs) > 1;
999 }
1000
1001 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1002 is no such name. */
1003
1004 static tree
1005 name_for_ref (dref ref)
1006 {
1007 tree name;
1008
1009 if (is_gimple_assign (ref->stmt))
1010 {
1011 if (!ref->ref || DR_IS_READ (ref->ref))
1012 name = gimple_assign_lhs (ref->stmt);
1013 else
1014 name = gimple_assign_rhs1 (ref->stmt);
1015 }
1016 else
1017 name = PHI_RESULT (ref->stmt);
1018
1019 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1020 }
1021
1022 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1023 iterations of the innermost enclosing loop). */
1024
1025 static bool
1026 valid_initializer_p (struct data_reference *ref,
1027 unsigned distance, struct data_reference *root)
1028 {
1029 aff_tree diff, base, step;
1030 double_int off;
1031
1032 /* Both REF and ROOT must be accessing the same object. */
1033 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1034 return false;
1035
1036 /* The initializer is defined outside of loop, hence its address must be
1037 invariant inside the loop. */
1038 gcc_assert (integer_zerop (DR_STEP (ref)));
1039
1040 /* If the address of the reference is invariant, initializer must access
1041 exactly the same location. */
1042 if (integer_zerop (DR_STEP (root)))
1043 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1044 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1045
1046 /* Verify that this index of REF is equal to the root's index at
1047 -DISTANCE-th iteration. */
1048 aff_combination_dr_offset (root, &diff);
1049 aff_combination_dr_offset (ref, &base);
1050 aff_combination_scale (&base, double_int_minus_one);
1051 aff_combination_add (&diff, &base);
1052
1053 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1054 &step, &name_expansions);
1055 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1056 return false;
1057
1058 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1059 return false;
1060
1061 return true;
1062 }
1063
1064 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1065 initial value is correct (equal to initial value of REF shifted by one
1066 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1067 is the root of the current chain. */
1068
1069 static gimple
1070 find_looparound_phi (struct loop *loop, dref ref, dref root)
1071 {
1072 tree name, init, init_ref;
1073 gimple phi = NULL, init_stmt;
1074 edge latch = loop_latch_edge (loop);
1075 struct data_reference init_dr;
1076 gimple_stmt_iterator psi;
1077
1078 if (is_gimple_assign (ref->stmt))
1079 {
1080 if (DR_IS_READ (ref->ref))
1081 name = gimple_assign_lhs (ref->stmt);
1082 else
1083 name = gimple_assign_rhs1 (ref->stmt);
1084 }
1085 else
1086 name = PHI_RESULT (ref->stmt);
1087 if (!name)
1088 return NULL;
1089
1090 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1091 {
1092 phi = gsi_stmt (psi);
1093 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1094 break;
1095 }
1096
1097 if (gsi_end_p (psi))
1098 return NULL;
1099
1100 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1101 if (TREE_CODE (init) != SSA_NAME)
1102 return NULL;
1103 init_stmt = SSA_NAME_DEF_STMT (init);
1104 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1105 return NULL;
1106 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1107
1108 init_ref = gimple_assign_rhs1 (init_stmt);
1109 if (!REFERENCE_CLASS_P (init_ref)
1110 && !DECL_P (init_ref))
1111 return NULL;
1112
1113 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1114 loop enclosing PHI). */
1115 memset (&init_dr, 0, sizeof (struct data_reference));
1116 DR_REF (&init_dr) = init_ref;
1117 DR_STMT (&init_dr) = phi;
1118 if (!dr_analyze_innermost (&init_dr, loop))
1119 return NULL;
1120
1121 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1122 return NULL;
1123
1124 return phi;
1125 }
1126
1127 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1128
1129 static void
1130 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1131 {
1132 dref nw = XCNEW (struct dref_d), aref;
1133 unsigned i;
1134
1135 nw->stmt = phi;
1136 nw->distance = ref->distance + 1;
1137 nw->always_accessed = 1;
1138
1139 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1140 if (aref->distance >= nw->distance)
1141 break;
1142 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1143
1144 if (nw->distance > chain->length)
1145 {
1146 chain->length = nw->distance;
1147 chain->has_max_use_after = false;
1148 }
1149 }
1150
1151 /* For references in CHAIN that are copied around the LOOP (created previously
1152 by PRE, or by user), add the results of such copies to the chain. This
1153 enables us to remove the copies by unrolling, and may need less registers
1154 (also, it may allow us to combine chains together). */
1155
1156 static void
1157 add_looparound_copies (struct loop *loop, chain_p chain)
1158 {
1159 unsigned i;
1160 dref ref, root = get_chain_root (chain);
1161 gimple phi;
1162
1163 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1164 {
1165 phi = find_looparound_phi (loop, ref, root);
1166 if (!phi)
1167 continue;
1168
1169 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1170 insert_looparound_copy (chain, ref, phi);
1171 }
1172 }
1173
1174 /* Find roots of the values and determine distances in the component COMP.
1175 The references are redistributed into CHAINS. LOOP is the current
1176 loop. */
1177
1178 static void
1179 determine_roots_comp (struct loop *loop,
1180 struct component *comp,
1181 VEC (chain_p, heap) **chains)
1182 {
1183 unsigned i;
1184 dref a;
1185 chain_p chain = NULL;
1186 double_int last_ofs = double_int_zero;
1187
1188 /* Invariants are handled specially. */
1189 if (comp->comp_step == RS_INVARIANT)
1190 {
1191 chain = make_invariant_chain (comp);
1192 VEC_safe_push (chain_p, heap, *chains, chain);
1193 return;
1194 }
1195
1196 VEC_qsort (dref, comp->refs, order_drefs);
1197
1198 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1199 {
1200 if (!chain || DR_IS_WRITE (a->ref)
1201 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1202 double_int_sub (a->offset, last_ofs)) <= 0)
1203 {
1204 if (nontrivial_chain_p (chain))
1205 {
1206 add_looparound_copies (loop, chain);
1207 VEC_safe_push (chain_p, heap, *chains, chain);
1208 }
1209 else
1210 release_chain (chain);
1211 chain = make_rooted_chain (a);
1212 last_ofs = a->offset;
1213 continue;
1214 }
1215
1216 add_ref_to_chain (chain, a);
1217 }
1218
1219 if (nontrivial_chain_p (chain))
1220 {
1221 add_looparound_copies (loop, chain);
1222 VEC_safe_push (chain_p, heap, *chains, chain);
1223 }
1224 else
1225 release_chain (chain);
1226 }
1227
1228 /* Find roots of the values and determine distances in components COMPS, and
1229 separates the references to CHAINS. LOOP is the current loop. */
1230
1231 static void
1232 determine_roots (struct loop *loop,
1233 struct component *comps, VEC (chain_p, heap) **chains)
1234 {
1235 struct component *comp;
1236
1237 for (comp = comps; comp; comp = comp->next)
1238 determine_roots_comp (loop, comp, chains);
1239 }
1240
1241 /* Replace the reference in statement STMT with temporary variable
1242 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1243 the reference in the statement. IN_LHS is true if the reference
1244 is in the lhs of STMT, false if it is in rhs. */
1245
1246 static void
1247 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1248 {
1249 tree val;
1250 gimple new_stmt;
1251 gimple_stmt_iterator bsi, psi;
1252
1253 if (gimple_code (stmt) == GIMPLE_PHI)
1254 {
1255 gcc_assert (!in_lhs && !set);
1256
1257 val = PHI_RESULT (stmt);
1258 bsi = gsi_after_labels (gimple_bb (stmt));
1259 psi = gsi_for_stmt (stmt);
1260 remove_phi_node (&psi, false);
1261
1262 /* Turn the phi node into GIMPLE_ASSIGN. */
1263 new_stmt = gimple_build_assign (val, new_tree);
1264 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1265 return;
1266 }
1267
1268 /* Since the reference is of gimple_reg type, it should only
1269 appear as lhs or rhs of modify statement. */
1270 gcc_assert (is_gimple_assign (stmt));
1271
1272 bsi = gsi_for_stmt (stmt);
1273
1274 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1275 if (!set)
1276 {
1277 gcc_assert (!in_lhs);
1278 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1279 stmt = gsi_stmt (bsi);
1280 update_stmt (stmt);
1281 return;
1282 }
1283
1284 if (in_lhs)
1285 {
1286 /* We have statement
1287
1288 OLD = VAL
1289
1290 If OLD is a memory reference, then VAL is gimple_val, and we transform
1291 this to
1292
1293 OLD = VAL
1294 NEW = VAL
1295
1296 Otherwise, we are replacing a combination chain,
1297 VAL is the expression that performs the combination, and OLD is an
1298 SSA name. In this case, we transform the assignment to
1299
1300 OLD = VAL
1301 NEW = OLD
1302
1303 */
1304
1305 val = gimple_assign_lhs (stmt);
1306 if (TREE_CODE (val) != SSA_NAME)
1307 {
1308 val = gimple_assign_rhs1 (stmt);
1309 gcc_assert (gimple_assign_single_p (stmt));
1310 if (TREE_CLOBBER_P (val))
1311 {
1312 val = gimple_default_def (cfun, SSA_NAME_VAR (new_tree));
1313 if (val == NULL_TREE)
1314 {
1315 val = make_ssa_name (SSA_NAME_VAR (new_tree),
1316 gimple_build_nop ());
1317 set_default_def (SSA_NAME_VAR (new_tree), val);
1318 }
1319 }
1320 else
1321 gcc_assert (gimple_assign_copy_p (stmt));
1322 }
1323 }
1324 else
1325 {
1326 /* VAL = OLD
1327
1328 is transformed to
1329
1330 VAL = OLD
1331 NEW = VAL */
1332
1333 val = gimple_assign_lhs (stmt);
1334 }
1335
1336 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1337 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1338 }
1339
1340 /* Returns the reference to the address of REF in the ITER-th iteration of
1341 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1342 try to preserve the original shape of the reference (not rewrite it
1343 as an indirect ref to the address), to make tree_could_trap_p in
1344 prepare_initializers_chain return false more often. */
1345
1346 static tree
1347 ref_at_iteration (struct loop *loop, tree ref, int iter)
1348 {
1349 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1350 affine_iv iv;
1351 bool ok;
1352
1353 if (handled_component_p (ref))
1354 {
1355 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1356 if (!op0)
1357 return NULL_TREE;
1358 }
1359 else if (!INDIRECT_REF_P (ref)
1360 && TREE_CODE (ref) != MEM_REF)
1361 return unshare_expr (ref);
1362
1363 if (TREE_CODE (ref) == MEM_REF)
1364 {
1365 ret = unshare_expr (ref);
1366 idx = TREE_OPERAND (ref, 0);
1367 idx_p = &TREE_OPERAND (ret, 0);
1368 }
1369 else if (TREE_CODE (ref) == COMPONENT_REF)
1370 {
1371 /* Check that the offset is loop invariant. */
1372 if (TREE_OPERAND (ref, 2)
1373 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1374 return NULL_TREE;
1375
1376 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1377 unshare_expr (TREE_OPERAND (ref, 1)),
1378 unshare_expr (TREE_OPERAND (ref, 2)));
1379 }
1380 else if (TREE_CODE (ref) == ARRAY_REF)
1381 {
1382 /* Check that the lower bound and the step are loop invariant. */
1383 if (TREE_OPERAND (ref, 2)
1384 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1385 return NULL_TREE;
1386 if (TREE_OPERAND (ref, 3)
1387 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1388 return NULL_TREE;
1389
1390 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1391 unshare_expr (TREE_OPERAND (ref, 2)),
1392 unshare_expr (TREE_OPERAND (ref, 3)));
1393 idx = TREE_OPERAND (ref, 1);
1394 idx_p = &TREE_OPERAND (ret, 1);
1395 }
1396 else
1397 return NULL_TREE;
1398
1399 ok = simple_iv (loop, loop, idx, &iv, true);
1400 if (!ok)
1401 return NULL_TREE;
1402 iv.base = expand_simple_operations (iv.base);
1403 if (integer_zerop (iv.step))
1404 *idx_p = unshare_expr (iv.base);
1405 else
1406 {
1407 type = TREE_TYPE (iv.base);
1408 if (POINTER_TYPE_P (type))
1409 {
1410 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1411 size_int (iter));
1412 val = fold_build_pointer_plus (iv.base, val);
1413 }
1414 else
1415 {
1416 val = fold_build2 (MULT_EXPR, type, iv.step,
1417 build_int_cst_type (type, iter));
1418 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1419 }
1420 *idx_p = unshare_expr (val);
1421 }
1422
1423 return ret;
1424 }
1425
1426 /* Get the initialization expression for the INDEX-th temporary variable
1427 of CHAIN. */
1428
1429 static tree
1430 get_init_expr (chain_p chain, unsigned index)
1431 {
1432 if (chain->type == CT_COMBINATION)
1433 {
1434 tree e1 = get_init_expr (chain->ch1, index);
1435 tree e2 = get_init_expr (chain->ch2, index);
1436
1437 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1438 }
1439 else
1440 return VEC_index (tree, chain->inits, index);
1441 }
1442
1443 /* Marks all virtual operands of statement STMT for renaming. */
1444
1445 void
1446 mark_virtual_ops_for_renaming (gimple stmt)
1447 {
1448 tree var;
1449
1450 if (gimple_code (stmt) == GIMPLE_PHI)
1451 {
1452 var = PHI_RESULT (stmt);
1453 if (is_gimple_reg (var))
1454 return;
1455
1456 if (TREE_CODE (var) == SSA_NAME)
1457 var = SSA_NAME_VAR (var);
1458 mark_sym_for_renaming (var);
1459 return;
1460 }
1461
1462 update_stmt (stmt);
1463 if (gimple_vuse (stmt))
1464 mark_sym_for_renaming (gimple_vop (cfun));
1465 }
1466
1467 /* Returns a new temporary variable used for the I-th variable carrying
1468 value of REF. The variable's uid is marked in TMP_VARS. */
1469
1470 static tree
1471 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1472 {
1473 tree type = TREE_TYPE (ref);
1474 /* We never access the components of the temporary variable in predictive
1475 commoning. */
1476 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1477
1478 add_referenced_var (var);
1479 bitmap_set_bit (tmp_vars, DECL_UID (var));
1480 return var;
1481 }
1482
1483 /* Creates the variables for CHAIN, as well as phi nodes for them and
1484 initialization on entry to LOOP. Uids of the newly created
1485 temporary variables are marked in TMP_VARS. */
1486
1487 static void
1488 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1489 {
1490 unsigned i;
1491 unsigned n = chain->length;
1492 dref root = get_chain_root (chain);
1493 bool reuse_first = !chain->has_max_use_after;
1494 tree ref, init, var, next;
1495 gimple phi;
1496 gimple_seq stmts;
1497 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1498
1499 /* If N == 0, then all the references are within the single iteration. And
1500 since this is an nonempty chain, reuse_first cannot be true. */
1501 gcc_assert (n > 0 || !reuse_first);
1502
1503 chain->vars = VEC_alloc (tree, heap, n + 1);
1504
1505 if (chain->type == CT_COMBINATION)
1506 ref = gimple_assign_lhs (root->stmt);
1507 else
1508 ref = DR_REF (root->ref);
1509
1510 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1511 {
1512 var = predcom_tmp_var (ref, i, tmp_vars);
1513 VEC_quick_push (tree, chain->vars, var);
1514 }
1515 if (reuse_first)
1516 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1517
1518 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1519 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1520
1521 for (i = 0; i < n; i++)
1522 {
1523 var = VEC_index (tree, chain->vars, i);
1524 next = VEC_index (tree, chain->vars, i + 1);
1525 init = get_init_expr (chain, i);
1526
1527 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1528 if (stmts)
1529 gsi_insert_seq_on_edge_immediate (entry, stmts);
1530
1531 phi = create_phi_node (var, loop->header);
1532 SSA_NAME_DEF_STMT (var) = phi;
1533 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1534 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1535 }
1536 }
1537
1538 /* Create the variables and initialization statement for root of chain
1539 CHAIN. Uids of the newly created temporary variables are marked
1540 in TMP_VARS. */
1541
1542 static void
1543 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1544 {
1545 dref root = get_chain_root (chain);
1546 bool in_lhs = (chain->type == CT_STORE_LOAD
1547 || chain->type == CT_COMBINATION);
1548
1549 initialize_root_vars (loop, chain, tmp_vars);
1550 replace_ref_with (root->stmt,
1551 VEC_index (tree, chain->vars, chain->length),
1552 true, in_lhs);
1553 }
1554
1555 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1556 initialization on entry to LOOP if necessary. The ssa name for the variable
1557 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1558 around the loop is created. Uid of the newly created temporary variable
1559 is marked in TMP_VARS. INITS is the list containing the (single)
1560 initializer. */
1561
1562 static void
1563 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1564 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1565 bitmap tmp_vars)
1566 {
1567 unsigned i;
1568 tree ref = DR_REF (root->ref), init, var, next;
1569 gimple_seq stmts;
1570 gimple phi;
1571 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1572
1573 /* Find the initializer for the variable, and check that it cannot
1574 trap. */
1575 init = VEC_index (tree, inits, 0);
1576
1577 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1578 var = predcom_tmp_var (ref, 0, tmp_vars);
1579 VEC_quick_push (tree, *vars, var);
1580 if (written)
1581 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1582
1583 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1584 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1585
1586 var = VEC_index (tree, *vars, 0);
1587
1588 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1589 if (stmts)
1590 gsi_insert_seq_on_edge_immediate (entry, stmts);
1591
1592 if (written)
1593 {
1594 next = VEC_index (tree, *vars, 1);
1595 phi = create_phi_node (var, loop->header);
1596 SSA_NAME_DEF_STMT (var) = phi;
1597 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1598 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1599 }
1600 else
1601 {
1602 gimple init_stmt = gimple_build_assign (var, init);
1603 mark_virtual_ops_for_renaming (init_stmt);
1604 gsi_insert_on_edge_immediate (entry, init_stmt);
1605 }
1606 }
1607
1608
1609 /* Execute load motion for references in chain CHAIN. Uids of the newly
1610 created temporary variables are marked in TMP_VARS. */
1611
1612 static void
1613 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1614 {
1615 VEC (tree, heap) *vars;
1616 dref a;
1617 unsigned n_writes = 0, ridx, i;
1618 tree var;
1619
1620 gcc_assert (chain->type == CT_INVARIANT);
1621 gcc_assert (!chain->combined);
1622 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1623 if (DR_IS_WRITE (a->ref))
1624 n_writes++;
1625
1626 /* If there are no reads in the loop, there is nothing to do. */
1627 if (n_writes == VEC_length (dref, chain->refs))
1628 return;
1629
1630 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1631 &vars, chain->inits, tmp_vars);
1632
1633 ridx = 0;
1634 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1635 {
1636 bool is_read = DR_IS_READ (a->ref);
1637 mark_virtual_ops_for_renaming (a->stmt);
1638
1639 if (DR_IS_WRITE (a->ref))
1640 {
1641 n_writes--;
1642 if (n_writes)
1643 {
1644 var = VEC_index (tree, vars, 0);
1645 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1646 VEC_replace (tree, vars, 0, var);
1647 }
1648 else
1649 ridx = 1;
1650 }
1651
1652 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1653 !is_read, !is_read);
1654 }
1655
1656 VEC_free (tree, heap, vars);
1657 }
1658
1659 /* Returns the single statement in that NAME is used, excepting
1660 the looparound phi nodes contained in one of the chains. If there is no
1661 such statement, or more statements, NULL is returned. */
1662
1663 static gimple
1664 single_nonlooparound_use (tree name)
1665 {
1666 use_operand_p use;
1667 imm_use_iterator it;
1668 gimple stmt, ret = NULL;
1669
1670 FOR_EACH_IMM_USE_FAST (use, it, name)
1671 {
1672 stmt = USE_STMT (use);
1673
1674 if (gimple_code (stmt) == GIMPLE_PHI)
1675 {
1676 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1677 could not be processed anyway, so just fail for them. */
1678 if (bitmap_bit_p (looparound_phis,
1679 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1680 continue;
1681
1682 return NULL;
1683 }
1684 else if (is_gimple_debug (stmt))
1685 continue;
1686 else if (ret != NULL)
1687 return NULL;
1688 else
1689 ret = stmt;
1690 }
1691
1692 return ret;
1693 }
1694
1695 /* Remove statement STMT, as well as the chain of assignments in that it is
1696 used. */
1697
1698 static void
1699 remove_stmt (gimple stmt)
1700 {
1701 tree name;
1702 gimple next;
1703 gimple_stmt_iterator psi;
1704
1705 if (gimple_code (stmt) == GIMPLE_PHI)
1706 {
1707 name = PHI_RESULT (stmt);
1708 next = single_nonlooparound_use (name);
1709 reset_debug_uses (stmt);
1710 psi = gsi_for_stmt (stmt);
1711 remove_phi_node (&psi, true);
1712
1713 if (!next
1714 || !gimple_assign_ssa_name_copy_p (next)
1715 || gimple_assign_rhs1 (next) != name)
1716 return;
1717
1718 stmt = next;
1719 }
1720
1721 while (1)
1722 {
1723 gimple_stmt_iterator bsi;
1724
1725 bsi = gsi_for_stmt (stmt);
1726
1727 name = gimple_assign_lhs (stmt);
1728 gcc_assert (TREE_CODE (name) == SSA_NAME);
1729
1730 next = single_nonlooparound_use (name);
1731 reset_debug_uses (stmt);
1732
1733 mark_virtual_ops_for_renaming (stmt);
1734 gsi_remove (&bsi, true);
1735 release_defs (stmt);
1736
1737 if (!next
1738 || !gimple_assign_ssa_name_copy_p (next)
1739 || gimple_assign_rhs1 (next) != name)
1740 return;
1741
1742 stmt = next;
1743 }
1744 }
1745
1746 /* Perform the predictive commoning optimization for a chain CHAIN.
1747 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1748
1749 static void
1750 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1751 bitmap tmp_vars)
1752 {
1753 unsigned i;
1754 dref a, root;
1755 tree var;
1756
1757 if (chain->combined)
1758 {
1759 /* For combined chains, just remove the statements that are used to
1760 compute the values of the expression (except for the root one). */
1761 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1762 remove_stmt (a->stmt);
1763 }
1764 else
1765 {
1766 /* For non-combined chains, set up the variables that hold its value,
1767 and replace the uses of the original references by these
1768 variables. */
1769 root = get_chain_root (chain);
1770 mark_virtual_ops_for_renaming (root->stmt);
1771
1772 initialize_root (loop, chain, tmp_vars);
1773 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1774 {
1775 mark_virtual_ops_for_renaming (a->stmt);
1776 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1777 replace_ref_with (a->stmt, var, false, false);
1778 }
1779 }
1780 }
1781
1782 /* Determines the unroll factor necessary to remove as many temporary variable
1783 copies as possible. CHAINS is the list of chains that will be
1784 optimized. */
1785
1786 static unsigned
1787 determine_unroll_factor (VEC (chain_p, heap) *chains)
1788 {
1789 chain_p chain;
1790 unsigned factor = 1, af, nfactor, i;
1791 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1792
1793 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1794 {
1795 if (chain->type == CT_INVARIANT || chain->combined)
1796 continue;
1797
1798 /* The best unroll factor for this chain is equal to the number of
1799 temporary variables that we create for it. */
1800 af = chain->length;
1801 if (chain->has_max_use_after)
1802 af++;
1803
1804 nfactor = factor * af / gcd (factor, af);
1805 if (nfactor <= max)
1806 factor = nfactor;
1807 }
1808
1809 return factor;
1810 }
1811
1812 /* Perform the predictive commoning optimization for CHAINS.
1813 Uids of the newly created temporary variables are marked in TMP_VARS. */
1814
1815 static void
1816 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1817 bitmap tmp_vars)
1818 {
1819 chain_p chain;
1820 unsigned i;
1821
1822 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1823 {
1824 if (chain->type == CT_INVARIANT)
1825 execute_load_motion (loop, chain, tmp_vars);
1826 else
1827 execute_pred_commoning_chain (loop, chain, tmp_vars);
1828 }
1829
1830 update_ssa (TODO_update_ssa_only_virtuals);
1831 }
1832
1833 /* For each reference in CHAINS, if its defining statement is
1834 phi node, record the ssa name that is defined by it. */
1835
1836 static void
1837 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1838 {
1839 chain_p chain;
1840 dref a;
1841 unsigned i, j;
1842
1843 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1844 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1845 {
1846 if (gimple_code (a->stmt) == GIMPLE_PHI)
1847 {
1848 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1849 a->stmt = NULL;
1850 }
1851 }
1852 }
1853
1854 /* For each reference in CHAINS, if name_defined_by_phi is not
1855 NULL, use it to set the stmt field. */
1856
1857 static void
1858 replace_names_by_phis (VEC (chain_p, heap) *chains)
1859 {
1860 chain_p chain;
1861 dref a;
1862 unsigned i, j;
1863
1864 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1865 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1866 if (a->stmt == NULL)
1867 {
1868 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1869 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1870 a->name_defined_by_phi = NULL_TREE;
1871 }
1872 }
1873
1874 /* Wrapper over execute_pred_commoning, to pass it as a callback
1875 to tree_transform_and_unroll_loop. */
1876
1877 struct epcc_data
1878 {
1879 VEC (chain_p, heap) *chains;
1880 bitmap tmp_vars;
1881 };
1882
1883 static void
1884 execute_pred_commoning_cbck (struct loop *loop, void *data)
1885 {
1886 struct epcc_data *const dta = (struct epcc_data *) data;
1887
1888 /* Restore phi nodes that were replaced by ssa names before
1889 tree_transform_and_unroll_loop (see detailed description in
1890 tree_predictive_commoning_loop). */
1891 replace_names_by_phis (dta->chains);
1892 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1893 }
1894
1895 /* Base NAME and all the names in the chain of phi nodes that use it
1896 on variable VAR. The phi nodes are recognized by being in the copies of
1897 the header of the LOOP. */
1898
1899 static void
1900 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1901 {
1902 gimple stmt, phi;
1903 imm_use_iterator iter;
1904
1905 SSA_NAME_VAR (name) = var;
1906
1907 while (1)
1908 {
1909 phi = NULL;
1910 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1911 {
1912 if (gimple_code (stmt) == GIMPLE_PHI
1913 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1914 {
1915 phi = stmt;
1916 BREAK_FROM_IMM_USE_STMT (iter);
1917 }
1918 }
1919 if (!phi)
1920 return;
1921
1922 name = PHI_RESULT (phi);
1923 SSA_NAME_VAR (name) = var;
1924 }
1925 }
1926
1927 /* Given an unrolled LOOP after predictive commoning, remove the
1928 register copies arising from phi nodes by changing the base
1929 variables of SSA names. TMP_VARS is the set of the temporary variables
1930 for those we want to perform this. */
1931
1932 static void
1933 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1934 {
1935 edge e;
1936 gimple phi, stmt;
1937 tree name, use, var;
1938 gimple_stmt_iterator psi;
1939
1940 e = loop_latch_edge (loop);
1941 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1942 {
1943 phi = gsi_stmt (psi);
1944 name = PHI_RESULT (phi);
1945 var = SSA_NAME_VAR (name);
1946 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1947 continue;
1948 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1949 gcc_assert (TREE_CODE (use) == SSA_NAME);
1950
1951 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1952 stmt = SSA_NAME_DEF_STMT (use);
1953 while (gimple_code (stmt) == GIMPLE_PHI
1954 /* In case we could not unroll the loop enough to eliminate
1955 all copies, we may reach the loop header before the defining
1956 statement (in that case, some register copies will be present
1957 in loop latch in the final code, corresponding to the newly
1958 created looparound phi nodes). */
1959 && gimple_bb (stmt) != loop->header)
1960 {
1961 gcc_assert (single_pred_p (gimple_bb (stmt)));
1962 use = PHI_ARG_DEF (stmt, 0);
1963 stmt = SSA_NAME_DEF_STMT (use);
1964 }
1965
1966 base_names_in_chain_on (loop, use, var);
1967 }
1968 }
1969
1970 /* Returns true if CHAIN is suitable to be combined. */
1971
1972 static bool
1973 chain_can_be_combined_p (chain_p chain)
1974 {
1975 return (!chain->combined
1976 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1977 }
1978
1979 /* Returns the modify statement that uses NAME. Skips over assignment
1980 statements, NAME is replaced with the actual name used in the returned
1981 statement. */
1982
1983 static gimple
1984 find_use_stmt (tree *name)
1985 {
1986 gimple stmt;
1987 tree rhs, lhs;
1988
1989 /* Skip over assignments. */
1990 while (1)
1991 {
1992 stmt = single_nonlooparound_use (*name);
1993 if (!stmt)
1994 return NULL;
1995
1996 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1997 return NULL;
1998
1999 lhs = gimple_assign_lhs (stmt);
2000 if (TREE_CODE (lhs) != SSA_NAME)
2001 return NULL;
2002
2003 if (gimple_assign_copy_p (stmt))
2004 {
2005 rhs = gimple_assign_rhs1 (stmt);
2006 if (rhs != *name)
2007 return NULL;
2008
2009 *name = lhs;
2010 }
2011 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2012 == GIMPLE_BINARY_RHS)
2013 return stmt;
2014 else
2015 return NULL;
2016 }
2017 }
2018
2019 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2020
2021 static bool
2022 may_reassociate_p (tree type, enum tree_code code)
2023 {
2024 if (FLOAT_TYPE_P (type)
2025 && !flag_unsafe_math_optimizations)
2026 return false;
2027
2028 return (commutative_tree_code (code)
2029 && associative_tree_code (code));
2030 }
2031
2032 /* If the operation used in STMT is associative and commutative, go through the
2033 tree of the same operations and returns its root. Distance to the root
2034 is stored in DISTANCE. */
2035
2036 static gimple
2037 find_associative_operation_root (gimple stmt, unsigned *distance)
2038 {
2039 tree lhs;
2040 gimple next;
2041 enum tree_code code = gimple_assign_rhs_code (stmt);
2042 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2043 unsigned dist = 0;
2044
2045 if (!may_reassociate_p (type, code))
2046 return NULL;
2047
2048 while (1)
2049 {
2050 lhs = gimple_assign_lhs (stmt);
2051 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2052
2053 next = find_use_stmt (&lhs);
2054 if (!next
2055 || gimple_assign_rhs_code (next) != code)
2056 break;
2057
2058 stmt = next;
2059 dist++;
2060 }
2061
2062 if (distance)
2063 *distance = dist;
2064 return stmt;
2065 }
2066
2067 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2068 is no such statement, returns NULL_TREE. In case the operation used on
2069 NAME1 and NAME2 is associative and commutative, returns the root of the
2070 tree formed by this operation instead of the statement that uses NAME1 or
2071 NAME2. */
2072
2073 static gimple
2074 find_common_use_stmt (tree *name1, tree *name2)
2075 {
2076 gimple stmt1, stmt2;
2077
2078 stmt1 = find_use_stmt (name1);
2079 if (!stmt1)
2080 return NULL;
2081
2082 stmt2 = find_use_stmt (name2);
2083 if (!stmt2)
2084 return NULL;
2085
2086 if (stmt1 == stmt2)
2087 return stmt1;
2088
2089 stmt1 = find_associative_operation_root (stmt1, NULL);
2090 if (!stmt1)
2091 return NULL;
2092 stmt2 = find_associative_operation_root (stmt2, NULL);
2093 if (!stmt2)
2094 return NULL;
2095
2096 return (stmt1 == stmt2 ? stmt1 : NULL);
2097 }
2098
2099 /* Checks whether R1 and R2 are combined together using CODE, with the result
2100 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2101 if it is true. If CODE is ERROR_MARK, set these values instead. */
2102
2103 static bool
2104 combinable_refs_p (dref r1, dref r2,
2105 enum tree_code *code, bool *swap, tree *rslt_type)
2106 {
2107 enum tree_code acode;
2108 bool aswap;
2109 tree atype;
2110 tree name1, name2;
2111 gimple stmt;
2112
2113 name1 = name_for_ref (r1);
2114 name2 = name_for_ref (r2);
2115 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2116
2117 stmt = find_common_use_stmt (&name1, &name2);
2118
2119 if (!stmt)
2120 return false;
2121
2122 acode = gimple_assign_rhs_code (stmt);
2123 aswap = (!commutative_tree_code (acode)
2124 && gimple_assign_rhs1 (stmt) != name1);
2125 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2126
2127 if (*code == ERROR_MARK)
2128 {
2129 *code = acode;
2130 *swap = aswap;
2131 *rslt_type = atype;
2132 return true;
2133 }
2134
2135 return (*code == acode
2136 && *swap == aswap
2137 && *rslt_type == atype);
2138 }
2139
2140 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2141 an assignment of the remaining operand. */
2142
2143 static void
2144 remove_name_from_operation (gimple stmt, tree op)
2145 {
2146 tree other_op;
2147 gimple_stmt_iterator si;
2148
2149 gcc_assert (is_gimple_assign (stmt));
2150
2151 if (gimple_assign_rhs1 (stmt) == op)
2152 other_op = gimple_assign_rhs2 (stmt);
2153 else
2154 other_op = gimple_assign_rhs1 (stmt);
2155
2156 si = gsi_for_stmt (stmt);
2157 gimple_assign_set_rhs_from_tree (&si, other_op);
2158
2159 /* We should not have reallocated STMT. */
2160 gcc_assert (gsi_stmt (si) == stmt);
2161
2162 update_stmt (stmt);
2163 }
2164
2165 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2166 are combined in a single statement, and returns this statement. */
2167
2168 static gimple
2169 reassociate_to_the_same_stmt (tree name1, tree name2)
2170 {
2171 gimple stmt1, stmt2, root1, root2, s1, s2;
2172 gimple new_stmt, tmp_stmt;
2173 tree new_name, tmp_name, var, r1, r2;
2174 unsigned dist1, dist2;
2175 enum tree_code code;
2176 tree type = TREE_TYPE (name1);
2177 gimple_stmt_iterator bsi;
2178
2179 stmt1 = find_use_stmt (&name1);
2180 stmt2 = find_use_stmt (&name2);
2181 root1 = find_associative_operation_root (stmt1, &dist1);
2182 root2 = find_associative_operation_root (stmt2, &dist2);
2183 code = gimple_assign_rhs_code (stmt1);
2184
2185 gcc_assert (root1 && root2 && root1 == root2
2186 && code == gimple_assign_rhs_code (stmt2));
2187
2188 /* Find the root of the nearest expression in that both NAME1 and NAME2
2189 are used. */
2190 r1 = name1;
2191 s1 = stmt1;
2192 r2 = name2;
2193 s2 = stmt2;
2194
2195 while (dist1 > dist2)
2196 {
2197 s1 = find_use_stmt (&r1);
2198 r1 = gimple_assign_lhs (s1);
2199 dist1--;
2200 }
2201 while (dist2 > dist1)
2202 {
2203 s2 = find_use_stmt (&r2);
2204 r2 = gimple_assign_lhs (s2);
2205 dist2--;
2206 }
2207
2208 while (s1 != s2)
2209 {
2210 s1 = find_use_stmt (&r1);
2211 r1 = gimple_assign_lhs (s1);
2212 s2 = find_use_stmt (&r2);
2213 r2 = gimple_assign_lhs (s2);
2214 }
2215
2216 /* Remove NAME1 and NAME2 from the statements in that they are used
2217 currently. */
2218 remove_name_from_operation (stmt1, name1);
2219 remove_name_from_operation (stmt2, name2);
2220
2221 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2222 combine it with the rhs of S1. */
2223 var = create_tmp_reg (type, "predreastmp");
2224 add_referenced_var (var);
2225 new_name = make_ssa_name (var, NULL);
2226 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2227
2228 var = create_tmp_reg (type, "predreastmp");
2229 add_referenced_var (var);
2230 tmp_name = make_ssa_name (var, NULL);
2231
2232 /* Rhs of S1 may now be either a binary expression with operation
2233 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2234 so that name1 or name2 was removed from it). */
2235 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2236 tmp_name,
2237 gimple_assign_rhs1 (s1),
2238 gimple_assign_rhs2 (s1));
2239
2240 bsi = gsi_for_stmt (s1);
2241 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2242 s1 = gsi_stmt (bsi);
2243 update_stmt (s1);
2244
2245 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2246 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2247
2248 return new_stmt;
2249 }
2250
2251 /* Returns the statement that combines references R1 and R2. In case R1
2252 and R2 are not used in the same statement, but they are used with an
2253 associative and commutative operation in the same expression, reassociate
2254 the expression so that they are used in the same statement. */
2255
2256 static gimple
2257 stmt_combining_refs (dref r1, dref r2)
2258 {
2259 gimple stmt1, stmt2;
2260 tree name1 = name_for_ref (r1);
2261 tree name2 = name_for_ref (r2);
2262
2263 stmt1 = find_use_stmt (&name1);
2264 stmt2 = find_use_stmt (&name2);
2265 if (stmt1 == stmt2)
2266 return stmt1;
2267
2268 return reassociate_to_the_same_stmt (name1, name2);
2269 }
2270
2271 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2272 description of the new chain is returned, otherwise we return NULL. */
2273
2274 static chain_p
2275 combine_chains (chain_p ch1, chain_p ch2)
2276 {
2277 dref r1, r2, nw;
2278 enum tree_code op = ERROR_MARK;
2279 bool swap = false;
2280 chain_p new_chain;
2281 unsigned i;
2282 gimple root_stmt;
2283 tree rslt_type = NULL_TREE;
2284
2285 if (ch1 == ch2)
2286 return NULL;
2287 if (ch1->length != ch2->length)
2288 return NULL;
2289
2290 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2291 return NULL;
2292
2293 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2294 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2295 {
2296 if (r1->distance != r2->distance)
2297 return NULL;
2298
2299 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2300 return NULL;
2301 }
2302
2303 if (swap)
2304 {
2305 chain_p tmp = ch1;
2306 ch1 = ch2;
2307 ch2 = tmp;
2308 }
2309
2310 new_chain = XCNEW (struct chain);
2311 new_chain->type = CT_COMBINATION;
2312 new_chain->op = op;
2313 new_chain->ch1 = ch1;
2314 new_chain->ch2 = ch2;
2315 new_chain->rslt_type = rslt_type;
2316 new_chain->length = ch1->length;
2317
2318 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2319 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2320 {
2321 nw = XCNEW (struct dref_d);
2322 nw->stmt = stmt_combining_refs (r1, r2);
2323 nw->distance = r1->distance;
2324
2325 VEC_safe_push (dref, heap, new_chain->refs, nw);
2326 }
2327
2328 new_chain->has_max_use_after = false;
2329 root_stmt = get_chain_root (new_chain)->stmt;
2330 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2331 {
2332 if (nw->distance == new_chain->length
2333 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2334 {
2335 new_chain->has_max_use_after = true;
2336 break;
2337 }
2338 }
2339
2340 ch1->combined = true;
2341 ch2->combined = true;
2342 return new_chain;
2343 }
2344
2345 /* Try to combine the CHAINS. */
2346
2347 static void
2348 try_combine_chains (VEC (chain_p, heap) **chains)
2349 {
2350 unsigned i, j;
2351 chain_p ch1, ch2, cch;
2352 VEC (chain_p, heap) *worklist = NULL;
2353
2354 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2355 if (chain_can_be_combined_p (ch1))
2356 VEC_safe_push (chain_p, heap, worklist, ch1);
2357
2358 while (!VEC_empty (chain_p, worklist))
2359 {
2360 ch1 = VEC_pop (chain_p, worklist);
2361 if (!chain_can_be_combined_p (ch1))
2362 continue;
2363
2364 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2365 {
2366 if (!chain_can_be_combined_p (ch2))
2367 continue;
2368
2369 cch = combine_chains (ch1, ch2);
2370 if (cch)
2371 {
2372 VEC_safe_push (chain_p, heap, worklist, cch);
2373 VEC_safe_push (chain_p, heap, *chains, cch);
2374 break;
2375 }
2376 }
2377 }
2378 }
2379
2380 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2381 impossible because one of these initializers may trap, true otherwise. */
2382
2383 static bool
2384 prepare_initializers_chain (struct loop *loop, chain_p chain)
2385 {
2386 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2387 struct data_reference *dr = get_chain_root (chain)->ref;
2388 tree init;
2389 gimple_seq stmts;
2390 dref laref;
2391 edge entry = loop_preheader_edge (loop);
2392
2393 /* Find the initializers for the variables, and check that they cannot
2394 trap. */
2395 chain->inits = VEC_alloc (tree, heap, n);
2396 for (i = 0; i < n; i++)
2397 VEC_quick_push (tree, chain->inits, NULL_TREE);
2398
2399 /* If we have replaced some looparound phi nodes, use their initializers
2400 instead of creating our own. */
2401 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2402 {
2403 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2404 continue;
2405
2406 gcc_assert (laref->distance > 0);
2407 VEC_replace (tree, chain->inits, n - laref->distance,
2408 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2409 }
2410
2411 for (i = 0; i < n; i++)
2412 {
2413 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2414 continue;
2415
2416 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2417 if (!init)
2418 return false;
2419
2420 if (!chain->all_always_accessed && tree_could_trap_p (init))
2421 return false;
2422
2423 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2424 if (stmts)
2425 gsi_insert_seq_on_edge_immediate (entry, stmts);
2426
2427 VEC_replace (tree, chain->inits, i, init);
2428 }
2429
2430 return true;
2431 }
2432
2433 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2434 be used because the initializers might trap. */
2435
2436 static void
2437 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2438 {
2439 chain_p chain;
2440 unsigned i;
2441
2442 for (i = 0; i < VEC_length (chain_p, chains); )
2443 {
2444 chain = VEC_index (chain_p, chains, i);
2445 if (prepare_initializers_chain (loop, chain))
2446 i++;
2447 else
2448 {
2449 release_chain (chain);
2450 VEC_unordered_remove (chain_p, chains, i);
2451 }
2452 }
2453 }
2454
2455 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2456 unrolled. */
2457
2458 static bool
2459 tree_predictive_commoning_loop (struct loop *loop)
2460 {
2461 VEC (loop_p, heap) *loop_nest;
2462 VEC (data_reference_p, heap) *datarefs;
2463 VEC (ddr_p, heap) *dependences;
2464 struct component *components;
2465 VEC (chain_p, heap) *chains = NULL;
2466 unsigned unroll_factor;
2467 struct tree_niter_desc desc;
2468 bool unroll = false;
2469 edge exit;
2470 bitmap tmp_vars;
2471
2472 if (dump_file && (dump_flags & TDF_DETAILS))
2473 fprintf (dump_file, "Processing loop %d\n", loop->num);
2474
2475 /* Find the data references and split them into components according to their
2476 dependence relations. */
2477 datarefs = VEC_alloc (data_reference_p, heap, 10);
2478 dependences = VEC_alloc (ddr_p, heap, 10);
2479 loop_nest = VEC_alloc (loop_p, heap, 3);
2480 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2481 &dependences))
2482 {
2483 if (dump_file && (dump_flags & TDF_DETAILS))
2484 fprintf (dump_file, "Cannot analyze data dependencies\n");
2485 VEC_free (loop_p, heap, loop_nest);
2486 free_data_refs (datarefs);
2487 free_dependence_relations (dependences);
2488 return false;
2489 }
2490
2491 if (dump_file && (dump_flags & TDF_DETAILS))
2492 dump_data_dependence_relations (dump_file, dependences);
2493
2494 components = split_data_refs_to_components (loop, datarefs, dependences);
2495 VEC_free (loop_p, heap, loop_nest);
2496 free_dependence_relations (dependences);
2497 if (!components)
2498 {
2499 free_data_refs (datarefs);
2500 return false;
2501 }
2502
2503 if (dump_file && (dump_flags & TDF_DETAILS))
2504 {
2505 fprintf (dump_file, "Initial state:\n\n");
2506 dump_components (dump_file, components);
2507 }
2508
2509 /* Find the suitable components and split them into chains. */
2510 components = filter_suitable_components (loop, components);
2511
2512 tmp_vars = BITMAP_ALLOC (NULL);
2513 looparound_phis = BITMAP_ALLOC (NULL);
2514 determine_roots (loop, components, &chains);
2515 release_components (components);
2516
2517 if (!chains)
2518 {
2519 if (dump_file && (dump_flags & TDF_DETAILS))
2520 fprintf (dump_file,
2521 "Predictive commoning failed: no suitable chains\n");
2522 goto end;
2523 }
2524 prepare_initializers (loop, chains);
2525
2526 /* Try to combine the chains that are always worked with together. */
2527 try_combine_chains (&chains);
2528
2529 if (dump_file && (dump_flags & TDF_DETAILS))
2530 {
2531 fprintf (dump_file, "Before commoning:\n\n");
2532 dump_chains (dump_file, chains);
2533 }
2534
2535 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2536 that its number of iterations is divisible by the factor. */
2537 unroll_factor = determine_unroll_factor (chains);
2538 scev_reset ();
2539 unroll = (unroll_factor > 1
2540 && can_unroll_loop_p (loop, unroll_factor, &desc));
2541 exit = single_dom_exit (loop);
2542
2543 /* Execute the predictive commoning transformations, and possibly unroll the
2544 loop. */
2545 if (unroll)
2546 {
2547 struct epcc_data dta;
2548
2549 if (dump_file && (dump_flags & TDF_DETAILS))
2550 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2551
2552 dta.chains = chains;
2553 dta.tmp_vars = tmp_vars;
2554
2555 update_ssa (TODO_update_ssa_only_virtuals);
2556
2557 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2558 execute_pred_commoning_cbck is called may cause phi nodes to be
2559 reallocated, which is a problem since CHAINS may point to these
2560 statements. To fix this, we store the ssa names defined by the
2561 phi nodes here instead of the phi nodes themselves, and restore
2562 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2563 replace_phis_by_defined_names (chains);
2564
2565 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2566 execute_pred_commoning_cbck, &dta);
2567 eliminate_temp_copies (loop, tmp_vars);
2568 }
2569 else
2570 {
2571 if (dump_file && (dump_flags & TDF_DETAILS))
2572 fprintf (dump_file,
2573 "Executing predictive commoning without unrolling.\n");
2574 execute_pred_commoning (loop, chains, tmp_vars);
2575 }
2576
2577 end: ;
2578 release_chains (chains);
2579 free_data_refs (datarefs);
2580 BITMAP_FREE (tmp_vars);
2581 BITMAP_FREE (looparound_phis);
2582
2583 free_affine_expand_cache (&name_expansions);
2584
2585 return unroll;
2586 }
2587
2588 /* Runs predictive commoning. */
2589
2590 unsigned
2591 tree_predictive_commoning (void)
2592 {
2593 bool unrolled = false;
2594 struct loop *loop;
2595 loop_iterator li;
2596 unsigned ret = 0;
2597
2598 initialize_original_copy_tables ();
2599 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2600 if (optimize_loop_for_speed_p (loop))
2601 {
2602 unrolled |= tree_predictive_commoning_loop (loop);
2603 }
2604
2605 if (unrolled)
2606 {
2607 scev_reset ();
2608 ret = TODO_cleanup_cfg;
2609 }
2610 free_original_copy_tables ();
2611
2612 return ret;
2613 }