intrinsic.h (gfc_check_selected_real_kind, [...]): Update prototypes.
[gcc.git] / gcc / tree-predcom.c
1 /* Predictive commoning.
2 Copyright (C) 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file implements the predictive commoning optimization. Predictive
22 commoning can be viewed as CSE around a loop, and with some improvements,
23 as generalized strength reduction-- i.e., reusing values computed in
24 earlier iterations of a loop in the later ones. So far, the pass only
25 handles the most useful case, that is, reusing values of memory references.
26 If you think this is all just a special case of PRE, you are sort of right;
27 however, concentrating on loops is simpler, and makes it possible to
28 incorporate data dependence analysis to detect the opportunities, perform
29 loop unrolling to avoid copies together with renaming immediately,
30 and if needed, we could also take register pressure into account.
31
32 Let us demonstrate what is done on an example:
33
34 for (i = 0; i < 100; i++)
35 {
36 a[i+2] = a[i] + a[i+1];
37 b[10] = b[10] + i;
38 c[i] = c[99 - i];
39 d[i] = d[i + 1];
40 }
41
42 1) We find data references in the loop, and split them to mutually
43 independent groups (i.e., we find components of a data dependence
44 graph). We ignore read-read dependences whose distance is not constant.
45 (TODO -- we could also ignore antidependences). In this example, we
46 find the following groups:
47
48 a[i]{read}, a[i+1]{read}, a[i+2]{write}
49 b[10]{read}, b[10]{write}
50 c[99 - i]{read}, c[i]{write}
51 d[i + 1]{read}, d[i]{write}
52
53 2) Inside each of the group, we verify several conditions:
54 a) all the references must differ in indices only, and the indices
55 must all have the same step
56 b) the references must dominate loop latch (and thus, they must be
57 ordered by dominance relation).
58 c) the distance of the indices must be a small multiple of the step
59 We are then able to compute the difference of the references (# of
60 iterations before they point to the same place as the first of them).
61 Also, in case there are writes in the loop, we split the groups into
62 chains whose head is the write whose values are used by the reads in
63 the same chain. The chains are then processed independently,
64 making the further transformations simpler. Also, the shorter chains
65 need the same number of registers, but may require lower unrolling
66 factor in order to get rid of the copies on the loop latch.
67
68 In our example, we get the following chains (the chain for c is invalid).
69
70 a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2}
71 b[10]{read,+0}, b[10]{write,+0}
72 d[i + 1]{read,+0}, d[i]{write,+1}
73
74 3) For each read, we determine the read or write whose value it reuses,
75 together with the distance of this reuse. I.e. we take the last
76 reference before it with distance 0, or the last of the references
77 with the smallest positive distance to the read. Then, we remove
78 the references that are not used in any of these chains, discard the
79 empty groups, and propagate all the links so that they point to the
80 single root reference of the chain (adjusting their distance
81 appropriately). Some extra care needs to be taken for references with
82 step 0. In our example (the numbers indicate the distance of the
83 reuse),
84
85 a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*)
86 b[10] --> (*) 1, b[10] (*)
87
88 4) The chains are combined together if possible. If the corresponding
89 elements of two chains are always combined together with the same
90 operator, we remember just the result of this combination, instead
91 of remembering the values separately. We may need to perform
92 reassociation to enable combining, for example
93
94 e[i] + f[i+1] + e[i+1] + f[i]
95
96 can be reassociated as
97
98 (e[i] + f[i]) + (e[i+1] + f[i+1])
99
100 and we can combine the chains for e and f into one chain.
101
102 5) For each root reference (end of the chain) R, let N be maximum distance
103 of a reference reusing its value. Variables R0 upto RN are created,
104 together with phi nodes that transfer values from R1 .. RN to
105 R0 .. R(N-1).
106 Initial values are loaded to R0..R(N-1) (in case not all references
107 must necessarily be accessed and they may trap, we may fail here;
108 TODO sometimes, the loads could be guarded by a check for the number
109 of iterations). Values loaded/stored in roots are also copied to
110 RN. Other reads are replaced with the appropriate variable Ri.
111 Everything is put to SSA form.
112
113 As a small improvement, if R0 is dead after the root (i.e., all uses of
114 the value with the maximum distance dominate the root), we can avoid
115 creating RN and use R0 instead of it.
116
117 In our example, we get (only the parts concerning a and b are shown):
118 for (i = 0; i < 100; i++)
119 {
120 f = phi (a[0], s);
121 s = phi (a[1], f);
122 x = phi (b[10], x);
123
124 f = f + s;
125 a[i+2] = f;
126 x = x + i;
127 b[10] = x;
128 }
129
130 6) Factor F for unrolling is determined as the smallest common multiple of
131 (N + 1) for each root reference (N for references for that we avoided
132 creating RN). If F and the loop is small enough, loop is unrolled F
133 times. The stores to RN (R0) in the copies of the loop body are
134 periodically replaced with R0, R1, ... (R1, R2, ...), so that they can
135 be coalesced and the copies can be eliminated.
136
137 TODO -- copy propagation and other optimizations may change the live
138 ranges of the temporary registers and prevent them from being coalesced;
139 this may increase the register pressure.
140
141 In our case, F = 2 and the (main loop of the) result is
142
143 for (i = 0; i < ...; i += 2)
144 {
145 f = phi (a[0], f);
146 s = phi (a[1], s);
147 x = phi (b[10], x);
148
149 f = f + s;
150 a[i+2] = f;
151 x = x + i;
152 b[10] = x;
153
154 s = s + f;
155 a[i+3] = s;
156 x = x + i;
157 b[10] = x;
158 }
159
160 TODO -- stores killing other stores can be taken into account, e.g.,
161 for (i = 0; i < n; i++)
162 {
163 a[i] = 1;
164 a[i+2] = 2;
165 }
166
167 can be replaced with
168
169 t0 = a[0];
170 t1 = a[1];
171 for (i = 0; i < n; i++)
172 {
173 a[i] = 1;
174 t2 = 2;
175 t0 = t1;
176 t1 = t2;
177 }
178 a[n] = t0;
179 a[n+1] = t1;
180
181 The interesting part is that this would generalize store motion; still, since
182 sm is performed elsewhere, it does not seem that important.
183
184 Predictive commoning can be generalized for arbitrary computations (not
185 just memory loads), and also nontrivial transfer functions (e.g., replacing
186 i * i with ii_last + 2 * i + 1), to generalize strength reduction. */
187
188 #include "config.h"
189 #include "system.h"
190 #include "coretypes.h"
191 #include "tm.h"
192 #include "tree.h"
193 #include "tm_p.h"
194 #include "cfgloop.h"
195 #include "tree-flow.h"
196 #include "ggc.h"
197 #include "tree-data-ref.h"
198 #include "tree-scalar-evolution.h"
199 #include "tree-chrec.h"
200 #include "params.h"
201 #include "tree-pretty-print.h"
202 #include "gimple-pretty-print.h"
203 #include "tree-pass.h"
204 #include "tree-affine.h"
205 #include "tree-inline.h"
206
207 /* The maximum number of iterations between the considered memory
208 references. */
209
210 #define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8)
211
212 /* Data references (or phi nodes that carry data reference values across
213 loop iterations). */
214
215 typedef struct dref_d
216 {
217 /* The reference itself. */
218 struct data_reference *ref;
219
220 /* The statement in that the reference appears. */
221 gimple stmt;
222
223 /* In case that STMT is a phi node, this field is set to the SSA name
224 defined by it in replace_phis_by_defined_names (in order to avoid
225 pointing to phi node that got reallocated in the meantime). */
226 tree name_defined_by_phi;
227
228 /* Distance of the reference from the root of the chain (in number of
229 iterations of the loop). */
230 unsigned distance;
231
232 /* Number of iterations offset from the first reference in the component. */
233 double_int offset;
234
235 /* Number of the reference in a component, in dominance ordering. */
236 unsigned pos;
237
238 /* True if the memory reference is always accessed when the loop is
239 entered. */
240 unsigned always_accessed : 1;
241 } *dref;
242
243 DEF_VEC_P (dref);
244 DEF_VEC_ALLOC_P (dref, heap);
245
246 /* Type of the chain of the references. */
247
248 enum chain_type
249 {
250 /* The addresses of the references in the chain are constant. */
251 CT_INVARIANT,
252
253 /* There are only loads in the chain. */
254 CT_LOAD,
255
256 /* Root of the chain is store, the rest are loads. */
257 CT_STORE_LOAD,
258
259 /* A combination of two chains. */
260 CT_COMBINATION
261 };
262
263 /* Chains of data references. */
264
265 typedef struct chain
266 {
267 /* Type of the chain. */
268 enum chain_type type;
269
270 /* For combination chains, the operator and the two chains that are
271 combined, and the type of the result. */
272 enum tree_code op;
273 tree rslt_type;
274 struct chain *ch1, *ch2;
275
276 /* The references in the chain. */
277 VEC(dref,heap) *refs;
278
279 /* The maximum distance of the reference in the chain from the root. */
280 unsigned length;
281
282 /* The variables used to copy the value throughout iterations. */
283 VEC(tree,heap) *vars;
284
285 /* Initializers for the variables. */
286 VEC(tree,heap) *inits;
287
288 /* True if there is a use of a variable with the maximal distance
289 that comes after the root in the loop. */
290 unsigned has_max_use_after : 1;
291
292 /* True if all the memory references in the chain are always accessed. */
293 unsigned all_always_accessed : 1;
294
295 /* True if this chain was combined together with some other chain. */
296 unsigned combined : 1;
297 } *chain_p;
298
299 DEF_VEC_P (chain_p);
300 DEF_VEC_ALLOC_P (chain_p, heap);
301
302 /* Describes the knowledge about the step of the memory references in
303 the component. */
304
305 enum ref_step_type
306 {
307 /* The step is zero. */
308 RS_INVARIANT,
309
310 /* The step is nonzero. */
311 RS_NONZERO,
312
313 /* The step may or may not be nonzero. */
314 RS_ANY
315 };
316
317 /* Components of the data dependence graph. */
318
319 struct component
320 {
321 /* The references in the component. */
322 VEC(dref,heap) *refs;
323
324 /* What we know about the step of the references in the component. */
325 enum ref_step_type comp_step;
326
327 /* Next component in the list. */
328 struct component *next;
329 };
330
331 /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */
332
333 static bitmap looparound_phis;
334
335 /* Cache used by tree_to_aff_combination_expand. */
336
337 static struct pointer_map_t *name_expansions;
338
339 /* Dumps data reference REF to FILE. */
340
341 extern void dump_dref (FILE *, dref);
342 void
343 dump_dref (FILE *file, dref ref)
344 {
345 if (ref->ref)
346 {
347 fprintf (file, " ");
348 print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM);
349 fprintf (file, " (id %u%s)\n", ref->pos,
350 DR_IS_READ (ref->ref) ? "" : ", write");
351
352 fprintf (file, " offset ");
353 dump_double_int (file, ref->offset, false);
354 fprintf (file, "\n");
355
356 fprintf (file, " distance %u\n", ref->distance);
357 }
358 else
359 {
360 if (gimple_code (ref->stmt) == GIMPLE_PHI)
361 fprintf (file, " looparound ref\n");
362 else
363 fprintf (file, " combination ref\n");
364 fprintf (file, " in statement ");
365 print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM);
366 fprintf (file, "\n");
367 fprintf (file, " distance %u\n", ref->distance);
368 }
369
370 }
371
372 /* Dumps CHAIN to FILE. */
373
374 extern void dump_chain (FILE *, chain_p);
375 void
376 dump_chain (FILE *file, chain_p chain)
377 {
378 dref a;
379 const char *chain_type;
380 unsigned i;
381 tree var;
382
383 switch (chain->type)
384 {
385 case CT_INVARIANT:
386 chain_type = "Load motion";
387 break;
388
389 case CT_LOAD:
390 chain_type = "Loads-only";
391 break;
392
393 case CT_STORE_LOAD:
394 chain_type = "Store-loads";
395 break;
396
397 case CT_COMBINATION:
398 chain_type = "Combination";
399 break;
400
401 default:
402 gcc_unreachable ();
403 }
404
405 fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain,
406 chain->combined ? " (combined)" : "");
407 if (chain->type != CT_INVARIANT)
408 fprintf (file, " max distance %u%s\n", chain->length,
409 chain->has_max_use_after ? "" : ", may reuse first");
410
411 if (chain->type == CT_COMBINATION)
412 {
413 fprintf (file, " equal to %p %s %p in type ",
414 (void *) chain->ch1, op_symbol_code (chain->op),
415 (void *) chain->ch2);
416 print_generic_expr (file, chain->rslt_type, TDF_SLIM);
417 fprintf (file, "\n");
418 }
419
420 if (chain->vars)
421 {
422 fprintf (file, " vars");
423 for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
424 {
425 fprintf (file, " ");
426 print_generic_expr (file, var, TDF_SLIM);
427 }
428 fprintf (file, "\n");
429 }
430
431 if (chain->inits)
432 {
433 fprintf (file, " inits");
434 for (i = 0; VEC_iterate (tree, chain->inits, i, var); i++)
435 {
436 fprintf (file, " ");
437 print_generic_expr (file, var, TDF_SLIM);
438 }
439 fprintf (file, "\n");
440 }
441
442 fprintf (file, " references:\n");
443 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
444 dump_dref (file, a);
445
446 fprintf (file, "\n");
447 }
448
449 /* Dumps CHAINS to FILE. */
450
451 extern void dump_chains (FILE *, VEC (chain_p, heap) *);
452 void
453 dump_chains (FILE *file, VEC (chain_p, heap) *chains)
454 {
455 chain_p chain;
456 unsigned i;
457
458 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
459 dump_chain (file, chain);
460 }
461
462 /* Dumps COMP to FILE. */
463
464 extern void dump_component (FILE *, struct component *);
465 void
466 dump_component (FILE *file, struct component *comp)
467 {
468 dref a;
469 unsigned i;
470
471 fprintf (file, "Component%s:\n",
472 comp->comp_step == RS_INVARIANT ? " (invariant)" : "");
473 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
474 dump_dref (file, a);
475 fprintf (file, "\n");
476 }
477
478 /* Dumps COMPS to FILE. */
479
480 extern void dump_components (FILE *, struct component *);
481 void
482 dump_components (FILE *file, struct component *comps)
483 {
484 struct component *comp;
485
486 for (comp = comps; comp; comp = comp->next)
487 dump_component (file, comp);
488 }
489
490 /* Frees a chain CHAIN. */
491
492 static void
493 release_chain (chain_p chain)
494 {
495 dref ref;
496 unsigned i;
497
498 if (chain == NULL)
499 return;
500
501 for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
502 free (ref);
503
504 VEC_free (dref, heap, chain->refs);
505 VEC_free (tree, heap, chain->vars);
506 VEC_free (tree, heap, chain->inits);
507
508 free (chain);
509 }
510
511 /* Frees CHAINS. */
512
513 static void
514 release_chains (VEC (chain_p, heap) *chains)
515 {
516 unsigned i;
517 chain_p chain;
518
519 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
520 release_chain (chain);
521 VEC_free (chain_p, heap, chains);
522 }
523
524 /* Frees a component COMP. */
525
526 static void
527 release_component (struct component *comp)
528 {
529 VEC_free (dref, heap, comp->refs);
530 free (comp);
531 }
532
533 /* Frees list of components COMPS. */
534
535 static void
536 release_components (struct component *comps)
537 {
538 struct component *act, *next;
539
540 for (act = comps; act; act = next)
541 {
542 next = act->next;
543 release_component (act);
544 }
545 }
546
547 /* Finds a root of tree given by FATHERS containing A, and performs path
548 shortening. */
549
550 static unsigned
551 component_of (unsigned fathers[], unsigned a)
552 {
553 unsigned root, n;
554
555 for (root = a; root != fathers[root]; root = fathers[root])
556 continue;
557
558 for (; a != root; a = n)
559 {
560 n = fathers[a];
561 fathers[a] = root;
562 }
563
564 return root;
565 }
566
567 /* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the
568 components, A and B are components to merge. */
569
570 static void
571 merge_comps (unsigned fathers[], unsigned sizes[], unsigned a, unsigned b)
572 {
573 unsigned ca = component_of (fathers, a);
574 unsigned cb = component_of (fathers, b);
575
576 if (ca == cb)
577 return;
578
579 if (sizes[ca] < sizes[cb])
580 {
581 sizes[cb] += sizes[ca];
582 fathers[ca] = cb;
583 }
584 else
585 {
586 sizes[ca] += sizes[cb];
587 fathers[cb] = ca;
588 }
589 }
590
591 /* Returns true if A is a reference that is suitable for predictive commoning
592 in the innermost loop that contains it. REF_STEP is set according to the
593 step of the reference A. */
594
595 static bool
596 suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step)
597 {
598 tree ref = DR_REF (a), step = DR_STEP (a);
599
600 if (!step
601 || !is_gimple_reg_type (TREE_TYPE (ref))
602 || tree_could_throw_p (ref))
603 return false;
604
605 if (integer_zerop (step))
606 *ref_step = RS_INVARIANT;
607 else if (integer_nonzerop (step))
608 *ref_step = RS_NONZERO;
609 else
610 *ref_step = RS_ANY;
611
612 return true;
613 }
614
615 /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */
616
617 static void
618 aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset)
619 {
620 aff_tree delta;
621
622 tree_to_aff_combination_expand (DR_OFFSET (dr), sizetype, offset,
623 &name_expansions);
624 aff_combination_const (&delta, sizetype, tree_to_double_int (DR_INIT (dr)));
625 aff_combination_add (offset, &delta);
626 }
627
628 /* Determines number of iterations of the innermost enclosing loop before B
629 refers to exactly the same location as A and stores it to OFF. If A and
630 B do not have the same step, they never meet, or anything else fails,
631 returns false, otherwise returns true. Both A and B are assumed to
632 satisfy suitable_reference_p. */
633
634 static bool
635 determine_offset (struct data_reference *a, struct data_reference *b,
636 double_int *off)
637 {
638 aff_tree diff, baseb, step;
639 tree typea, typeb;
640
641 /* Check that both the references access the location in the same type. */
642 typea = TREE_TYPE (DR_REF (a));
643 typeb = TREE_TYPE (DR_REF (b));
644 if (!useless_type_conversion_p (typeb, typea))
645 return false;
646
647 /* Check whether the base address and the step of both references is the
648 same. */
649 if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0)
650 || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0))
651 return false;
652
653 if (integer_zerop (DR_STEP (a)))
654 {
655 /* If the references have loop invariant address, check that they access
656 exactly the same location. */
657 *off = double_int_zero;
658 return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0)
659 && operand_equal_p (DR_INIT (a), DR_INIT (b), 0));
660 }
661
662 /* Compare the offsets of the addresses, and check whether the difference
663 is a multiple of step. */
664 aff_combination_dr_offset (a, &diff);
665 aff_combination_dr_offset (b, &baseb);
666 aff_combination_scale (&baseb, double_int_minus_one);
667 aff_combination_add (&diff, &baseb);
668
669 tree_to_aff_combination_expand (DR_STEP (a), sizetype,
670 &step, &name_expansions);
671 return aff_combination_constant_multiple_p (&diff, &step, off);
672 }
673
674 /* Returns the last basic block in LOOP for that we are sure that
675 it is executed whenever the loop is entered. */
676
677 static basic_block
678 last_always_executed_block (struct loop *loop)
679 {
680 unsigned i;
681 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
682 edge ex;
683 basic_block last = loop->latch;
684
685 for (i = 0; VEC_iterate (edge, exits, i, ex); i++)
686 last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src);
687 VEC_free (edge, heap, exits);
688
689 return last;
690 }
691
692 /* Splits dependence graph on DATAREFS described by DEPENDS to components. */
693
694 static struct component *
695 split_data_refs_to_components (struct loop *loop,
696 VEC (data_reference_p, heap) *datarefs,
697 VEC (ddr_p, heap) *depends)
698 {
699 unsigned i, n = VEC_length (data_reference_p, datarefs);
700 unsigned ca, ia, ib, bad;
701 unsigned *comp_father = XNEWVEC (unsigned, n + 1);
702 unsigned *comp_size = XNEWVEC (unsigned, n + 1);
703 struct component **comps;
704 struct data_reference *dr, *dra, *drb;
705 struct data_dependence_relation *ddr;
706 struct component *comp_list = NULL, *comp;
707 dref dataref;
708 basic_block last_always_executed = last_always_executed_block (loop);
709
710 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
711 {
712 if (!DR_REF (dr))
713 {
714 /* A fake reference for call or asm_expr that may clobber memory;
715 just fail. */
716 goto end;
717 }
718 dr->aux = (void *) (size_t) i;
719 comp_father[i] = i;
720 comp_size[i] = 1;
721 }
722
723 /* A component reserved for the "bad" data references. */
724 comp_father[n] = n;
725 comp_size[n] = 1;
726
727 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
728 {
729 enum ref_step_type dummy;
730
731 if (!suitable_reference_p (dr, &dummy))
732 {
733 ia = (unsigned) (size_t) dr->aux;
734 merge_comps (comp_father, comp_size, n, ia);
735 }
736 }
737
738 for (i = 0; VEC_iterate (ddr_p, depends, i, ddr); i++)
739 {
740 double_int dummy_off;
741
742 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
743 continue;
744
745 dra = DDR_A (ddr);
746 drb = DDR_B (ddr);
747 ia = component_of (comp_father, (unsigned) (size_t) dra->aux);
748 ib = component_of (comp_father, (unsigned) (size_t) drb->aux);
749 if (ia == ib)
750 continue;
751
752 bad = component_of (comp_father, n);
753
754 /* If both A and B are reads, we may ignore unsuitable dependences. */
755 if (DR_IS_READ (dra) && DR_IS_READ (drb)
756 && (ia == bad || ib == bad
757 || !determine_offset (dra, drb, &dummy_off)))
758 continue;
759
760 merge_comps (comp_father, comp_size, ia, ib);
761 }
762
763 comps = XCNEWVEC (struct component *, n);
764 bad = component_of (comp_father, n);
765 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
766 {
767 ia = (unsigned) (size_t) dr->aux;
768 ca = component_of (comp_father, ia);
769 if (ca == bad)
770 continue;
771
772 comp = comps[ca];
773 if (!comp)
774 {
775 comp = XCNEW (struct component);
776 comp->refs = VEC_alloc (dref, heap, comp_size[ca]);
777 comps[ca] = comp;
778 }
779
780 dataref = XCNEW (struct dref_d);
781 dataref->ref = dr;
782 dataref->stmt = DR_STMT (dr);
783 dataref->offset = double_int_zero;
784 dataref->distance = 0;
785
786 dataref->always_accessed
787 = dominated_by_p (CDI_DOMINATORS, last_always_executed,
788 gimple_bb (dataref->stmt));
789 dataref->pos = VEC_length (dref, comp->refs);
790 VEC_quick_push (dref, comp->refs, dataref);
791 }
792
793 for (i = 0; i < n; i++)
794 {
795 comp = comps[i];
796 if (comp)
797 {
798 comp->next = comp_list;
799 comp_list = comp;
800 }
801 }
802 free (comps);
803
804 end:
805 free (comp_father);
806 free (comp_size);
807 return comp_list;
808 }
809
810 /* Returns true if the component COMP satisfies the conditions
811 described in 2) at the beginning of this file. LOOP is the current
812 loop. */
813
814 static bool
815 suitable_component_p (struct loop *loop, struct component *comp)
816 {
817 unsigned i;
818 dref a, first;
819 basic_block ba, bp = loop->header;
820 bool ok, has_write = false;
821
822 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
823 {
824 ba = gimple_bb (a->stmt);
825
826 if (!just_once_each_iteration_p (loop, ba))
827 return false;
828
829 gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp));
830 bp = ba;
831
832 if (!DR_IS_READ (a->ref))
833 has_write = true;
834 }
835
836 first = VEC_index (dref, comp->refs, 0);
837 ok = suitable_reference_p (first->ref, &comp->comp_step);
838 gcc_assert (ok);
839 first->offset = double_int_zero;
840
841 for (i = 1; VEC_iterate (dref, comp->refs, i, a); i++)
842 {
843 if (!determine_offset (first->ref, a->ref, &a->offset))
844 return false;
845
846 #ifdef ENABLE_CHECKING
847 {
848 enum ref_step_type a_step;
849 ok = suitable_reference_p (a->ref, &a_step);
850 gcc_assert (ok && a_step == comp->comp_step);
851 }
852 #endif
853 }
854
855 /* If there is a write inside the component, we must know whether the
856 step is nonzero or not -- we would not otherwise be able to recognize
857 whether the value accessed by reads comes from the OFFSET-th iteration
858 or the previous one. */
859 if (has_write && comp->comp_step == RS_ANY)
860 return false;
861
862 return true;
863 }
864
865 /* Check the conditions on references inside each of components COMPS,
866 and remove the unsuitable components from the list. The new list
867 of components is returned. The conditions are described in 2) at
868 the beginning of this file. LOOP is the current loop. */
869
870 static struct component *
871 filter_suitable_components (struct loop *loop, struct component *comps)
872 {
873 struct component **comp, *act;
874
875 for (comp = &comps; *comp; )
876 {
877 act = *comp;
878 if (suitable_component_p (loop, act))
879 comp = &act->next;
880 else
881 {
882 dref ref;
883 unsigned i;
884
885 *comp = act->next;
886 for (i = 0; VEC_iterate (dref, act->refs, i, ref); i++)
887 free (ref);
888 release_component (act);
889 }
890 }
891
892 return comps;
893 }
894
895 /* Compares two drefs A and B by their offset and position. Callback for
896 qsort. */
897
898 static int
899 order_drefs (const void *a, const void *b)
900 {
901 const dref *const da = (const dref *) a;
902 const dref *const db = (const dref *) b;
903 int offcmp = double_int_scmp ((*da)->offset, (*db)->offset);
904
905 if (offcmp != 0)
906 return offcmp;
907
908 return (*da)->pos - (*db)->pos;
909 }
910
911 /* Returns root of the CHAIN. */
912
913 static inline dref
914 get_chain_root (chain_p chain)
915 {
916 return VEC_index (dref, chain->refs, 0);
917 }
918
919 /* Adds REF to the chain CHAIN. */
920
921 static void
922 add_ref_to_chain (chain_p chain, dref ref)
923 {
924 dref root = get_chain_root (chain);
925 double_int dist;
926
927 gcc_assert (double_int_scmp (root->offset, ref->offset) <= 0);
928 dist = double_int_add (ref->offset, double_int_neg (root->offset));
929 if (double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE), dist) <= 0)
930 {
931 free (ref);
932 return;
933 }
934 gcc_assert (double_int_fits_in_uhwi_p (dist));
935
936 VEC_safe_push (dref, heap, chain->refs, ref);
937
938 ref->distance = double_int_to_uhwi (dist);
939
940 if (ref->distance >= chain->length)
941 {
942 chain->length = ref->distance;
943 chain->has_max_use_after = false;
944 }
945
946 if (ref->distance == chain->length
947 && ref->pos > root->pos)
948 chain->has_max_use_after = true;
949
950 chain->all_always_accessed &= ref->always_accessed;
951 }
952
953 /* Returns the chain for invariant component COMP. */
954
955 static chain_p
956 make_invariant_chain (struct component *comp)
957 {
958 chain_p chain = XCNEW (struct chain);
959 unsigned i;
960 dref ref;
961
962 chain->type = CT_INVARIANT;
963
964 chain->all_always_accessed = true;
965
966 for (i = 0; VEC_iterate (dref, comp->refs, i, ref); i++)
967 {
968 VEC_safe_push (dref, heap, chain->refs, ref);
969 chain->all_always_accessed &= ref->always_accessed;
970 }
971
972 return chain;
973 }
974
975 /* Make a new chain rooted at REF. */
976
977 static chain_p
978 make_rooted_chain (dref ref)
979 {
980 chain_p chain = XCNEW (struct chain);
981
982 chain->type = DR_IS_READ (ref->ref) ? CT_LOAD : CT_STORE_LOAD;
983
984 VEC_safe_push (dref, heap, chain->refs, ref);
985 chain->all_always_accessed = ref->always_accessed;
986
987 ref->distance = 0;
988
989 return chain;
990 }
991
992 /* Returns true if CHAIN is not trivial. */
993
994 static bool
995 nontrivial_chain_p (chain_p chain)
996 {
997 return chain != NULL && VEC_length (dref, chain->refs) > 1;
998 }
999
1000 /* Returns the ssa name that contains the value of REF, or NULL_TREE if there
1001 is no such name. */
1002
1003 static tree
1004 name_for_ref (dref ref)
1005 {
1006 tree name;
1007
1008 if (is_gimple_assign (ref->stmt))
1009 {
1010 if (!ref->ref || DR_IS_READ (ref->ref))
1011 name = gimple_assign_lhs (ref->stmt);
1012 else
1013 name = gimple_assign_rhs1 (ref->stmt);
1014 }
1015 else
1016 name = PHI_RESULT (ref->stmt);
1017
1018 return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE);
1019 }
1020
1021 /* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in
1022 iterations of the innermost enclosing loop). */
1023
1024 static bool
1025 valid_initializer_p (struct data_reference *ref,
1026 unsigned distance, struct data_reference *root)
1027 {
1028 aff_tree diff, base, step;
1029 double_int off;
1030
1031 /* Both REF and ROOT must be accessing the same object. */
1032 if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0))
1033 return false;
1034
1035 /* The initializer is defined outside of loop, hence its address must be
1036 invariant inside the loop. */
1037 gcc_assert (integer_zerop (DR_STEP (ref)));
1038
1039 /* If the address of the reference is invariant, initializer must access
1040 exactly the same location. */
1041 if (integer_zerop (DR_STEP (root)))
1042 return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0)
1043 && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0));
1044
1045 /* Verify that this index of REF is equal to the root's index at
1046 -DISTANCE-th iteration. */
1047 aff_combination_dr_offset (root, &diff);
1048 aff_combination_dr_offset (ref, &base);
1049 aff_combination_scale (&base, double_int_minus_one);
1050 aff_combination_add (&diff, &base);
1051
1052 tree_to_aff_combination_expand (DR_STEP (root), sizetype, &step,
1053 &name_expansions);
1054 if (!aff_combination_constant_multiple_p (&diff, &step, &off))
1055 return false;
1056
1057 if (!double_int_equal_p (off, uhwi_to_double_int (distance)))
1058 return false;
1059
1060 return true;
1061 }
1062
1063 /* Finds looparound phi node of LOOP that copies the value of REF, and if its
1064 initial value is correct (equal to initial value of REF shifted by one
1065 iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT
1066 is the root of the current chain. */
1067
1068 static gimple
1069 find_looparound_phi (struct loop *loop, dref ref, dref root)
1070 {
1071 tree name, init, init_ref;
1072 gimple phi = NULL, init_stmt;
1073 edge latch = loop_latch_edge (loop);
1074 struct data_reference init_dr;
1075 gimple_stmt_iterator psi;
1076
1077 if (is_gimple_assign (ref->stmt))
1078 {
1079 if (DR_IS_READ (ref->ref))
1080 name = gimple_assign_lhs (ref->stmt);
1081 else
1082 name = gimple_assign_rhs1 (ref->stmt);
1083 }
1084 else
1085 name = PHI_RESULT (ref->stmt);
1086 if (!name)
1087 return NULL;
1088
1089 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1090 {
1091 phi = gsi_stmt (psi);
1092 if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name)
1093 break;
1094 }
1095
1096 if (gsi_end_p (psi))
1097 return NULL;
1098
1099 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1100 if (TREE_CODE (init) != SSA_NAME)
1101 return NULL;
1102 init_stmt = SSA_NAME_DEF_STMT (init);
1103 if (gimple_code (init_stmt) != GIMPLE_ASSIGN)
1104 return NULL;
1105 gcc_assert (gimple_assign_lhs (init_stmt) == init);
1106
1107 init_ref = gimple_assign_rhs1 (init_stmt);
1108 if (!REFERENCE_CLASS_P (init_ref)
1109 && !DECL_P (init_ref))
1110 return NULL;
1111
1112 /* Analyze the behavior of INIT_REF with respect to LOOP (innermost
1113 loop enclosing PHI). */
1114 memset (&init_dr, 0, sizeof (struct data_reference));
1115 DR_REF (&init_dr) = init_ref;
1116 DR_STMT (&init_dr) = phi;
1117 if (!dr_analyze_innermost (&init_dr))
1118 return NULL;
1119
1120 if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref))
1121 return NULL;
1122
1123 return phi;
1124 }
1125
1126 /* Adds a reference for the looparound copy of REF in PHI to CHAIN. */
1127
1128 static void
1129 insert_looparound_copy (chain_p chain, dref ref, gimple phi)
1130 {
1131 dref nw = XCNEW (struct dref_d), aref;
1132 unsigned i;
1133
1134 nw->stmt = phi;
1135 nw->distance = ref->distance + 1;
1136 nw->always_accessed = 1;
1137
1138 for (i = 0; VEC_iterate (dref, chain->refs, i, aref); i++)
1139 if (aref->distance >= nw->distance)
1140 break;
1141 VEC_safe_insert (dref, heap, chain->refs, i, nw);
1142
1143 if (nw->distance > chain->length)
1144 {
1145 chain->length = nw->distance;
1146 chain->has_max_use_after = false;
1147 }
1148 }
1149
1150 /* For references in CHAIN that are copied around the LOOP (created previously
1151 by PRE, or by user), add the results of such copies to the chain. This
1152 enables us to remove the copies by unrolling, and may need less registers
1153 (also, it may allow us to combine chains together). */
1154
1155 static void
1156 add_looparound_copies (struct loop *loop, chain_p chain)
1157 {
1158 unsigned i;
1159 dref ref, root = get_chain_root (chain);
1160 gimple phi;
1161
1162 for (i = 0; VEC_iterate (dref, chain->refs, i, ref); i++)
1163 {
1164 phi = find_looparound_phi (loop, ref, root);
1165 if (!phi)
1166 continue;
1167
1168 bitmap_set_bit (looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi)));
1169 insert_looparound_copy (chain, ref, phi);
1170 }
1171 }
1172
1173 /* Find roots of the values and determine distances in the component COMP.
1174 The references are redistributed into CHAINS. LOOP is the current
1175 loop. */
1176
1177 static void
1178 determine_roots_comp (struct loop *loop,
1179 struct component *comp,
1180 VEC (chain_p, heap) **chains)
1181 {
1182 unsigned i;
1183 dref a;
1184 chain_p chain = NULL;
1185 double_int last_ofs = double_int_zero;
1186
1187 /* Invariants are handled specially. */
1188 if (comp->comp_step == RS_INVARIANT)
1189 {
1190 chain = make_invariant_chain (comp);
1191 VEC_safe_push (chain_p, heap, *chains, chain);
1192 return;
1193 }
1194
1195 qsort (VEC_address (dref, comp->refs), VEC_length (dref, comp->refs),
1196 sizeof (dref), order_drefs);
1197
1198 for (i = 0; VEC_iterate (dref, comp->refs, i, a); i++)
1199 {
1200 if (!chain || !DR_IS_READ (a->ref)
1201 || double_int_ucmp (uhwi_to_double_int (MAX_DISTANCE),
1202 double_int_add (a->offset,
1203 double_int_neg (last_ofs))) <= 0)
1204 {
1205 if (nontrivial_chain_p (chain))
1206 {
1207 add_looparound_copies (loop, chain);
1208 VEC_safe_push (chain_p, heap, *chains, chain);
1209 }
1210 else
1211 release_chain (chain);
1212 chain = make_rooted_chain (a);
1213 last_ofs = a->offset;
1214 continue;
1215 }
1216
1217 add_ref_to_chain (chain, a);
1218 }
1219
1220 if (nontrivial_chain_p (chain))
1221 {
1222 add_looparound_copies (loop, chain);
1223 VEC_safe_push (chain_p, heap, *chains, chain);
1224 }
1225 else
1226 release_chain (chain);
1227 }
1228
1229 /* Find roots of the values and determine distances in components COMPS, and
1230 separates the references to CHAINS. LOOP is the current loop. */
1231
1232 static void
1233 determine_roots (struct loop *loop,
1234 struct component *comps, VEC (chain_p, heap) **chains)
1235 {
1236 struct component *comp;
1237
1238 for (comp = comps; comp; comp = comp->next)
1239 determine_roots_comp (loop, comp, chains);
1240 }
1241
1242 /* Replace the reference in statement STMT with temporary variable
1243 NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of
1244 the reference in the statement. IN_LHS is true if the reference
1245 is in the lhs of STMT, false if it is in rhs. */
1246
1247 static void
1248 replace_ref_with (gimple stmt, tree new_tree, bool set, bool in_lhs)
1249 {
1250 tree val;
1251 gimple new_stmt;
1252 gimple_stmt_iterator bsi, psi;
1253
1254 if (gimple_code (stmt) == GIMPLE_PHI)
1255 {
1256 gcc_assert (!in_lhs && !set);
1257
1258 val = PHI_RESULT (stmt);
1259 bsi = gsi_after_labels (gimple_bb (stmt));
1260 psi = gsi_for_stmt (stmt);
1261 remove_phi_node (&psi, false);
1262
1263 /* Turn the phi node into GIMPLE_ASSIGN. */
1264 new_stmt = gimple_build_assign (val, new_tree);
1265 gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT);
1266 return;
1267 }
1268
1269 /* Since the reference is of gimple_reg type, it should only
1270 appear as lhs or rhs of modify statement. */
1271 gcc_assert (is_gimple_assign (stmt));
1272
1273 bsi = gsi_for_stmt (stmt);
1274
1275 /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */
1276 if (!set)
1277 {
1278 gcc_assert (!in_lhs);
1279 gimple_assign_set_rhs_from_tree (&bsi, new_tree);
1280 stmt = gsi_stmt (bsi);
1281 update_stmt (stmt);
1282 return;
1283 }
1284
1285 if (in_lhs)
1286 {
1287 /* We have statement
1288
1289 OLD = VAL
1290
1291 If OLD is a memory reference, then VAL is gimple_val, and we transform
1292 this to
1293
1294 OLD = VAL
1295 NEW = VAL
1296
1297 Otherwise, we are replacing a combination chain,
1298 VAL is the expression that performs the combination, and OLD is an
1299 SSA name. In this case, we transform the assignment to
1300
1301 OLD = VAL
1302 NEW = OLD
1303
1304 */
1305
1306 val = gimple_assign_lhs (stmt);
1307 if (TREE_CODE (val) != SSA_NAME)
1308 {
1309 gcc_assert (gimple_assign_copy_p (stmt));
1310 val = gimple_assign_rhs1 (stmt);
1311 }
1312 }
1313 else
1314 {
1315 /* VAL = OLD
1316
1317 is transformed to
1318
1319 VAL = OLD
1320 NEW = VAL */
1321
1322 val = gimple_assign_lhs (stmt);
1323 }
1324
1325 new_stmt = gimple_build_assign (new_tree, unshare_expr (val));
1326 gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT);
1327 }
1328
1329 /* Returns the reference to the address of REF in the ITER-th iteration of
1330 LOOP, or NULL if we fail to determine it (ITER may be negative). We
1331 try to preserve the original shape of the reference (not rewrite it
1332 as an indirect ref to the address), to make tree_could_trap_p in
1333 prepare_initializers_chain return false more often. */
1334
1335 static tree
1336 ref_at_iteration (struct loop *loop, tree ref, int iter)
1337 {
1338 tree idx, *idx_p, type, val, op0 = NULL_TREE, ret;
1339 affine_iv iv;
1340 bool ok;
1341
1342 if (handled_component_p (ref))
1343 {
1344 op0 = ref_at_iteration (loop, TREE_OPERAND (ref, 0), iter);
1345 if (!op0)
1346 return NULL_TREE;
1347 }
1348 else if (!INDIRECT_REF_P (ref))
1349 return unshare_expr (ref);
1350
1351 if (INDIRECT_REF_P (ref))
1352 {
1353 /* Take care for INDIRECT_REF and MISALIGNED_INDIRECT_REF at
1354 the same time. */
1355 ret = copy_node (ref);
1356 idx = TREE_OPERAND (ref, 0);
1357 idx_p = &TREE_OPERAND (ret, 0);
1358 }
1359 else if (TREE_CODE (ref) == COMPONENT_REF)
1360 {
1361 /* Check that the offset is loop invariant. */
1362 if (TREE_OPERAND (ref, 2)
1363 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1364 return NULL_TREE;
1365
1366 return build3 (COMPONENT_REF, TREE_TYPE (ref), op0,
1367 unshare_expr (TREE_OPERAND (ref, 1)),
1368 unshare_expr (TREE_OPERAND (ref, 2)));
1369 }
1370 else if (TREE_CODE (ref) == ARRAY_REF)
1371 {
1372 /* Check that the lower bound and the step are loop invariant. */
1373 if (TREE_OPERAND (ref, 2)
1374 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 2)))
1375 return NULL_TREE;
1376 if (TREE_OPERAND (ref, 3)
1377 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (ref, 3)))
1378 return NULL_TREE;
1379
1380 ret = build4 (ARRAY_REF, TREE_TYPE (ref), op0, NULL_TREE,
1381 unshare_expr (TREE_OPERAND (ref, 2)),
1382 unshare_expr (TREE_OPERAND (ref, 3)));
1383 idx = TREE_OPERAND (ref, 1);
1384 idx_p = &TREE_OPERAND (ret, 1);
1385 }
1386 else
1387 return NULL_TREE;
1388
1389 ok = simple_iv (loop, loop, idx, &iv, true);
1390 if (!ok)
1391 return NULL_TREE;
1392 iv.base = expand_simple_operations (iv.base);
1393 if (integer_zerop (iv.step))
1394 *idx_p = unshare_expr (iv.base);
1395 else
1396 {
1397 type = TREE_TYPE (iv.base);
1398 if (POINTER_TYPE_P (type))
1399 {
1400 val = fold_build2 (MULT_EXPR, sizetype, iv.step,
1401 size_int (iter));
1402 val = fold_build2 (POINTER_PLUS_EXPR, type, iv.base, val);
1403 }
1404 else
1405 {
1406 val = fold_build2 (MULT_EXPR, type, iv.step,
1407 build_int_cst_type (type, iter));
1408 val = fold_build2 (PLUS_EXPR, type, iv.base, val);
1409 }
1410 *idx_p = unshare_expr (val);
1411 }
1412
1413 return ret;
1414 }
1415
1416 /* Get the initialization expression for the INDEX-th temporary variable
1417 of CHAIN. */
1418
1419 static tree
1420 get_init_expr (chain_p chain, unsigned index)
1421 {
1422 if (chain->type == CT_COMBINATION)
1423 {
1424 tree e1 = get_init_expr (chain->ch1, index);
1425 tree e2 = get_init_expr (chain->ch2, index);
1426
1427 return fold_build2 (chain->op, chain->rslt_type, e1, e2);
1428 }
1429 else
1430 return VEC_index (tree, chain->inits, index);
1431 }
1432
1433 /* Marks all virtual operands of statement STMT for renaming. */
1434
1435 void
1436 mark_virtual_ops_for_renaming (gimple stmt)
1437 {
1438 tree var;
1439
1440 if (gimple_code (stmt) == GIMPLE_PHI)
1441 {
1442 var = PHI_RESULT (stmt);
1443 if (is_gimple_reg (var))
1444 return;
1445
1446 if (TREE_CODE (var) == SSA_NAME)
1447 var = SSA_NAME_VAR (var);
1448 mark_sym_for_renaming (var);
1449 return;
1450 }
1451
1452 update_stmt (stmt);
1453 if (gimple_vuse (stmt))
1454 mark_sym_for_renaming (gimple_vop (cfun));
1455 }
1456
1457 /* Returns a new temporary variable used for the I-th variable carrying
1458 value of REF. The variable's uid is marked in TMP_VARS. */
1459
1460 static tree
1461 predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars)
1462 {
1463 tree type = TREE_TYPE (ref);
1464 /* We never access the components of the temporary variable in predictive
1465 commoning. */
1466 tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i));
1467
1468 add_referenced_var (var);
1469 bitmap_set_bit (tmp_vars, DECL_UID (var));
1470 return var;
1471 }
1472
1473 /* Creates the variables for CHAIN, as well as phi nodes for them and
1474 initialization on entry to LOOP. Uids of the newly created
1475 temporary variables are marked in TMP_VARS. */
1476
1477 static void
1478 initialize_root_vars (struct loop *loop, chain_p chain, bitmap tmp_vars)
1479 {
1480 unsigned i;
1481 unsigned n = chain->length;
1482 dref root = get_chain_root (chain);
1483 bool reuse_first = !chain->has_max_use_after;
1484 tree ref, init, var, next;
1485 gimple phi;
1486 gimple_seq stmts;
1487 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1488
1489 /* If N == 0, then all the references are within the single iteration. And
1490 since this is an nonempty chain, reuse_first cannot be true. */
1491 gcc_assert (n > 0 || !reuse_first);
1492
1493 chain->vars = VEC_alloc (tree, heap, n + 1);
1494
1495 if (chain->type == CT_COMBINATION)
1496 ref = gimple_assign_lhs (root->stmt);
1497 else
1498 ref = DR_REF (root->ref);
1499
1500 for (i = 0; i < n + (reuse_first ? 0 : 1); i++)
1501 {
1502 var = predcom_tmp_var (ref, i, tmp_vars);
1503 VEC_quick_push (tree, chain->vars, var);
1504 }
1505 if (reuse_first)
1506 VEC_quick_push (tree, chain->vars, VEC_index (tree, chain->vars, 0));
1507
1508 for (i = 0; VEC_iterate (tree, chain->vars, i, var); i++)
1509 VEC_replace (tree, chain->vars, i, make_ssa_name (var, NULL));
1510
1511 for (i = 0; i < n; i++)
1512 {
1513 var = VEC_index (tree, chain->vars, i);
1514 next = VEC_index (tree, chain->vars, i + 1);
1515 init = get_init_expr (chain, i);
1516
1517 init = force_gimple_operand (init, &stmts, true, NULL_TREE);
1518 if (stmts)
1519 gsi_insert_seq_on_edge_immediate (entry, stmts);
1520
1521 phi = create_phi_node (var, loop->header);
1522 SSA_NAME_DEF_STMT (var) = phi;
1523 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1524 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1525 }
1526 }
1527
1528 /* Create the variables and initialization statement for root of chain
1529 CHAIN. Uids of the newly created temporary variables are marked
1530 in TMP_VARS. */
1531
1532 static void
1533 initialize_root (struct loop *loop, chain_p chain, bitmap tmp_vars)
1534 {
1535 dref root = get_chain_root (chain);
1536 bool in_lhs = (chain->type == CT_STORE_LOAD
1537 || chain->type == CT_COMBINATION);
1538
1539 initialize_root_vars (loop, chain, tmp_vars);
1540 replace_ref_with (root->stmt,
1541 VEC_index (tree, chain->vars, chain->length),
1542 true, in_lhs);
1543 }
1544
1545 /* Initializes a variable for load motion for ROOT and prepares phi nodes and
1546 initialization on entry to LOOP if necessary. The ssa name for the variable
1547 is stored in VARS. If WRITTEN is true, also a phi node to copy its value
1548 around the loop is created. Uid of the newly created temporary variable
1549 is marked in TMP_VARS. INITS is the list containing the (single)
1550 initializer. */
1551
1552 static void
1553 initialize_root_vars_lm (struct loop *loop, dref root, bool written,
1554 VEC(tree, heap) **vars, VEC(tree, heap) *inits,
1555 bitmap tmp_vars)
1556 {
1557 unsigned i;
1558 tree ref = DR_REF (root->ref), init, var, next;
1559 gimple_seq stmts;
1560 gimple phi;
1561 edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop);
1562
1563 /* Find the initializer for the variable, and check that it cannot
1564 trap. */
1565 init = VEC_index (tree, inits, 0);
1566
1567 *vars = VEC_alloc (tree, heap, written ? 2 : 1);
1568 var = predcom_tmp_var (ref, 0, tmp_vars);
1569 VEC_quick_push (tree, *vars, var);
1570 if (written)
1571 VEC_quick_push (tree, *vars, VEC_index (tree, *vars, 0));
1572
1573 for (i = 0; VEC_iterate (tree, *vars, i, var); i++)
1574 VEC_replace (tree, *vars, i, make_ssa_name (var, NULL));
1575
1576 var = VEC_index (tree, *vars, 0);
1577
1578 init = force_gimple_operand (init, &stmts, written, NULL_TREE);
1579 if (stmts)
1580 gsi_insert_seq_on_edge_immediate (entry, stmts);
1581
1582 if (written)
1583 {
1584 next = VEC_index (tree, *vars, 1);
1585 phi = create_phi_node (var, loop->header);
1586 SSA_NAME_DEF_STMT (var) = phi;
1587 add_phi_arg (phi, init, entry, UNKNOWN_LOCATION);
1588 add_phi_arg (phi, next, latch, UNKNOWN_LOCATION);
1589 }
1590 else
1591 {
1592 gimple init_stmt = gimple_build_assign (var, init);
1593 mark_virtual_ops_for_renaming (init_stmt);
1594 gsi_insert_on_edge_immediate (entry, init_stmt);
1595 }
1596 }
1597
1598
1599 /* Execute load motion for references in chain CHAIN. Uids of the newly
1600 created temporary variables are marked in TMP_VARS. */
1601
1602 static void
1603 execute_load_motion (struct loop *loop, chain_p chain, bitmap tmp_vars)
1604 {
1605 VEC (tree, heap) *vars;
1606 dref a;
1607 unsigned n_writes = 0, ridx, i;
1608 tree var;
1609
1610 gcc_assert (chain->type == CT_INVARIANT);
1611 gcc_assert (!chain->combined);
1612 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1613 if (!DR_IS_READ (a->ref))
1614 n_writes++;
1615
1616 /* If there are no reads in the loop, there is nothing to do. */
1617 if (n_writes == VEC_length (dref, chain->refs))
1618 return;
1619
1620 initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0,
1621 &vars, chain->inits, tmp_vars);
1622
1623 ridx = 0;
1624 for (i = 0; VEC_iterate (dref, chain->refs, i, a); i++)
1625 {
1626 bool is_read = DR_IS_READ (a->ref);
1627 mark_virtual_ops_for_renaming (a->stmt);
1628
1629 if (!DR_IS_READ (a->ref))
1630 {
1631 n_writes--;
1632 if (n_writes)
1633 {
1634 var = VEC_index (tree, vars, 0);
1635 var = make_ssa_name (SSA_NAME_VAR (var), NULL);
1636 VEC_replace (tree, vars, 0, var);
1637 }
1638 else
1639 ridx = 1;
1640 }
1641
1642 replace_ref_with (a->stmt, VEC_index (tree, vars, ridx),
1643 !is_read, !is_read);
1644 }
1645
1646 VEC_free (tree, heap, vars);
1647 }
1648
1649 /* Returns the single statement in that NAME is used, excepting
1650 the looparound phi nodes contained in one of the chains. If there is no
1651 such statement, or more statements, NULL is returned. */
1652
1653 static gimple
1654 single_nonlooparound_use (tree name)
1655 {
1656 use_operand_p use;
1657 imm_use_iterator it;
1658 gimple stmt, ret = NULL;
1659
1660 FOR_EACH_IMM_USE_FAST (use, it, name)
1661 {
1662 stmt = USE_STMT (use);
1663
1664 if (gimple_code (stmt) == GIMPLE_PHI)
1665 {
1666 /* Ignore uses in looparound phi nodes. Uses in other phi nodes
1667 could not be processed anyway, so just fail for them. */
1668 if (bitmap_bit_p (looparound_phis,
1669 SSA_NAME_VERSION (PHI_RESULT (stmt))))
1670 continue;
1671
1672 return NULL;
1673 }
1674 else if (ret != NULL)
1675 return NULL;
1676 else
1677 ret = stmt;
1678 }
1679
1680 return ret;
1681 }
1682
1683 /* Remove statement STMT, as well as the chain of assignments in that it is
1684 used. */
1685
1686 static void
1687 remove_stmt (gimple stmt)
1688 {
1689 tree name;
1690 gimple next;
1691 gimple_stmt_iterator psi;
1692
1693 if (gimple_code (stmt) == GIMPLE_PHI)
1694 {
1695 name = PHI_RESULT (stmt);
1696 next = single_nonlooparound_use (name);
1697 psi = gsi_for_stmt (stmt);
1698 remove_phi_node (&psi, true);
1699
1700 if (!next
1701 || !gimple_assign_ssa_name_copy_p (next)
1702 || gimple_assign_rhs1 (next) != name)
1703 return;
1704
1705 stmt = next;
1706 }
1707
1708 while (1)
1709 {
1710 gimple_stmt_iterator bsi;
1711
1712 bsi = gsi_for_stmt (stmt);
1713
1714 name = gimple_assign_lhs (stmt);
1715 gcc_assert (TREE_CODE (name) == SSA_NAME);
1716
1717 next = single_nonlooparound_use (name);
1718
1719 mark_virtual_ops_for_renaming (stmt);
1720 gsi_remove (&bsi, true);
1721 release_defs (stmt);
1722
1723 if (!next
1724 || !gimple_assign_ssa_name_copy_p (next)
1725 || gimple_assign_rhs1 (next) != name)
1726 return;
1727
1728 stmt = next;
1729 }
1730 }
1731
1732 /* Perform the predictive commoning optimization for a chain CHAIN.
1733 Uids of the newly created temporary variables are marked in TMP_VARS.*/
1734
1735 static void
1736 execute_pred_commoning_chain (struct loop *loop, chain_p chain,
1737 bitmap tmp_vars)
1738 {
1739 unsigned i;
1740 dref a, root;
1741 tree var;
1742
1743 if (chain->combined)
1744 {
1745 /* For combined chains, just remove the statements that are used to
1746 compute the values of the expression (except for the root one). */
1747 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1748 remove_stmt (a->stmt);
1749 }
1750 else
1751 {
1752 /* For non-combined chains, set up the variables that hold its value,
1753 and replace the uses of the original references by these
1754 variables. */
1755 root = get_chain_root (chain);
1756 mark_virtual_ops_for_renaming (root->stmt);
1757
1758 initialize_root (loop, chain, tmp_vars);
1759 for (i = 1; VEC_iterate (dref, chain->refs, i, a); i++)
1760 {
1761 mark_virtual_ops_for_renaming (a->stmt);
1762 var = VEC_index (tree, chain->vars, chain->length - a->distance);
1763 replace_ref_with (a->stmt, var, false, false);
1764 }
1765 }
1766 }
1767
1768 /* Determines the unroll factor necessary to remove as many temporary variable
1769 copies as possible. CHAINS is the list of chains that will be
1770 optimized. */
1771
1772 static unsigned
1773 determine_unroll_factor (VEC (chain_p, heap) *chains)
1774 {
1775 chain_p chain;
1776 unsigned factor = 1, af, nfactor, i;
1777 unsigned max = PARAM_VALUE (PARAM_MAX_UNROLL_TIMES);
1778
1779 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1780 {
1781 if (chain->type == CT_INVARIANT || chain->combined)
1782 continue;
1783
1784 /* The best unroll factor for this chain is equal to the number of
1785 temporary variables that we create for it. */
1786 af = chain->length;
1787 if (chain->has_max_use_after)
1788 af++;
1789
1790 nfactor = factor * af / gcd (factor, af);
1791 if (nfactor <= max)
1792 factor = nfactor;
1793 }
1794
1795 return factor;
1796 }
1797
1798 /* Perform the predictive commoning optimization for CHAINS.
1799 Uids of the newly created temporary variables are marked in TMP_VARS. */
1800
1801 static void
1802 execute_pred_commoning (struct loop *loop, VEC (chain_p, heap) *chains,
1803 bitmap tmp_vars)
1804 {
1805 chain_p chain;
1806 unsigned i;
1807
1808 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1809 {
1810 if (chain->type == CT_INVARIANT)
1811 execute_load_motion (loop, chain, tmp_vars);
1812 else
1813 execute_pred_commoning_chain (loop, chain, tmp_vars);
1814 }
1815
1816 update_ssa (TODO_update_ssa_only_virtuals);
1817 }
1818
1819 /* For each reference in CHAINS, if its defining statement is
1820 phi node, record the ssa name that is defined by it. */
1821
1822 static void
1823 replace_phis_by_defined_names (VEC (chain_p, heap) *chains)
1824 {
1825 chain_p chain;
1826 dref a;
1827 unsigned i, j;
1828
1829 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1830 for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1831 {
1832 if (gimple_code (a->stmt) == GIMPLE_PHI)
1833 {
1834 a->name_defined_by_phi = PHI_RESULT (a->stmt);
1835 a->stmt = NULL;
1836 }
1837 }
1838 }
1839
1840 /* For each reference in CHAINS, if name_defined_by_phi is not
1841 NULL, use it to set the stmt field. */
1842
1843 static void
1844 replace_names_by_phis (VEC (chain_p, heap) *chains)
1845 {
1846 chain_p chain;
1847 dref a;
1848 unsigned i, j;
1849
1850 for (i = 0; VEC_iterate (chain_p, chains, i, chain); i++)
1851 for (j = 0; VEC_iterate (dref, chain->refs, j, a); j++)
1852 if (a->stmt == NULL)
1853 {
1854 a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi);
1855 gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI);
1856 a->name_defined_by_phi = NULL_TREE;
1857 }
1858 }
1859
1860 /* Wrapper over execute_pred_commoning, to pass it as a callback
1861 to tree_transform_and_unroll_loop. */
1862
1863 struct epcc_data
1864 {
1865 VEC (chain_p, heap) *chains;
1866 bitmap tmp_vars;
1867 };
1868
1869 static void
1870 execute_pred_commoning_cbck (struct loop *loop, void *data)
1871 {
1872 struct epcc_data *const dta = (struct epcc_data *) data;
1873
1874 /* Restore phi nodes that were replaced by ssa names before
1875 tree_transform_and_unroll_loop (see detailed description in
1876 tree_predictive_commoning_loop). */
1877 replace_names_by_phis (dta->chains);
1878 execute_pred_commoning (loop, dta->chains, dta->tmp_vars);
1879 }
1880
1881 /* Base NAME and all the names in the chain of phi nodes that use it
1882 on variable VAR. The phi nodes are recognized by being in the copies of
1883 the header of the LOOP. */
1884
1885 static void
1886 base_names_in_chain_on (struct loop *loop, tree name, tree var)
1887 {
1888 gimple stmt, phi;
1889 imm_use_iterator iter;
1890
1891 SSA_NAME_VAR (name) = var;
1892
1893 while (1)
1894 {
1895 phi = NULL;
1896 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1897 {
1898 if (gimple_code (stmt) == GIMPLE_PHI
1899 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1900 {
1901 phi = stmt;
1902 BREAK_FROM_IMM_USE_STMT (iter);
1903 }
1904 }
1905 if (!phi)
1906 return;
1907
1908 name = PHI_RESULT (phi);
1909 SSA_NAME_VAR (name) = var;
1910 }
1911 }
1912
1913 /* Given an unrolled LOOP after predictive commoning, remove the
1914 register copies arising from phi nodes by changing the base
1915 variables of SSA names. TMP_VARS is the set of the temporary variables
1916 for those we want to perform this. */
1917
1918 static void
1919 eliminate_temp_copies (struct loop *loop, bitmap tmp_vars)
1920 {
1921 edge e;
1922 gimple phi, stmt;
1923 tree name, use, var;
1924 gimple_stmt_iterator psi;
1925
1926 e = loop_latch_edge (loop);
1927 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
1928 {
1929 phi = gsi_stmt (psi);
1930 name = PHI_RESULT (phi);
1931 var = SSA_NAME_VAR (name);
1932 if (!bitmap_bit_p (tmp_vars, DECL_UID (var)))
1933 continue;
1934 use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1935 gcc_assert (TREE_CODE (use) == SSA_NAME);
1936
1937 /* Base all the ssa names in the ud and du chain of NAME on VAR. */
1938 stmt = SSA_NAME_DEF_STMT (use);
1939 while (gimple_code (stmt) == GIMPLE_PHI
1940 /* In case we could not unroll the loop enough to eliminate
1941 all copies, we may reach the loop header before the defining
1942 statement (in that case, some register copies will be present
1943 in loop latch in the final code, corresponding to the newly
1944 created looparound phi nodes). */
1945 && gimple_bb (stmt) != loop->header)
1946 {
1947 gcc_assert (single_pred_p (gimple_bb (stmt)));
1948 use = PHI_ARG_DEF (stmt, 0);
1949 stmt = SSA_NAME_DEF_STMT (use);
1950 }
1951
1952 base_names_in_chain_on (loop, use, var);
1953 }
1954 }
1955
1956 /* Returns true if CHAIN is suitable to be combined. */
1957
1958 static bool
1959 chain_can_be_combined_p (chain_p chain)
1960 {
1961 return (!chain->combined
1962 && (chain->type == CT_LOAD || chain->type == CT_COMBINATION));
1963 }
1964
1965 /* Returns the modify statement that uses NAME. Skips over assignment
1966 statements, NAME is replaced with the actual name used in the returned
1967 statement. */
1968
1969 static gimple
1970 find_use_stmt (tree *name)
1971 {
1972 gimple stmt;
1973 tree rhs, lhs;
1974
1975 /* Skip over assignments. */
1976 while (1)
1977 {
1978 stmt = single_nonlooparound_use (*name);
1979 if (!stmt)
1980 return NULL;
1981
1982 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1983 return NULL;
1984
1985 lhs = gimple_assign_lhs (stmt);
1986 if (TREE_CODE (lhs) != SSA_NAME)
1987 return NULL;
1988
1989 if (gimple_assign_copy_p (stmt))
1990 {
1991 rhs = gimple_assign_rhs1 (stmt);
1992 if (rhs != *name)
1993 return NULL;
1994
1995 *name = lhs;
1996 }
1997 else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1998 == GIMPLE_BINARY_RHS)
1999 return stmt;
2000 else
2001 return NULL;
2002 }
2003 }
2004
2005 /* Returns true if we may perform reassociation for operation CODE in TYPE. */
2006
2007 static bool
2008 may_reassociate_p (tree type, enum tree_code code)
2009 {
2010 if (FLOAT_TYPE_P (type)
2011 && !flag_unsafe_math_optimizations)
2012 return false;
2013
2014 return (commutative_tree_code (code)
2015 && associative_tree_code (code));
2016 }
2017
2018 /* If the operation used in STMT is associative and commutative, go through the
2019 tree of the same operations and returns its root. Distance to the root
2020 is stored in DISTANCE. */
2021
2022 static gimple
2023 find_associative_operation_root (gimple stmt, unsigned *distance)
2024 {
2025 tree lhs;
2026 gimple next;
2027 enum tree_code code = gimple_assign_rhs_code (stmt);
2028 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
2029 unsigned dist = 0;
2030
2031 if (!may_reassociate_p (type, code))
2032 return NULL;
2033
2034 while (1)
2035 {
2036 lhs = gimple_assign_lhs (stmt);
2037 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
2038
2039 next = find_use_stmt (&lhs);
2040 if (!next
2041 || gimple_assign_rhs_code (next) != code)
2042 break;
2043
2044 stmt = next;
2045 dist++;
2046 }
2047
2048 if (distance)
2049 *distance = dist;
2050 return stmt;
2051 }
2052
2053 /* Returns the common statement in that NAME1 and NAME2 have a use. If there
2054 is no such statement, returns NULL_TREE. In case the operation used on
2055 NAME1 and NAME2 is associative and commutative, returns the root of the
2056 tree formed by this operation instead of the statement that uses NAME1 or
2057 NAME2. */
2058
2059 static gimple
2060 find_common_use_stmt (tree *name1, tree *name2)
2061 {
2062 gimple stmt1, stmt2;
2063
2064 stmt1 = find_use_stmt (name1);
2065 if (!stmt1)
2066 return NULL;
2067
2068 stmt2 = find_use_stmt (name2);
2069 if (!stmt2)
2070 return NULL;
2071
2072 if (stmt1 == stmt2)
2073 return stmt1;
2074
2075 stmt1 = find_associative_operation_root (stmt1, NULL);
2076 if (!stmt1)
2077 return NULL;
2078 stmt2 = find_associative_operation_root (stmt2, NULL);
2079 if (!stmt2)
2080 return NULL;
2081
2082 return (stmt1 == stmt2 ? stmt1 : NULL);
2083 }
2084
2085 /* Checks whether R1 and R2 are combined together using CODE, with the result
2086 in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1
2087 if it is true. If CODE is ERROR_MARK, set these values instead. */
2088
2089 static bool
2090 combinable_refs_p (dref r1, dref r2,
2091 enum tree_code *code, bool *swap, tree *rslt_type)
2092 {
2093 enum tree_code acode;
2094 bool aswap;
2095 tree atype;
2096 tree name1, name2;
2097 gimple stmt;
2098
2099 name1 = name_for_ref (r1);
2100 name2 = name_for_ref (r2);
2101 gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE);
2102
2103 stmt = find_common_use_stmt (&name1, &name2);
2104
2105 if (!stmt)
2106 return false;
2107
2108 acode = gimple_assign_rhs_code (stmt);
2109 aswap = (!commutative_tree_code (acode)
2110 && gimple_assign_rhs1 (stmt) != name1);
2111 atype = TREE_TYPE (gimple_assign_lhs (stmt));
2112
2113 if (*code == ERROR_MARK)
2114 {
2115 *code = acode;
2116 *swap = aswap;
2117 *rslt_type = atype;
2118 return true;
2119 }
2120
2121 return (*code == acode
2122 && *swap == aswap
2123 && *rslt_type == atype);
2124 }
2125
2126 /* Remove OP from the operation on rhs of STMT, and replace STMT with
2127 an assignment of the remaining operand. */
2128
2129 static void
2130 remove_name_from_operation (gimple stmt, tree op)
2131 {
2132 tree other_op;
2133 gimple_stmt_iterator si;
2134
2135 gcc_assert (is_gimple_assign (stmt));
2136
2137 if (gimple_assign_rhs1 (stmt) == op)
2138 other_op = gimple_assign_rhs2 (stmt);
2139 else
2140 other_op = gimple_assign_rhs1 (stmt);
2141
2142 si = gsi_for_stmt (stmt);
2143 gimple_assign_set_rhs_from_tree (&si, other_op);
2144
2145 /* We should not have reallocated STMT. */
2146 gcc_assert (gsi_stmt (si) == stmt);
2147
2148 update_stmt (stmt);
2149 }
2150
2151 /* Reassociates the expression in that NAME1 and NAME2 are used so that they
2152 are combined in a single statement, and returns this statement. */
2153
2154 static gimple
2155 reassociate_to_the_same_stmt (tree name1, tree name2)
2156 {
2157 gimple stmt1, stmt2, root1, root2, s1, s2;
2158 gimple new_stmt, tmp_stmt;
2159 tree new_name, tmp_name, var, r1, r2;
2160 unsigned dist1, dist2;
2161 enum tree_code code;
2162 tree type = TREE_TYPE (name1);
2163 gimple_stmt_iterator bsi;
2164
2165 stmt1 = find_use_stmt (&name1);
2166 stmt2 = find_use_stmt (&name2);
2167 root1 = find_associative_operation_root (stmt1, &dist1);
2168 root2 = find_associative_operation_root (stmt2, &dist2);
2169 code = gimple_assign_rhs_code (stmt1);
2170
2171 gcc_assert (root1 && root2 && root1 == root2
2172 && code == gimple_assign_rhs_code (stmt2));
2173
2174 /* Find the root of the nearest expression in that both NAME1 and NAME2
2175 are used. */
2176 r1 = name1;
2177 s1 = stmt1;
2178 r2 = name2;
2179 s2 = stmt2;
2180
2181 while (dist1 > dist2)
2182 {
2183 s1 = find_use_stmt (&r1);
2184 r1 = gimple_assign_lhs (s1);
2185 dist1--;
2186 }
2187 while (dist2 > dist1)
2188 {
2189 s2 = find_use_stmt (&r2);
2190 r2 = gimple_assign_lhs (s2);
2191 dist2--;
2192 }
2193
2194 while (s1 != s2)
2195 {
2196 s1 = find_use_stmt (&r1);
2197 r1 = gimple_assign_lhs (s1);
2198 s2 = find_use_stmt (&r2);
2199 r2 = gimple_assign_lhs (s2);
2200 }
2201
2202 /* Remove NAME1 and NAME2 from the statements in that they are used
2203 currently. */
2204 remove_name_from_operation (stmt1, name1);
2205 remove_name_from_operation (stmt2, name2);
2206
2207 /* Insert the new statement combining NAME1 and NAME2 before S1, and
2208 combine it with the rhs of S1. */
2209 var = create_tmp_reg (type, "predreastmp");
2210 add_referenced_var (var);
2211 new_name = make_ssa_name (var, NULL);
2212 new_stmt = gimple_build_assign_with_ops (code, new_name, name1, name2);
2213
2214 var = create_tmp_reg (type, "predreastmp");
2215 add_referenced_var (var);
2216 tmp_name = make_ssa_name (var, NULL);
2217
2218 /* Rhs of S1 may now be either a binary expression with operation
2219 CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1,
2220 so that name1 or name2 was removed from it). */
2221 tmp_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (s1),
2222 tmp_name,
2223 gimple_assign_rhs1 (s1),
2224 gimple_assign_rhs2 (s1));
2225
2226 bsi = gsi_for_stmt (s1);
2227 gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name);
2228 s1 = gsi_stmt (bsi);
2229 update_stmt (s1);
2230
2231 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
2232 gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT);
2233
2234 return new_stmt;
2235 }
2236
2237 /* Returns the statement that combines references R1 and R2. In case R1
2238 and R2 are not used in the same statement, but they are used with an
2239 associative and commutative operation in the same expression, reassociate
2240 the expression so that they are used in the same statement. */
2241
2242 static gimple
2243 stmt_combining_refs (dref r1, dref r2)
2244 {
2245 gimple stmt1, stmt2;
2246 tree name1 = name_for_ref (r1);
2247 tree name2 = name_for_ref (r2);
2248
2249 stmt1 = find_use_stmt (&name1);
2250 stmt2 = find_use_stmt (&name2);
2251 if (stmt1 == stmt2)
2252 return stmt1;
2253
2254 return reassociate_to_the_same_stmt (name1, name2);
2255 }
2256
2257 /* Tries to combine chains CH1 and CH2 together. If this succeeds, the
2258 description of the new chain is returned, otherwise we return NULL. */
2259
2260 static chain_p
2261 combine_chains (chain_p ch1, chain_p ch2)
2262 {
2263 dref r1, r2, nw;
2264 enum tree_code op = ERROR_MARK;
2265 bool swap = false;
2266 chain_p new_chain;
2267 unsigned i;
2268 gimple root_stmt;
2269 tree rslt_type = NULL_TREE;
2270
2271 if (ch1 == ch2)
2272 return NULL;
2273 if (ch1->length != ch2->length)
2274 return NULL;
2275
2276 if (VEC_length (dref, ch1->refs) != VEC_length (dref, ch2->refs))
2277 return NULL;
2278
2279 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2280 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2281 {
2282 if (r1->distance != r2->distance)
2283 return NULL;
2284
2285 if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type))
2286 return NULL;
2287 }
2288
2289 if (swap)
2290 {
2291 chain_p tmp = ch1;
2292 ch1 = ch2;
2293 ch2 = tmp;
2294 }
2295
2296 new_chain = XCNEW (struct chain);
2297 new_chain->type = CT_COMBINATION;
2298 new_chain->op = op;
2299 new_chain->ch1 = ch1;
2300 new_chain->ch2 = ch2;
2301 new_chain->rslt_type = rslt_type;
2302 new_chain->length = ch1->length;
2303
2304 for (i = 0; (VEC_iterate (dref, ch1->refs, i, r1)
2305 && VEC_iterate (dref, ch2->refs, i, r2)); i++)
2306 {
2307 nw = XCNEW (struct dref_d);
2308 nw->stmt = stmt_combining_refs (r1, r2);
2309 nw->distance = r1->distance;
2310
2311 VEC_safe_push (dref, heap, new_chain->refs, nw);
2312 }
2313
2314 new_chain->has_max_use_after = false;
2315 root_stmt = get_chain_root (new_chain)->stmt;
2316 for (i = 1; VEC_iterate (dref, new_chain->refs, i, nw); i++)
2317 {
2318 if (nw->distance == new_chain->length
2319 && !stmt_dominates_stmt_p (nw->stmt, root_stmt))
2320 {
2321 new_chain->has_max_use_after = true;
2322 break;
2323 }
2324 }
2325
2326 ch1->combined = true;
2327 ch2->combined = true;
2328 return new_chain;
2329 }
2330
2331 /* Try to combine the CHAINS. */
2332
2333 static void
2334 try_combine_chains (VEC (chain_p, heap) **chains)
2335 {
2336 unsigned i, j;
2337 chain_p ch1, ch2, cch;
2338 VEC (chain_p, heap) *worklist = NULL;
2339
2340 for (i = 0; VEC_iterate (chain_p, *chains, i, ch1); i++)
2341 if (chain_can_be_combined_p (ch1))
2342 VEC_safe_push (chain_p, heap, worklist, ch1);
2343
2344 while (!VEC_empty (chain_p, worklist))
2345 {
2346 ch1 = VEC_pop (chain_p, worklist);
2347 if (!chain_can_be_combined_p (ch1))
2348 continue;
2349
2350 for (j = 0; VEC_iterate (chain_p, *chains, j, ch2); j++)
2351 {
2352 if (!chain_can_be_combined_p (ch2))
2353 continue;
2354
2355 cch = combine_chains (ch1, ch2);
2356 if (cch)
2357 {
2358 VEC_safe_push (chain_p, heap, worklist, cch);
2359 VEC_safe_push (chain_p, heap, *chains, cch);
2360 break;
2361 }
2362 }
2363 }
2364 }
2365
2366 /* Prepare initializers for CHAIN in LOOP. Returns false if this is
2367 impossible because one of these initializers may trap, true otherwise. */
2368
2369 static bool
2370 prepare_initializers_chain (struct loop *loop, chain_p chain)
2371 {
2372 unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length;
2373 struct data_reference *dr = get_chain_root (chain)->ref;
2374 tree init;
2375 gimple_seq stmts;
2376 dref laref;
2377 edge entry = loop_preheader_edge (loop);
2378
2379 /* Find the initializers for the variables, and check that they cannot
2380 trap. */
2381 chain->inits = VEC_alloc (tree, heap, n);
2382 for (i = 0; i < n; i++)
2383 VEC_quick_push (tree, chain->inits, NULL_TREE);
2384
2385 /* If we have replaced some looparound phi nodes, use their initializers
2386 instead of creating our own. */
2387 for (i = 0; VEC_iterate (dref, chain->refs, i, laref); i++)
2388 {
2389 if (gimple_code (laref->stmt) != GIMPLE_PHI)
2390 continue;
2391
2392 gcc_assert (laref->distance > 0);
2393 VEC_replace (tree, chain->inits, n - laref->distance,
2394 PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry));
2395 }
2396
2397 for (i = 0; i < n; i++)
2398 {
2399 if (VEC_index (tree, chain->inits, i) != NULL_TREE)
2400 continue;
2401
2402 init = ref_at_iteration (loop, DR_REF (dr), (int) i - n);
2403 if (!init)
2404 return false;
2405
2406 if (!chain->all_always_accessed && tree_could_trap_p (init))
2407 return false;
2408
2409 init = force_gimple_operand (init, &stmts, false, NULL_TREE);
2410 if (stmts)
2411 gsi_insert_seq_on_edge_immediate (entry, stmts);
2412
2413 VEC_replace (tree, chain->inits, i, init);
2414 }
2415
2416 return true;
2417 }
2418
2419 /* Prepare initializers for CHAINS in LOOP, and free chains that cannot
2420 be used because the initializers might trap. */
2421
2422 static void
2423 prepare_initializers (struct loop *loop, VEC (chain_p, heap) *chains)
2424 {
2425 chain_p chain;
2426 unsigned i;
2427
2428 for (i = 0; i < VEC_length (chain_p, chains); )
2429 {
2430 chain = VEC_index (chain_p, chains, i);
2431 if (prepare_initializers_chain (loop, chain))
2432 i++;
2433 else
2434 {
2435 release_chain (chain);
2436 VEC_unordered_remove (chain_p, chains, i);
2437 }
2438 }
2439 }
2440
2441 /* Performs predictive commoning for LOOP. Returns true if LOOP was
2442 unrolled. */
2443
2444 static bool
2445 tree_predictive_commoning_loop (struct loop *loop)
2446 {
2447 VEC (data_reference_p, heap) *datarefs;
2448 VEC (ddr_p, heap) *dependences;
2449 struct component *components;
2450 VEC (chain_p, heap) *chains = NULL;
2451 unsigned unroll_factor;
2452 struct tree_niter_desc desc;
2453 bool unroll = false;
2454 edge exit;
2455 bitmap tmp_vars;
2456
2457 if (dump_file && (dump_flags & TDF_DETAILS))
2458 fprintf (dump_file, "Processing loop %d\n", loop->num);
2459
2460 /* Find the data references and split them into components according to their
2461 dependence relations. */
2462 datarefs = VEC_alloc (data_reference_p, heap, 10);
2463 dependences = VEC_alloc (ddr_p, heap, 10);
2464 compute_data_dependences_for_loop (loop, true, &datarefs, &dependences);
2465 if (dump_file && (dump_flags & TDF_DETAILS))
2466 dump_data_dependence_relations (dump_file, dependences);
2467
2468 components = split_data_refs_to_components (loop, datarefs, dependences);
2469 free_dependence_relations (dependences);
2470 if (!components)
2471 {
2472 free_data_refs (datarefs);
2473 return false;
2474 }
2475
2476 if (dump_file && (dump_flags & TDF_DETAILS))
2477 {
2478 fprintf (dump_file, "Initial state:\n\n");
2479 dump_components (dump_file, components);
2480 }
2481
2482 /* Find the suitable components and split them into chains. */
2483 components = filter_suitable_components (loop, components);
2484
2485 tmp_vars = BITMAP_ALLOC (NULL);
2486 looparound_phis = BITMAP_ALLOC (NULL);
2487 determine_roots (loop, components, &chains);
2488 release_components (components);
2489
2490 if (!chains)
2491 {
2492 if (dump_file && (dump_flags & TDF_DETAILS))
2493 fprintf (dump_file,
2494 "Predictive commoning failed: no suitable chains\n");
2495 goto end;
2496 }
2497 prepare_initializers (loop, chains);
2498
2499 /* Try to combine the chains that are always worked with together. */
2500 try_combine_chains (&chains);
2501
2502 if (dump_file && (dump_flags & TDF_DETAILS))
2503 {
2504 fprintf (dump_file, "Before commoning:\n\n");
2505 dump_chains (dump_file, chains);
2506 }
2507
2508 /* Determine the unroll factor, and if the loop should be unrolled, ensure
2509 that its number of iterations is divisible by the factor. */
2510 unroll_factor = determine_unroll_factor (chains);
2511 scev_reset ();
2512 unroll = (unroll_factor > 1
2513 && can_unroll_loop_p (loop, unroll_factor, &desc));
2514 exit = single_dom_exit (loop);
2515
2516 /* Execute the predictive commoning transformations, and possibly unroll the
2517 loop. */
2518 if (unroll)
2519 {
2520 struct epcc_data dta;
2521
2522 if (dump_file && (dump_flags & TDF_DETAILS))
2523 fprintf (dump_file, "Unrolling %u times.\n", unroll_factor);
2524
2525 dta.chains = chains;
2526 dta.tmp_vars = tmp_vars;
2527
2528 update_ssa (TODO_update_ssa_only_virtuals);
2529
2530 /* Cfg manipulations performed in tree_transform_and_unroll_loop before
2531 execute_pred_commoning_cbck is called may cause phi nodes to be
2532 reallocated, which is a problem since CHAINS may point to these
2533 statements. To fix this, we store the ssa names defined by the
2534 phi nodes here instead of the phi nodes themselves, and restore
2535 the phi nodes in execute_pred_commoning_cbck. A bit hacky. */
2536 replace_phis_by_defined_names (chains);
2537
2538 tree_transform_and_unroll_loop (loop, unroll_factor, exit, &desc,
2539 execute_pred_commoning_cbck, &dta);
2540 eliminate_temp_copies (loop, tmp_vars);
2541 }
2542 else
2543 {
2544 if (dump_file && (dump_flags & TDF_DETAILS))
2545 fprintf (dump_file,
2546 "Executing predictive commoning without unrolling.\n");
2547 execute_pred_commoning (loop, chains, tmp_vars);
2548 }
2549
2550 end: ;
2551 release_chains (chains);
2552 free_data_refs (datarefs);
2553 BITMAP_FREE (tmp_vars);
2554 BITMAP_FREE (looparound_phis);
2555
2556 free_affine_expand_cache (&name_expansions);
2557
2558 return unroll;
2559 }
2560
2561 /* Runs predictive commoning. */
2562
2563 unsigned
2564 tree_predictive_commoning (void)
2565 {
2566 bool unrolled = false;
2567 struct loop *loop;
2568 loop_iterator li;
2569 unsigned ret = 0;
2570
2571 initialize_original_copy_tables ();
2572 FOR_EACH_LOOP (li, loop, LI_ONLY_INNERMOST)
2573 if (optimize_loop_for_speed_p (loop))
2574 {
2575 unrolled |= tree_predictive_commoning_loop (loop);
2576 }
2577
2578 if (unrolled)
2579 {
2580 scev_reset ();
2581 ret = TODO_cleanup_cfg;
2582 }
2583 free_original_copy_tables ();
2584
2585 return ret;
2586 }