c-common.c (c_common_reswords): Reorder.
[gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
33
34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
67
68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
136
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "tree-pretty-print.h"
202 #include "gimple-pretty-print.h"
203 #include "tree-pass.h"
204 #include "tree-affine.h"
205 #include "tree-inline.h"
206
207 /* The maximum number of iterations between the considered memory
208 references. */
209
210 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
211
212 /* Data references (or phi nodes that carry data reference values across
213 loop iterations). */
214
215 typedef struct dref_d
216 {
217 /* The reference itself. */
218 struct data_reference *ref;
219
220 /* The statement in that the reference appears. */
221 gimple stmt;
222
223 /* In case that STMT is a phi node, this field is set to the SSA name
224 defined by it in replace_phis_by_defined_names (in order to avoid
225 pointing to phi node that got reallocated in the meantime). */
226 tree name_defined_by_phi;
227
228 /* Distance of the reference from the root of the chain (in number of
229 iterations of the loop). */
230 unsigned distance;
231
232 /* Number of iterations offset from the first reference in the component. */
233 double_int offset;
234
235 /* Number of the reference in a component, in dominance ordering. */
236 unsigned pos;
237
238 /* True if the memory reference is always accessed when the loop is
239 entered. */
240 unsigned always_accessed : 1;
241 } *dref;
242
243 DEF_VEC_P (dref);
244 DEF_VEC_ALLOC_P (dref, heap);
245
246 /* Type of the chain of the references. */
247
248 enum chain_type
249 {
250 /* The addresses of the references in the chain are constant. */
251 CT_INVARIANT,
252
253 /* There are only loads in the chain. */
254 CT_LOAD,
255
256 /* Root of the chain is store, the rest are loads. */
257 CT_STORE_LOAD,
258
259 /* A combination of two chains. */
260 CT_COMBINATION
261 };
262
263 /* Chains of data references. */
264
265 typedef struct chain
266 {
267 /* Type of the chain. */
268 enum chain_type type;
269
270 /* For combination chains, the operator and the two chains that are
271 combined, and the type of the result. */
272 enum tree_code op;
273 tree rslt_type;
274 struct chain *ch1, *ch2;
275
276 /* The references in the chain. */
277 VEC(dref,heap) *refs;
278
279 /* The maximum distance of the reference in the chain from the root. */
280 unsigned length;
281
282 /* The variables used to copy the value throughout iterations. */
283 VEC(tree,heap) *vars;
284
285 /* Initializers for the variables. */
286 VEC(tree,heap) *inits;
287
288 /* True if there is a use of a variable with the maximal distance
289 that comes after the root in the loop. */
290 unsigned has_max_use_after : 1;
291
292 /* True if all the memory references in the chain are always accessed. */
293 unsigned all_always_accessed : 1;
294
295 /* True if this chain was combined together with some other chain. */
296 unsigned combined : 1;
297 } *chain_p;
298
299 DEF_VEC_P (chain_p);
300 DEF_VEC_ALLOC_P (chain_p, heap);
301
302 /* Describes the knowledge about the step of the memory references in
303 the component. */
304
305 enum ref_step_type
306 {
307 /* The step is zero. */
308 RS_INVARIANT,
309
310 /* The step is nonzero. */
311 RS_NONZERO,
312
313 /* The step may or may not be nonzero. */
314 RS_ANY
315 };
316
317 /* Components of the data dependence graph. */
318
319 struct component
320 {
321 /* The references in the component. */
322 VEC(dref,heap) *refs;
323
324 /* What we know about the step of the references in the component. */
325 enum ref_step_type comp_step;
326
327 /* Next component in the list. */
328 struct component *next;
329 };
330
331 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
332
333 static bitmap looparound_phis;
334
335 /* Cache used by tree_to_aff_combination_expand. */
336
337 static struct pointer_map_t *name_expansions;
338
339 /* Dumps data reference REF to FILE. */
340
341 extern void dump_dref (FILE *, dref);
342 void
343 dump_dref (FILE *file, dref ref)
344 {
345 if (ref->ref)
346 {
347 fprintf (file, " ");
348 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
349 fprintf (file, " (id %u%s)\n", ref->pos,
350 DR_IS_READ (ref->ref) ? "" : ", write");
351
352 fprintf (file, " offset ");
353 dump_double_int (file, ref->offset, false);
354 fprintf (file, "\n");
355
356 fprintf (file, " distance %u\n", ref->distance);
357 }
358 else
359 {
360 if (gimple_code (ref->stmt) == GIMPLE_PHI)
361 fprintf (file, " looparound ref\n");
362 else
363 fprintf (file, " combination ref\n");
364 fprintf (file, " in statement ");
365 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
366 fprintf (file, "\n");
367 fprintf (file, " distance %u\n", ref->distance);
368 }
369
370 }
371
372 /* Dumps CHAIN to FILE. */
373
374 extern void dump_chain (FILE *, chain_p);
375 void
376 dump_chain (FILE *file, chain_p chain)
377 {
378 dref a;
379 const char *chain_type;
380 unsigned i;
381 tree var;
382
383 switch (chain->type)
384 {
385 case CT_INVARIANT:
386 chain_type = "Load motion";
387 break;
388
389 case CT_LOAD:
390 chain_type = "Loads-only";
391 break;
392
393 case CT_STORE_LOAD:
394 chain_type = "Store-loads";
395 break;
396
397 case CT_COMBINATION:
398 chain_type = "Combination";
399 break;
400
401 default:
402 gcc_unreachable ();
403 }
404
405 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
406 chain->combined ? " (combined)" : "");
407 if (chain->type != CT_INVARIANT)
408 fprintf (file, " max distance %u%s\n", chain->length,
409 chain->has_max_use_after ? "" : ", may reuse first");
410
411 if (chain->type == CT_COMBINATION)
412 {
413 fprintf (file, " equal to %p %s %p in type ",
414 (void *) chain->ch1, op_symbol_code (chain->op),
415 (void *) chain->ch2);
416 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
417 fprintf (file, "\n");
418 }
419
420 if (chain->vars)
421 {
422 fprintf (file, " vars");
423 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
424 {
425 fprintf (file, " ");
426 print_generic_expr (file, var, TDF_SLIM);
427 }
428 fprintf (file, "\n");
429 }
430
431 if (chain->inits)
432 {
433 fprintf (file, " inits");
434 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
435 {
436 fprintf (file, " ");
437 print_generic_expr (file, var, TDF_SLIM);
438 }
439 fprintf (file, "\n");
440 }
441
442 fprintf (file, " references:\n");
443 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
444 dump_dref (file, a);
445
446 fprintf (file, "\n");
447 }
448
449 /* Dumps CHAINS to FILE. */
450
451 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
452 void
453 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
454 {
455 chain_p chain;
456 unsigned i;
457
458 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
459 dump_chain (file, chain);
460 }
461
462 /* Dumps COMP to FILE. */
463
464 extern void dump_component (FILE *, struct component *);
465 void
466 dump_component (FILE *file, struct component *comp)
467 {
468 dref a;
469 unsigned i;
470
471 fprintf (file, "Component%s:\n",
472 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
473 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
474 dump_dref (file, a);
475 fprintf (file, "\n");
476 }
477
478 /* Dumps COMPS to FILE. */
479
480 extern void dump_components (FILE *, struct component *);
481 void
482 dump_components (FILE *file, struct component *comps)
483 {
484 struct component *comp;
485
486 for (comp = comps; comp; comp = comp->next)
487 dump_component (file, comp);
488 }
489
490 /* Frees a chain CHAIN. */
491
492 static void
493 release_chain (chain_p chain)
494 {
495 dref ref;
496 unsigned i;
497
498 if (chain == NULL)
499 return;
500
501 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
502 free (ref);
503
504 VEC_free (dref, heap, chain->refs);
505 VEC_free (tree, heap, chain->vars);
506 VEC_free (tree, heap, chain->inits);
507
508 free (chain);
509 }
510
511 /* Frees CHAINS. */
512
513 static void
514 release_chains (VEC (chain_p, heap) *chains)
515 {
516 unsigned i;
517 chain_p chain;
518
519 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
520 release_chain (chain);
521 VEC_free (chain_p, heap, chains);
522 }
523
524 /* Frees a component COMP. */
525
526 static void
527 release_component (struct component *comp)
528 {
529 VEC_free (dref, heap, comp->refs);
530 free (comp);
531 }
532
533 /* Frees list of components COMPS. */
534
535 static void
536 release_components (struct component *comps)
537 {
538 struct component *act, *next;
539
540 for (act = comps; act; act = next)
541 {
542 next = act->next;
543 release_component (act);
544 }
545 }
546
547 /* Finds a root of tree given by FATHERS containing A, and performs path
548 shortening. */
549
550 static unsigned
551 component_of (unsigned fathers[], unsigned a)
552 {
553 unsigned root, n;
554
555 for (root = a; root != fathers[root]; root = fathers[root])
556 continue;
557
558 for (; a != root; a = n)
559 {
560 n = fathers[a];
561 fathers[a] = root;
562 }
563
564 return root;
565 }
566
567 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
568 components, A and B are components to merge. */
569
570 static void
571 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
572 {
573 unsigned ca = component_of (fathers, a);
574 unsigned cb = component_of (fathers, b);
575
576 if (ca == cb)
577 return;
578
579 if (sizes[ca] < sizes[cb])
580 {
581 sizes[cb] += sizes[ca];
582 fathers[ca] = cb;
583 }
584 else
585 {
586 sizes[ca] += sizes[cb];
587 fathers[cb] = ca;
588 }
589 }
590
591 /* Returns true if A is a reference that is suitable for predictive commoning
592 in the innermost loop that contains it. REF_STEP is set according to the
593 step of the reference A. */
594
595 static bool
596 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
597 {
598 tree ref = DR_REF (a), step = DR_STEP (a);
599
600 if (!step
601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
603 return false;
604
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
611
612 return true;
613 }
614
615 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616
617 static void
618 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
619 {
620 aff_tree delta;
621
622 tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
623 &name_expansions);
624 aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
625 aff_combination_add (offset, &delta);
626 }
627
628 /* Determines number of iterations of the innermost enclosing loop before B
629 refers to exactly the same location as A and stores it to OFF. If A and
630 B do not have the same step, they never meet, or anything else fails,
631 returns false, otherwise returns true. Both A and B are assumed to
632 satisfy suitable_reference_p. */
633
634 static bool
635 determine_offset (struct data_reference *a, struct data_reference *b,
636 double_int *off)
637 {
638 aff_tree diff, baseb, step;
639 tree typea, typeb;
640
641 /* Check that both the references access the location in the same type. */
642 typea = TREE_TYPE (DR_REF (a));
643 typeb = TREE_TYPE (DR_REF (b));
644 if (!useless_type_conversion_p (typeb, typea))
645 return false;
646
647 /* Check whether the base address and the step of both references is the
648 same. */
649 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
650 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
651 return false;
652
653 if (integer_zerop (DR_STEP (a)))
654 {
655 /* If the references have loop invariant address, check that they access
656 exactly the same location. */
657 *off = double_int_zero;
658 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
659 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
660 }
661
662 /* Compare the offsets of the addresses, and check whether the difference
663 is a multiple of step. */
664 aff_combination_dr_offset (a, &diff);
665 aff_combination_dr_offset (b, &baseb);
666 aff_combination_scale (&baseb, double_int_minus_one);
667 aff_combination_add (&diff, &baseb);
668
669 tree_to_aff_combination_expand (DR_STEP (a), sizetype,
670 &step, &name_expansions);
671 return aff_combination_constant_multiple_p (&diff, &step, off);
672 }
673
674 /* Returns the last basic block in LOOP for that we are sure that
675 it is executed whenever the loop is entered. */
676
677 static basic_block
678 last_always_executed_block (struct loop *loop)
679 {
680 unsigned i;
681 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
682 edge ex;
683 basic_block last = loop->latch;
684
685 FOR_EACH_VEC_ELT (edge, exits, i, ex)
686 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
687 VEC_free (edge, heap, exits);
688
689 return last;
690 }
691
692 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
693
694 static struct component *
695 split_data_refs_to_components (struct loop *loop,
696 VEC (data_reference_p, heap) *datarefs,
697 VEC (ddr_p, heap) *depends)
698 {
699 unsigned i, n = VEC_length (data_reference_p, datarefs);
700 unsigned ca, ia, ib, bad;
701 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
702 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
703 struct component **comps;
704 struct data_reference *dr, *dra, *drb;
705 struct data_dependence_relation *ddr;
706 struct component *comp_list = NULL, *comp;
707 dref dataref;
708 basic_block last_always_executed = last_always_executed_block (loop);
709
710 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
711 {
712 if (!DR_REF (dr))
713 {
714 /* A fake reference for call or asm_expr that may clobber memory;
715 just fail. */
716 goto end;
717 }
718 dr->aux = (void *) (size_t) i;
719 comp_father[i] = i;
720 comp_size[i] = 1;
721 }
722
723 /* A component reserved for the "bad" data references. */
724 comp_father[n] = n;
725 comp_size[n] = 1;
726
727 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
728 {
729 enum ref_step_type dummy;
730
731 if (!suitable_reference_p (dr, &dummy))
732 {
733 ia = (unsigned) (size_t) dr->aux;
734 merge_comps (comp_father, comp_size, n, ia);
735 }
736 }
737
738 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
739 {
740 double_int dummy_off;
741
742 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
743 continue;
744
745 dra = DDR_A (ddr);
746 drb = DDR_B (ddr);
747 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
748 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
749 if (ia == ib)
750 continue;
751
752 bad = component_of (comp_father, n);
753
754 /* If both A and B are reads, we may ignore unsuitable dependences. */
755 if (DR_IS_READ (dra) && DR_IS_READ (drb)
756 && (ia == bad || ib == bad
757 || !determine_offset (dra, drb, &dummy_off)))
758 continue;
759
760 merge_comps (comp_father, comp_size, ia, ib);
761 }
762
763 comps = XCNEWVEC (struct component *, n);
764 bad = component_of (comp_father, n);
765 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
766 {
767 ia = (unsigned) (size_t) dr->aux;
768 ca = component_of (comp_father, ia);
769 if (ca == bad)
770 continue;
771
772 comp = comps[ca];
773 if (!comp)
774 {
775 comp = XCNEW (struct component);
776 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
777 comps[ca] = comp;
778 }
779
780 dataref = XCNEW (struct dref_d);
781 dataref->ref = dr;
782 dataref->stmt = DR_STMT (dr);
783 dataref->offset = double_int_zero;
784 dataref->distance = 0;
785
786 dataref->always_accessed
787 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
788 gimple_bb (dataref->stmt));
789 dataref->pos = VEC_length (dref, comp->refs);
790 VEC_quick_push (dref, comp->refs, dataref);
791 }
792
793 for (i = 0; i < n; i++)
794 {
795 comp = comps[i];
796 if (comp)
797 {
798 comp->next = comp_list;
799 comp_list = comp;
800 }
801 }
802 free (comps);
803
804 end:
805 free (comp_father);
806 free (comp_size);
807 return comp_list;
808 }
809
810 /* Returns true if the component COMP satisfies the conditions
811 described in 2) at the beginning of this file. LOOP is the current
812 loop. */
813
814 static bool
815 suitable_component_p (struct loop *loop, struct component *comp)
816 {
817 unsigned i;
818 dref a, first;
819 basic_block ba, bp = loop->header;
820 bool ok, has_write = false;
821
822 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
823 {
824 ba = gimple_bb (a->stmt);
825
826 if (!just_once_each_iteration_p (loop, ba))
827 return false;
828
829 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
830 bp = ba;
831
832 if (DR_IS_WRITE (a->ref))
833 has_write = true;
834 }
835
836 first = VEC_index (dref, comp->refs, 0);
837 ok = suitable_reference_p (first->ref, &comp->comp_step);
838 gcc_assert (ok);
839 first->offset = double_int_zero;
840
841 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
842 {
843 if (!determine_offset (first->ref, a->ref, &a->offset))
844 return false;
845
846 #ifdef ENABLE_CHECKING
847 {
848 enum ref_step_type a_step;
849 ok = suitable_reference_p (a->ref, &a_step);
850 gcc_assert (ok && a_step == comp->comp_step);
851 }
852 #endif
853 }
854
855 /* If there is a write inside the component, we must know whether the
856 step is nonzero or not -- we would not otherwise be able to recognize
857 whether the value accessed by reads comes from the OFFSET-th iteration
858 or the previous one. */
859 if (has_write && comp->comp_step == RS_ANY)
860 return false;
861
862 return true;
863 }
864
865 /* Check the conditions on references inside each of components COMPS,
866 and remove the unsuitable components from the list. The new list
867 of components is returned. The conditions are described in 2) at
868 the beginning of this file. LOOP is the current loop. */
869
870 static struct component *
871 filter_suitable_components (struct loop *loop, struct component *comps)
872 {
873 struct component **comp, *act;
874
875 for (comp = &comps; *comp; )
876 {
877 act = *comp;
878 if (suitable_component_p (loop, act))
879 comp = &act->next;
880 else
881 {
882 dref ref;
883 unsigned i;
884
885 *comp = act->next;
886 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
887 free (ref);
888 release_component (act);
889 }
890 }
891
892 return comps;
893 }
894
895 /* Compares two drefs A and B by their offset and position. Callback for
896 qsort. */
897
898 static int
899 order_drefs (const void *a, const void *b)
900 {
901 const dref *const da = (const dref *) a;
902 const dref *const db = (const dref *) b;
903 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
904
905 if (offcmp != 0)
906 return offcmp;
907
908 return (*da)->pos - (*db)->pos;
909 }
910
911 /* Returns root of the CHAIN. */
912
913 static inline dref
914 get_chain_root (chain_p chain)
915 {
916 return VEC_index (dref, chain->refs, 0);
917 }
918
919 /* Adds REF to the chain CHAIN. */
920
921 static void
922 add_ref_to_chain (chain_p chain, dref ref)
923 {
924 dref root = get_chain_root (chain);
925 double_int dist;
926
927 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
928 dist = double_int_sub (ref->offset, root->offset);
929 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
930 {
931 free (ref);
932 return;
933 }
934 gcc_assert (double_int_fits_in_uhwi_p (dist));
935
936 VEC_safe_push (dref, heap, chain->refs, ref);
937
938 ref->distance = double_int_to_uhwi (dist);
939
940 if (ref->distance >= chain->length)
941 {
942 chain->length = ref->distance;
943 chain->has_max_use_after = false;
944 }
945
946 if (ref->distance == chain->length
947 && ref->pos > root->pos)
948 chain->has_max_use_after = true;
949
950 chain->all_always_accessed &= ref->always_accessed;
951 }
952
953 /* Returns the chain for invariant component COMP. */
954
955 static chain_p
956 make_invariant_chain (struct component *comp)
957 {
958 chain_p chain = XCNEW (struct chain);
959 unsigned i;
960 dref ref;
961
962 chain->type = CT_INVARIANT;
963
964 chain->all_always_accessed = true;
965
966 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
967 {
968 VEC_safe_push (dref, heap, chain->refs, ref);
969 chain->all_always_accessed &= ref->always_accessed;
970 }
971
972 return chain;
973 }
974
975 /* Make a new chain rooted at REF. */
976
977 static chain_p
978 make_rooted_chain (dref ref)
979 {
980 chain_p chain = XCNEW (struct chain);
981
982 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
983
984 VEC_safe_push (dref, heap, chain->refs, ref);
985 chain->all_always_accessed = ref->always_accessed;
986
987 ref->distance = 0;
988
989 return chain;
990 }
991
992 /* Returns true if CHAIN is not trivial. */
993
994 static bool
995 nontrivial_chain_p (chain_p chain)
996 {
997 return chain != NULL && VEC_length (dref, chain->refs) > 1;
998 }
999
1000 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1001 is no such name. */
1002
1003 static tree
1004 name_for_ref (dref ref)
1005 {
1006 tree name;
1007
1008 if (is_gimple_assign (ref->stmt))
1009 {
1010 if (!ref->ref || DR_IS_READ (ref->ref))
1011 name = gimple_assign_lhs (ref->stmt);
1012 else
1013 name = gimple_assign_rhs1 (ref->stmt);
1014 }
1015 else
1016 name = PHI_RESULT (ref->stmt);
1017
1018 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1019 }
1020
1021 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1022 iterations of the innermost enclosing loop). */
1023
1024 static bool
1025 valid_initializer_p (struct data_reference *ref,
1026 unsigned distance, struct data_reference *root)
1027 {
1028 aff_tree diff, base, step;
1029 double_int off;
1030
1031 /* Both REF and ROOT must be accessing the same object. */
1032 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1033 return false;
1034
1035 /* The initializer is defined outside of loop, hence its address must be
1036 invariant inside the loop. */
1037 gcc_assert (integer_zerop (DR_STEP (ref)));
1038
1039 /* If the address of the reference is invariant, initializer must access
1040 exactly the same location. */
1041 if (integer_zerop (DR_STEP (root)))
1042 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1043 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1044
1045 /* Verify that this index of REF is equal to the root's index at
1046 -DISTANCE-th iteration. */
1047 aff_combination_dr_offset (root, &diff);
1048 aff_combination_dr_offset (ref, &base);
1049 aff_combination_scale (&base, double_int_minus_one);
1050 aff_combination_add (&diff, &base);
1051
1052 tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1053 &name_expansions);
1054 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1055 return false;
1056
1057 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1058 return false;
1059
1060 return true;
1061 }
1062
1063 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1064 initial value is correct (equal to initial value of REF shifted by one
1065 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1066 is the root of the current chain. */
1067
1068 static gimple
1069 find_looparound_phi (struct loop *loop, dref ref, dref root)
1070 {
1071 tree name, init, init_ref;
1072 gimple phi = NULL, init_stmt;
1073 edge latch = loop_latch_edge (loop);
1074 struct data_reference init_dr;
1075 gimple_stmt_iterator psi;
1076
1077 if (is_gimple_assign (ref->stmt))
1078 {
1079 if (DR_IS_READ (ref->ref))
1080 name = gimple_assign_lhs (ref->stmt);
1081 else
1082 name = gimple_assign_rhs1 (ref->stmt);
1083 }
1084 else
1085 name = PHI_RESULT (ref->stmt);
1086 if (!name)
1087 return NULL;
1088
1089 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1090 {
1091 phi = gsi_stmt (psi);
1092 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1093 break;
1094 }
1095
1096 if (gsi_end_p (psi))
1097 return NULL;
1098
1099 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1100 if (TREE_CODE (init) != SSA_NAME)
1101 return NULL;
1102 init_stmt = SSA_NAME_DEF_STMT (init);
1103 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1104 return NULL;
1105 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1106
1107 init_ref = gimple_assign_rhs1 (init_stmt);
1108 if (!REFERENCE_CLASS_P (init_ref)
1109 && !DECL_P (init_ref))
1110 return NULL;
1111
1112 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1113 loop enclosing PHI). */
1114 memset (&init_dr, 0, sizeof (struct data_reference));
1115 DR_REF (&init_dr) = init_ref;
1116 DR_STMT (&init_dr) = phi;
1117 if (!dr_analyze_innermost (&init_dr))
1118 return NULL;
1119
1120 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1121 return NULL;
1122
1123 return phi;
1124 }
1125
1126 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1127
1128 static void
1129 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1130 {
1131 dref nw = XCNEW (struct dref_d), aref;
1132 unsigned i;
1133
1134 nw->stmt = phi;
1135 nw->distance = ref->distance + 1;
1136 nw->always_accessed = 1;
1137
1138 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1139 if (aref->distance >= nw->distance)
1140 break;
1141 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1142
1143 if (nw->distance > chain->length)
1144 {
1145 chain->length = nw->distance;
1146 chain->has_max_use_after = false;
1147 }
1148 }
1149
1150 /* For references in CHAIN that are copied around the LOOP (created previously
1151 by PRE, or by user), add the results of such copies to the chain. This
1152 enables us to remove the copies by unrolling, and may need less registers
1153 (also, it may allow us to combine chains together). */
1154
1155 static void
1156 add_looparound_copies (struct loop *loop, chain_p chain)
1157 {
1158 unsigned i;
1159 dref ref, root = get_chain_root (chain);
1160 gimple phi;
1161
1162 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1163 {
1164 phi = find_looparound_phi (loop, ref, root);
1165 if (!phi)
1166 continue;
1167
1168 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1169 insert_looparound_copy (chain, ref, phi);
1170 }
1171 }
1172
1173 /* Find roots of the values and determine distances in the component COMP.
1174 The references are redistributed into CHAINS. LOOP is the current
1175 loop. */
1176
1177 static void
1178 determine_roots_comp (struct loop *loop,
1179 struct component *comp,
1180 VEC (chain_p, heap) **chains)
1181 {
1182 unsigned i;
1183 dref a;
1184 chain_p chain = NULL;
1185 double_int last_ofs = double_int_zero;
1186
1187 /* Invariants are handled specially. */
1188 if (comp->comp_step == RS_INVARIANT)
1189 {
1190 chain = make_invariant_chain (comp);
1191 VEC_safe_push (chain_p, heap, *chains, chain);
1192 return;
1193 }
1194
1195 VEC_qsort (dref, comp->refs, order_drefs);
1196
1197 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1198 {
1199 if (!chain || DR_IS_WRITE (a->ref)
1200 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1201 double_int_sub (a->offset, last_ofs)) <= 0)
1202 {
1203 if (nontrivial_chain_p (chain))
1204 {
1205 add_looparound_copies (loop, chain);
1206 VEC_safe_push (chain_p, heap, *chains, chain);
1207 }
1208 else
1209 release_chain (chain);
1210 chain = make_rooted_chain (a);
1211 last_ofs = a->offset;
1212 continue;
1213 }
1214
1215 add_ref_to_chain (chain, a);
1216 }
1217
1218 if (nontrivial_chain_p (chain))
1219 {
1220 add_looparound_copies (loop, chain);
1221 VEC_safe_push (chain_p, heap, *chains, chain);
1222 }
1223 else
1224 release_chain (chain);
1225 }
1226
1227 /* Find roots of the values and determine distances in components COMPS, and
1228 separates the references to CHAINS. LOOP is the current loop. */
1229
1230 static void
1231 determine_roots (struct loop *loop,
1232 struct component *comps, VEC (chain_p, heap) **chains)
1233 {
1234 struct component *comp;
1235
1236 for (comp = comps; comp; comp = comp->next)
1237 determine_roots_comp (loop, comp, chains);
1238 }
1239
1240 /* Replace the reference in statement STMT with temporary variable
1241 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1242 the reference in the statement. IN_LHS is true if the reference
1243 is in the lhs of STMT, false if it is in rhs. */
1244
1245 static void
1246 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1247 {
1248 tree val;
1249 gimple new_stmt;
1250 gimple_stmt_iterator bsi, psi;
1251
1252 if (gimple_code (stmt) == GIMPLE_PHI)
1253 {
1254 gcc_assert (!in_lhs && !set);
1255
1256 val = PHI_RESULT (stmt);
1257 bsi = gsi_after_labels (gimple_bb (stmt));
1258 psi = gsi_for_stmt (stmt);
1259 remove_phi_node (&psi, false);
1260
1261 /* Turn the phi node into GIMPLE_ASSIGN. */
1262 new_stmt = gimple_build_assign (val, new_tree);
1263 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1264 return;
1265 }
1266
1267 /* Since the reference is of gimple_reg type, it should only
1268 appear as lhs or rhs of modify statement. */
1269 gcc_assert (is_gimple_assign (stmt));
1270
1271 bsi = gsi_for_stmt (stmt);
1272
1273 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1274 if (!set)
1275 {
1276 gcc_assert (!in_lhs);
1277 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1278 stmt = gsi_stmt (bsi);
1279 update_stmt (stmt);
1280 return;
1281 }
1282
1283 if (in_lhs)
1284 {
1285 /* We have statement
1286
1287 OLD = VAL
1288
1289 If OLD is a memory reference, then VAL is gimple_val, and we transform
1290 this to
1291
1292 OLD = VAL
1293 NEW = VAL
1294
1295 Otherwise, we are replacing a combination chain,
1296 VAL is the expression that performs the combination, and OLD is an
1297 SSA name. In this case, we transform the assignment to
1298
1299 OLD = VAL
1300 NEW = OLD
1301
1302 */
1303
1304 val = gimple_assign_lhs (stmt);
1305 if (TREE_CODE (val) != SSA_NAME)
1306 {
1307 gcc_assert (gimple_assign_copy_p (stmt));
1308 val = gimple_assign_rhs1 (stmt);
1309 }
1310 }
1311 else
1312 {
1313 /* VAL = OLD
1314
1315 is transformed to
1316
1317 VAL = OLD
1318 NEW = VAL */
1319
1320 val = gimple_assign_lhs (stmt);
1321 }
1322
1323 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1324 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1325 }
1326
1327 /* Returns the reference to the address of REF in the ITER-th iteration of
1328 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1329 try to preserve the original shape of the reference (not rewrite it
1330 as an indirect ref to the address), to make tree_could_trap_p in
1331 prepare_initializers_chain return false more often. */
1332
1333 static tree
1334 ref_at_iteration (struct loop *loop, tree ref, int iter)
1335 {
1336 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1337 affine_iv iv;
1338 bool ok;
1339
1340 if (handled_component_p (ref))
1341 {
1342 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1343 if (!op0)
1344 return NULL_TREE;
1345 }
1346 else if (!INDIRECT_REF_P (ref)
1347 && TREE_CODE (ref) != MEM_REF)
1348 return unshare_expr (ref);
1349
1350 if (TREE_CODE (ref) == MEM_REF)
1351 {
1352 ret = unshare_expr (ref);
1353 idx = TREE_OPERAND (ref, 0);
1354 idx_p = &TREE_OPERAND (ret, 0);
1355 }
1356 else if (TREE_CODE (ref) == COMPONENT_REF)
1357 {
1358 /* Check that the offset is loop invariant. */
1359 if (TREE_OPERAND (ref, 2)
1360 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1361 return NULL_TREE;
1362
1363 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1364 unshare_expr (TREE_OPERAND (ref, 1)),
1365 unshare_expr (TREE_OPERAND (ref, 2)));
1366 }
1367 else if (TREE_CODE (ref) == ARRAY_REF)
1368 {
1369 /* Check that the lower bound and the step are loop invariant. */
1370 if (TREE_OPERAND (ref, 2)
1371 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1372 return NULL_TREE;
1373 if (TREE_OPERAND (ref, 3)
1374 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1375 return NULL_TREE;
1376
1377 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1378 unshare_expr (TREE_OPERAND (ref, 2)),
1379 unshare_expr (TREE_OPERAND (ref, 3)));
1380 idx = TREE_OPERAND (ref, 1);
1381 idx_p = &TREE_OPERAND (ret, 1);
1382 }
1383 else
1384 return NULL_TREE;
1385
1386 ok = simple_iv (loop, loop, idx, &iv, true);
1387 if (!ok)
1388 return NULL_TREE;
1389 iv.base = expand_simple_operations (iv.base);
1390 if (integer_zerop (iv.step))
1391 *idx_p = unshare_expr (iv.base);
1392 else
1393 {
1394 type = TREE_TYPE (iv.base);
1395 if (POINTER_TYPE_P (type))
1396 {
1397 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1398 size_int (iter));
1399 val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
1400 }
1401 else
1402 {
1403 val = fold_build2 (MULT_EXPR, type, iv.step,
1404 build_int_cst_type (type, iter));
1405 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1406 }
1407 *idx_p = unshare_expr (val);
1408 }
1409
1410 return ret;
1411 }
1412
1413 /* Get the initialization expression for the INDEX-th temporary variable
1414 of CHAIN. */
1415
1416 static tree
1417 get_init_expr (chain_p chain, unsigned index)
1418 {
1419 if (chain->type == CT_COMBINATION)
1420 {
1421 tree e1 = get_init_expr (chain->ch1, index);
1422 tree e2 = get_init_expr (chain->ch2, index);
1423
1424 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1425 }
1426 else
1427 return VEC_index (tree, chain->inits, index);
1428 }
1429
1430 /* Marks all virtual operands of statement STMT for renaming. */
1431
1432 void
1433 mark_virtual_ops_for_renaming (gimple stmt)
1434 {
1435 tree var;
1436
1437 if (gimple_code (stmt) == GIMPLE_PHI)
1438 {
1439 var = PHI_RESULT (stmt);
1440 if (is_gimple_reg (var))
1441 return;
1442
1443 if (TREE_CODE (var) == SSA_NAME)
1444 var = SSA_NAME_VAR (var);
1445 mark_sym_for_renaming (var);
1446 return;
1447 }
1448
1449 update_stmt (stmt);
1450 if (gimple_vuse (stmt))
1451 mark_sym_for_renaming (gimple_vop (cfun));
1452 }
1453
1454 /* Returns a new temporary variable used for the I-th variable carrying
1455 value of REF. The variable's uid is marked in TMP_VARS. */
1456
1457 static tree
1458 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1459 {
1460 tree type = TREE_TYPE (ref);
1461 /* We never access the components of the temporary variable in predictive
1462 commoning. */
1463 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1464
1465 add_referenced_var (var);
1466 bitmap_set_bit (tmp_vars, DECL_UID (var));
1467 return var;
1468 }
1469
1470 /* Creates the variables for CHAIN, as well as phi nodes for them and
1471 initialization on entry to LOOP. Uids of the newly created
1472 temporary variables are marked in TMP_VARS. */
1473
1474 static void
1475 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1476 {
1477 unsigned i;
1478 unsigned n = chain->length;
1479 dref root = get_chain_root (chain);
1480 bool reuse_first = !chain->has_max_use_after;
1481 tree ref, init, var, next;
1482 gimple phi;
1483 gimple_seq stmts;
1484 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1485
1486 /* If N == 0, then all the references are within the single iteration. And
1487 since this is an nonempty chain, reuse_first cannot be true. */
1488 gcc_assert (n > 0 || !reuse_first);
1489
1490 chain->vars = VEC_alloc (tree, heap, n + 1);
1491
1492 if (chain->type == CT_COMBINATION)
1493 ref = gimple_assign_lhs (root->stmt);
1494 else
1495 ref = DR_REF (root->ref);
1496
1497 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1498 {
1499 var = predcom_tmp_var (ref, i, tmp_vars);
1500 VEC_quick_push (tree, chain->vars, var);
1501 }
1502 if (reuse_first)
1503 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1504
1505 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1506 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1507
1508 for (i = 0; i < n; i++)
1509 {
1510 var = VEC_index (tree, chain->vars, i);
1511 next = VEC_index (tree, chain->vars, i + 1);
1512 init = get_init_expr (chain, i);
1513
1514 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1515 if (stmts)
1516 gsi_insert_seq_on_edge_immediate (entry, stmts);
1517
1518 phi = create_phi_node (var, loop->header);
1519 SSA_NAME_DEF_STMT (var) = phi;
1520 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1521 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1522 }
1523 }
1524
1525 /* Create the variables and initialization statement for root of chain
1526 CHAIN. Uids of the newly created temporary variables are marked
1527 in TMP_VARS. */
1528
1529 static void
1530 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1531 {
1532 dref root = get_chain_root (chain);
1533 bool in_lhs = (chain->type == CT_STORE_LOAD
1534 || chain->type == CT_COMBINATION);
1535
1536 initialize_root_vars (loop, chain, tmp_vars);
1537 replace_ref_with (root->stmt,
1538 VEC_index (tree, chain->vars, chain->length),
1539 true, in_lhs);
1540 }
1541
1542 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1543 initialization on entry to LOOP if necessary. The ssa name for the variable
1544 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1545 around the loop is created. Uid of the newly created temporary variable
1546 is marked in TMP_VARS. INITS is the list containing the (single)
1547 initializer. */
1548
1549 static void
1550 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1551 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1552 bitmap tmp_vars)
1553 {
1554 unsigned i;
1555 tree ref = DR_REF (root->ref), init, var, next;
1556 gimple_seq stmts;
1557 gimple phi;
1558 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1559
1560 /* Find the initializer for the variable, and check that it cannot
1561 trap. */
1562 init = VEC_index (tree, inits, 0);
1563
1564 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1565 var = predcom_tmp_var (ref, 0, tmp_vars);
1566 VEC_quick_push (tree, *vars, var);
1567 if (written)
1568 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1569
1570 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1571 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1572
1573 var = VEC_index (tree, *vars, 0);
1574
1575 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1576 if (stmts)
1577 gsi_insert_seq_on_edge_immediate (entry, stmts);
1578
1579 if (written)
1580 {
1581 next = VEC_index (tree, *vars, 1);
1582 phi = create_phi_node (var, loop->header);
1583 SSA_NAME_DEF_STMT (var) = phi;
1584 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1585 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1586 }
1587 else
1588 {
1589 gimple init_stmt = gimple_build_assign (var, init);
1590 mark_virtual_ops_for_renaming (init_stmt);
1591 gsi_insert_on_edge_immediate (entry, init_stmt);
1592 }
1593 }
1594
1595
1596 /* Execute load motion for references in chain CHAIN. Uids of the newly
1597 created temporary variables are marked in TMP_VARS. */
1598
1599 static void
1600 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1601 {
1602 VEC (tree, heap) *vars;
1603 dref a;
1604 unsigned n_writes = 0, ridx, i;
1605 tree var;
1606
1607 gcc_assert (chain->type == CT_INVARIANT);
1608 gcc_assert (!chain->combined);
1609 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1610 if (DR_IS_WRITE (a->ref))
1611 n_writes++;
1612
1613 /* If there are no reads in the loop, there is nothing to do. */
1614 if (n_writes == VEC_length (dref, chain->refs))
1615 return;
1616
1617 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1618 &vars, chain->inits, tmp_vars);
1619
1620 ridx = 0;
1621 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1622 {
1623 bool is_read = DR_IS_READ (a->ref);
1624 mark_virtual_ops_for_renaming (a->stmt);
1625
1626 if (DR_IS_WRITE (a->ref))
1627 {
1628 n_writes--;
1629 if (n_writes)
1630 {
1631 var = VEC_index (tree, vars, 0);
1632 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1633 VEC_replace (tree, vars, 0, var);
1634 }
1635 else
1636 ridx = 1;
1637 }
1638
1639 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1640 !is_read, !is_read);
1641 }
1642
1643 VEC_free (tree, heap, vars);
1644 }
1645
1646 /* Returns the single statement in that NAME is used, excepting
1647 the looparound phi nodes contained in one of the chains. If there is no
1648 such statement, or more statements, NULL is returned. */
1649
1650 static gimple
1651 single_nonlooparound_use (tree name)
1652 {
1653 use_operand_p use;
1654 imm_use_iterator it;
1655 gimple stmt, ret = NULL;
1656
1657 FOR_EACH_IMM_USE_FAST (use, it, name)
1658 {
1659 stmt = USE_STMT (use);
1660
1661 if (gimple_code (stmt) == GIMPLE_PHI)
1662 {
1663 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1664 could not be processed anyway, so just fail for them. */
1665 if (bitmap_bit_p (looparound_phis,
1666 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1667 continue;
1668
1669 return NULL;
1670 }
1671 else if (is_gimple_debug (stmt))
1672 continue;
1673 else if (ret != NULL)
1674 return NULL;
1675 else
1676 ret = stmt;
1677 }
1678
1679 return ret;
1680 }
1681
1682 /* Remove statement STMT, as well as the chain of assignments in that it is
1683 used. */
1684
1685 static void
1686 remove_stmt (gimple stmt)
1687 {
1688 tree name;
1689 gimple next;
1690 gimple_stmt_iterator psi;
1691
1692 if (gimple_code (stmt) == GIMPLE_PHI)
1693 {
1694 name = PHI_RESULT (stmt);
1695 next = single_nonlooparound_use (name);
1696 psi = gsi_for_stmt (stmt);
1697 remove_phi_node (&psi, true);
1698
1699 if (!next
1700 || !gimple_assign_ssa_name_copy_p (next)
1701 || gimple_assign_rhs1 (next) != name)
1702 return;
1703
1704 stmt = next;
1705 }
1706
1707 while (1)
1708 {
1709 gimple_stmt_iterator bsi;
1710
1711 bsi = gsi_for_stmt (stmt);
1712
1713 name = gimple_assign_lhs (stmt);
1714 gcc_assert (TREE_CODE (name) == SSA_NAME);
1715
1716 next = single_nonlooparound_use (name);
1717
1718 mark_virtual_ops_for_renaming (stmt);
1719 gsi_remove (&bsi, true);
1720 release_defs (stmt);
1721
1722 if (!next
1723 || !gimple_assign_ssa_name_copy_p (next)
1724 || gimple_assign_rhs1 (next) != name)
1725 return;
1726
1727 stmt = next;
1728 }
1729 }
1730
1731 /* Perform the predictive commoning optimization for a chain CHAIN.
1732 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1733
1734 static void
1735 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1736 bitmap tmp_vars)
1737 {
1738 unsigned i;
1739 dref a, root;
1740 tree var;
1741
1742 if (chain->combined)
1743 {
1744 /* For combined chains, just remove the statements that are used to
1745 compute the values of the expression (except for the root one). */
1746 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1747 remove_stmt (a->stmt);
1748 }
1749 else
1750 {
1751 /* For non-combined chains, set up the variables that hold its value,
1752 and replace the uses of the original references by these
1753 variables. */
1754 root = get_chain_root (chain);
1755 mark_virtual_ops_for_renaming (root->stmt);
1756
1757 initialize_root (loop, chain, tmp_vars);
1758 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1759 {
1760 mark_virtual_ops_for_renaming (a->stmt);
1761 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1762 replace_ref_with (a->stmt, var, false, false);
1763 }
1764 }
1765 }
1766
1767 /* Determines the unroll factor necessary to remove as many temporary variable
1768 copies as possible. CHAINS is the list of chains that will be
1769 optimized. */
1770
1771 static unsigned
1772 determine_unroll_factor (VEC (chain_p, heap) *chains)
1773 {
1774 chain_p chain;
1775 unsigned factor = 1, af, nfactor, i;
1776 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1777
1778 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1779 {
1780 if (chain->type == CT_INVARIANT || chain->combined)
1781 continue;
1782
1783 /* The best unroll factor for this chain is equal to the number of
1784 temporary variables that we create for it. */
1785 af = chain->length;
1786 if (chain->has_max_use_after)
1787 af++;
1788
1789 nfactor = factor * af / gcd (factor, af);
1790 if (nfactor <= max)
1791 factor = nfactor;
1792 }
1793
1794 return factor;
1795 }
1796
1797 /* Perform the predictive commoning optimization for CHAINS.
1798 Uids of the newly created temporary variables are marked in TMP_VARS. */
1799
1800 static void
1801 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1802 bitmap tmp_vars)
1803 {
1804 chain_p chain;
1805 unsigned i;
1806
1807 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1808 {
1809 if (chain->type == CT_INVARIANT)
1810 execute_load_motion (loop, chain, tmp_vars);
1811 else
1812 execute_pred_commoning_chain (loop, chain, tmp_vars);
1813 }
1814
1815 update_ssa (TODO_update_ssa_only_virtuals);
1816 }
1817
1818 /* For each reference in CHAINS, if its defining statement is
1819 phi node, record the ssa name that is defined by it. */
1820
1821 static void
1822 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1823 {
1824 chain_p chain;
1825 dref a;
1826 unsigned i, j;
1827
1828 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1829 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1830 {
1831 if (gimple_code (a->stmt) == GIMPLE_PHI)
1832 {
1833 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1834 a->stmt = NULL;
1835 }
1836 }
1837 }
1838
1839 /* For each reference in CHAINS, if name_defined_by_phi is not
1840 NULL, use it to set the stmt field. */
1841
1842 static void
1843 replace_names_by_phis (VEC (chain_p, heap) *chains)
1844 {
1845 chain_p chain;
1846 dref a;
1847 unsigned i, j;
1848
1849 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1850 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1851 if (a->stmt == NULL)
1852 {
1853 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1854 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1855 a->name_defined_by_phi = NULL_TREE;
1856 }
1857 }
1858
1859 /* Wrapper over execute_pred_commoning, to pass it as a callback
1860 to tree_transform_and_unroll_loop. */
1861
1862 struct epcc_data
1863 {
1864 VEC (chain_p, heap) *chains;
1865 bitmap tmp_vars;
1866 };
1867
1868 static void
1869 execute_pred_commoning_cbck (struct loop *loop, void *data)
1870 {
1871 struct epcc_data *const dta = (struct epcc_data *) data;
1872
1873 /* Restore phi nodes that were replaced by ssa names before
1874 tree_transform_and_unroll_loop (see detailed description in
1875 tree_predictive_commoning_loop). */
1876 replace_names_by_phis (dta->chains);
1877 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1878 }
1879
1880 /* Base NAME and all the names in the chain of phi nodes that use it
1881 on variable VAR. The phi nodes are recognized by being in the copies of
1882 the header of the LOOP. */
1883
1884 static void
1885 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1886 {
1887 gimple stmt, phi;
1888 imm_use_iterator iter;
1889
1890 SSA_NAME_VAR (name) = var;
1891
1892 while (1)
1893 {
1894 phi = NULL;
1895 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1896 {
1897 if (gimple_code (stmt) == GIMPLE_PHI
1898 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1899 {
1900 phi = stmt;
1901 BREAK_FROM_IMM_USE_STMT (iter);
1902 }
1903 }
1904 if (!phi)
1905 return;
1906
1907 name = PHI_RESULT (phi);
1908 SSA_NAME_VAR (name) = var;
1909 }
1910 }
1911
1912 /* Given an unrolled LOOP after predictive commoning, remove the
1913 register copies arising from phi nodes by changing the base
1914 variables of SSA names. TMP_VARS is the set of the temporary variables
1915 for those we want to perform this. */
1916
1917 static void
1918 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1919 {
1920 edge e;
1921 gimple phi, stmt;
1922 tree name, use, var;
1923 gimple_stmt_iterator psi;
1924
1925 e = loop_latch_edge (loop);
1926 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1927 {
1928 phi = gsi_stmt (psi);
1929 name = PHI_RESULT (phi);
1930 var = SSA_NAME_VAR (name);
1931 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1932 continue;
1933 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1934 gcc_assert (TREE_CODE (use) == SSA_NAME);
1935
1936 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1937 stmt = SSA_NAME_DEF_STMT (use);
1938 while (gimple_code (stmt) == GIMPLE_PHI
1939 /* In case we could not unroll the loop enough to eliminate
1940 all copies, we may reach the loop header before the defining
1941 statement (in that case, some register copies will be present
1942 in loop latch in the final code, corresponding to the newly
1943 created looparound phi nodes). */
1944 && gimple_bb (stmt) != loop->header)
1945 {
1946 gcc_assert (single_pred_p (gimple_bb (stmt)));
1947 use = PHI_ARG_DEF (stmt, 0);
1948 stmt = SSA_NAME_DEF_STMT (use);
1949 }
1950
1951 base_names_in_chain_on (loop, use, var);
1952 }
1953 }
1954
1955 /* Returns true if CHAIN is suitable to be combined. */
1956
1957 static bool
1958 chain_can_be_combined_p (chain_p chain)
1959 {
1960 return (!chain->combined
1961 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1962 }
1963
1964 /* Returns the modify statement that uses NAME. Skips over assignment
1965 statements, NAME is replaced with the actual name used in the returned
1966 statement. */
1967
1968 static gimple
1969 find_use_stmt (tree *name)
1970 {
1971 gimple stmt;
1972 tree rhs, lhs;
1973
1974 /* Skip over assignments. */
1975 while (1)
1976 {
1977 stmt = single_nonlooparound_use (*name);
1978 if (!stmt)
1979 return NULL;
1980
1981 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1982 return NULL;
1983
1984 lhs = gimple_assign_lhs (stmt);
1985 if (TREE_CODE (lhs) != SSA_NAME)
1986 return NULL;
1987
1988 if (gimple_assign_copy_p (stmt))
1989 {
1990 rhs = gimple_assign_rhs1 (stmt);
1991 if (rhs != *name)
1992 return NULL;
1993
1994 *name = lhs;
1995 }
1996 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1997 == GIMPLE_BINARY_RHS)
1998 return stmt;
1999 else
2000 return NULL;
2001 }
2002 }
2003
2004 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2005
2006 static bool
2007 may_reassociate_p (tree type, enum tree_code code)
2008 {
2009 if (FLOAT_TYPE_P (type)
2010 && !flag_unsafe_math_optimizations)
2011 return false;
2012
2013 return (commutative_tree_code (code)
2014 && associative_tree_code (code));
2015 }
2016
2017 /* If the operation used in STMT is associative and commutative, go through the
2018 tree of the same operations and returns its root. Distance to the root
2019 is stored in DISTANCE. */
2020
2021 static gimple
2022 find_associative_operation_root (gimple stmt, unsigned *distance)
2023 {
2024 tree lhs;
2025 gimple next;
2026 enum tree_code code = gimple_assign_rhs_code (stmt);
2027 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2028 unsigned dist = 0;
2029
2030 if (!may_reassociate_p (type, code))
2031 return NULL;
2032
2033 while (1)
2034 {
2035 lhs = gimple_assign_lhs (stmt);
2036 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2037
2038 next = find_use_stmt (&lhs);
2039 if (!next
2040 || gimple_assign_rhs_code (next) != code)
2041 break;
2042
2043 stmt = next;
2044 dist++;
2045 }
2046
2047 if (distance)
2048 *distance = dist;
2049 return stmt;
2050 }
2051
2052 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2053 is no such statement, returns NULL_TREE. In case the operation used on
2054 NAME1 and NAME2 is associative and commutative, returns the root of the
2055 tree formed by this operation instead of the statement that uses NAME1 or
2056 NAME2. */
2057
2058 static gimple
2059 find_common_use_stmt (tree *name1, tree *name2)
2060 {
2061 gimple stmt1, stmt2;
2062
2063 stmt1 = find_use_stmt (name1);
2064 if (!stmt1)
2065 return NULL;
2066
2067 stmt2 = find_use_stmt (name2);
2068 if (!stmt2)
2069 return NULL;
2070
2071 if (stmt1 == stmt2)
2072 return stmt1;
2073
2074 stmt1 = find_associative_operation_root (stmt1, NULL);
2075 if (!stmt1)
2076 return NULL;
2077 stmt2 = find_associative_operation_root (stmt2, NULL);
2078 if (!stmt2)
2079 return NULL;
2080
2081 return (stmt1 == stmt2 ? stmt1 : NULL);
2082 }
2083
2084 /* Checks whether R1 and R2 are combined together using CODE, with the result
2085 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2086 if it is true. If CODE is ERROR_MARK, set these values instead. */
2087
2088 static bool
2089 combinable_refs_p (dref r1, dref r2,
2090 enum tree_code *code, bool *swap, tree *rslt_type)
2091 {
2092 enum tree_code acode;
2093 bool aswap;
2094 tree atype;
2095 tree name1, name2;
2096 gimple stmt;
2097
2098 name1 = name_for_ref (r1);
2099 name2 = name_for_ref (r2);
2100 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2101
2102 stmt = find_common_use_stmt (&name1, &name2);
2103
2104 if (!stmt)
2105 return false;
2106
2107 acode = gimple_assign_rhs_code (stmt);
2108 aswap = (!commutative_tree_code (acode)
2109 && gimple_assign_rhs1 (stmt) != name1);
2110 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2111
2112 if (*code == ERROR_MARK)
2113 {
2114 *code = acode;
2115 *swap = aswap;
2116 *rslt_type = atype;
2117 return true;
2118 }
2119
2120 return (*code == acode
2121 && *swap == aswap
2122 && *rslt_type == atype);
2123 }
2124
2125 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2126 an assignment of the remaining operand. */
2127
2128 static void
2129 remove_name_from_operation (gimple stmt, tree op)
2130 {
2131 tree other_op;
2132 gimple_stmt_iterator si;
2133
2134 gcc_assert (is_gimple_assign (stmt));
2135
2136 if (gimple_assign_rhs1 (stmt) == op)
2137 other_op = gimple_assign_rhs2 (stmt);
2138 else
2139 other_op = gimple_assign_rhs1 (stmt);
2140
2141 si = gsi_for_stmt (stmt);
2142 gimple_assign_set_rhs_from_tree (&si, other_op);
2143
2144 /* We should not have reallocated STMT. */
2145 gcc_assert (gsi_stmt (si) == stmt);
2146
2147 update_stmt (stmt);
2148 }
2149
2150 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2151 are combined in a single statement, and returns this statement. */
2152
2153 static gimple
2154 reassociate_to_the_same_stmt (tree name1, tree name2)
2155 {
2156 gimple stmt1, stmt2, root1, root2, s1, s2;
2157 gimple new_stmt, tmp_stmt;
2158 tree new_name, tmp_name, var, r1, r2;
2159 unsigned dist1, dist2;
2160 enum tree_code code;
2161 tree type = TREE_TYPE (name1);
2162 gimple_stmt_iterator bsi;
2163
2164 stmt1 = find_use_stmt (&name1);
2165 stmt2 = find_use_stmt (&name2);
2166 root1 = find_associative_operation_root (stmt1, &dist1);
2167 root2 = find_associative_operation_root (stmt2, &dist2);
2168 code = gimple_assign_rhs_code (stmt1);
2169
2170 gcc_assert (root1 && root2 && root1 == root2
2171 && code == gimple_assign_rhs_code (stmt2));
2172
2173 /* Find the root of the nearest expression in that both NAME1 and NAME2
2174 are used. */
2175 r1 = name1;
2176 s1 = stmt1;
2177 r2 = name2;
2178 s2 = stmt2;
2179
2180 while (dist1 > dist2)
2181 {
2182 s1 = find_use_stmt (&r1);
2183 r1 = gimple_assign_lhs (s1);
2184 dist1--;
2185 }
2186 while (dist2 > dist1)
2187 {
2188 s2 = find_use_stmt (&r2);
2189 r2 = gimple_assign_lhs (s2);
2190 dist2--;
2191 }
2192
2193 while (s1 != s2)
2194 {
2195 s1 = find_use_stmt (&r1);
2196 r1 = gimple_assign_lhs (s1);
2197 s2 = find_use_stmt (&r2);
2198 r2 = gimple_assign_lhs (s2);
2199 }
2200
2201 /* Remove NAME1 and NAME2 from the statements in that they are used
2202 currently. */
2203 remove_name_from_operation (stmt1, name1);
2204 remove_name_from_operation (stmt2, name2);
2205
2206 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2207 combine it with the rhs of S1. */
2208 var = create_tmp_reg (type, "predreastmp");
2209 add_referenced_var (var);
2210 new_name = make_ssa_name (var, NULL);
2211 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2212
2213 var = create_tmp_reg (type, "predreastmp");
2214 add_referenced_var (var);
2215 tmp_name = make_ssa_name (var, NULL);
2216
2217 /* Rhs of S1 may now be either a binary expression with operation
2218 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2219 so that name1 or name2 was removed from it). */
2220 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2221 tmp_name,
2222 gimple_assign_rhs1 (s1),
2223 gimple_assign_rhs2 (s1));
2224
2225 bsi = gsi_for_stmt (s1);
2226 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2227 s1 = gsi_stmt (bsi);
2228 update_stmt (s1);
2229
2230 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2231 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2232
2233 return new_stmt;
2234 }
2235
2236 /* Returns the statement that combines references R1 and R2. In case R1
2237 and R2 are not used in the same statement, but they are used with an
2238 associative and commutative operation in the same expression, reassociate
2239 the expression so that they are used in the same statement. */
2240
2241 static gimple
2242 stmt_combining_refs (dref r1, dref r2)
2243 {
2244 gimple stmt1, stmt2;
2245 tree name1 = name_for_ref (r1);
2246 tree name2 = name_for_ref (r2);
2247
2248 stmt1 = find_use_stmt (&name1);
2249 stmt2 = find_use_stmt (&name2);
2250 if (stmt1 == stmt2)
2251 return stmt1;
2252
2253 return reassociate_to_the_same_stmt (name1, name2);
2254 }
2255
2256 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2257 description of the new chain is returned, otherwise we return NULL. */
2258
2259 static chain_p
2260 combine_chains (chain_p ch1, chain_p ch2)
2261 {
2262 dref r1, r2, nw;
2263 enum tree_code op = ERROR_MARK;
2264 bool swap = false;
2265 chain_p new_chain;
2266 unsigned i;
2267 gimple root_stmt;
2268 tree rslt_type = NULL_TREE;
2269
2270 if (ch1 == ch2)
2271 return NULL;
2272 if (ch1->length != ch2->length)
2273 return NULL;
2274
2275 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2276 return NULL;
2277
2278 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2279 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2280 {
2281 if (r1->distance != r2->distance)
2282 return NULL;
2283
2284 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2285 return NULL;
2286 }
2287
2288 if (swap)
2289 {
2290 chain_p tmp = ch1;
2291 ch1 = ch2;
2292 ch2 = tmp;
2293 }
2294
2295 new_chain = XCNEW (struct chain);
2296 new_chain->type = CT_COMBINATION;
2297 new_chain->op = op;
2298 new_chain->ch1 = ch1;
2299 new_chain->ch2 = ch2;
2300 new_chain->rslt_type = rslt_type;
2301 new_chain->length = ch1->length;
2302
2303 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2304 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2305 {
2306 nw = XCNEW (struct dref_d);
2307 nw->stmt = stmt_combining_refs (r1, r2);
2308 nw->distance = r1->distance;
2309
2310 VEC_safe_push (dref, heap, new_chain->refs, nw);
2311 }
2312
2313 new_chain->has_max_use_after = false;
2314 root_stmt = get_chain_root (new_chain)->stmt;
2315 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2316 {
2317 if (nw->distance == new_chain->length
2318 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2319 {
2320 new_chain->has_max_use_after = true;
2321 break;
2322 }
2323 }
2324
2325 ch1->combined = true;
2326 ch2->combined = true;
2327 return new_chain;
2328 }
2329
2330 /* Try to combine the CHAINS. */
2331
2332 static void
2333 try_combine_chains (VEC (chain_p, heap) **chains)
2334 {
2335 unsigned i, j;
2336 chain_p ch1, ch2, cch;
2337 VEC (chain_p, heap) *worklist = NULL;
2338
2339 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2340 if (chain_can_be_combined_p (ch1))
2341 VEC_safe_push (chain_p, heap, worklist, ch1);
2342
2343 while (!VEC_empty (chain_p, worklist))
2344 {
2345 ch1 = VEC_pop (chain_p, worklist);
2346 if (!chain_can_be_combined_p (ch1))
2347 continue;
2348
2349 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2350 {
2351 if (!chain_can_be_combined_p (ch2))
2352 continue;
2353
2354 cch = combine_chains (ch1, ch2);
2355 if (cch)
2356 {
2357 VEC_safe_push (chain_p, heap, worklist, cch);
2358 VEC_safe_push (chain_p, heap, *chains, cch);
2359 break;
2360 }
2361 }
2362 }
2363 }
2364
2365 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2366 impossible because one of these initializers may trap, true otherwise. */
2367
2368 static bool
2369 prepare_initializers_chain (struct loop *loop, chain_p chain)
2370 {
2371 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2372 struct data_reference *dr = get_chain_root (chain)->ref;
2373 tree init;
2374 gimple_seq stmts;
2375 dref laref;
2376 edge entry = loop_preheader_edge (loop);
2377
2378 /* Find the initializers for the variables, and check that they cannot
2379 trap. */
2380 chain->inits = VEC_alloc (tree, heap, n);
2381 for (i = 0; i < n; i++)
2382 VEC_quick_push (tree, chain->inits, NULL_TREE);
2383
2384 /* If we have replaced some looparound phi nodes, use their initializers
2385 instead of creating our own. */
2386 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2387 {
2388 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2389 continue;
2390
2391 gcc_assert (laref->distance > 0);
2392 VEC_replace (tree, chain->inits, n - laref->distance,
2393 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2394 }
2395
2396 for (i = 0; i < n; i++)
2397 {
2398 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2399 continue;
2400
2401 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2402 if (!init)
2403 return false;
2404
2405 if (!chain->all_always_accessed && tree_could_trap_p (init))
2406 return false;
2407
2408 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2409 if (stmts)
2410 gsi_insert_seq_on_edge_immediate (entry, stmts);
2411
2412 VEC_replace (tree, chain->inits, i, init);
2413 }
2414
2415 return true;
2416 }
2417
2418 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2419 be used because the initializers might trap. */
2420
2421 static void
2422 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2423 {
2424 chain_p chain;
2425 unsigned i;
2426
2427 for (i = 0; i < VEC_length (chain_p, chains); )
2428 {
2429 chain = VEC_index (chain_p, chains, i);
2430 if (prepare_initializers_chain (loop, chain))
2431 i++;
2432 else
2433 {
2434 release_chain (chain);
2435 VEC_unordered_remove (chain_p, chains, i);
2436 }
2437 }
2438 }
2439
2440 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2441 unrolled. */
2442
2443 static bool
2444 tree_predictive_commoning_loop (struct loop *loop)
2445 {
2446 VEC (loop_p, heap) *loop_nest;
2447 VEC (data_reference_p, heap) *datarefs;
2448 VEC (ddr_p, heap) *dependences;
2449 struct component *components;
2450 VEC (chain_p, heap) *chains = NULL;
2451 unsigned unroll_factor;
2452 struct tree_niter_desc desc;
2453 bool unroll = false;
2454 edge exit;
2455 bitmap tmp_vars;
2456
2457 if (dump_file && (dump_flags & TDF_DETAILS))
2458 fprintf (dump_file, "Processing loop %d\n", loop->num);
2459
2460 /* Find the data references and split them into components according to their
2461 dependence relations. */
2462 datarefs = VEC_alloc (data_reference_p, heap, 10);
2463 dependences = VEC_alloc (ddr_p, heap, 10);
2464 loop_nest = VEC_alloc (loop_p, heap, 3);
2465 compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2466 &dependences);
2467 if (dump_file && (dump_flags & TDF_DETAILS))
2468 dump_data_dependence_relations (dump_file, dependences);
2469
2470 components = split_data_refs_to_components (loop, datarefs, dependences);
2471 VEC_free (loop_p, heap, loop_nest);
2472 free_dependence_relations (dependences);
2473 if (!components)
2474 {
2475 free_data_refs (datarefs);
2476 return false;
2477 }
2478
2479 if (dump_file && (dump_flags & TDF_DETAILS))
2480 {
2481 fprintf (dump_file, "Initial state:\n\n");
2482 dump_components (dump_file, components);
2483 }
2484
2485 /* Find the suitable components and split them into chains. */
2486 components = filter_suitable_components (loop, components);
2487
2488 tmp_vars = BITMAP_ALLOC (NULL);
2489 looparound_phis = BITMAP_ALLOC (NULL);
2490 determine_roots (loop, components, &chains);
2491 release_components (components);
2492
2493 if (!chains)
2494 {
2495 if (dump_file && (dump_flags & TDF_DETAILS))
2496 fprintf (dump_file,
2497 "Predictive commoning failed: no suitable chains\n");
2498 goto end;
2499 }
2500 prepare_initializers (loop, chains);
2501
2502 /* Try to combine the chains that are always worked with together. */
2503 try_combine_chains (&chains);
2504
2505 if (dump_file && (dump_flags & TDF_DETAILS))
2506 {
2507 fprintf (dump_file, "Before commoning:\n\n");
2508 dump_chains (dump_file, chains);
2509 }
2510
2511 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2512 that its number of iterations is divisible by the factor. */
2513 unroll_factor = determine_unroll_factor (chains);
2514 scev_reset ();
2515 unroll = (unroll_factor > 1
2516 && can_unroll_loop_p (loop, unroll_factor, &desc));
2517 exit = single_dom_exit (loop);
2518
2519 /* Execute the predictive commoning transformations, and possibly unroll the
2520 loop. */
2521 if (unroll)
2522 {
2523 struct epcc_data dta;
2524
2525 if (dump_file && (dump_flags & TDF_DETAILS))
2526 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2527
2528 dta.chains = chains;
2529 dta.tmp_vars = tmp_vars;
2530
2531 update_ssa (TODO_update_ssa_only_virtuals);
2532
2533 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2534 execute_pred_commoning_cbck is called may cause phi nodes to be
2535 reallocated, which is a problem since CHAINS may point to these
2536 statements. To fix this, we store the ssa names defined by the
2537 phi nodes here instead of the phi nodes themselves, and restore
2538 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2539 replace_phis_by_defined_names (chains);
2540
2541 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2542 execute_pred_commoning_cbck, &dta);
2543 eliminate_temp_copies (loop, tmp_vars);
2544 }
2545 else
2546 {
2547 if (dump_file && (dump_flags & TDF_DETAILS))
2548 fprintf (dump_file,
2549 "Executing predictive commoning without unrolling.\n");
2550 execute_pred_commoning (loop, chains, tmp_vars);
2551 }
2552
2553 end: ;
2554 release_chains (chains);
2555 free_data_refs (datarefs);
2556 BITMAP_FREE (tmp_vars);
2557 BITMAP_FREE (looparound_phis);
2558
2559 free_affine_expand_cache (&name_expansions);
2560
2561 return unroll;
2562 }
2563
2564 /* Runs predictive commoning. */
2565
2566 unsigned
2567 tree_predictive_commoning (void)
2568 {
2569 bool unrolled = false;
2570 struct loop *loop;
2571 loop_iterator li;
2572 unsigned ret = 0;
2573
2574 initialize_original_copy_tables ();
2575 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2576 if (optimize_loop_for_speed_p (loop))
2577 {
2578 unrolled |= tree_predictive_commoning_loop (loop);
2579 }
2580
2581 if (unrolled)
2582 {
2583 scev_reset ();
2584 ret = TODO_cleanup_cfg;
2585 }
2586 free_original_copy_tables ();
2587
2588 return ret;
2589 }