Daily bump.
[gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
33
34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
67
68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
136
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "tree-pretty-print.h"
202 #include "gimple-pretty-print.h"
203 #include "tree-pass.h"
204 #include "tree-affine.h"
205 #include "tree-inline.h"
206
207 /* The maximum number of iterations between the considered memory
208 references. */
209
210 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
211
212 /* Data references (or phi nodes that carry data reference values across
213 loop iterations). */
214
215 typedef struct dref_d
216 {
217 /* The reference itself. */
218 struct data_reference *ref;
219
220 /* The statement in that the reference appears. */
221 gimple stmt;
222
223 /* In case that STMT is a phi node, this field is set to the SSA name
224 defined by it in replace_phis_by_defined_names (in order to avoid
225 pointing to phi node that got reallocated in the meantime). */
226 tree name_defined_by_phi;
227
228 /* Distance of the reference from the root of the chain (in number of
229 iterations of the loop). */
230 unsigned distance;
231
232 /* Number of iterations offset from the first reference in the component. */
233 double_int offset;
234
235 /* Number of the reference in a component, in dominance ordering. */
236 unsigned pos;
237
238 /* True if the memory reference is always accessed when the loop is
239 entered. */
240 unsigned always_accessed : 1;
241 } *dref;
242
243 DEF_VEC_P (dref);
244 DEF_VEC_ALLOC_P (dref, heap);
245
246 /* Type of the chain of the references. */
247
248 enum chain_type
249 {
250 /* The addresses of the references in the chain are constant. */
251 CT_INVARIANT,
252
253 /* There are only loads in the chain. */
254 CT_LOAD,
255
256 /* Root of the chain is store, the rest are loads. */
257 CT_STORE_LOAD,
258
259 /* A combination of two chains. */
260 CT_COMBINATION
261 };
262
263 /* Chains of data references. */
264
265 typedef struct chain
266 {
267 /* Type of the chain. */
268 enum chain_type type;
269
270 /* For combination chains, the operator and the two chains that are
271 combined, and the type of the result. */
272 enum tree_code op;
273 tree rslt_type;
274 struct chain *ch1, *ch2;
275
276 /* The references in the chain. */
277 VEC(dref,heap) *refs;
278
279 /* The maximum distance of the reference in the chain from the root. */
280 unsigned length;
281
282 /* The variables used to copy the value throughout iterations. */
283 VEC(tree,heap) *vars;
284
285 /* Initializers for the variables. */
286 VEC(tree,heap) *inits;
287
288 /* True if there is a use of a variable with the maximal distance
289 that comes after the root in the loop. */
290 unsigned has_max_use_after : 1;
291
292 /* True if all the memory references in the chain are always accessed. */
293 unsigned all_always_accessed : 1;
294
295 /* True if this chain was combined together with some other chain. */
296 unsigned combined : 1;
297 } *chain_p;
298
299 DEF_VEC_P (chain_p);
300 DEF_VEC_ALLOC_P (chain_p, heap);
301
302 /* Describes the knowledge about the step of the memory references in
303 the component. */
304
305 enum ref_step_type
306 {
307 /* The step is zero. */
308 RS_INVARIANT,
309
310 /* The step is nonzero. */
311 RS_NONZERO,
312
313 /* The step may or may not be nonzero. */
314 RS_ANY
315 };
316
317 /* Components of the data dependence graph. */
318
319 struct component
320 {
321 /* The references in the component. */
322 VEC(dref,heap) *refs;
323
324 /* What we know about the step of the references in the component. */
325 enum ref_step_type comp_step;
326
327 /* Next component in the list. */
328 struct component *next;
329 };
330
331 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
332
333 static bitmap looparound_phis;
334
335 /* Cache used by tree_to_aff_combination_expand. */
336
337 static struct pointer_map_t *name_expansions;
338
339 /* Dumps data reference REF to FILE. */
340
341 extern void dump_dref (FILE *, dref);
342 void
343 dump_dref (FILE *file, dref ref)
344 {
345 if (ref->ref)
346 {
347 fprintf (file, " ");
348 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
349 fprintf (file, " (id %u%s)\n", ref->pos,
350 DR_IS_READ (ref->ref) ? "" : ", write");
351
352 fprintf (file, " offset ");
353 dump_double_int (file, ref->offset, false);
354 fprintf (file, "\n");
355
356 fprintf (file, " distance %u\n", ref->distance);
357 }
358 else
359 {
360 if (gimple_code (ref->stmt) == GIMPLE_PHI)
361 fprintf (file, " looparound ref\n");
362 else
363 fprintf (file, " combination ref\n");
364 fprintf (file, " in statement ");
365 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
366 fprintf (file, "\n");
367 fprintf (file, " distance %u\n", ref->distance);
368 }
369
370 }
371
372 /* Dumps CHAIN to FILE. */
373
374 extern void dump_chain (FILE *, chain_p);
375 void
376 dump_chain (FILE *file, chain_p chain)
377 {
378 dref a;
379 const char *chain_type;
380 unsigned i;
381 tree var;
382
383 switch (chain->type)
384 {
385 case CT_INVARIANT:
386 chain_type = "Load motion";
387 break;
388
389 case CT_LOAD:
390 chain_type = "Loads-only";
391 break;
392
393 case CT_STORE_LOAD:
394 chain_type = "Store-loads";
395 break;
396
397 case CT_COMBINATION:
398 chain_type = "Combination";
399 break;
400
401 default:
402 gcc_unreachable ();
403 }
404
405 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
406 chain->combined ? " (combined)" : "");
407 if (chain->type != CT_INVARIANT)
408 fprintf (file, " max distance %u%s\n", chain->length,
409 chain->has_max_use_after ? "" : ", may reuse first");
410
411 if (chain->type == CT_COMBINATION)
412 {
413 fprintf (file, " equal to %p %s %p in type ",
414 (void *) chain->ch1, op_symbol_code (chain->op),
415 (void *) chain->ch2);
416 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
417 fprintf (file, "\n");
418 }
419
420 if (chain->vars)
421 {
422 fprintf (file, " vars");
423 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
424 {
425 fprintf (file, " ");
426 print_generic_expr (file, var, TDF_SLIM);
427 }
428 fprintf (file, "\n");
429 }
430
431 if (chain->inits)
432 {
433 fprintf (file, " inits");
434 FOR_EACH_VEC_ELT (tree, chain->inits, i, var)
435 {
436 fprintf (file, " ");
437 print_generic_expr (file, var, TDF_SLIM);
438 }
439 fprintf (file, "\n");
440 }
441
442 fprintf (file, " references:\n");
443 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
444 dump_dref (file, a);
445
446 fprintf (file, "\n");
447 }
448
449 /* Dumps CHAINS to FILE. */
450
451 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
452 void
453 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
454 {
455 chain_p chain;
456 unsigned i;
457
458 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
459 dump_chain (file, chain);
460 }
461
462 /* Dumps COMP to FILE. */
463
464 extern void dump_component (FILE *, struct component *);
465 void
466 dump_component (FILE *file, struct component *comp)
467 {
468 dref a;
469 unsigned i;
470
471 fprintf (file, "Component%s:\n",
472 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
473 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
474 dump_dref (file, a);
475 fprintf (file, "\n");
476 }
477
478 /* Dumps COMPS to FILE. */
479
480 extern void dump_components (FILE *, struct component *);
481 void
482 dump_components (FILE *file, struct component *comps)
483 {
484 struct component *comp;
485
486 for (comp = comps; comp; comp = comp->next)
487 dump_component (file, comp);
488 }
489
490 /* Frees a chain CHAIN. */
491
492 static void
493 release_chain (chain_p chain)
494 {
495 dref ref;
496 unsigned i;
497
498 if (chain == NULL)
499 return;
500
501 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
502 free (ref);
503
504 VEC_free (dref, heap, chain->refs);
505 VEC_free (tree, heap, chain->vars);
506 VEC_free (tree, heap, chain->inits);
507
508 free (chain);
509 }
510
511 /* Frees CHAINS. */
512
513 static void
514 release_chains (VEC (chain_p, heap) *chains)
515 {
516 unsigned i;
517 chain_p chain;
518
519 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
520 release_chain (chain);
521 VEC_free (chain_p, heap, chains);
522 }
523
524 /* Frees a component COMP. */
525
526 static void
527 release_component (struct component *comp)
528 {
529 VEC_free (dref, heap, comp->refs);
530 free (comp);
531 }
532
533 /* Frees list of components COMPS. */
534
535 static void
536 release_components (struct component *comps)
537 {
538 struct component *act, *next;
539
540 for (act = comps; act; act = next)
541 {
542 next = act->next;
543 release_component (act);
544 }
545 }
546
547 /* Finds a root of tree given by FATHERS containing A, and performs path
548 shortening. */
549
550 static unsigned
551 component_of (unsigned fathers[], unsigned a)
552 {
553 unsigned root, n;
554
555 for (root = a; root != fathers[root]; root = fathers[root])
556 continue;
557
558 for (; a != root; a = n)
559 {
560 n = fathers[a];
561 fathers[a] = root;
562 }
563
564 return root;
565 }
566
567 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
568 components, A and B are components to merge. */
569
570 static void
571 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
572 {
573 unsigned ca = component_of (fathers, a);
574 unsigned cb = component_of (fathers, b);
575
576 if (ca == cb)
577 return;
578
579 if (sizes[ca] < sizes[cb])
580 {
581 sizes[cb] += sizes[ca];
582 fathers[ca] = cb;
583 }
584 else
585 {
586 sizes[ca] += sizes[cb];
587 fathers[cb] = ca;
588 }
589 }
590
591 /* Returns true if A is a reference that is suitable for predictive commoning
592 in the innermost loop that contains it. REF_STEP is set according to the
593 step of the reference A. */
594
595 static bool
596 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
597 {
598 tree ref = DR_REF (a), step = DR_STEP (a);
599
600 if (!step
601 || TREE_THIS_VOLATILE (ref)
602 || !is_gimple_reg_type (TREE_TYPE (ref))
603 || tree_could_throw_p (ref))
604 return false;
605
606 if (integer_zerop (step))
607 *ref_step = RS_INVARIANT;
608 else if (integer_nonzerop (step))
609 *ref_step = RS_NONZERO;
610 else
611 *ref_step = RS_ANY;
612
613 return true;
614 }
615
616 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
617
618 static void
619 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
620 {
621 tree type = TREE_TYPE (DR_OFFSET (dr));
622 aff_tree delta;
623
624 tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset,
625 &name_expansions);
626 aff_combination_const (&delta, type, tree_to_double_int (DR_INIT (dr)));
627 aff_combination_add (offset, &delta);
628 }
629
630 /* Determines number of iterations of the innermost enclosing loop before B
631 refers to exactly the same location as A and stores it to OFF. If A and
632 B do not have the same step, they never meet, or anything else fails,
633 returns false, otherwise returns true. Both A and B are assumed to
634 satisfy suitable_reference_p. */
635
636 static bool
637 determine_offset (struct data_reference *a, struct data_reference *b,
638 double_int *off)
639 {
640 aff_tree diff, baseb, step;
641 tree typea, typeb;
642
643 /* Check that both the references access the location in the same type. */
644 typea = TREE_TYPE (DR_REF (a));
645 typeb = TREE_TYPE (DR_REF (b));
646 if (!useless_type_conversion_p (typeb, typea))
647 return false;
648
649 /* Check whether the base address and the step of both references is the
650 same. */
651 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
652 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
653 return false;
654
655 if (integer_zerop (DR_STEP (a)))
656 {
657 /* If the references have loop invariant address, check that they access
658 exactly the same location. */
659 *off = double_int_zero;
660 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
661 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
662 }
663
664 /* Compare the offsets of the addresses, and check whether the difference
665 is a multiple of step. */
666 aff_combination_dr_offset (a, &diff);
667 aff_combination_dr_offset (b, &baseb);
668 aff_combination_scale (&baseb, double_int_minus_one);
669 aff_combination_add (&diff, &baseb);
670
671 tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)),
672 &step, &name_expansions);
673 return aff_combination_constant_multiple_p (&diff, &step, off);
674 }
675
676 /* Returns the last basic block in LOOP for that we are sure that
677 it is executed whenever the loop is entered. */
678
679 static basic_block
680 last_always_executed_block (struct loop *loop)
681 {
682 unsigned i;
683 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
684 edge ex;
685 basic_block last = loop->latch;
686
687 FOR_EACH_VEC_ELT (edge, exits, i, ex)
688 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
689 VEC_free (edge, heap, exits);
690
691 return last;
692 }
693
694 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
695
696 static struct component *
697 split_data_refs_to_components (struct loop *loop,
698 VEC (data_reference_p, heap) *datarefs,
699 VEC (ddr_p, heap) *depends)
700 {
701 unsigned i, n = VEC_length (data_reference_p, datarefs);
702 unsigned ca, ia, ib, bad;
703 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
704 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
705 struct component **comps;
706 struct data_reference *dr, *dra, *drb;
707 struct data_dependence_relation *ddr;
708 struct component *comp_list = NULL, *comp;
709 dref dataref;
710 basic_block last_always_executed = last_always_executed_block (loop);
711
712 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
713 {
714 if (!DR_REF (dr))
715 {
716 /* A fake reference for call or asm_expr that may clobber memory;
717 just fail. */
718 goto end;
719 }
720 dr->aux = (void *) (size_t) i;
721 comp_father[i] = i;
722 comp_size[i] = 1;
723 }
724
725 /* A component reserved for the "bad" data references. */
726 comp_father[n] = n;
727 comp_size[n] = 1;
728
729 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
730 {
731 enum ref_step_type dummy;
732
733 if (!suitable_reference_p (dr, &dummy))
734 {
735 ia = (unsigned) (size_t) dr->aux;
736 merge_comps (comp_father, comp_size, n, ia);
737 }
738 }
739
740 FOR_EACH_VEC_ELT (ddr_p, depends, i, ddr)
741 {
742 double_int dummy_off;
743
744 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
745 continue;
746
747 dra = DDR_A (ddr);
748 drb = DDR_B (ddr);
749 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
750 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
751 if (ia == ib)
752 continue;
753
754 bad = component_of (comp_father, n);
755
756 /* If both A and B are reads, we may ignore unsuitable dependences. */
757 if (DR_IS_READ (dra) && DR_IS_READ (drb)
758 && (ia == bad || ib == bad
759 || !determine_offset (dra, drb, &dummy_off)))
760 continue;
761
762 merge_comps (comp_father, comp_size, ia, ib);
763 }
764
765 comps = XCNEWVEC (struct component *, n);
766 bad = component_of (comp_father, n);
767 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
768 {
769 ia = (unsigned) (size_t) dr->aux;
770 ca = component_of (comp_father, ia);
771 if (ca == bad)
772 continue;
773
774 comp = comps[ca];
775 if (!comp)
776 {
777 comp = XCNEW (struct component);
778 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
779 comps[ca] = comp;
780 }
781
782 dataref = XCNEW (struct dref_d);
783 dataref->ref = dr;
784 dataref->stmt = DR_STMT (dr);
785 dataref->offset = double_int_zero;
786 dataref->distance = 0;
787
788 dataref->always_accessed
789 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
790 gimple_bb (dataref->stmt));
791 dataref->pos = VEC_length (dref, comp->refs);
792 VEC_quick_push (dref, comp->refs, dataref);
793 }
794
795 for (i = 0; i < n; i++)
796 {
797 comp = comps[i];
798 if (comp)
799 {
800 comp->next = comp_list;
801 comp_list = comp;
802 }
803 }
804 free (comps);
805
806 end:
807 free (comp_father);
808 free (comp_size);
809 return comp_list;
810 }
811
812 /* Returns true if the component COMP satisfies the conditions
813 described in 2) at the beginning of this file. LOOP is the current
814 loop. */
815
816 static bool
817 suitable_component_p (struct loop *loop, struct component *comp)
818 {
819 unsigned i;
820 dref a, first;
821 basic_block ba, bp = loop->header;
822 bool ok, has_write = false;
823
824 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
825 {
826 ba = gimple_bb (a->stmt);
827
828 if (!just_once_each_iteration_p (loop, ba))
829 return false;
830
831 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
832 bp = ba;
833
834 if (DR_IS_WRITE (a->ref))
835 has_write = true;
836 }
837
838 first = VEC_index (dref, comp->refs, 0);
839 ok = suitable_reference_p (first->ref, &comp->comp_step);
840 gcc_assert (ok);
841 first->offset = double_int_zero;
842
843 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
844 {
845 if (!determine_offset (first->ref, a->ref, &a->offset))
846 return false;
847
848 #ifdef ENABLE_CHECKING
849 {
850 enum ref_step_type a_step;
851 ok = suitable_reference_p (a->ref, &a_step);
852 gcc_assert (ok && a_step == comp->comp_step);
853 }
854 #endif
855 }
856
857 /* If there is a write inside the component, we must know whether the
858 step is nonzero or not -- we would not otherwise be able to recognize
859 whether the value accessed by reads comes from the OFFSET-th iteration
860 or the previous one. */
861 if (has_write && comp->comp_step == RS_ANY)
862 return false;
863
864 return true;
865 }
866
867 /* Check the conditions on references inside each of components COMPS,
868 and remove the unsuitable components from the list. The new list
869 of components is returned. The conditions are described in 2) at
870 the beginning of this file. LOOP is the current loop. */
871
872 static struct component *
873 filter_suitable_components (struct loop *loop, struct component *comps)
874 {
875 struct component **comp, *act;
876
877 for (comp = &comps; *comp; )
878 {
879 act = *comp;
880 if (suitable_component_p (loop, act))
881 comp = &act->next;
882 else
883 {
884 dref ref;
885 unsigned i;
886
887 *comp = act->next;
888 FOR_EACH_VEC_ELT (dref, act->refs, i, ref)
889 free (ref);
890 release_component (act);
891 }
892 }
893
894 return comps;
895 }
896
897 /* Compares two drefs A and B by their offset and position. Callback for
898 qsort. */
899
900 static int
901 order_drefs (const void *a, const void *b)
902 {
903 const dref *const da = (const dref *) a;
904 const dref *const db = (const dref *) b;
905 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
906
907 if (offcmp != 0)
908 return offcmp;
909
910 return (*da)->pos - (*db)->pos;
911 }
912
913 /* Returns root of the CHAIN. */
914
915 static inline dref
916 get_chain_root (chain_p chain)
917 {
918 return VEC_index (dref, chain->refs, 0);
919 }
920
921 /* Adds REF to the chain CHAIN. */
922
923 static void
924 add_ref_to_chain (chain_p chain, dref ref)
925 {
926 dref root = get_chain_root (chain);
927 double_int dist;
928
929 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
930 dist = double_int_sub (ref->offset, root->offset);
931 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
932 {
933 free (ref);
934 return;
935 }
936 gcc_assert (double_int_fits_in_uhwi_p (dist));
937
938 VEC_safe_push (dref, heap, chain->refs, ref);
939
940 ref->distance = double_int_to_uhwi (dist);
941
942 if (ref->distance >= chain->length)
943 {
944 chain->length = ref->distance;
945 chain->has_max_use_after = false;
946 }
947
948 if (ref->distance == chain->length
949 && ref->pos > root->pos)
950 chain->has_max_use_after = true;
951
952 chain->all_always_accessed &= ref->always_accessed;
953 }
954
955 /* Returns the chain for invariant component COMP. */
956
957 static chain_p
958 make_invariant_chain (struct component *comp)
959 {
960 chain_p chain = XCNEW (struct chain);
961 unsigned i;
962 dref ref;
963
964 chain->type = CT_INVARIANT;
965
966 chain->all_always_accessed = true;
967
968 FOR_EACH_VEC_ELT (dref, comp->refs, i, ref)
969 {
970 VEC_safe_push (dref, heap, chain->refs, ref);
971 chain->all_always_accessed &= ref->always_accessed;
972 }
973
974 return chain;
975 }
976
977 /* Make a new chain rooted at REF. */
978
979 static chain_p
980 make_rooted_chain (dref ref)
981 {
982 chain_p chain = XCNEW (struct chain);
983
984 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
985
986 VEC_safe_push (dref, heap, chain->refs, ref);
987 chain->all_always_accessed = ref->always_accessed;
988
989 ref->distance = 0;
990
991 return chain;
992 }
993
994 /* Returns true if CHAIN is not trivial. */
995
996 static bool
997 nontrivial_chain_p (chain_p chain)
998 {
999 return chain != NULL && VEC_length (dref, chain->refs) > 1;
1000 }
1001
1002 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1003 is no such name. */
1004
1005 static tree
1006 name_for_ref (dref ref)
1007 {
1008 tree name;
1009
1010 if (is_gimple_assign (ref->stmt))
1011 {
1012 if (!ref->ref || DR_IS_READ (ref->ref))
1013 name = gimple_assign_lhs (ref->stmt);
1014 else
1015 name = gimple_assign_rhs1 (ref->stmt);
1016 }
1017 else
1018 name = PHI_RESULT (ref->stmt);
1019
1020 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1021 }
1022
1023 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1024 iterations of the innermost enclosing loop). */
1025
1026 static bool
1027 valid_initializer_p (struct data_reference *ref,
1028 unsigned distance, struct data_reference *root)
1029 {
1030 aff_tree diff, base, step;
1031 double_int off;
1032
1033 /* Both REF and ROOT must be accessing the same object. */
1034 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1035 return false;
1036
1037 /* The initializer is defined outside of loop, hence its address must be
1038 invariant inside the loop. */
1039 gcc_assert (integer_zerop (DR_STEP (ref)));
1040
1041 /* If the address of the reference is invariant, initializer must access
1042 exactly the same location. */
1043 if (integer_zerop (DR_STEP (root)))
1044 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1045 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1046
1047 /* Verify that this index of REF is equal to the root's index at
1048 -DISTANCE-th iteration. */
1049 aff_combination_dr_offset (root, &diff);
1050 aff_combination_dr_offset (ref, &base);
1051 aff_combination_scale (&base, double_int_minus_one);
1052 aff_combination_add (&diff, &base);
1053
1054 tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)),
1055 &step, &name_expansions);
1056 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1057 return false;
1058
1059 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1060 return false;
1061
1062 return true;
1063 }
1064
1065 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1066 initial value is correct (equal to initial value of REF shifted by one
1067 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1068 is the root of the current chain. */
1069
1070 static gimple
1071 find_looparound_phi (struct loop *loop, dref ref, dref root)
1072 {
1073 tree name, init, init_ref;
1074 gimple phi = NULL, init_stmt;
1075 edge latch = loop_latch_edge (loop);
1076 struct data_reference init_dr;
1077 gimple_stmt_iterator psi;
1078
1079 if (is_gimple_assign (ref->stmt))
1080 {
1081 if (DR_IS_READ (ref->ref))
1082 name = gimple_assign_lhs (ref->stmt);
1083 else
1084 name = gimple_assign_rhs1 (ref->stmt);
1085 }
1086 else
1087 name = PHI_RESULT (ref->stmt);
1088 if (!name)
1089 return NULL;
1090
1091 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1092 {
1093 phi = gsi_stmt (psi);
1094 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1095 break;
1096 }
1097
1098 if (gsi_end_p (psi))
1099 return NULL;
1100
1101 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1102 if (TREE_CODE (init) != SSA_NAME)
1103 return NULL;
1104 init_stmt = SSA_NAME_DEF_STMT (init);
1105 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1106 return NULL;
1107 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1108
1109 init_ref = gimple_assign_rhs1 (init_stmt);
1110 if (!REFERENCE_CLASS_P (init_ref)
1111 && !DECL_P (init_ref))
1112 return NULL;
1113
1114 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1115 loop enclosing PHI). */
1116 memset (&init_dr, 0, sizeof (struct data_reference));
1117 DR_REF (&init_dr) = init_ref;
1118 DR_STMT (&init_dr) = phi;
1119 if (!dr_analyze_innermost (&init_dr, loop))
1120 return NULL;
1121
1122 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1123 return NULL;
1124
1125 return phi;
1126 }
1127
1128 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1129
1130 static void
1131 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1132 {
1133 dref nw = XCNEW (struct dref_d), aref;
1134 unsigned i;
1135
1136 nw->stmt = phi;
1137 nw->distance = ref->distance + 1;
1138 nw->always_accessed = 1;
1139
1140 FOR_EACH_VEC_ELT (dref, chain->refs, i, aref)
1141 if (aref->distance >= nw->distance)
1142 break;
1143 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1144
1145 if (nw->distance > chain->length)
1146 {
1147 chain->length = nw->distance;
1148 chain->has_max_use_after = false;
1149 }
1150 }
1151
1152 /* For references in CHAIN that are copied around the LOOP (created previously
1153 by PRE, or by user), add the results of such copies to the chain. This
1154 enables us to remove the copies by unrolling, and may need less registers
1155 (also, it may allow us to combine chains together). */
1156
1157 static void
1158 add_looparound_copies (struct loop *loop, chain_p chain)
1159 {
1160 unsigned i;
1161 dref ref, root = get_chain_root (chain);
1162 gimple phi;
1163
1164 FOR_EACH_VEC_ELT (dref, chain->refs, i, ref)
1165 {
1166 phi = find_looparound_phi (loop, ref, root);
1167 if (!phi)
1168 continue;
1169
1170 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1171 insert_looparound_copy (chain, ref, phi);
1172 }
1173 }
1174
1175 /* Find roots of the values and determine distances in the component COMP.
1176 The references are redistributed into CHAINS. LOOP is the current
1177 loop. */
1178
1179 static void
1180 determine_roots_comp (struct loop *loop,
1181 struct component *comp,
1182 VEC (chain_p, heap) **chains)
1183 {
1184 unsigned i;
1185 dref a;
1186 chain_p chain = NULL;
1187 double_int last_ofs = double_int_zero;
1188
1189 /* Invariants are handled specially. */
1190 if (comp->comp_step == RS_INVARIANT)
1191 {
1192 chain = make_invariant_chain (comp);
1193 VEC_safe_push (chain_p, heap, *chains, chain);
1194 return;
1195 }
1196
1197 VEC_qsort (dref, comp->refs, order_drefs);
1198
1199 FOR_EACH_VEC_ELT (dref, comp->refs, i, a)
1200 {
1201 if (!chain || DR_IS_WRITE (a->ref)
1202 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1203 double_int_sub (a->offset, last_ofs)) <= 0)
1204 {
1205 if (nontrivial_chain_p (chain))
1206 {
1207 add_looparound_copies (loop, chain);
1208 VEC_safe_push (chain_p, heap, *chains, chain);
1209 }
1210 else
1211 release_chain (chain);
1212 chain = make_rooted_chain (a);
1213 last_ofs = a->offset;
1214 continue;
1215 }
1216
1217 add_ref_to_chain (chain, a);
1218 }
1219
1220 if (nontrivial_chain_p (chain))
1221 {
1222 add_looparound_copies (loop, chain);
1223 VEC_safe_push (chain_p, heap, *chains, chain);
1224 }
1225 else
1226 release_chain (chain);
1227 }
1228
1229 /* Find roots of the values and determine distances in components COMPS, and
1230 separates the references to CHAINS. LOOP is the current loop. */
1231
1232 static void
1233 determine_roots (struct loop *loop,
1234 struct component *comps, VEC (chain_p, heap) **chains)
1235 {
1236 struct component *comp;
1237
1238 for (comp = comps; comp; comp = comp->next)
1239 determine_roots_comp (loop, comp, chains);
1240 }
1241
1242 /* Replace the reference in statement STMT with temporary variable
1243 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1244 the reference in the statement. IN_LHS is true if the reference
1245 is in the lhs of STMT, false if it is in rhs. */
1246
1247 static void
1248 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1249 {
1250 tree val;
1251 gimple new_stmt;
1252 gimple_stmt_iterator bsi, psi;
1253
1254 if (gimple_code (stmt) == GIMPLE_PHI)
1255 {
1256 gcc_assert (!in_lhs && !set);
1257
1258 val = PHI_RESULT (stmt);
1259 bsi = gsi_after_labels (gimple_bb (stmt));
1260 psi = gsi_for_stmt (stmt);
1261 remove_phi_node (&psi, false);
1262
1263 /* Turn the phi node into GIMPLE_ASSIGN. */
1264 new_stmt = gimple_build_assign (val, new_tree);
1265 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1266 return;
1267 }
1268
1269 /* Since the reference is of gimple_reg type, it should only
1270 appear as lhs or rhs of modify statement. */
1271 gcc_assert (is_gimple_assign (stmt));
1272
1273 bsi = gsi_for_stmt (stmt);
1274
1275 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1276 if (!set)
1277 {
1278 gcc_assert (!in_lhs);
1279 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1280 stmt = gsi_stmt (bsi);
1281 update_stmt (stmt);
1282 return;
1283 }
1284
1285 if (in_lhs)
1286 {
1287 /* We have statement
1288
1289 OLD = VAL
1290
1291 If OLD is a memory reference, then VAL is gimple_val, and we transform
1292 this to
1293
1294 OLD = VAL
1295 NEW = VAL
1296
1297 Otherwise, we are replacing a combination chain,
1298 VAL is the expression that performs the combination, and OLD is an
1299 SSA name. In this case, we transform the assignment to
1300
1301 OLD = VAL
1302 NEW = OLD
1303
1304 */
1305
1306 val = gimple_assign_lhs (stmt);
1307 if (TREE_CODE (val) != SSA_NAME)
1308 {
1309 val = gimple_assign_rhs1 (stmt);
1310 gcc_assert (gimple_assign_single_p (stmt));
1311 if (TREE_CLOBBER_P (val))
1312 {
1313 val = gimple_default_def (cfun, SSA_NAME_VAR (new_tree));
1314 if (val == NULL_TREE)
1315 {
1316 val = make_ssa_name (SSA_NAME_VAR (new_tree),
1317 gimple_build_nop ());
1318 set_default_def (SSA_NAME_VAR (new_tree), val);
1319 }
1320 }
1321 else
1322 gcc_assert (gimple_assign_copy_p (stmt));
1323 }
1324 }
1325 else
1326 {
1327 /* VAL = OLD
1328
1329 is transformed to
1330
1331 VAL = OLD
1332 NEW = VAL */
1333
1334 val = gimple_assign_lhs (stmt);
1335 }
1336
1337 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1338 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1339 }
1340
1341 /* Returns the reference to the address of REF in the ITER-th iteration of
1342 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1343 try to preserve the original shape of the reference (not rewrite it
1344 as an indirect ref to the address), to make tree_could_trap_p in
1345 prepare_initializers_chain return false more often. */
1346
1347 static tree
1348 ref_at_iteration (struct loop *loop, tree ref, int iter)
1349 {
1350 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1351 affine_iv iv;
1352 bool ok;
1353
1354 if (handled_component_p (ref))
1355 {
1356 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1357 if (!op0)
1358 return NULL_TREE;
1359 }
1360 else if (!INDIRECT_REF_P (ref)
1361 && TREE_CODE (ref) != MEM_REF)
1362 return unshare_expr (ref);
1363
1364 if (TREE_CODE (ref) == MEM_REF)
1365 {
1366 ret = unshare_expr (ref);
1367 idx = TREE_OPERAND (ref, 0);
1368 idx_p = &TREE_OPERAND (ret, 0);
1369 }
1370 else if (TREE_CODE (ref) == COMPONENT_REF)
1371 {
1372 /* Check that the offset is loop invariant. */
1373 if (TREE_OPERAND (ref, 2)
1374 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1375 return NULL_TREE;
1376
1377 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1378 unshare_expr (TREE_OPERAND (ref, 1)),
1379 unshare_expr (TREE_OPERAND (ref, 2)));
1380 }
1381 else if (TREE_CODE (ref) == ARRAY_REF)
1382 {
1383 /* Check that the lower bound and the step are loop invariant. */
1384 if (TREE_OPERAND (ref, 2)
1385 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1386 return NULL_TREE;
1387 if (TREE_OPERAND (ref, 3)
1388 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1389 return NULL_TREE;
1390
1391 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1392 unshare_expr (TREE_OPERAND (ref, 2)),
1393 unshare_expr (TREE_OPERAND (ref, 3)));
1394 idx = TREE_OPERAND (ref, 1);
1395 idx_p = &TREE_OPERAND (ret, 1);
1396 }
1397 else
1398 return NULL_TREE;
1399
1400 ok = simple_iv (loop, loop, idx, &iv, true);
1401 if (!ok)
1402 return NULL_TREE;
1403 iv.base = expand_simple_operations (iv.base);
1404 if (integer_zerop (iv.step))
1405 *idx_p = unshare_expr (iv.base);
1406 else
1407 {
1408 type = TREE_TYPE (iv.base);
1409 if (POINTER_TYPE_P (type))
1410 {
1411 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1412 size_int (iter));
1413 val = fold_build_pointer_plus (iv.base, val);
1414 }
1415 else
1416 {
1417 val = fold_build2 (MULT_EXPR, type, iv.step,
1418 build_int_cst_type (type, iter));
1419 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1420 }
1421 *idx_p = unshare_expr (val);
1422 }
1423
1424 return ret;
1425 }
1426
1427 /* Get the initialization expression for the INDEX-th temporary variable
1428 of CHAIN. */
1429
1430 static tree
1431 get_init_expr (chain_p chain, unsigned index)
1432 {
1433 if (chain->type == CT_COMBINATION)
1434 {
1435 tree e1 = get_init_expr (chain->ch1, index);
1436 tree e2 = get_init_expr (chain->ch2, index);
1437
1438 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1439 }
1440 else
1441 return VEC_index (tree, chain->inits, index);
1442 }
1443
1444 /* Marks all virtual operands of statement STMT for renaming. */
1445
1446 void
1447 mark_virtual_ops_for_renaming (gimple stmt)
1448 {
1449 tree var;
1450
1451 if (gimple_code (stmt) == GIMPLE_PHI)
1452 {
1453 var = PHI_RESULT (stmt);
1454 if (is_gimple_reg (var))
1455 return;
1456
1457 if (TREE_CODE (var) == SSA_NAME)
1458 var = SSA_NAME_VAR (var);
1459 mark_sym_for_renaming (var);
1460 return;
1461 }
1462
1463 update_stmt (stmt);
1464 if (gimple_vuse (stmt))
1465 mark_sym_for_renaming (gimple_vop (cfun));
1466 }
1467
1468 /* Returns a new temporary variable used for the I-th variable carrying
1469 value of REF. The variable's uid is marked in TMP_VARS. */
1470
1471 static tree
1472 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1473 {
1474 tree type = TREE_TYPE (ref);
1475 /* We never access the components of the temporary variable in predictive
1476 commoning. */
1477 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1478
1479 add_referenced_var (var);
1480 bitmap_set_bit (tmp_vars, DECL_UID (var));
1481 return var;
1482 }
1483
1484 /* Creates the variables for CHAIN, as well as phi nodes for them and
1485 initialization on entry to LOOP. Uids of the newly created
1486 temporary variables are marked in TMP_VARS. */
1487
1488 static void
1489 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1490 {
1491 unsigned i;
1492 unsigned n = chain->length;
1493 dref root = get_chain_root (chain);
1494 bool reuse_first = !chain->has_max_use_after;
1495 tree ref, init, var, next;
1496 gimple phi;
1497 gimple_seq stmts;
1498 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1499
1500 /* If N == 0, then all the references are within the single iteration. And
1501 since this is an nonempty chain, reuse_first cannot be true. */
1502 gcc_assert (n > 0 || !reuse_first);
1503
1504 chain->vars = VEC_alloc (tree, heap, n + 1);
1505
1506 if (chain->type == CT_COMBINATION)
1507 ref = gimple_assign_lhs (root->stmt);
1508 else
1509 ref = DR_REF (root->ref);
1510
1511 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1512 {
1513 var = predcom_tmp_var (ref, i, tmp_vars);
1514 VEC_quick_push (tree, chain->vars, var);
1515 }
1516 if (reuse_first)
1517 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1518
1519 FOR_EACH_VEC_ELT (tree, chain->vars, i, var)
1520 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1521
1522 for (i = 0; i < n; i++)
1523 {
1524 var = VEC_index (tree, chain->vars, i);
1525 next = VEC_index (tree, chain->vars, i + 1);
1526 init = get_init_expr (chain, i);
1527
1528 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1529 if (stmts)
1530 gsi_insert_seq_on_edge_immediate (entry, stmts);
1531
1532 phi = create_phi_node (var, loop->header);
1533 SSA_NAME_DEF_STMT (var) = phi;
1534 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1535 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1536 }
1537 }
1538
1539 /* Create the variables and initialization statement for root of chain
1540 CHAIN. Uids of the newly created temporary variables are marked
1541 in TMP_VARS. */
1542
1543 static void
1544 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1545 {
1546 dref root = get_chain_root (chain);
1547 bool in_lhs = (chain->type == CT_STORE_LOAD
1548 || chain->type == CT_COMBINATION);
1549
1550 initialize_root_vars (loop, chain, tmp_vars);
1551 replace_ref_with (root->stmt,
1552 VEC_index (tree, chain->vars, chain->length),
1553 true, in_lhs);
1554 }
1555
1556 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1557 initialization on entry to LOOP if necessary. The ssa name for the variable
1558 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1559 around the loop is created. Uid of the newly created temporary variable
1560 is marked in TMP_VARS. INITS is the list containing the (single)
1561 initializer. */
1562
1563 static void
1564 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1565 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1566 bitmap tmp_vars)
1567 {
1568 unsigned i;
1569 tree ref = DR_REF (root->ref), init, var, next;
1570 gimple_seq stmts;
1571 gimple phi;
1572 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1573
1574 /* Find the initializer for the variable, and check that it cannot
1575 trap. */
1576 init = VEC_index (tree, inits, 0);
1577
1578 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1579 var = predcom_tmp_var (ref, 0, tmp_vars);
1580 VEC_quick_push (tree, *vars, var);
1581 if (written)
1582 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1583
1584 FOR_EACH_VEC_ELT (tree, *vars, i, var)
1585 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1586
1587 var = VEC_index (tree, *vars, 0);
1588
1589 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1590 if (stmts)
1591 gsi_insert_seq_on_edge_immediate (entry, stmts);
1592
1593 if (written)
1594 {
1595 next = VEC_index (tree, *vars, 1);
1596 phi = create_phi_node (var, loop->header);
1597 SSA_NAME_DEF_STMT (var) = phi;
1598 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1599 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1600 }
1601 else
1602 {
1603 gimple init_stmt = gimple_build_assign (var, init);
1604 mark_virtual_ops_for_renaming (init_stmt);
1605 gsi_insert_on_edge_immediate (entry, init_stmt);
1606 }
1607 }
1608
1609
1610 /* Execute load motion for references in chain CHAIN. Uids of the newly
1611 created temporary variables are marked in TMP_VARS. */
1612
1613 static void
1614 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1615 {
1616 VEC (tree, heap) *vars;
1617 dref a;
1618 unsigned n_writes = 0, ridx, i;
1619 tree var;
1620
1621 gcc_assert (chain->type == CT_INVARIANT);
1622 gcc_assert (!chain->combined);
1623 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1624 if (DR_IS_WRITE (a->ref))
1625 n_writes++;
1626
1627 /* If there are no reads in the loop, there is nothing to do. */
1628 if (n_writes == VEC_length (dref, chain->refs))
1629 return;
1630
1631 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1632 &vars, chain->inits, tmp_vars);
1633
1634 ridx = 0;
1635 FOR_EACH_VEC_ELT (dref, chain->refs, i, a)
1636 {
1637 bool is_read = DR_IS_READ (a->ref);
1638 mark_virtual_ops_for_renaming (a->stmt);
1639
1640 if (DR_IS_WRITE (a->ref))
1641 {
1642 n_writes--;
1643 if (n_writes)
1644 {
1645 var = VEC_index (tree, vars, 0);
1646 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1647 VEC_replace (tree, vars, 0, var);
1648 }
1649 else
1650 ridx = 1;
1651 }
1652
1653 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1654 !is_read, !is_read);
1655 }
1656
1657 VEC_free (tree, heap, vars);
1658 }
1659
1660 /* Returns the single statement in that NAME is used, excepting
1661 the looparound phi nodes contained in one of the chains. If there is no
1662 such statement, or more statements, NULL is returned. */
1663
1664 static gimple
1665 single_nonlooparound_use (tree name)
1666 {
1667 use_operand_p use;
1668 imm_use_iterator it;
1669 gimple stmt, ret = NULL;
1670
1671 FOR_EACH_IMM_USE_FAST (use, it, name)
1672 {
1673 stmt = USE_STMT (use);
1674
1675 if (gimple_code (stmt) == GIMPLE_PHI)
1676 {
1677 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1678 could not be processed anyway, so just fail for them. */
1679 if (bitmap_bit_p (looparound_phis,
1680 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1681 continue;
1682
1683 return NULL;
1684 }
1685 else if (is_gimple_debug (stmt))
1686 continue;
1687 else if (ret != NULL)
1688 return NULL;
1689 else
1690 ret = stmt;
1691 }
1692
1693 return ret;
1694 }
1695
1696 /* Remove statement STMT, as well as the chain of assignments in that it is
1697 used. */
1698
1699 static void
1700 remove_stmt (gimple stmt)
1701 {
1702 tree name;
1703 gimple next;
1704 gimple_stmt_iterator psi;
1705
1706 if (gimple_code (stmt) == GIMPLE_PHI)
1707 {
1708 name = PHI_RESULT (stmt);
1709 next = single_nonlooparound_use (name);
1710 psi = gsi_for_stmt (stmt);
1711 remove_phi_node (&psi, true);
1712
1713 if (!next
1714 || !gimple_assign_ssa_name_copy_p (next)
1715 || gimple_assign_rhs1 (next) != name)
1716 return;
1717
1718 stmt = next;
1719 }
1720
1721 while (1)
1722 {
1723 gimple_stmt_iterator bsi;
1724
1725 bsi = gsi_for_stmt (stmt);
1726
1727 name = gimple_assign_lhs (stmt);
1728 gcc_assert (TREE_CODE (name) == SSA_NAME);
1729
1730 next = single_nonlooparound_use (name);
1731
1732 mark_virtual_ops_for_renaming (stmt);
1733 gsi_remove (&bsi, true);
1734 release_defs (stmt);
1735
1736 if (!next
1737 || !gimple_assign_ssa_name_copy_p (next)
1738 || gimple_assign_rhs1 (next) != name)
1739 return;
1740
1741 stmt = next;
1742 }
1743 }
1744
1745 /* Perform the predictive commoning optimization for a chain CHAIN.
1746 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1747
1748 static void
1749 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1750 bitmap tmp_vars)
1751 {
1752 unsigned i;
1753 dref a, root;
1754 tree var;
1755
1756 if (chain->combined)
1757 {
1758 /* For combined chains, just remove the statements that are used to
1759 compute the values of the expression (except for the root one). */
1760 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1761 remove_stmt (a->stmt);
1762 }
1763 else
1764 {
1765 /* For non-combined chains, set up the variables that hold its value,
1766 and replace the uses of the original references by these
1767 variables. */
1768 root = get_chain_root (chain);
1769 mark_virtual_ops_for_renaming (root->stmt);
1770
1771 initialize_root (loop, chain, tmp_vars);
1772 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1773 {
1774 mark_virtual_ops_for_renaming (a->stmt);
1775 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1776 replace_ref_with (a->stmt, var, false, false);
1777 }
1778 }
1779 }
1780
1781 /* Determines the unroll factor necessary to remove as many temporary variable
1782 copies as possible. CHAINS is the list of chains that will be
1783 optimized. */
1784
1785 static unsigned
1786 determine_unroll_factor (VEC (chain_p, heap) *chains)
1787 {
1788 chain_p chain;
1789 unsigned factor = 1, af, nfactor, i;
1790 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1791
1792 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1793 {
1794 if (chain->type == CT_INVARIANT || chain->combined)
1795 continue;
1796
1797 /* The best unroll factor for this chain is equal to the number of
1798 temporary variables that we create for it. */
1799 af = chain->length;
1800 if (chain->has_max_use_after)
1801 af++;
1802
1803 nfactor = factor * af / gcd (factor, af);
1804 if (nfactor <= max)
1805 factor = nfactor;
1806 }
1807
1808 return factor;
1809 }
1810
1811 /* Perform the predictive commoning optimization for CHAINS.
1812 Uids of the newly created temporary variables are marked in TMP_VARS. */
1813
1814 static void
1815 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1816 bitmap tmp_vars)
1817 {
1818 chain_p chain;
1819 unsigned i;
1820
1821 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1822 {
1823 if (chain->type == CT_INVARIANT)
1824 execute_load_motion (loop, chain, tmp_vars);
1825 else
1826 execute_pred_commoning_chain (loop, chain, tmp_vars);
1827 }
1828
1829 update_ssa (TODO_update_ssa_only_virtuals);
1830 }
1831
1832 /* For each reference in CHAINS, if its defining statement is
1833 phi node, record the ssa name that is defined by it. */
1834
1835 static void
1836 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1837 {
1838 chain_p chain;
1839 dref a;
1840 unsigned i, j;
1841
1842 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1843 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1844 {
1845 if (gimple_code (a->stmt) == GIMPLE_PHI)
1846 {
1847 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1848 a->stmt = NULL;
1849 }
1850 }
1851 }
1852
1853 /* For each reference in CHAINS, if name_defined_by_phi is not
1854 NULL, use it to set the stmt field. */
1855
1856 static void
1857 replace_names_by_phis (VEC (chain_p, heap) *chains)
1858 {
1859 chain_p chain;
1860 dref a;
1861 unsigned i, j;
1862
1863 FOR_EACH_VEC_ELT (chain_p, chains, i, chain)
1864 FOR_EACH_VEC_ELT (dref, chain->refs, j, a)
1865 if (a->stmt == NULL)
1866 {
1867 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1868 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1869 a->name_defined_by_phi = NULL_TREE;
1870 }
1871 }
1872
1873 /* Wrapper over execute_pred_commoning, to pass it as a callback
1874 to tree_transform_and_unroll_loop. */
1875
1876 struct epcc_data
1877 {
1878 VEC (chain_p, heap) *chains;
1879 bitmap tmp_vars;
1880 };
1881
1882 static void
1883 execute_pred_commoning_cbck (struct loop *loop, void *data)
1884 {
1885 struct epcc_data *const dta = (struct epcc_data *) data;
1886
1887 /* Restore phi nodes that were replaced by ssa names before
1888 tree_transform_and_unroll_loop (see detailed description in
1889 tree_predictive_commoning_loop). */
1890 replace_names_by_phis (dta->chains);
1891 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1892 }
1893
1894 /* Base NAME and all the names in the chain of phi nodes that use it
1895 on variable VAR. The phi nodes are recognized by being in the copies of
1896 the header of the LOOP. */
1897
1898 static void
1899 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1900 {
1901 gimple stmt, phi;
1902 imm_use_iterator iter;
1903
1904 SSA_NAME_VAR (name) = var;
1905
1906 while (1)
1907 {
1908 phi = NULL;
1909 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1910 {
1911 if (gimple_code (stmt) == GIMPLE_PHI
1912 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1913 {
1914 phi = stmt;
1915 BREAK_FROM_IMM_USE_STMT (iter);
1916 }
1917 }
1918 if (!phi)
1919 return;
1920
1921 name = PHI_RESULT (phi);
1922 SSA_NAME_VAR (name) = var;
1923 }
1924 }
1925
1926 /* Given an unrolled LOOP after predictive commoning, remove the
1927 register copies arising from phi nodes by changing the base
1928 variables of SSA names. TMP_VARS is the set of the temporary variables
1929 for those we want to perform this. */
1930
1931 static void
1932 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1933 {
1934 edge e;
1935 gimple phi, stmt;
1936 tree name, use, var;
1937 gimple_stmt_iterator psi;
1938
1939 e = loop_latch_edge (loop);
1940 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1941 {
1942 phi = gsi_stmt (psi);
1943 name = PHI_RESULT (phi);
1944 var = SSA_NAME_VAR (name);
1945 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1946 continue;
1947 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1948 gcc_assert (TREE_CODE (use) == SSA_NAME);
1949
1950 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1951 stmt = SSA_NAME_DEF_STMT (use);
1952 while (gimple_code (stmt) == GIMPLE_PHI
1953 /* In case we could not unroll the loop enough to eliminate
1954 all copies, we may reach the loop header before the defining
1955 statement (in that case, some register copies will be present
1956 in loop latch in the final code, corresponding to the newly
1957 created looparound phi nodes). */
1958 && gimple_bb (stmt) != loop->header)
1959 {
1960 gcc_assert (single_pred_p (gimple_bb (stmt)));
1961 use = PHI_ARG_DEF (stmt, 0);
1962 stmt = SSA_NAME_DEF_STMT (use);
1963 }
1964
1965 base_names_in_chain_on (loop, use, var);
1966 }
1967 }
1968
1969 /* Returns true if CHAIN is suitable to be combined. */
1970
1971 static bool
1972 chain_can_be_combined_p (chain_p chain)
1973 {
1974 return (!chain->combined
1975 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1976 }
1977
1978 /* Returns the modify statement that uses NAME. Skips over assignment
1979 statements, NAME is replaced with the actual name used in the returned
1980 statement. */
1981
1982 static gimple
1983 find_use_stmt (tree *name)
1984 {
1985 gimple stmt;
1986 tree rhs, lhs;
1987
1988 /* Skip over assignments. */
1989 while (1)
1990 {
1991 stmt = single_nonlooparound_use (*name);
1992 if (!stmt)
1993 return NULL;
1994
1995 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1996 return NULL;
1997
1998 lhs = gimple_assign_lhs (stmt);
1999 if (TREE_CODE (lhs) != SSA_NAME)
2000 return NULL;
2001
2002 if (gimple_assign_copy_p (stmt))
2003 {
2004 rhs = gimple_assign_rhs1 (stmt);
2005 if (rhs != *name)
2006 return NULL;
2007
2008 *name = lhs;
2009 }
2010 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
2011 == GIMPLE_BINARY_RHS)
2012 return stmt;
2013 else
2014 return NULL;
2015 }
2016 }
2017
2018 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2019
2020 static bool
2021 may_reassociate_p (tree type, enum tree_code code)
2022 {
2023 if (FLOAT_TYPE_P (type)
2024 && !flag_unsafe_math_optimizations)
2025 return false;
2026
2027 return (commutative_tree_code (code)
2028 && associative_tree_code (code));
2029 }
2030
2031 /* If the operation used in STMT is associative and commutative, go through the
2032 tree of the same operations and returns its root. Distance to the root
2033 is stored in DISTANCE. */
2034
2035 static gimple
2036 find_associative_operation_root (gimple stmt, unsigned *distance)
2037 {
2038 tree lhs;
2039 gimple next;
2040 enum tree_code code = gimple_assign_rhs_code (stmt);
2041 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2042 unsigned dist = 0;
2043
2044 if (!may_reassociate_p (type, code))
2045 return NULL;
2046
2047 while (1)
2048 {
2049 lhs = gimple_assign_lhs (stmt);
2050 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2051
2052 next = find_use_stmt (&lhs);
2053 if (!next
2054 || gimple_assign_rhs_code (next) != code)
2055 break;
2056
2057 stmt = next;
2058 dist++;
2059 }
2060
2061 if (distance)
2062 *distance = dist;
2063 return stmt;
2064 }
2065
2066 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2067 is no such statement, returns NULL_TREE. In case the operation used on
2068 NAME1 and NAME2 is associative and commutative, returns the root of the
2069 tree formed by this operation instead of the statement that uses NAME1 or
2070 NAME2. */
2071
2072 static gimple
2073 find_common_use_stmt (tree *name1, tree *name2)
2074 {
2075 gimple stmt1, stmt2;
2076
2077 stmt1 = find_use_stmt (name1);
2078 if (!stmt1)
2079 return NULL;
2080
2081 stmt2 = find_use_stmt (name2);
2082 if (!stmt2)
2083 return NULL;
2084
2085 if (stmt1 == stmt2)
2086 return stmt1;
2087
2088 stmt1 = find_associative_operation_root (stmt1, NULL);
2089 if (!stmt1)
2090 return NULL;
2091 stmt2 = find_associative_operation_root (stmt2, NULL);
2092 if (!stmt2)
2093 return NULL;
2094
2095 return (stmt1 == stmt2 ? stmt1 : NULL);
2096 }
2097
2098 /* Checks whether R1 and R2 are combined together using CODE, with the result
2099 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2100 if it is true. If CODE is ERROR_MARK, set these values instead. */
2101
2102 static bool
2103 combinable_refs_p (dref r1, dref r2,
2104 enum tree_code *code, bool *swap, tree *rslt_type)
2105 {
2106 enum tree_code acode;
2107 bool aswap;
2108 tree atype;
2109 tree name1, name2;
2110 gimple stmt;
2111
2112 name1 = name_for_ref (r1);
2113 name2 = name_for_ref (r2);
2114 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2115
2116 stmt = find_common_use_stmt (&name1, &name2);
2117
2118 if (!stmt)
2119 return false;
2120
2121 acode = gimple_assign_rhs_code (stmt);
2122 aswap = (!commutative_tree_code (acode)
2123 && gimple_assign_rhs1 (stmt) != name1);
2124 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2125
2126 if (*code == ERROR_MARK)
2127 {
2128 *code = acode;
2129 *swap = aswap;
2130 *rslt_type = atype;
2131 return true;
2132 }
2133
2134 return (*code == acode
2135 && *swap == aswap
2136 && *rslt_type == atype);
2137 }
2138
2139 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2140 an assignment of the remaining operand. */
2141
2142 static void
2143 remove_name_from_operation (gimple stmt, tree op)
2144 {
2145 tree other_op;
2146 gimple_stmt_iterator si;
2147
2148 gcc_assert (is_gimple_assign (stmt));
2149
2150 if (gimple_assign_rhs1 (stmt) == op)
2151 other_op = gimple_assign_rhs2 (stmt);
2152 else
2153 other_op = gimple_assign_rhs1 (stmt);
2154
2155 si = gsi_for_stmt (stmt);
2156 gimple_assign_set_rhs_from_tree (&si, other_op);
2157
2158 /* We should not have reallocated STMT. */
2159 gcc_assert (gsi_stmt (si) == stmt);
2160
2161 update_stmt (stmt);
2162 }
2163
2164 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2165 are combined in a single statement, and returns this statement. */
2166
2167 static gimple
2168 reassociate_to_the_same_stmt (tree name1, tree name2)
2169 {
2170 gimple stmt1, stmt2, root1, root2, s1, s2;
2171 gimple new_stmt, tmp_stmt;
2172 tree new_name, tmp_name, var, r1, r2;
2173 unsigned dist1, dist2;
2174 enum tree_code code;
2175 tree type = TREE_TYPE (name1);
2176 gimple_stmt_iterator bsi;
2177
2178 stmt1 = find_use_stmt (&name1);
2179 stmt2 = find_use_stmt (&name2);
2180 root1 = find_associative_operation_root (stmt1, &dist1);
2181 root2 = find_associative_operation_root (stmt2, &dist2);
2182 code = gimple_assign_rhs_code (stmt1);
2183
2184 gcc_assert (root1 && root2 && root1 == root2
2185 && code == gimple_assign_rhs_code (stmt2));
2186
2187 /* Find the root of the nearest expression in that both NAME1 and NAME2
2188 are used. */
2189 r1 = name1;
2190 s1 = stmt1;
2191 r2 = name2;
2192 s2 = stmt2;
2193
2194 while (dist1 > dist2)
2195 {
2196 s1 = find_use_stmt (&r1);
2197 r1 = gimple_assign_lhs (s1);
2198 dist1--;
2199 }
2200 while (dist2 > dist1)
2201 {
2202 s2 = find_use_stmt (&r2);
2203 r2 = gimple_assign_lhs (s2);
2204 dist2--;
2205 }
2206
2207 while (s1 != s2)
2208 {
2209 s1 = find_use_stmt (&r1);
2210 r1 = gimple_assign_lhs (s1);
2211 s2 = find_use_stmt (&r2);
2212 r2 = gimple_assign_lhs (s2);
2213 }
2214
2215 /* Remove NAME1 and NAME2 from the statements in that they are used
2216 currently. */
2217 remove_name_from_operation (stmt1, name1);
2218 remove_name_from_operation (stmt2, name2);
2219
2220 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2221 combine it with the rhs of S1. */
2222 var = create_tmp_reg (type, "predreastmp");
2223 add_referenced_var (var);
2224 new_name = make_ssa_name (var, NULL);
2225 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2226
2227 var = create_tmp_reg (type, "predreastmp");
2228 add_referenced_var (var);
2229 tmp_name = make_ssa_name (var, NULL);
2230
2231 /* Rhs of S1 may now be either a binary expression with operation
2232 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2233 so that name1 or name2 was removed from it). */
2234 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2235 tmp_name,
2236 gimple_assign_rhs1 (s1),
2237 gimple_assign_rhs2 (s1));
2238
2239 bsi = gsi_for_stmt (s1);
2240 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2241 s1 = gsi_stmt (bsi);
2242 update_stmt (s1);
2243
2244 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2245 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2246
2247 return new_stmt;
2248 }
2249
2250 /* Returns the statement that combines references R1 and R2. In case R1
2251 and R2 are not used in the same statement, but they are used with an
2252 associative and commutative operation in the same expression, reassociate
2253 the expression so that they are used in the same statement. */
2254
2255 static gimple
2256 stmt_combining_refs (dref r1, dref r2)
2257 {
2258 gimple stmt1, stmt2;
2259 tree name1 = name_for_ref (r1);
2260 tree name2 = name_for_ref (r2);
2261
2262 stmt1 = find_use_stmt (&name1);
2263 stmt2 = find_use_stmt (&name2);
2264 if (stmt1 == stmt2)
2265 return stmt1;
2266
2267 return reassociate_to_the_same_stmt (name1, name2);
2268 }
2269
2270 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2271 description of the new chain is returned, otherwise we return NULL. */
2272
2273 static chain_p
2274 combine_chains (chain_p ch1, chain_p ch2)
2275 {
2276 dref r1, r2, nw;
2277 enum tree_code op = ERROR_MARK;
2278 bool swap = false;
2279 chain_p new_chain;
2280 unsigned i;
2281 gimple root_stmt;
2282 tree rslt_type = NULL_TREE;
2283
2284 if (ch1 == ch2)
2285 return NULL;
2286 if (ch1->length != ch2->length)
2287 return NULL;
2288
2289 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2290 return NULL;
2291
2292 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2293 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2294 {
2295 if (r1->distance != r2->distance)
2296 return NULL;
2297
2298 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2299 return NULL;
2300 }
2301
2302 if (swap)
2303 {
2304 chain_p tmp = ch1;
2305 ch1 = ch2;
2306 ch2 = tmp;
2307 }
2308
2309 new_chain = XCNEW (struct chain);
2310 new_chain->type = CT_COMBINATION;
2311 new_chain->op = op;
2312 new_chain->ch1 = ch1;
2313 new_chain->ch2 = ch2;
2314 new_chain->rslt_type = rslt_type;
2315 new_chain->length = ch1->length;
2316
2317 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2318 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2319 {
2320 nw = XCNEW (struct dref_d);
2321 nw->stmt = stmt_combining_refs (r1, r2);
2322 nw->distance = r1->distance;
2323
2324 VEC_safe_push (dref, heap, new_chain->refs, nw);
2325 }
2326
2327 new_chain->has_max_use_after = false;
2328 root_stmt = get_chain_root (new_chain)->stmt;
2329 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2330 {
2331 if (nw->distance == new_chain->length
2332 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2333 {
2334 new_chain->has_max_use_after = true;
2335 break;
2336 }
2337 }
2338
2339 ch1->combined = true;
2340 ch2->combined = true;
2341 return new_chain;
2342 }
2343
2344 /* Try to combine the CHAINS. */
2345
2346 static void
2347 try_combine_chains (VEC (chain_p, heap) **chains)
2348 {
2349 unsigned i, j;
2350 chain_p ch1, ch2, cch;
2351 VEC (chain_p, heap) *worklist = NULL;
2352
2353 FOR_EACH_VEC_ELT (chain_p, *chains, i, ch1)
2354 if (chain_can_be_combined_p (ch1))
2355 VEC_safe_push (chain_p, heap, worklist, ch1);
2356
2357 while (!VEC_empty (chain_p, worklist))
2358 {
2359 ch1 = VEC_pop (chain_p, worklist);
2360 if (!chain_can_be_combined_p (ch1))
2361 continue;
2362
2363 FOR_EACH_VEC_ELT (chain_p, *chains, j, ch2)
2364 {
2365 if (!chain_can_be_combined_p (ch2))
2366 continue;
2367
2368 cch = combine_chains (ch1, ch2);
2369 if (cch)
2370 {
2371 VEC_safe_push (chain_p, heap, worklist, cch);
2372 VEC_safe_push (chain_p, heap, *chains, cch);
2373 break;
2374 }
2375 }
2376 }
2377 }
2378
2379 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2380 impossible because one of these initializers may trap, true otherwise. */
2381
2382 static bool
2383 prepare_initializers_chain (struct loop *loop, chain_p chain)
2384 {
2385 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2386 struct data_reference *dr = get_chain_root (chain)->ref;
2387 tree init;
2388 gimple_seq stmts;
2389 dref laref;
2390 edge entry = loop_preheader_edge (loop);
2391
2392 /* Find the initializers for the variables, and check that they cannot
2393 trap. */
2394 chain->inits = VEC_alloc (tree, heap, n);
2395 for (i = 0; i < n; i++)
2396 VEC_quick_push (tree, chain->inits, NULL_TREE);
2397
2398 /* If we have replaced some looparound phi nodes, use their initializers
2399 instead of creating our own. */
2400 FOR_EACH_VEC_ELT (dref, chain->refs, i, laref)
2401 {
2402 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2403 continue;
2404
2405 gcc_assert (laref->distance > 0);
2406 VEC_replace (tree, chain->inits, n - laref->distance,
2407 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2408 }
2409
2410 for (i = 0; i < n; i++)
2411 {
2412 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2413 continue;
2414
2415 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2416 if (!init)
2417 return false;
2418
2419 if (!chain->all_always_accessed && tree_could_trap_p (init))
2420 return false;
2421
2422 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2423 if (stmts)
2424 gsi_insert_seq_on_edge_immediate (entry, stmts);
2425
2426 VEC_replace (tree, chain->inits, i, init);
2427 }
2428
2429 return true;
2430 }
2431
2432 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2433 be used because the initializers might trap. */
2434
2435 static void
2436 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2437 {
2438 chain_p chain;
2439 unsigned i;
2440
2441 for (i = 0; i < VEC_length (chain_p, chains); )
2442 {
2443 chain = VEC_index (chain_p, chains, i);
2444 if (prepare_initializers_chain (loop, chain))
2445 i++;
2446 else
2447 {
2448 release_chain (chain);
2449 VEC_unordered_remove (chain_p, chains, i);
2450 }
2451 }
2452 }
2453
2454 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2455 unrolled. */
2456
2457 static bool
2458 tree_predictive_commoning_loop (struct loop *loop)
2459 {
2460 VEC (loop_p, heap) *loop_nest;
2461 VEC (data_reference_p, heap) *datarefs;
2462 VEC (ddr_p, heap) *dependences;
2463 struct component *components;
2464 VEC (chain_p, heap) *chains = NULL;
2465 unsigned unroll_factor;
2466 struct tree_niter_desc desc;
2467 bool unroll = false;
2468 edge exit;
2469 bitmap tmp_vars;
2470
2471 if (dump_file && (dump_flags & TDF_DETAILS))
2472 fprintf (dump_file, "Processing loop %d\n", loop->num);
2473
2474 /* Find the data references and split them into components according to their
2475 dependence relations. */
2476 datarefs = VEC_alloc (data_reference_p, heap, 10);
2477 dependences = VEC_alloc (ddr_p, heap, 10);
2478 loop_nest = VEC_alloc (loop_p, heap, 3);
2479 if (! compute_data_dependences_for_loop (loop, true, &loop_nest, &datarefs,
2480 &dependences))
2481 {
2482 if (dump_file && (dump_flags & TDF_DETAILS))
2483 fprintf (dump_file, "Cannot analyze data dependencies\n");
2484 VEC_free (loop_p, heap, loop_nest);
2485 free_data_refs (datarefs);
2486 free_dependence_relations (dependences);
2487 return false;
2488 }
2489
2490 if (dump_file && (dump_flags & TDF_DETAILS))
2491 dump_data_dependence_relations (dump_file, dependences);
2492
2493 components = split_data_refs_to_components (loop, datarefs, dependences);
2494 VEC_free (loop_p, heap, loop_nest);
2495 free_dependence_relations (dependences);
2496 if (!components)
2497 {
2498 free_data_refs (datarefs);
2499 return false;
2500 }
2501
2502 if (dump_file && (dump_flags & TDF_DETAILS))
2503 {
2504 fprintf (dump_file, "Initial state:\n\n");
2505 dump_components (dump_file, components);
2506 }
2507
2508 /* Find the suitable components and split them into chains. */
2509 components = filter_suitable_components (loop, components);
2510
2511 tmp_vars = BITMAP_ALLOC (NULL);
2512 looparound_phis = BITMAP_ALLOC (NULL);
2513 determine_roots (loop, components, &chains);
2514 release_components (components);
2515
2516 if (!chains)
2517 {
2518 if (dump_file && (dump_flags & TDF_DETAILS))
2519 fprintf (dump_file,
2520 "Predictive commoning failed: no suitable chains\n");
2521 goto end;
2522 }
2523 prepare_initializers (loop, chains);
2524
2525 /* Try to combine the chains that are always worked with together. */
2526 try_combine_chains (&chains);
2527
2528 if (dump_file && (dump_flags & TDF_DETAILS))
2529 {
2530 fprintf (dump_file, "Before commoning:\n\n");
2531 dump_chains (dump_file, chains);
2532 }
2533
2534 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2535 that its number of iterations is divisible by the factor. */
2536 unroll_factor = determine_unroll_factor (chains);
2537 scev_reset ();
2538 unroll = (unroll_factor > 1
2539 && can_unroll_loop_p (loop, unroll_factor, &desc));
2540 exit = single_dom_exit (loop);
2541
2542 /* Execute the predictive commoning transformations, and possibly unroll the
2543 loop. */
2544 if (unroll)
2545 {
2546 struct epcc_data dta;
2547
2548 if (dump_file && (dump_flags & TDF_DETAILS))
2549 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2550
2551 dta.chains = chains;
2552 dta.tmp_vars = tmp_vars;
2553
2554 update_ssa (TODO_update_ssa_only_virtuals);
2555
2556 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2557 execute_pred_commoning_cbck is called may cause phi nodes to be
2558 reallocated, which is a problem since CHAINS may point to these
2559 statements. To fix this, we store the ssa names defined by the
2560 phi nodes here instead of the phi nodes themselves, and restore
2561 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2562 replace_phis_by_defined_names (chains);
2563
2564 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2565 execute_pred_commoning_cbck, &dta);
2566 eliminate_temp_copies (loop, tmp_vars);
2567 }
2568 else
2569 {
2570 if (dump_file && (dump_flags & TDF_DETAILS))
2571 fprintf (dump_file,
2572 "Executing predictive commoning without unrolling.\n");
2573 execute_pred_commoning (loop, chains, tmp_vars);
2574 }
2575
2576 end: ;
2577 release_chains (chains);
2578 free_data_refs (datarefs);
2579 BITMAP_FREE (tmp_vars);
2580 BITMAP_FREE (looparound_phis);
2581
2582 free_affine_expand_cache (&name_expansions);
2583
2584 return unroll;
2585 }
2586
2587 /* Runs predictive commoning. */
2588
2589 unsigned
2590 tree_predictive_commoning (void)
2591 {
2592 bool unrolled = false;
2593 struct loop *loop;
2594 loop_iterator li;
2595 unsigned ret = 0;
2596
2597 initialize_original_copy_tables ();
2598 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2599 if (optimize_loop_for_speed_p (loop))
2600 {
2601 unrolled |= tree_predictive_commoning_loop (loop);
2602 }
2603
2604 if (unrolled)
2605 {
2606 scev_reset ();
2607 ret = TODO_cleanup_cfg;
2608 }
2609 free_original_copy_tables ();
2610
2611 return ret;
2612 }