93a523ca2ca430ebf94d05f56a3a3cccd834e89c
[gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file implements the predictive commoning optimization. Predictive
21 commoning can be viewed as CSE around a loop, and with some improvements,
22 as generalized strength reduction-- i.e., reusing values computed in
23 earlier iterations of a loop in the later ones. So far, the pass only
24 handles the most useful case, that is, reusing values of memory references.
25 If you think this is all just a special case of PRE, you are sort of right;
26 however, concentrating on loops is simpler, and makes it possible to
27 incorporate data dependence analysis to detect the opportunities, perform
28 loop unrolling to avoid copies together with renaming immediately,
29 and if needed, we could also take register pressure into account.
30
31 Let us demonstrate what is done on an example:
32
33 for (i = 0; i < 100; i++)
34 {
35 a[i+2] = a[i] + a[i+1];
36 b[10] = b[10] + i;
37 c[i] = c[99 - i];
38 d[i] = d[i + 1];
39 }
40
41 1) We find data references in the loop, and split them to mutually
42 independent groups (i.e., we find components of a data dependence
43 graph). We ignore read-read dependences whose distance is not constant.
44 (TODO -- we could also ignore antidependences). In this example, we
45 find the following groups:
46
47 a[i]{read}, a[i+1]{read}, a[i+2]{write}
48 b[10]{read}, b[10]{write}
49 c[99 - i]{read}, c[i]{write}
50 d[i + 1]{read}, d[i]{write}
51
52 2) Inside each of the group, we verify several conditions:
53 a) all the references must differ in indices only, and the indices
54 must all have the same step
55 b) the references must dominate loop latch (and thus, they must be
56 ordered by dominance relation).
57 c) the distance of the indices must be a small multiple of the step
58 We are then able to compute the difference of the references (# of
59 iterations before they point to the same place as the first of them).
60 Also, in case there are writes in the loop, we split the groups into
61 chains whose head is the write whose values are used by the reads in
62 the same chain. The chains are then processed independently,
63 making the further transformations simpler. Also, the shorter chains
64 need the same number of registers, but may require lower unrolling
65 factor in order to get rid of the copies on the loop latch.
66
67 In our example, we get the following chains (the chain for c is invalid).
68
69 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
70 b[10]{read,+0}, b[10]{write,+0}
71 d[i + 1]{read,+0}, d[i]{write,+1}
72
73 3) For each read, we determine the read or write whose value it reuses,
74 together with the distance of this reuse. I.e. we take the last
75 reference before it with distance 0, or the last of the references
76 with the smallest positive distance to the read. Then, we remove
77 the references that are not used in any of these chains, discard the
78 empty groups, and propagate all the links so that they point to the
79 single root reference of the chain (adjusting their distance
80 appropriately). Some extra care needs to be taken for references with
81 step 0. In our example (the numbers indicate the distance of the
82 reuse),
83
84 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
85 b[10] --> (*) 1, b[10] (*)
86
87 4) The chains are combined together if possible. If the corresponding
88 elements of two chains are always combined together with the same
89 operator, we remember just the result of this combination, instead
90 of remembering the values separately. We may need to perform
91 reassociation to enable combining, for example
92
93 e[i] + f[i+1] + e[i+1] + f[i]
94
95 can be reassociated as
96
97 (e[i] + f[i]) + (e[i+1] + f[i+1])
98
99 and we can combine the chains for e and f into one chain.
100
101 5) For each root reference (end of the chain) R, let N be maximum distance
102 of a reference reusing its value. Variables R0 up to RN are created,
103 together with phi nodes that transfer values from R1 .. RN to
104 R0 .. R(N-1).
105 Initial values are loaded to R0..R(N-1) (in case not all references
106 must necessarily be accessed and they may trap, we may fail here;
107 TODO sometimes, the loads could be guarded by a check for the number
108 of iterations). Values loaded/stored in roots are also copied to
109 RN. Other reads are replaced with the appropriate variable Ri.
110 Everything is put to SSA form.
111
112 As a small improvement, if R0 is dead after the root (i.e., all uses of
113 the value with the maximum distance dominate the root), we can avoid
114 creating RN and use R0 instead of it.
115
116 In our example, we get (only the parts concerning a and b are shown):
117 for (i = 0; i < 100; i++)
118 {
119 f = phi (a[0], s);
120 s = phi (a[1], f);
121 x = phi (b[10], x);
122
123 f = f + s;
124 a[i+2] = f;
125 x = x + i;
126 b[10] = x;
127 }
128
129 6) Factor F for unrolling is determined as the smallest common multiple of
130 (N + 1) for each root reference (N for references for that we avoided
131 creating RN). If F and the loop is small enough, loop is unrolled F
132 times. The stores to RN (R0) in the copies of the loop body are
133 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
134 be coalesced and the copies can be eliminated.
135
136 TODO -- copy propagation and other optimizations may change the live
137 ranges of the temporary registers and prevent them from being coalesced;
138 this may increase the register pressure.
139
140 In our case, F = 2 and the (main loop of the) result is
141
142 for (i = 0; i < ...; i += 2)
143 {
144 f = phi (a[0], f);
145 s = phi (a[1], s);
146 x = phi (b[10], x);
147
148 f = f + s;
149 a[i+2] = f;
150 x = x + i;
151 b[10] = x;
152
153 s = s + f;
154 a[i+3] = s;
155 x = x + i;
156 b[10] = x;
157 }
158
159 TODO -- stores killing other stores can be taken into account, e.g.,
160 for (i = 0; i < n; i++)
161 {
162 a[i] = 1;
163 a[i+2] = 2;
164 }
165
166 can be replaced with
167
168 t0 = a[0];
169 t1 = a[1];
170 for (i = 0; i < n; i++)
171 {
172 a[i] = 1;
173 t2 = 2;
174 t0 = t1;
175 t1 = t2;
176 }
177 a[n] = t0;
178 a[n+1] = t1;
179
180 The interesting part is that this would generalize store motion; still, since
181 sm is performed elsewhere, it does not seem that important.
182
183 Predictive commoning can be generalized for arbitrary computations (not
184 just memory loads), and also nontrivial transfer functions (e.g., replacing
185 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
186
187 #include "config.h"
188 #include "system.h"
189 #include "coretypes.h"
190 #include "tm.h"
191 #include "tree.h"
192 #include "tm_p.h"
193 #include "cfgloop.h"
194 #include "predict.h"
195 #include "vec.h"
196 #include "hashtab.h"
197 #include "hash-set.h"
198 #include "machmode.h"
199 #include "hard-reg-set.h"
200 #include "input.h"
201 #include "function.h"
202 #include "dominance.h"
203 #include "cfg.h"
204 #include "basic-block.h"
205 #include "tree-ssa-alias.h"
206 #include "internal-fn.h"
207 #include "tree-eh.h"
208 #include "gimple-expr.h"
209 #include "is-a.h"
210 #include "gimple.h"
211 #include "gimplify.h"
212 #include "gimple-iterator.h"
213 #include "gimplify-me.h"
214 #include "gimple-ssa.h"
215 #include "tree-phinodes.h"
216 #include "ssa-iterators.h"
217 #include "stringpool.h"
218 #include "tree-ssanames.h"
219 #include "tree-ssa-loop-ivopts.h"
220 #include "tree-ssa-loop-manip.h"
221 #include "tree-ssa-loop-niter.h"
222 #include "tree-ssa-loop.h"
223 #include "tree-into-ssa.h"
224 #include "expr.h"
225 #include "tree-dfa.h"
226 #include "tree-ssa.h"
227 #include "tree-data-ref.h"
228 #include "tree-scalar-evolution.h"
229 #include "tree-chrec.h"
230 #include "params.h"
231 #include "gimple-pretty-print.h"
232 #include "tree-pass.h"
233 #include "tree-affine.h"
234 #include "tree-inline.h"
235 #include "wide-int-print.h"
236
237 /* The maximum number of iterations between the considered memory
238 references. */
239
240 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
241
242 /* Data references (or phi nodes that carry data reference values across
243 loop iterations). */
244
245 typedef struct dref_d
246 {
247 /* The reference itself. */
248 struct data_reference *ref;
249
250 /* The statement in that the reference appears. */
251 gimple stmt;
252
253 /* In case that STMT is a phi node, this field is set to the SSA name
254 defined by it in replace_phis_by_defined_names (in order to avoid
255 pointing to phi node that got reallocated in the meantime). */
256 tree name_defined_by_phi;
257
258 /* Distance of the reference from the root of the chain (in number of
259 iterations of the loop). */
260 unsigned distance;
261
262 /* Number of iterations offset from the first reference in the component. */
263 widest_int offset;
264
265 /* Number of the reference in a component, in dominance ordering. */
266 unsigned pos;
267
268 /* True if the memory reference is always accessed when the loop is
269 entered. */
270 unsigned always_accessed : 1;
271 } *dref;
272
273
274 /* Type of the chain of the references. */
275
276 enum chain_type
277 {
278 /* The addresses of the references in the chain are constant. */
279 CT_INVARIANT,
280
281 /* There are only loads in the chain. */
282 CT_LOAD,
283
284 /* Root of the chain is store, the rest are loads. */
285 CT_STORE_LOAD,
286
287 /* A combination of two chains. */
288 CT_COMBINATION
289 };
290
291 /* Chains of data references. */
292
293 typedef struct chain
294 {
295 /* Type of the chain. */
296 enum chain_type type;
297
298 /* For combination chains, the operator and the two chains that are
299 combined, and the type of the result. */
300 enum tree_code op;
301 tree rslt_type;
302 struct chain *ch1, *ch2;
303
304 /* The references in the chain. */
305 vec<dref> refs;
306
307 /* The maximum distance of the reference in the chain from the root. */
308 unsigned length;
309
310 /* The variables used to copy the value throughout iterations. */
311 vec<tree> vars;
312
313 /* Initializers for the variables. */
314 vec<tree> inits;
315
316 /* True if there is a use of a variable with the maximal distance
317 that comes after the root in the loop. */
318 unsigned has_max_use_after : 1;
319
320 /* True if all the memory references in the chain are always accessed. */
321 unsigned all_always_accessed : 1;
322
323 /* True if this chain was combined together with some other chain. */
324 unsigned combined : 1;
325 } *chain_p;
326
327
328 /* Describes the knowledge about the step of the memory references in
329 the component. */
330
331 enum ref_step_type
332 {
333 /* The step is zero. */
334 RS_INVARIANT,
335
336 /* The step is nonzero. */
337 RS_NONZERO,
338
339 /* The step may or may not be nonzero. */
340 RS_ANY
341 };
342
343 /* Components of the data dependence graph. */
344
345 struct component
346 {
347 /* The references in the component. */
348 vec<dref> refs;
349
350 /* What we know about the step of the references in the component. */
351 enum ref_step_type comp_step;
352
353 /* Next component in the list. */
354 struct component *next;
355 };
356
357 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
358
359 static bitmap looparound_phis;
360
361 /* Cache used by tree_to_aff_combination_expand. */
362
363 static hash_map<tree, name_expansion *> *name_expansions;
364
365 /* Dumps data reference REF to FILE. */
366
367 extern void dump_dref (FILE *, dref);
368 void
369 dump_dref (FILE *file, dref ref)
370 {
371 if (ref->ref)
372 {
373 fprintf (file, " ");
374 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
375 fprintf (file, " (id %u%s)\n", ref->pos,
376 DR_IS_READ (ref->ref) ? "" : ", write");
377
378 fprintf (file, " offset ");
379 print_decs (ref->offset, file);
380 fprintf (file, "\n");
381
382 fprintf (file, " distance %u\n", ref->distance);
383 }
384 else
385 {
386 if (gimple_code (ref->stmt) == GIMPLE_PHI)
387 fprintf (file, " looparound ref\n");
388 else
389 fprintf (file, " combination ref\n");
390 fprintf (file, " in statement ");
391 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
392 fprintf (file, "\n");
393 fprintf (file, " distance %u\n", ref->distance);
394 }
395
396 }
397
398 /* Dumps CHAIN to FILE. */
399
400 extern void dump_chain (FILE *, chain_p);
401 void
402 dump_chain (FILE *file, chain_p chain)
403 {
404 dref a;
405 const char *chain_type;
406 unsigned i;
407 tree var;
408
409 switch (chain->type)
410 {
411 case CT_INVARIANT:
412 chain_type = "Load motion";
413 break;
414
415 case CT_LOAD:
416 chain_type = "Loads-only";
417 break;
418
419 case CT_STORE_LOAD:
420 chain_type = "Store-loads";
421 break;
422
423 case CT_COMBINATION:
424 chain_type = "Combination";
425 break;
426
427 default:
428 gcc_unreachable ();
429 }
430
431 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
432 chain->combined ? " (combined)" : "");
433 if (chain->type != CT_INVARIANT)
434 fprintf (file, " max distance %u%s\n", chain->length,
435 chain->has_max_use_after ? "" : ", may reuse first");
436
437 if (chain->type == CT_COMBINATION)
438 {
439 fprintf (file, " equal to %p %s %p in type ",
440 (void *) chain->ch1, op_symbol_code (chain->op),
441 (void *) chain->ch2);
442 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
443 fprintf (file, "\n");
444 }
445
446 if (chain->vars.exists ())
447 {
448 fprintf (file, " vars");
449 FOR_EACH_VEC_ELT (chain->vars, i, var)
450 {
451 fprintf (file, " ");
452 print_generic_expr (file, var, TDF_SLIM);
453 }
454 fprintf (file, "\n");
455 }
456
457 if (chain->inits.exists ())
458 {
459 fprintf (file, " inits");
460 FOR_EACH_VEC_ELT (chain->inits, i, var)
461 {
462 fprintf (file, " ");
463 print_generic_expr (file, var, TDF_SLIM);
464 }
465 fprintf (file, "\n");
466 }
467
468 fprintf (file, " references:\n");
469 FOR_EACH_VEC_ELT (chain->refs, i, a)
470 dump_dref (file, a);
471
472 fprintf (file, "\n");
473 }
474
475 /* Dumps CHAINS to FILE. */
476
477 extern void dump_chains (FILE *, vec<chain_p> );
478 void
479 dump_chains (FILE *file, vec<chain_p> chains)
480 {
481 chain_p chain;
482 unsigned i;
483
484 FOR_EACH_VEC_ELT (chains, i, chain)
485 dump_chain (file, chain);
486 }
487
488 /* Dumps COMP to FILE. */
489
490 extern void dump_component (FILE *, struct component *);
491 void
492 dump_component (FILE *file, struct component *comp)
493 {
494 dref a;
495 unsigned i;
496
497 fprintf (file, "Component%s:\n",
498 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
499 FOR_EACH_VEC_ELT (comp->refs, i, a)
500 dump_dref (file, a);
501 fprintf (file, "\n");
502 }
503
504 /* Dumps COMPS to FILE. */
505
506 extern void dump_components (FILE *, struct component *);
507 void
508 dump_components (FILE *file, struct component *comps)
509 {
510 struct component *comp;
511
512 for (comp = comps; comp; comp = comp->next)
513 dump_component (file, comp);
514 }
515
516 /* Frees a chain CHAIN. */
517
518 static void
519 release_chain (chain_p chain)
520 {
521 dref ref;
522 unsigned i;
523
524 if (chain == NULL)
525 return;
526
527 FOR_EACH_VEC_ELT (chain->refs, i, ref)
528 free (ref);
529
530 chain->refs.release ();
531 chain->vars.release ();
532 chain->inits.release ();
533
534 free (chain);
535 }
536
537 /* Frees CHAINS. */
538
539 static void
540 release_chains (vec<chain_p> chains)
541 {
542 unsigned i;
543 chain_p chain;
544
545 FOR_EACH_VEC_ELT (chains, i, chain)
546 release_chain (chain);
547 chains.release ();
548 }
549
550 /* Frees a component COMP. */
551
552 static void
553 release_component (struct component *comp)
554 {
555 comp->refs.release ();
556 free (comp);
557 }
558
559 /* Frees list of components COMPS. */
560
561 static void
562 release_components (struct component *comps)
563 {
564 struct component *act, *next;
565
566 for (act = comps; act; act = next)
567 {
568 next = act->next;
569 release_component (act);
570 }
571 }
572
573 /* Finds a root of tree given by FATHERS containing A, and performs path
574 shortening. */
575
576 static unsigned
577 component_of (unsigned fathers[], unsigned a)
578 {
579 unsigned root, n;
580
581 for (root = a; root != fathers[root]; root = fathers[root])
582 continue;
583
584 for (; a != root; a = n)
585 {
586 n = fathers[a];
587 fathers[a] = root;
588 }
589
590 return root;
591 }
592
593 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
594 components, A and B are components to merge. */
595
596 static void
597 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
598 {
599 unsigned ca = component_of (fathers, a);
600 unsigned cb = component_of (fathers, b);
601
602 if (ca == cb)
603 return;
604
605 if (sizes[ca] < sizes[cb])
606 {
607 sizes[cb] += sizes[ca];
608 fathers[ca] = cb;
609 }
610 else
611 {
612 sizes[ca] += sizes[cb];
613 fathers[cb] = ca;
614 }
615 }
616
617 /* Returns true if A is a reference that is suitable for predictive commoning
618 in the innermost loop that contains it. REF_STEP is set according to the
619 step of the reference A. */
620
621 static bool
622 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
623 {
624 tree ref = DR_REF (a), step = DR_STEP (a);
625
626 if (!step
627 || TREE_THIS_VOLATILE (ref)
628 || !is_gimple_reg_type (TREE_TYPE (ref))
629 || tree_could_throw_p (ref))
630 return false;
631
632 if (integer_zerop (step))
633 *ref_step = RS_INVARIANT;
634 else if (integer_nonzerop (step))
635 *ref_step = RS_NONZERO;
636 else
637 *ref_step = RS_ANY;
638
639 return true;
640 }
641
642 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
643
644 static void
645 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
646 {
647 tree type = TREE_TYPE (DR_OFFSET (dr));
648 aff_tree delta;
649
650 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
651 &name_expansions);
652 aff_combination_const (&delta, type, wi::to_widest (DR_INIT (dr)));
653 aff_combination_add (offset, &delta);
654 }
655
656 /* Determines number of iterations of the innermost enclosing loop before B
657 refers to exactly the same location as A and stores it to OFF. If A and
658 B do not have the same step, they never meet, or anything else fails,
659 returns false, otherwise returns true. Both A and B are assumed to
660 satisfy suitable_reference_p. */
661
662 static bool
663 determine_offset (struct data_reference *a, struct data_reference *b,
664 widest_int *off)
665 {
666 aff_tree diff, baseb, step;
667 tree typea, typeb;
668
669 /* Check that both the references access the location in the same type. */
670 typea = TREE_TYPE (DR_REF (a));
671 typeb = TREE_TYPE (DR_REF (b));
672 if (!useless_type_conversion_p (typeb, typea))
673 return false;
674
675 /* Check whether the base address and the step of both references is the
676 same. */
677 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
678 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
679 return false;
680
681 if (integer_zerop (DR_STEP (a)))
682 {
683 /* If the references have loop invariant address, check that they access
684 exactly the same location. */
685 *off = 0;
686 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
687 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
688 }
689
690 /* Compare the offsets of the addresses, and check whether the difference
691 is a multiple of step. */
692 aff_combination_dr_offset (a, &diff);
693 aff_combination_dr_offset (b, &baseb);
694 aff_combination_scale (&baseb, -1);
695 aff_combination_add (&diff, &baseb);
696
697 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
698 &step, &name_expansions);
699 return aff_combination_constant_multiple_p (&diff, &step, off);
700 }
701
702 /* Returns the last basic block in LOOP for that we are sure that
703 it is executed whenever the loop is entered. */
704
705 static basic_block
706 last_always_executed_block (struct loop *loop)
707 {
708 unsigned i;
709 vec<edge> exits = get_loop_exit_edges (loop);
710 edge ex;
711 basic_block last = loop->latch;
712
713 FOR_EACH_VEC_ELT (exits, i, ex)
714 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
715 exits.release ();
716
717 return last;
718 }
719
720 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
721
722 static struct component *
723 split_data_refs_to_components (struct loop *loop,
724 vec<data_reference_p> datarefs,
725 vec<ddr_p> depends)
726 {
727 unsigned i, n = datarefs.length ();
728 unsigned ca, ia, ib, bad;
729 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
730 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
731 struct component **comps;
732 struct data_reference *dr, *dra, *drb;
733 struct data_dependence_relation *ddr;
734 struct component *comp_list = NULL, *comp;
735 dref dataref;
736 basic_block last_always_executed = last_always_executed_block (loop);
737
738 FOR_EACH_VEC_ELT (datarefs, i, dr)
739 {
740 if (!DR_REF (dr))
741 {
742 /* A fake reference for call or asm_expr that may clobber memory;
743 just fail. */
744 goto end;
745 }
746 /* predcom pass isn't prepared to handle calls with data references. */
747 if (is_gimple_call (DR_STMT (dr)))
748 goto end;
749 dr->aux = (void *) (size_t) i;
750 comp_father[i] = i;
751 comp_size[i] = 1;
752 }
753
754 /* A component reserved for the "bad" data references. */
755 comp_father[n] = n;
756 comp_size[n] = 1;
757
758 FOR_EACH_VEC_ELT (datarefs, i, dr)
759 {
760 enum ref_step_type dummy;
761
762 if (!suitable_reference_p (dr, &dummy))
763 {
764 ia = (unsigned) (size_t) dr->aux;
765 merge_comps (comp_father, comp_size, n, ia);
766 }
767 }
768
769 FOR_EACH_VEC_ELT (depends, i, ddr)
770 {
771 widest_int dummy_off;
772
773 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
774 continue;
775
776 dra = DDR_A (ddr);
777 drb = DDR_B (ddr);
778 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
779 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
780 if (ia == ib)
781 continue;
782
783 bad = component_of (comp_father, n);
784
785 /* If both A and B are reads, we may ignore unsuitable dependences. */
786 if (DR_IS_READ (dra) && DR_IS_READ (drb))
787 {
788 if (ia == bad || ib == bad
789 || !determine_offset (dra, drb, &dummy_off))
790 continue;
791 }
792 /* If A is read and B write or vice versa and there is unsuitable
793 dependence, instead of merging both components into a component
794 that will certainly not pass suitable_component_p, just put the
795 read into bad component, perhaps at least the write together with
796 all the other data refs in it's component will be optimizable. */
797 else if (DR_IS_READ (dra) && ib != bad)
798 {
799 if (ia == bad)
800 continue;
801 else if (!determine_offset (dra, drb, &dummy_off))
802 {
803 merge_comps (comp_father, comp_size, bad, ia);
804 continue;
805 }
806 }
807 else if (DR_IS_READ (drb) && ia != bad)
808 {
809 if (ib == bad)
810 continue;
811 else if (!determine_offset (dra, drb, &dummy_off))
812 {
813 merge_comps (comp_father, comp_size, bad, ib);
814 continue;
815 }
816 }
817
818 merge_comps (comp_father, comp_size, ia, ib);
819 }
820
821 comps = XCNEWVEC (struct component *, n);
822 bad = component_of (comp_father, n);
823 FOR_EACH_VEC_ELT (datarefs, i, dr)
824 {
825 ia = (unsigned) (size_t) dr->aux;
826 ca = component_of (comp_father, ia);
827 if (ca == bad)
828 continue;
829
830 comp = comps[ca];
831 if (!comp)
832 {
833 comp = XCNEW (struct component);
834 comp->refs.create (comp_size[ca]);
835 comps[ca] = comp;
836 }
837
838 dataref = XCNEW (struct dref_d);
839 dataref->ref = dr;
840 dataref->stmt = DR_STMT (dr);
841 dataref->offset = 0;
842 dataref->distance = 0;
843
844 dataref->always_accessed
845 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
846 gimple_bb (dataref->stmt));
847 dataref->pos = comp->refs.length ();
848 comp->refs.quick_push (dataref);
849 }
850
851 for (i = 0; i < n; i++)
852 {
853 comp = comps[i];
854 if (comp)
855 {
856 comp->next = comp_list;
857 comp_list = comp;
858 }
859 }
860 free (comps);
861
862 end:
863 free (comp_father);
864 free (comp_size);
865 return comp_list;
866 }
867
868 /* Returns true if the component COMP satisfies the conditions
869 described in 2) at the beginning of this file. LOOP is the current
870 loop. */
871
872 static bool
873 suitable_component_p (struct loop *loop, struct component *comp)
874 {
875 unsigned i;
876 dref a, first;
877 basic_block ba, bp = loop->header;
878 bool ok, has_write = false;
879
880 FOR_EACH_VEC_ELT (comp->refs, i, a)
881 {
882 ba = gimple_bb (a->stmt);
883
884 if (!just_once_each_iteration_p (loop, ba))
885 return false;
886
887 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
888 bp = ba;
889
890 if (DR_IS_WRITE (a->ref))
891 has_write = true;
892 }
893
894 first = comp->refs[0];
895 ok = suitable_reference_p (first->ref, &comp->comp_step);
896 gcc_assert (ok);
897 first->offset = 0;
898
899 for (i = 1; comp->refs.iterate (i, &a); i++)
900 {
901 if (!determine_offset (first->ref, a->ref, &a->offset))
902 return false;
903
904 #ifdef ENABLE_CHECKING
905 {
906 enum ref_step_type a_step;
907 ok = suitable_reference_p (a->ref, &a_step);
908 gcc_assert (ok && a_step == comp->comp_step);
909 }
910 #endif
911 }
912
913 /* If there is a write inside the component, we must know whether the
914 step is nonzero or not -- we would not otherwise be able to recognize
915 whether the value accessed by reads comes from the OFFSET-th iteration
916 or the previous one. */
917 if (has_write && comp->comp_step == RS_ANY)
918 return false;
919
920 return true;
921 }
922
923 /* Check the conditions on references inside each of components COMPS,
924 and remove the unsuitable components from the list. The new list
925 of components is returned. The conditions are described in 2) at
926 the beginning of this file. LOOP is the current loop. */
927
928 static struct component *
929 filter_suitable_components (struct loop *loop, struct component *comps)
930 {
931 struct component **comp, *act;
932
933 for (comp = &comps; *comp; )
934 {
935 act = *comp;
936 if (suitable_component_p (loop, act))
937 comp = &act->next;
938 else
939 {
940 dref ref;
941 unsigned i;
942
943 *comp = act->next;
944 FOR_EACH_VEC_ELT (act->refs, i, ref)
945 free (ref);
946 release_component (act);
947 }
948 }
949
950 return comps;
951 }
952
953 /* Compares two drefs A and B by their offset and position. Callback for
954 qsort. */
955
956 static int
957 order_drefs (const void *a, const void *b)
958 {
959 const dref *const da = (const dref *) a;
960 const dref *const db = (const dref *) b;
961 int offcmp = wi::cmps ((*da)->offset, (*db)->offset);
962
963 if (offcmp != 0)
964 return offcmp;
965
966 return (*da)->pos - (*db)->pos;
967 }
968
969 /* Returns root of the CHAIN. */
970
971 static inline dref
972 get_chain_root (chain_p chain)
973 {
974 return chain->refs[0];
975 }
976
977 /* Adds REF to the chain CHAIN. */
978
979 static void
980 add_ref_to_chain (chain_p chain, dref ref)
981 {
982 dref root = get_chain_root (chain);
983
984 gcc_assert (wi::les_p (root->offset, ref->offset));
985 widest_int dist = ref->offset - root->offset;
986 if (wi::leu_p (MAX_DISTANCE, dist))
987 {
988 free (ref);
989 return;
990 }
991 gcc_assert (wi::fits_uhwi_p (dist));
992
993 chain->refs.safe_push (ref);
994
995 ref->distance = dist.to_uhwi ();
996
997 if (ref->distance >= chain->length)
998 {
999 chain->length = ref->distance;
1000 chain->has_max_use_after = false;
1001 }
1002
1003 if (ref->distance == chain->length
1004 && ref->pos > root->pos)
1005 chain->has_max_use_after = true;
1006
1007 chain->all_always_accessed &= ref->always_accessed;
1008 }
1009
1010 /* Returns the chain for invariant component COMP. */
1011
1012 static chain_p
1013 make_invariant_chain (struct component *comp)
1014 {
1015 chain_p chain = XCNEW (struct chain);
1016 unsigned i;
1017 dref ref;
1018
1019 chain->type = CT_INVARIANT;
1020
1021 chain->all_always_accessed = true;
1022
1023 FOR_EACH_VEC_ELT (comp->refs, i, ref)
1024 {
1025 chain->refs.safe_push (ref);
1026 chain->all_always_accessed &= ref->always_accessed;
1027 }
1028
1029 return chain;
1030 }
1031
1032 /* Make a new chain rooted at REF. */
1033
1034 static chain_p
1035 make_rooted_chain (dref ref)
1036 {
1037 chain_p chain = XCNEW (struct chain);
1038
1039 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
1040
1041 chain->refs.safe_push (ref);
1042 chain->all_always_accessed = ref->always_accessed;
1043
1044 ref->distance = 0;
1045
1046 return chain;
1047 }
1048
1049 /* Returns true if CHAIN is not trivial. */
1050
1051 static bool
1052 nontrivial_chain_p (chain_p chain)
1053 {
1054 return chain != NULL && chain->refs.length () > 1;
1055 }
1056
1057 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1058 is no such name. */
1059
1060 static tree
1061 name_for_ref (dref ref)
1062 {
1063 tree name;
1064
1065 if (is_gimple_assign (ref->stmt))
1066 {
1067 if (!ref->ref || DR_IS_READ (ref->ref))
1068 name = gimple_assign_lhs (ref->stmt);
1069 else
1070 name = gimple_assign_rhs1 (ref->stmt);
1071 }
1072 else
1073 name = PHI_RESULT (ref->stmt);
1074
1075 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1076 }
1077
1078 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1079 iterations of the innermost enclosing loop). */
1080
1081 static bool
1082 valid_initializer_p (struct data_reference *ref,
1083 unsigned distance, struct data_reference *root)
1084 {
1085 aff_tree diff, base, step;
1086 widest_int off;
1087
1088 /* Both REF and ROOT must be accessing the same object. */
1089 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1090 return false;
1091
1092 /* The initializer is defined outside of loop, hence its address must be
1093 invariant inside the loop. */
1094 gcc_assert (integer_zerop (DR_STEP (ref)));
1095
1096 /* If the address of the reference is invariant, initializer must access
1097 exactly the same location. */
1098 if (integer_zerop (DR_STEP (root)))
1099 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1100 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1101
1102 /* Verify that this index of REF is equal to the root's index at
1103 -DISTANCE-th iteration. */
1104 aff_combination_dr_offset (root, &diff);
1105 aff_combination_dr_offset (ref, &base);
1106 aff_combination_scale (&base, -1);
1107 aff_combination_add (&diff, &base);
1108
1109 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1110 &step, &name_expansions);
1111 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1112 return false;
1113
1114 if (off != distance)
1115 return false;
1116
1117 return true;
1118 }
1119
1120 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1121 initial value is correct (equal to initial value of REF shifted by one
1122 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1123 is the root of the current chain. */
1124
1125 static gphi *
1126 find_looparound_phi (struct loop *loop, dref ref, dref root)
1127 {
1128 tree name, init, init_ref;
1129 gphi *phi = NULL;
1130 gimple init_stmt;
1131 edge latch = loop_latch_edge (loop);
1132 struct data_reference init_dr;
1133 gphi_iterator psi;
1134
1135 if (is_gimple_assign (ref->stmt))
1136 {
1137 if (DR_IS_READ (ref->ref))
1138 name = gimple_assign_lhs (ref->stmt);
1139 else
1140 name = gimple_assign_rhs1 (ref->stmt);
1141 }
1142 else
1143 name = PHI_RESULT (ref->stmt);
1144 if (!name)
1145 return NULL;
1146
1147 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1148 {
1149 phi = psi.phi ();
1150 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1151 break;
1152 }
1153
1154 if (gsi_end_p (psi))
1155 return NULL;
1156
1157 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1158 if (TREE_CODE (init) != SSA_NAME)
1159 return NULL;
1160 init_stmt = SSA_NAME_DEF_STMT (init);
1161 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1162 return NULL;
1163 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1164
1165 init_ref = gimple_assign_rhs1 (init_stmt);
1166 if (!REFERENCE_CLASS_P (init_ref)
1167 && !DECL_P (init_ref))
1168 return NULL;
1169
1170 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1171 loop enclosing PHI). */
1172 memset (&init_dr, 0, sizeof (struct data_reference));
1173 DR_REF (&init_dr) = init_ref;
1174 DR_STMT (&init_dr) = phi;
1175 if (!dr_analyze_innermost (&init_dr, loop))
1176 return NULL;
1177
1178 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1179 return NULL;
1180
1181 return phi;
1182 }
1183
1184 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1185
1186 static void
1187 insert_looparound_copy (chain_p chain, dref ref, gphi *phi)
1188 {
1189 dref nw = XCNEW (struct dref_d), aref;
1190 unsigned i;
1191
1192 nw->stmt = phi;
1193 nw->distance = ref->distance + 1;
1194 nw->always_accessed = 1;
1195
1196 FOR_EACH_VEC_ELT (chain->refs, i, aref)
1197 if (aref->distance >= nw->distance)
1198 break;
1199 chain->refs.safe_insert (i, nw);
1200
1201 if (nw->distance > chain->length)
1202 {
1203 chain->length = nw->distance;
1204 chain->has_max_use_after = false;
1205 }
1206 }
1207
1208 /* For references in CHAIN that are copied around the LOOP (created previously
1209 by PRE, or by user), add the results of such copies to the chain. This
1210 enables us to remove the copies by unrolling, and may need less registers
1211 (also, it may allow us to combine chains together). */
1212
1213 static void
1214 add_looparound_copies (struct loop *loop, chain_p chain)
1215 {
1216 unsigned i;
1217 dref ref, root = get_chain_root (chain);
1218 gphi *phi;
1219
1220 FOR_EACH_VEC_ELT (chain->refs, i, ref)
1221 {
1222 phi = find_looparound_phi (loop, ref, root);
1223 if (!phi)
1224 continue;
1225
1226 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1227 insert_looparound_copy (chain, ref, phi);
1228 }
1229 }
1230
1231 /* Find roots of the values and determine distances in the component COMP.
1232 The references are redistributed into CHAINS. LOOP is the current
1233 loop. */
1234
1235 static void
1236 determine_roots_comp (struct loop *loop,
1237 struct component *comp,
1238 vec<chain_p> *chains)
1239 {
1240 unsigned i;
1241 dref a;
1242 chain_p chain = NULL;
1243 widest_int last_ofs = 0;
1244
1245 /* Invariants are handled specially. */
1246 if (comp->comp_step == RS_INVARIANT)
1247 {
1248 chain = make_invariant_chain (comp);
1249 chains->safe_push (chain);
1250 return;
1251 }
1252
1253 comp->refs.qsort (order_drefs);
1254
1255 FOR_EACH_VEC_ELT (comp->refs, i, a)
1256 {
1257 if (!chain || DR_IS_WRITE (a->ref)
1258 || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs))
1259 {
1260 if (nontrivial_chain_p (chain))
1261 {
1262 add_looparound_copies (loop, chain);
1263 chains->safe_push (chain);
1264 }
1265 else
1266 release_chain (chain);
1267 chain = make_rooted_chain (a);
1268 last_ofs = a->offset;
1269 continue;
1270 }
1271
1272 add_ref_to_chain (chain, a);
1273 }
1274
1275 if (nontrivial_chain_p (chain))
1276 {
1277 add_looparound_copies (loop, chain);
1278 chains->safe_push (chain);
1279 }
1280 else
1281 release_chain (chain);
1282 }
1283
1284 /* Find roots of the values and determine distances in components COMPS, and
1285 separates the references to CHAINS. LOOP is the current loop. */
1286
1287 static void
1288 determine_roots (struct loop *loop,
1289 struct component *comps, vec<chain_p> *chains)
1290 {
1291 struct component *comp;
1292
1293 for (comp = comps; comp; comp = comp->next)
1294 determine_roots_comp (loop, comp, chains);
1295 }
1296
1297 /* Replace the reference in statement STMT with temporary variable
1298 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1299 the reference in the statement. IN_LHS is true if the reference
1300 is in the lhs of STMT, false if it is in rhs. */
1301
1302 static void
1303 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1304 {
1305 tree val;
1306 gassign *new_stmt;
1307 gimple_stmt_iterator bsi, psi;
1308
1309 if (gimple_code (stmt) == GIMPLE_PHI)
1310 {
1311 gcc_assert (!in_lhs && !set);
1312
1313 val = PHI_RESULT (stmt);
1314 bsi = gsi_after_labels (gimple_bb (stmt));
1315 psi = gsi_for_stmt (stmt);
1316 remove_phi_node (&psi, false);
1317
1318 /* Turn the phi node into GIMPLE_ASSIGN. */
1319 new_stmt = gimple_build_assign (val, new_tree);
1320 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1321 return;
1322 }
1323
1324 /* Since the reference is of gimple_reg type, it should only
1325 appear as lhs or rhs of modify statement. */
1326 gcc_assert (is_gimple_assign (stmt));
1327
1328 bsi = gsi_for_stmt (stmt);
1329
1330 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1331 if (!set)
1332 {
1333 gcc_assert (!in_lhs);
1334 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1335 stmt = gsi_stmt (bsi);
1336 update_stmt (stmt);
1337 return;
1338 }
1339
1340 if (in_lhs)
1341 {
1342 /* We have statement
1343
1344 OLD = VAL
1345
1346 If OLD is a memory reference, then VAL is gimple_val, and we transform
1347 this to
1348
1349 OLD = VAL
1350 NEW = VAL
1351
1352 Otherwise, we are replacing a combination chain,
1353 VAL is the expression that performs the combination, and OLD is an
1354 SSA name. In this case, we transform the assignment to
1355
1356 OLD = VAL
1357 NEW = OLD
1358
1359 */
1360
1361 val = gimple_assign_lhs (stmt);
1362 if (TREE_CODE (val) != SSA_NAME)
1363 {
1364 val = gimple_assign_rhs1 (stmt);
1365 gcc_assert (gimple_assign_single_p (stmt));
1366 if (TREE_CLOBBER_P (val))
1367 val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree));
1368 else
1369 gcc_assert (gimple_assign_copy_p (stmt));
1370 }
1371 }
1372 else
1373 {
1374 /* VAL = OLD
1375
1376 is transformed to
1377
1378 VAL = OLD
1379 NEW = VAL */
1380
1381 val = gimple_assign_lhs (stmt);
1382 }
1383
1384 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1385 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1386 }
1387
1388 /* Returns a memory reference to DR in the ITER-th iteration of
1389 the loop it was analyzed in. Append init stmts to STMTS. */
1390
1391 static tree
1392 ref_at_iteration (data_reference_p dr, int iter, gimple_seq *stmts)
1393 {
1394 tree off = DR_OFFSET (dr);
1395 tree coff = DR_INIT (dr);
1396 if (iter == 0)
1397 ;
1398 else if (TREE_CODE (DR_STEP (dr)) == INTEGER_CST)
1399 coff = size_binop (PLUS_EXPR, coff,
1400 size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)));
1401 else
1402 off = size_binop (PLUS_EXPR, off,
1403 size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)));
1404 tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off);
1405 addr = force_gimple_operand_1 (addr, stmts, is_gimple_mem_ref_addr,
1406 NULL_TREE);
1407 tree alias_ptr = fold_convert (reference_alias_ptr_type (DR_REF (dr)), coff);
1408 /* While data-ref analysis punts on bit offsets it still handles
1409 bitfield accesses at byte boundaries. Cope with that. Note that
1410 we cannot simply re-apply the outer COMPONENT_REF because the
1411 byte-granular portion of it is already applied via DR_INIT and
1412 DR_OFFSET, so simply build a BIT_FIELD_REF knowing that the bits
1413 start at offset zero. */
1414 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
1415 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
1416 {
1417 tree field = TREE_OPERAND (DR_REF (dr), 1);
1418 return build3 (BIT_FIELD_REF, TREE_TYPE (DR_REF (dr)),
1419 build2 (MEM_REF, DECL_BIT_FIELD_TYPE (field),
1420 addr, alias_ptr),
1421 DECL_SIZE (field), bitsize_zero_node);
1422 }
1423 else
1424 return fold_build2 (MEM_REF, TREE_TYPE (DR_REF (dr)), addr, alias_ptr);
1425 }
1426
1427 /* Get the initialization expression for the INDEX-th temporary variable
1428 of CHAIN. */
1429
1430 static tree
1431 get_init_expr (chain_p chain, unsigned index)
1432 {
1433 if (chain->type == CT_COMBINATION)
1434 {
1435 tree e1 = get_init_expr (chain->ch1, index);
1436 tree e2 = get_init_expr (chain->ch2, index);
1437
1438 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1439 }
1440 else
1441 return chain->inits[index];
1442 }
1443
1444 /* Returns a new temporary variable used for the I-th variable carrying
1445 value of REF. The variable's uid is marked in TMP_VARS. */
1446
1447 static tree
1448 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1449 {
1450 tree type = TREE_TYPE (ref);
1451 /* We never access the components of the temporary variable in predictive
1452 commoning. */
1453 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1454 bitmap_set_bit (tmp_vars, DECL_UID (var));
1455 return var;
1456 }
1457
1458 /* Creates the variables for CHAIN, as well as phi nodes for them and
1459 initialization on entry to LOOP. Uids of the newly created
1460 temporary variables are marked in TMP_VARS. */
1461
1462 static void
1463 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1464 {
1465 unsigned i;
1466 unsigned n = chain->length;
1467 dref root = get_chain_root (chain);
1468 bool reuse_first = !chain->has_max_use_after;
1469 tree ref, init, var, next;
1470 gphi *phi;
1471 gimple_seq stmts;
1472 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1473
1474 /* If N == 0, then all the references are within the single iteration. And
1475 since this is an nonempty chain, reuse_first cannot be true. */
1476 gcc_assert (n > 0 || !reuse_first);
1477
1478 chain->vars.create (n + 1);
1479
1480 if (chain->type == CT_COMBINATION)
1481 ref = gimple_assign_lhs (root->stmt);
1482 else
1483 ref = DR_REF (root->ref);
1484
1485 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1486 {
1487 var = predcom_tmp_var (ref, i, tmp_vars);
1488 chain->vars.quick_push (var);
1489 }
1490 if (reuse_first)
1491 chain->vars.quick_push (chain->vars[0]);
1492
1493 FOR_EACH_VEC_ELT (chain->vars, i, var)
1494 chain->vars[i] = make_ssa_name (var, NULL);
1495
1496 for (i = 0; i < n; i++)
1497 {
1498 var = chain->vars[i];
1499 next = chain->vars[i + 1];
1500 init = get_init_expr (chain, i);
1501
1502 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1503 if (stmts)
1504 gsi_insert_seq_on_edge_immediate (entry, stmts);
1505
1506 phi = create_phi_node (var, loop->header);
1507 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1508 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1509 }
1510 }
1511
1512 /* Create the variables and initialization statement for root of chain
1513 CHAIN. Uids of the newly created temporary variables are marked
1514 in TMP_VARS. */
1515
1516 static void
1517 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1518 {
1519 dref root = get_chain_root (chain);
1520 bool in_lhs = (chain->type == CT_STORE_LOAD
1521 || chain->type == CT_COMBINATION);
1522
1523 initialize_root_vars (loop, chain, tmp_vars);
1524 replace_ref_with (root->stmt,
1525 chain->vars[chain->length],
1526 true, in_lhs);
1527 }
1528
1529 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1530 initialization on entry to LOOP if necessary. The ssa name for the variable
1531 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1532 around the loop is created. Uid of the newly created temporary variable
1533 is marked in TMP_VARS. INITS is the list containing the (single)
1534 initializer. */
1535
1536 static void
1537 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1538 vec<tree> *vars, vec<tree> inits,
1539 bitmap tmp_vars)
1540 {
1541 unsigned i;
1542 tree ref = DR_REF (root->ref), init, var, next;
1543 gimple_seq stmts;
1544 gphi *phi;
1545 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1546
1547 /* Find the initializer for the variable, and check that it cannot
1548 trap. */
1549 init = inits[0];
1550
1551 vars->create (written ? 2 : 1);
1552 var = predcom_tmp_var (ref, 0, tmp_vars);
1553 vars->quick_push (var);
1554 if (written)
1555 vars->quick_push ((*vars)[0]);
1556
1557 FOR_EACH_VEC_ELT (*vars, i, var)
1558 (*vars)[i] = make_ssa_name (var, NULL);
1559
1560 var = (*vars)[0];
1561
1562 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1563 if (stmts)
1564 gsi_insert_seq_on_edge_immediate (entry, stmts);
1565
1566 if (written)
1567 {
1568 next = (*vars)[1];
1569 phi = create_phi_node (var, loop->header);
1570 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1571 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1572 }
1573 else
1574 {
1575 gassign *init_stmt = gimple_build_assign (var, init);
1576 gsi_insert_on_edge_immediate (entry, init_stmt);
1577 }
1578 }
1579
1580
1581 /* Execute load motion for references in chain CHAIN. Uids of the newly
1582 created temporary variables are marked in TMP_VARS. */
1583
1584 static void
1585 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1586 {
1587 auto_vec<tree> vars;
1588 dref a;
1589 unsigned n_writes = 0, ridx, i;
1590 tree var;
1591
1592 gcc_assert (chain->type == CT_INVARIANT);
1593 gcc_assert (!chain->combined);
1594 FOR_EACH_VEC_ELT (chain->refs, i, a)
1595 if (DR_IS_WRITE (a->ref))
1596 n_writes++;
1597
1598 /* If there are no reads in the loop, there is nothing to do. */
1599 if (n_writes == chain->refs.length ())
1600 return;
1601
1602 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1603 &vars, chain->inits, tmp_vars);
1604
1605 ridx = 0;
1606 FOR_EACH_VEC_ELT (chain->refs, i, a)
1607 {
1608 bool is_read = DR_IS_READ (a->ref);
1609
1610 if (DR_IS_WRITE (a->ref))
1611 {
1612 n_writes--;
1613 if (n_writes)
1614 {
1615 var = vars[0];
1616 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1617 vars[0] = var;
1618 }
1619 else
1620 ridx = 1;
1621 }
1622
1623 replace_ref_with (a->stmt, vars[ridx],
1624 !is_read, !is_read);
1625 }
1626 }
1627
1628 /* Returns the single statement in that NAME is used, excepting
1629 the looparound phi nodes contained in one of the chains. If there is no
1630 such statement, or more statements, NULL is returned. */
1631
1632 static gimple
1633 single_nonlooparound_use (tree name)
1634 {
1635 use_operand_p use;
1636 imm_use_iterator it;
1637 gimple stmt, ret = NULL;
1638
1639 FOR_EACH_IMM_USE_FAST (use, it, name)
1640 {
1641 stmt = USE_STMT (use);
1642
1643 if (gimple_code (stmt) == GIMPLE_PHI)
1644 {
1645 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1646 could not be processed anyway, so just fail for them. */
1647 if (bitmap_bit_p (looparound_phis,
1648 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1649 continue;
1650
1651 return NULL;
1652 }
1653 else if (is_gimple_debug (stmt))
1654 continue;
1655 else if (ret != NULL)
1656 return NULL;
1657 else
1658 ret = stmt;
1659 }
1660
1661 return ret;
1662 }
1663
1664 /* Remove statement STMT, as well as the chain of assignments in that it is
1665 used. */
1666
1667 static void
1668 remove_stmt (gimple stmt)
1669 {
1670 tree name;
1671 gimple next;
1672 gimple_stmt_iterator psi;
1673
1674 if (gimple_code (stmt) == GIMPLE_PHI)
1675 {
1676 name = PHI_RESULT (stmt);
1677 next = single_nonlooparound_use (name);
1678 reset_debug_uses (stmt);
1679 psi = gsi_for_stmt (stmt);
1680 remove_phi_node (&psi, true);
1681
1682 if (!next
1683 || !gimple_assign_ssa_name_copy_p (next)
1684 || gimple_assign_rhs1 (next) != name)
1685 return;
1686
1687 stmt = next;
1688 }
1689
1690 while (1)
1691 {
1692 gimple_stmt_iterator bsi;
1693
1694 bsi = gsi_for_stmt (stmt);
1695
1696 name = gimple_assign_lhs (stmt);
1697 gcc_assert (TREE_CODE (name) == SSA_NAME);
1698
1699 next = single_nonlooparound_use (name);
1700 reset_debug_uses (stmt);
1701
1702 unlink_stmt_vdef (stmt);
1703 gsi_remove (&bsi, true);
1704 release_defs (stmt);
1705
1706 if (!next
1707 || !gimple_assign_ssa_name_copy_p (next)
1708 || gimple_assign_rhs1 (next) != name)
1709 return;
1710
1711 stmt = next;
1712 }
1713 }
1714
1715 /* Perform the predictive commoning optimization for a chain CHAIN.
1716 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1717
1718 static void
1719 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1720 bitmap tmp_vars)
1721 {
1722 unsigned i;
1723 dref a;
1724 tree var;
1725
1726 if (chain->combined)
1727 {
1728 /* For combined chains, just remove the statements that are used to
1729 compute the values of the expression (except for the root one). */
1730 for (i = 1; chain->refs.iterate (i, &a); i++)
1731 remove_stmt (a->stmt);
1732 }
1733 else
1734 {
1735 /* For non-combined chains, set up the variables that hold its value,
1736 and replace the uses of the original references by these
1737 variables. */
1738 initialize_root (loop, chain, tmp_vars);
1739 for (i = 1; chain->refs.iterate (i, &a); i++)
1740 {
1741 var = chain->vars[chain->length - a->distance];
1742 replace_ref_with (a->stmt, var, false, false);
1743 }
1744 }
1745 }
1746
1747 /* Determines the unroll factor necessary to remove as many temporary variable
1748 copies as possible. CHAINS is the list of chains that will be
1749 optimized. */
1750
1751 static unsigned
1752 determine_unroll_factor (vec<chain_p> chains)
1753 {
1754 chain_p chain;
1755 unsigned factor = 1, af, nfactor, i;
1756 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1757
1758 FOR_EACH_VEC_ELT (chains, i, chain)
1759 {
1760 if (chain->type == CT_INVARIANT || chain->combined)
1761 continue;
1762
1763 /* The best unroll factor for this chain is equal to the number of
1764 temporary variables that we create for it. */
1765 af = chain->length;
1766 if (chain->has_max_use_after)
1767 af++;
1768
1769 nfactor = factor * af / gcd (factor, af);
1770 if (nfactor <= max)
1771 factor = nfactor;
1772 }
1773
1774 return factor;
1775 }
1776
1777 /* Perform the predictive commoning optimization for CHAINS.
1778 Uids of the newly created temporary variables are marked in TMP_VARS. */
1779
1780 static void
1781 execute_pred_commoning (struct loop *loop, vec<chain_p> chains,
1782 bitmap tmp_vars)
1783 {
1784 chain_p chain;
1785 unsigned i;
1786
1787 FOR_EACH_VEC_ELT (chains, i, chain)
1788 {
1789 if (chain->type == CT_INVARIANT)
1790 execute_load_motion (loop, chain, tmp_vars);
1791 else
1792 execute_pred_commoning_chain (loop, chain, tmp_vars);
1793 }
1794
1795 update_ssa (TODO_update_ssa_only_virtuals);
1796 }
1797
1798 /* For each reference in CHAINS, if its defining statement is
1799 phi node, record the ssa name that is defined by it. */
1800
1801 static void
1802 replace_phis_by_defined_names (vec<chain_p> chains)
1803 {
1804 chain_p chain;
1805 dref a;
1806 unsigned i, j;
1807
1808 FOR_EACH_VEC_ELT (chains, i, chain)
1809 FOR_EACH_VEC_ELT (chain->refs, j, a)
1810 {
1811 if (gimple_code (a->stmt) == GIMPLE_PHI)
1812 {
1813 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1814 a->stmt = NULL;
1815 }
1816 }
1817 }
1818
1819 /* For each reference in CHAINS, if name_defined_by_phi is not
1820 NULL, use it to set the stmt field. */
1821
1822 static void
1823 replace_names_by_phis (vec<chain_p> chains)
1824 {
1825 chain_p chain;
1826 dref a;
1827 unsigned i, j;
1828
1829 FOR_EACH_VEC_ELT (chains, i, chain)
1830 FOR_EACH_VEC_ELT (chain->refs, j, a)
1831 if (a->stmt == NULL)
1832 {
1833 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1834 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1835 a->name_defined_by_phi = NULL_TREE;
1836 }
1837 }
1838
1839 /* Wrapper over execute_pred_commoning, to pass it as a callback
1840 to tree_transform_and_unroll_loop. */
1841
1842 struct epcc_data
1843 {
1844 vec<chain_p> chains;
1845 bitmap tmp_vars;
1846 };
1847
1848 static void
1849 execute_pred_commoning_cbck (struct loop *loop, void *data)
1850 {
1851 struct epcc_data *const dta = (struct epcc_data *) data;
1852
1853 /* Restore phi nodes that were replaced by ssa names before
1854 tree_transform_and_unroll_loop (see detailed description in
1855 tree_predictive_commoning_loop). */
1856 replace_names_by_phis (dta->chains);
1857 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1858 }
1859
1860 /* Base NAME and all the names in the chain of phi nodes that use it
1861 on variable VAR. The phi nodes are recognized by being in the copies of
1862 the header of the LOOP. */
1863
1864 static void
1865 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1866 {
1867 gimple stmt, phi;
1868 imm_use_iterator iter;
1869
1870 replace_ssa_name_symbol (name, var);
1871
1872 while (1)
1873 {
1874 phi = NULL;
1875 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1876 {
1877 if (gimple_code (stmt) == GIMPLE_PHI
1878 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1879 {
1880 phi = stmt;
1881 BREAK_FROM_IMM_USE_STMT (iter);
1882 }
1883 }
1884 if (!phi)
1885 return;
1886
1887 name = PHI_RESULT (phi);
1888 replace_ssa_name_symbol (name, var);
1889 }
1890 }
1891
1892 /* Given an unrolled LOOP after predictive commoning, remove the
1893 register copies arising from phi nodes by changing the base
1894 variables of SSA names. TMP_VARS is the set of the temporary variables
1895 for those we want to perform this. */
1896
1897 static void
1898 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1899 {
1900 edge e;
1901 gphi *phi;
1902 gimple stmt;
1903 tree name, use, var;
1904 gphi_iterator psi;
1905
1906 e = loop_latch_edge (loop);
1907 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1908 {
1909 phi = psi.phi ();
1910 name = PHI_RESULT (phi);
1911 var = SSA_NAME_VAR (name);
1912 if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var)))
1913 continue;
1914 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1915 gcc_assert (TREE_CODE (use) == SSA_NAME);
1916
1917 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1918 stmt = SSA_NAME_DEF_STMT (use);
1919 while (gimple_code (stmt) == GIMPLE_PHI
1920 /* In case we could not unroll the loop enough to eliminate
1921 all copies, we may reach the loop header before the defining
1922 statement (in that case, some register copies will be present
1923 in loop latch in the final code, corresponding to the newly
1924 created looparound phi nodes). */
1925 && gimple_bb (stmt) != loop->header)
1926 {
1927 gcc_assert (single_pred_p (gimple_bb (stmt)));
1928 use = PHI_ARG_DEF (stmt, 0);
1929 stmt = SSA_NAME_DEF_STMT (use);
1930 }
1931
1932 base_names_in_chain_on (loop, use, var);
1933 }
1934 }
1935
1936 /* Returns true if CHAIN is suitable to be combined. */
1937
1938 static bool
1939 chain_can_be_combined_p (chain_p chain)
1940 {
1941 return (!chain->combined
1942 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1943 }
1944
1945 /* Returns the modify statement that uses NAME. Skips over assignment
1946 statements, NAME is replaced with the actual name used in the returned
1947 statement. */
1948
1949 static gimple
1950 find_use_stmt (tree *name)
1951 {
1952 gimple stmt;
1953 tree rhs, lhs;
1954
1955 /* Skip over assignments. */
1956 while (1)
1957 {
1958 stmt = single_nonlooparound_use (*name);
1959 if (!stmt)
1960 return NULL;
1961
1962 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1963 return NULL;
1964
1965 lhs = gimple_assign_lhs (stmt);
1966 if (TREE_CODE (lhs) != SSA_NAME)
1967 return NULL;
1968
1969 if (gimple_assign_copy_p (stmt))
1970 {
1971 rhs = gimple_assign_rhs1 (stmt);
1972 if (rhs != *name)
1973 return NULL;
1974
1975 *name = lhs;
1976 }
1977 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1978 == GIMPLE_BINARY_RHS)
1979 return stmt;
1980 else
1981 return NULL;
1982 }
1983 }
1984
1985 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
1986
1987 static bool
1988 may_reassociate_p (tree type, enum tree_code code)
1989 {
1990 if (FLOAT_TYPE_P (type)
1991 && !flag_unsafe_math_optimizations)
1992 return false;
1993
1994 return (commutative_tree_code (code)
1995 && associative_tree_code (code));
1996 }
1997
1998 /* If the operation used in STMT is associative and commutative, go through the
1999 tree of the same operations and returns its root. Distance to the root
2000 is stored in DISTANCE. */
2001
2002 static gimple
2003 find_associative_operation_root (gimple stmt, unsigned *distance)
2004 {
2005 tree lhs;
2006 gimple next;
2007 enum tree_code code = gimple_assign_rhs_code (stmt);
2008 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2009 unsigned dist = 0;
2010
2011 if (!may_reassociate_p (type, code))
2012 return NULL;
2013
2014 while (1)
2015 {
2016 lhs = gimple_assign_lhs (stmt);
2017 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2018
2019 next = find_use_stmt (&lhs);
2020 if (!next
2021 || gimple_assign_rhs_code (next) != code)
2022 break;
2023
2024 stmt = next;
2025 dist++;
2026 }
2027
2028 if (distance)
2029 *distance = dist;
2030 return stmt;
2031 }
2032
2033 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2034 is no such statement, returns NULL_TREE. In case the operation used on
2035 NAME1 and NAME2 is associative and commutative, returns the root of the
2036 tree formed by this operation instead of the statement that uses NAME1 or
2037 NAME2. */
2038
2039 static gimple
2040 find_common_use_stmt (tree *name1, tree *name2)
2041 {
2042 gimple stmt1, stmt2;
2043
2044 stmt1 = find_use_stmt (name1);
2045 if (!stmt1)
2046 return NULL;
2047
2048 stmt2 = find_use_stmt (name2);
2049 if (!stmt2)
2050 return NULL;
2051
2052 if (stmt1 == stmt2)
2053 return stmt1;
2054
2055 stmt1 = find_associative_operation_root (stmt1, NULL);
2056 if (!stmt1)
2057 return NULL;
2058 stmt2 = find_associative_operation_root (stmt2, NULL);
2059 if (!stmt2)
2060 return NULL;
2061
2062 return (stmt1 == stmt2 ? stmt1 : NULL);
2063 }
2064
2065 /* Checks whether R1 and R2 are combined together using CODE, with the result
2066 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2067 if it is true. If CODE is ERROR_MARK, set these values instead. */
2068
2069 static bool
2070 combinable_refs_p (dref r1, dref r2,
2071 enum tree_code *code, bool *swap, tree *rslt_type)
2072 {
2073 enum tree_code acode;
2074 bool aswap;
2075 tree atype;
2076 tree name1, name2;
2077 gimple stmt;
2078
2079 name1 = name_for_ref (r1);
2080 name2 = name_for_ref (r2);
2081 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2082
2083 stmt = find_common_use_stmt (&name1, &name2);
2084
2085 if (!stmt
2086 /* A simple post-dominance check - make sure the combination
2087 is executed under the same condition as the references. */
2088 || (gimple_bb (stmt) != gimple_bb (r1->stmt)
2089 && gimple_bb (stmt) != gimple_bb (r2->stmt)))
2090 return false;
2091
2092 acode = gimple_assign_rhs_code (stmt);
2093 aswap = (!commutative_tree_code (acode)
2094 && gimple_assign_rhs1 (stmt) != name1);
2095 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2096
2097 if (*code == ERROR_MARK)
2098 {
2099 *code = acode;
2100 *swap = aswap;
2101 *rslt_type = atype;
2102 return true;
2103 }
2104
2105 return (*code == acode
2106 && *swap == aswap
2107 && *rslt_type == atype);
2108 }
2109
2110 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2111 an assignment of the remaining operand. */
2112
2113 static void
2114 remove_name_from_operation (gimple stmt, tree op)
2115 {
2116 tree other_op;
2117 gimple_stmt_iterator si;
2118
2119 gcc_assert (is_gimple_assign (stmt));
2120
2121 if (gimple_assign_rhs1 (stmt) == op)
2122 other_op = gimple_assign_rhs2 (stmt);
2123 else
2124 other_op = gimple_assign_rhs1 (stmt);
2125
2126 si = gsi_for_stmt (stmt);
2127 gimple_assign_set_rhs_from_tree (&si, other_op);
2128
2129 /* We should not have reallocated STMT. */
2130 gcc_assert (gsi_stmt (si) == stmt);
2131
2132 update_stmt (stmt);
2133 }
2134
2135 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2136 are combined in a single statement, and returns this statement. */
2137
2138 static gimple
2139 reassociate_to_the_same_stmt (tree name1, tree name2)
2140 {
2141 gimple stmt1, stmt2, root1, root2, s1, s2;
2142 gassign *new_stmt, *tmp_stmt;
2143 tree new_name, tmp_name, var, r1, r2;
2144 unsigned dist1, dist2;
2145 enum tree_code code;
2146 tree type = TREE_TYPE (name1);
2147 gimple_stmt_iterator bsi;
2148
2149 stmt1 = find_use_stmt (&name1);
2150 stmt2 = find_use_stmt (&name2);
2151 root1 = find_associative_operation_root (stmt1, &dist1);
2152 root2 = find_associative_operation_root (stmt2, &dist2);
2153 code = gimple_assign_rhs_code (stmt1);
2154
2155 gcc_assert (root1 && root2 && root1 == root2
2156 && code == gimple_assign_rhs_code (stmt2));
2157
2158 /* Find the root of the nearest expression in that both NAME1 and NAME2
2159 are used. */
2160 r1 = name1;
2161 s1 = stmt1;
2162 r2 = name2;
2163 s2 = stmt2;
2164
2165 while (dist1 > dist2)
2166 {
2167 s1 = find_use_stmt (&r1);
2168 r1 = gimple_assign_lhs (s1);
2169 dist1--;
2170 }
2171 while (dist2 > dist1)
2172 {
2173 s2 = find_use_stmt (&r2);
2174 r2 = gimple_assign_lhs (s2);
2175 dist2--;
2176 }
2177
2178 while (s1 != s2)
2179 {
2180 s1 = find_use_stmt (&r1);
2181 r1 = gimple_assign_lhs (s1);
2182 s2 = find_use_stmt (&r2);
2183 r2 = gimple_assign_lhs (s2);
2184 }
2185
2186 /* Remove NAME1 and NAME2 from the statements in that they are used
2187 currently. */
2188 remove_name_from_operation (stmt1, name1);
2189 remove_name_from_operation (stmt2, name2);
2190
2191 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2192 combine it with the rhs of S1. */
2193 var = create_tmp_reg (type, "predreastmp");
2194 new_name = make_ssa_name (var, NULL);
2195 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2196
2197 var = create_tmp_reg (type, "predreastmp");
2198 tmp_name = make_ssa_name (var, NULL);
2199
2200 /* Rhs of S1 may now be either a binary expression with operation
2201 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2202 so that name1 or name2 was removed from it). */
2203 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2204 tmp_name,
2205 gimple_assign_rhs1 (s1),
2206 gimple_assign_rhs2 (s1));
2207
2208 bsi = gsi_for_stmt (s1);
2209 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2210 s1 = gsi_stmt (bsi);
2211 update_stmt (s1);
2212
2213 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2214 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2215
2216 return new_stmt;
2217 }
2218
2219 /* Returns the statement that combines references R1 and R2. In case R1
2220 and R2 are not used in the same statement, but they are used with an
2221 associative and commutative operation in the same expression, reassociate
2222 the expression so that they are used in the same statement. */
2223
2224 static gimple
2225 stmt_combining_refs (dref r1, dref r2)
2226 {
2227 gimple stmt1, stmt2;
2228 tree name1 = name_for_ref (r1);
2229 tree name2 = name_for_ref (r2);
2230
2231 stmt1 = find_use_stmt (&name1);
2232 stmt2 = find_use_stmt (&name2);
2233 if (stmt1 == stmt2)
2234 return stmt1;
2235
2236 return reassociate_to_the_same_stmt (name1, name2);
2237 }
2238
2239 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2240 description of the new chain is returned, otherwise we return NULL. */
2241
2242 static chain_p
2243 combine_chains (chain_p ch1, chain_p ch2)
2244 {
2245 dref r1, r2, nw;
2246 enum tree_code op = ERROR_MARK;
2247 bool swap = false;
2248 chain_p new_chain;
2249 unsigned i;
2250 gimple root_stmt;
2251 tree rslt_type = NULL_TREE;
2252
2253 if (ch1 == ch2)
2254 return NULL;
2255 if (ch1->length != ch2->length)
2256 return NULL;
2257
2258 if (ch1->refs.length () != ch2->refs.length ())
2259 return NULL;
2260
2261 for (i = 0; (ch1->refs.iterate (i, &r1)
2262 && ch2->refs.iterate (i, &r2)); i++)
2263 {
2264 if (r1->distance != r2->distance)
2265 return NULL;
2266
2267 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2268 return NULL;
2269 }
2270
2271 if (swap)
2272 {
2273 chain_p tmp = ch1;
2274 ch1 = ch2;
2275 ch2 = tmp;
2276 }
2277
2278 new_chain = XCNEW (struct chain);
2279 new_chain->type = CT_COMBINATION;
2280 new_chain->op = op;
2281 new_chain->ch1 = ch1;
2282 new_chain->ch2 = ch2;
2283 new_chain->rslt_type = rslt_type;
2284 new_chain->length = ch1->length;
2285
2286 for (i = 0; (ch1->refs.iterate (i, &r1)
2287 && ch2->refs.iterate (i, &r2)); i++)
2288 {
2289 nw = XCNEW (struct dref_d);
2290 nw->stmt = stmt_combining_refs (r1, r2);
2291 nw->distance = r1->distance;
2292
2293 new_chain->refs.safe_push (nw);
2294 }
2295
2296 new_chain->has_max_use_after = false;
2297 root_stmt = get_chain_root (new_chain)->stmt;
2298 for (i = 1; new_chain->refs.iterate (i, &nw); i++)
2299 {
2300 if (nw->distance == new_chain->length
2301 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2302 {
2303 new_chain->has_max_use_after = true;
2304 break;
2305 }
2306 }
2307
2308 ch1->combined = true;
2309 ch2->combined = true;
2310 return new_chain;
2311 }
2312
2313 /* Try to combine the CHAINS. */
2314
2315 static void
2316 try_combine_chains (vec<chain_p> *chains)
2317 {
2318 unsigned i, j;
2319 chain_p ch1, ch2, cch;
2320 auto_vec<chain_p> worklist;
2321
2322 FOR_EACH_VEC_ELT (*chains, i, ch1)
2323 if (chain_can_be_combined_p (ch1))
2324 worklist.safe_push (ch1);
2325
2326 while (!worklist.is_empty ())
2327 {
2328 ch1 = worklist.pop ();
2329 if (!chain_can_be_combined_p (ch1))
2330 continue;
2331
2332 FOR_EACH_VEC_ELT (*chains, j, ch2)
2333 {
2334 if (!chain_can_be_combined_p (ch2))
2335 continue;
2336
2337 cch = combine_chains (ch1, ch2);
2338 if (cch)
2339 {
2340 worklist.safe_push (cch);
2341 chains->safe_push (cch);
2342 break;
2343 }
2344 }
2345 }
2346 }
2347
2348 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2349 impossible because one of these initializers may trap, true otherwise. */
2350
2351 static bool
2352 prepare_initializers_chain (struct loop *loop, chain_p chain)
2353 {
2354 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2355 struct data_reference *dr = get_chain_root (chain)->ref;
2356 tree init;
2357 gimple_seq stmts;
2358 dref laref;
2359 edge entry = loop_preheader_edge (loop);
2360
2361 /* Find the initializers for the variables, and check that they cannot
2362 trap. */
2363 chain->inits.create (n);
2364 for (i = 0; i < n; i++)
2365 chain->inits.quick_push (NULL_TREE);
2366
2367 /* If we have replaced some looparound phi nodes, use their initializers
2368 instead of creating our own. */
2369 FOR_EACH_VEC_ELT (chain->refs, i, laref)
2370 {
2371 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2372 continue;
2373
2374 gcc_assert (laref->distance > 0);
2375 chain->inits[n - laref->distance]
2376 = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry);
2377 }
2378
2379 for (i = 0; i < n; i++)
2380 {
2381 if (chain->inits[i] != NULL_TREE)
2382 continue;
2383
2384 init = ref_at_iteration (dr, (int) i - n, &stmts);
2385 if (!chain->all_always_accessed && tree_could_trap_p (init))
2386 return false;
2387
2388 if (stmts)
2389 gsi_insert_seq_on_edge_immediate (entry, stmts);
2390
2391 chain->inits[i] = init;
2392 }
2393
2394 return true;
2395 }
2396
2397 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2398 be used because the initializers might trap. */
2399
2400 static void
2401 prepare_initializers (struct loop *loop, vec<chain_p> chains)
2402 {
2403 chain_p chain;
2404 unsigned i;
2405
2406 for (i = 0; i < chains.length (); )
2407 {
2408 chain = chains[i];
2409 if (prepare_initializers_chain (loop, chain))
2410 i++;
2411 else
2412 {
2413 release_chain (chain);
2414 chains.unordered_remove (i);
2415 }
2416 }
2417 }
2418
2419 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2420 unrolled. */
2421
2422 static bool
2423 tree_predictive_commoning_loop (struct loop *loop)
2424 {
2425 vec<data_reference_p> datarefs;
2426 vec<ddr_p> dependences;
2427 struct component *components;
2428 vec<chain_p> chains = vNULL;
2429 unsigned unroll_factor;
2430 struct tree_niter_desc desc;
2431 bool unroll = false;
2432 edge exit;
2433 bitmap tmp_vars;
2434
2435 if (dump_file && (dump_flags & TDF_DETAILS))
2436 fprintf (dump_file, "Processing loop %d\n", loop->num);
2437
2438 /* Find the data references and split them into components according to their
2439 dependence relations. */
2440 auto_vec<loop_p, 3> loop_nest;
2441 dependences.create (10);
2442 datarefs.create (10);
2443 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2444 &dependences))
2445 {
2446 if (dump_file && (dump_flags & TDF_DETAILS))
2447 fprintf (dump_file, "Cannot analyze data dependencies\n");
2448 free_data_refs (datarefs);
2449 free_dependence_relations (dependences);
2450 return false;
2451 }
2452
2453 if (dump_file && (dump_flags & TDF_DETAILS))
2454 dump_data_dependence_relations (dump_file, dependences);
2455
2456 components = split_data_refs_to_components (loop, datarefs, dependences);
2457 loop_nest.release ();
2458 free_dependence_relations (dependences);
2459 if (!components)
2460 {
2461 free_data_refs (datarefs);
2462 free_affine_expand_cache (&name_expansions);
2463 return false;
2464 }
2465
2466 if (dump_file && (dump_flags & TDF_DETAILS))
2467 {
2468 fprintf (dump_file, "Initial state:\n\n");
2469 dump_components (dump_file, components);
2470 }
2471
2472 /* Find the suitable components and split them into chains. */
2473 components = filter_suitable_components (loop, components);
2474
2475 tmp_vars = BITMAP_ALLOC (NULL);
2476 looparound_phis = BITMAP_ALLOC (NULL);
2477 determine_roots (loop, components, &chains);
2478 release_components (components);
2479
2480 if (!chains.exists ())
2481 {
2482 if (dump_file && (dump_flags & TDF_DETAILS))
2483 fprintf (dump_file,
2484 "Predictive commoning failed: no suitable chains\n");
2485 goto end;
2486 }
2487 prepare_initializers (loop, chains);
2488
2489 /* Try to combine the chains that are always worked with together. */
2490 try_combine_chains (&chains);
2491
2492 if (dump_file && (dump_flags & TDF_DETAILS))
2493 {
2494 fprintf (dump_file, "Before commoning:\n\n");
2495 dump_chains (dump_file, chains);
2496 }
2497
2498 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2499 that its number of iterations is divisible by the factor. */
2500 unroll_factor = determine_unroll_factor (chains);
2501 scev_reset ();
2502 unroll = (unroll_factor > 1
2503 && can_unroll_loop_p (loop, unroll_factor, &desc));
2504 exit = single_dom_exit (loop);
2505
2506 /* Execute the predictive commoning transformations, and possibly unroll the
2507 loop. */
2508 if (unroll)
2509 {
2510 struct epcc_data dta;
2511
2512 if (dump_file && (dump_flags & TDF_DETAILS))
2513 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2514
2515 dta.chains = chains;
2516 dta.tmp_vars = tmp_vars;
2517
2518 update_ssa (TODO_update_ssa_only_virtuals);
2519
2520 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2521 execute_pred_commoning_cbck is called may cause phi nodes to be
2522 reallocated, which is a problem since CHAINS may point to these
2523 statements. To fix this, we store the ssa names defined by the
2524 phi nodes here instead of the phi nodes themselves, and restore
2525 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2526 replace_phis_by_defined_names (chains);
2527
2528 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2529 execute_pred_commoning_cbck, &dta);
2530 eliminate_temp_copies (loop, tmp_vars);
2531 }
2532 else
2533 {
2534 if (dump_file && (dump_flags & TDF_DETAILS))
2535 fprintf (dump_file,
2536 "Executing predictive commoning without unrolling.\n");
2537 execute_pred_commoning (loop, chains, tmp_vars);
2538 }
2539
2540 end: ;
2541 release_chains (chains);
2542 free_data_refs (datarefs);
2543 BITMAP_FREE (tmp_vars);
2544 BITMAP_FREE (looparound_phis);
2545
2546 free_affine_expand_cache (&name_expansions);
2547
2548 return unroll;
2549 }
2550
2551 /* Runs predictive commoning. */
2552
2553 unsigned
2554 tree_predictive_commoning (void)
2555 {
2556 bool unrolled = false;
2557 struct loop *loop;
2558 unsigned ret = 0;
2559
2560 initialize_original_copy_tables ();
2561 FOR_EACH_LOOP (loop, LI_ONLY_INNERMOST)
2562 if (optimize_loop_for_speed_p (loop))
2563 {
2564 unrolled |= tree_predictive_commoning_loop (loop);
2565 }
2566
2567 if (unrolled)
2568 {
2569 scev_reset ();
2570 ret = TODO_cleanup_cfg;
2571 }
2572 free_original_copy_tables ();
2573
2574 return ret;
2575 }
2576
2577 /* Predictive commoning Pass. */
2578
2579 static unsigned
2580 run_tree_predictive_commoning (struct function *fun)
2581 {
2582 if (number_of_loops (fun) <= 1)
2583 return 0;
2584
2585 return tree_predictive_commoning ();
2586 }
2587
2588 namespace {
2589
2590 const pass_data pass_data_predcom =
2591 {
2592 GIMPLE_PASS, /* type */
2593 "pcom", /* name */
2594 OPTGROUP_LOOP, /* optinfo_flags */
2595 TV_PREDCOM, /* tv_id */
2596 PROP_cfg, /* properties_required */
2597 0, /* properties_provided */
2598 0, /* properties_destroyed */
2599 0, /* todo_flags_start */
2600 TODO_update_ssa_only_virtuals, /* todo_flags_finish */
2601 };
2602
2603 class pass_predcom : public gimple_opt_pass
2604 {
2605 public:
2606 pass_predcom (gcc::context *ctxt)
2607 : gimple_opt_pass (pass_data_predcom, ctxt)
2608 {}
2609
2610 /* opt_pass methods: */
2611 virtual bool gate (function *) { return flag_predictive_commoning != 0; }
2612 virtual unsigned int execute (function *fun)
2613 {
2614 return run_tree_predictive_commoning (fun);
2615 }
2616
2617 }; // class pass_predcom
2618
2619 } // anon namespace
2620
2621 gimple_opt_pass *
2622 make_pass_predcom (gcc::context *ctxt)
2623 {
2624 return new pass_predcom (ctxt);
2625 }
2626
2627