2004-11-06 Mattias Rehnberg <Mattias.Rehnberg@home.se>
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "errors.h"
239 #include "ggc.h"
240 #include "tree.h"
241
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254
255 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
256 static tree resolve_mixers (struct loop *, tree);
257
258 /* The cached information about a ssa name VAR, claiming that inside LOOP,
259 the value of VAR can be expressed as CHREC. */
260
261 struct scev_info_str
262 {
263 tree var;
264 tree chrec;
265 };
266
267 /* Counters for the scev database. */
268 static unsigned nb_set_scev = 0;
269 static unsigned nb_get_scev = 0;
270
271 /* The following trees are unique elements. Thus the comparison of
272 another element to these elements should be done on the pointer to
273 these trees, and not on their value. */
274
275 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
276 tree chrec_not_analyzed_yet;
277
278 /* Reserved to the cases where the analyzer has detected an
279 undecidable property at compile time. */
280 tree chrec_dont_know;
281
282 /* When the analyzer has detected that a property will never
283 happen, then it qualifies it with chrec_known. */
284 tree chrec_known;
285
286 static bitmap already_instantiated;
287
288 static htab_t scalar_evolution_info;
289
290 \f
291 /* Constructs a new SCEV_INFO_STR structure. */
292
293 static inline struct scev_info_str *
294 new_scev_info_str (tree var)
295 {
296 struct scev_info_str *res;
297
298 res = xmalloc (sizeof (struct scev_info_str));
299 res->var = var;
300 res->chrec = chrec_not_analyzed_yet;
301
302 return res;
303 }
304
305 /* Computes a hash function for database element ELT. */
306
307 static hashval_t
308 hash_scev_info (const void *elt)
309 {
310 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
311 }
312
313 /* Compares database elements E1 and E2. */
314
315 static int
316 eq_scev_info (const void *e1, const void *e2)
317 {
318 const struct scev_info_str *elt1 = e1;
319 const struct scev_info_str *elt2 = e2;
320
321 return elt1->var == elt2->var;
322 }
323
324 /* Deletes database element E. */
325
326 static void
327 del_scev_info (void *e)
328 {
329 free (e);
330 }
331
332 /* Get the index corresponding to VAR in the current LOOP. If
333 it's the first time we ask for this VAR, then we return
334 chrec_not_analyzed_yet for this VAR and return its index. */
335
336 static tree *
337 find_var_scev_info (tree var)
338 {
339 struct scev_info_str *res;
340 struct scev_info_str tmp;
341 PTR *slot;
342
343 tmp.var = var;
344 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
345
346 if (!*slot)
347 *slot = new_scev_info_str (var);
348 res = *slot;
349
350 return &res->chrec;
351 }
352
353 /* Tries to express CHREC in wider type TYPE. */
354
355 tree
356 count_ev_in_wider_type (tree type, tree chrec)
357 {
358 tree base, step;
359 struct loop *loop;
360
361 if (!evolution_function_is_affine_p (chrec))
362 return fold_convert (type, chrec);
363
364 base = CHREC_LEFT (chrec);
365 step = CHREC_RIGHT (chrec);
366 loop = current_loops->parray[CHREC_VARIABLE (chrec)];
367
368 /* TODO -- if we knew the statement at that the conversion occurs,
369 we could pass it to can_count_iv_in_wider_type and get a better
370 result. */
371 step = can_count_iv_in_wider_type (loop, type, base, step, NULL_TREE);
372 if (!step)
373 return fold_convert (type, chrec);
374 base = chrec_convert (type, base);
375
376 return build_polynomial_chrec (CHREC_VARIABLE (chrec),
377 base, step);
378 }
379
380 /* Return true when CHREC contains symbolic names defined in
381 LOOP_NB. */
382
383 bool
384 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
385 {
386 if (chrec == NULL_TREE)
387 return false;
388
389 if (TREE_INVARIANT (chrec))
390 return false;
391
392 if (TREE_CODE (chrec) == VAR_DECL
393 || TREE_CODE (chrec) == PARM_DECL
394 || TREE_CODE (chrec) == FUNCTION_DECL
395 || TREE_CODE (chrec) == LABEL_DECL
396 || TREE_CODE (chrec) == RESULT_DECL
397 || TREE_CODE (chrec) == FIELD_DECL)
398 return true;
399
400 if (TREE_CODE (chrec) == SSA_NAME)
401 {
402 tree def = SSA_NAME_DEF_STMT (chrec);
403 struct loop *def_loop = loop_containing_stmt (def);
404 struct loop *loop = current_loops->parray[loop_nb];
405
406 if (def_loop == NULL)
407 return false;
408
409 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
410 return true;
411
412 return false;
413 }
414
415 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
416 {
417 case 3:
418 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
419 loop_nb))
420 return true;
421
422 case 2:
423 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
424 loop_nb))
425 return true;
426
427 case 1:
428 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
429 loop_nb))
430 return true;
431
432 default:
433 return false;
434 }
435 }
436
437 /* Return true when PHI is a loop-phi-node. */
438
439 static bool
440 loop_phi_node_p (tree phi)
441 {
442 /* The implementation of this function is based on the following
443 property: "all the loop-phi-nodes of a loop are contained in the
444 loop's header basic block". */
445
446 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
447 }
448
449 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
450 In general, in the case of multivariate evolutions we want to get
451 the evolution in different loops. LOOP specifies the level for
452 which to get the evolution.
453
454 Example:
455
456 | for (j = 0; j < 100; j++)
457 | {
458 | for (k = 0; k < 100; k++)
459 | {
460 | i = k + j; - Here the value of i is a function of j, k.
461 | }
462 | ... = i - Here the value of i is a function of j.
463 | }
464 | ... = i - Here the value of i is a scalar.
465
466 Example:
467
468 | i_0 = ...
469 | loop_1 10 times
470 | i_1 = phi (i_0, i_2)
471 | i_2 = i_1 + 2
472 | endloop
473
474 This loop has the same effect as:
475 LOOP_1 has the same effect as:
476
477 | i_1 = i_0 + 20
478
479 The overall effect of the loop, "i_0 + 20" in the previous example,
480 is obtained by passing in the parameters: LOOP = 1,
481 EVOLUTION_FN = {i_0, +, 2}_1.
482 */
483
484 static tree
485 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
486 {
487 bool val = false;
488
489 if (evolution_fn == chrec_dont_know)
490 return chrec_dont_know;
491
492 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
493 {
494 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
495 {
496 struct loop *inner_loop =
497 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
498 tree nb_iter = number_of_iterations_in_loop (inner_loop);
499
500 if (nb_iter == chrec_dont_know)
501 return chrec_dont_know;
502 else
503 {
504 tree res;
505
506 /* Number of iterations is off by one (the ssa name we
507 analyze must be defined before the exit). */
508 nb_iter = chrec_fold_minus (chrec_type (nb_iter),
509 nb_iter,
510 build_int_cst_type (chrec_type (nb_iter), 1));
511
512 /* evolution_fn is the evolution function in LOOP. Get
513 its value in the nb_iter-th iteration. */
514 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
515
516 /* Continue the computation until ending on a parent of LOOP. */
517 return compute_overall_effect_of_inner_loop (loop, res);
518 }
519 }
520 else
521 return evolution_fn;
522 }
523
524 /* If the evolution function is an invariant, there is nothing to do. */
525 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
526 return evolution_fn;
527
528 else
529 return chrec_dont_know;
530 }
531
532 /* Determine whether the CHREC is always positive/negative. If the expression
533 cannot be statically analyzed, return false, otherwise set the answer into
534 VALUE. */
535
536 bool
537 chrec_is_positive (tree chrec, bool *value)
538 {
539 bool value0, value1;
540 bool value2;
541 tree end_value;
542 tree nb_iter;
543
544 switch (TREE_CODE (chrec))
545 {
546 case POLYNOMIAL_CHREC:
547 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
548 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
549 return false;
550
551 /* FIXME -- overflows. */
552 if (value0 == value1)
553 {
554 *value = value0;
555 return true;
556 }
557
558 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
559 and the proof consists in showing that the sign never
560 changes during the execution of the loop, from 0 to
561 loop->nb_iterations. */
562 if (!evolution_function_is_affine_p (chrec))
563 return false;
564
565 nb_iter = number_of_iterations_in_loop
566 (current_loops->parray[CHREC_VARIABLE (chrec)]);
567
568 if (chrec_contains_undetermined (nb_iter))
569 return false;
570
571 nb_iter = chrec_fold_minus
572 (chrec_type (nb_iter), nb_iter,
573 build_int_cst (chrec_type (nb_iter), 1));
574
575 #if 0
576 /* TODO -- If the test is after the exit, we may decrease the number of
577 iterations by one. */
578 if (after_exit)
579 nb_iter = chrec_fold_minus
580 (chrec_type (nb_iter), nb_iter,
581 build_int_cst (chrec_type (nb_iter), 1));
582 #endif
583
584 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
585
586 if (!chrec_is_positive (end_value, &value2))
587 return false;
588
589 *value = value0;
590 return value0 == value1;
591
592 case INTEGER_CST:
593 *value = (tree_int_cst_sgn (chrec) == 1);
594 return true;
595
596 default:
597 return false;
598 }
599 }
600
601 /* Associate CHREC to SCALAR. */
602
603 static void
604 set_scalar_evolution (tree scalar, tree chrec)
605 {
606 tree *scalar_info;
607
608 if (TREE_CODE (scalar) != SSA_NAME)
609 return;
610
611 scalar_info = find_var_scev_info (scalar);
612
613 if (dump_file)
614 {
615 if (dump_flags & TDF_DETAILS)
616 {
617 fprintf (dump_file, "(set_scalar_evolution \n");
618 fprintf (dump_file, " (scalar = ");
619 print_generic_expr (dump_file, scalar, 0);
620 fprintf (dump_file, ")\n (scalar_evolution = ");
621 print_generic_expr (dump_file, chrec, 0);
622 fprintf (dump_file, "))\n");
623 }
624 if (dump_flags & TDF_STATS)
625 nb_set_scev++;
626 }
627
628 *scalar_info = chrec;
629 }
630
631 /* Retrieve the chrec associated to SCALAR in the LOOP. */
632
633 static tree
634 get_scalar_evolution (tree scalar)
635 {
636 tree res;
637
638 if (dump_file)
639 {
640 if (dump_flags & TDF_DETAILS)
641 {
642 fprintf (dump_file, "(get_scalar_evolution \n");
643 fprintf (dump_file, " (scalar = ");
644 print_generic_expr (dump_file, scalar, 0);
645 fprintf (dump_file, ")\n");
646 }
647 if (dump_flags & TDF_STATS)
648 nb_get_scev++;
649 }
650
651 switch (TREE_CODE (scalar))
652 {
653 case SSA_NAME:
654 res = *find_var_scev_info (scalar);
655 break;
656
657 case REAL_CST:
658 case INTEGER_CST:
659 res = scalar;
660 break;
661
662 default:
663 res = chrec_not_analyzed_yet;
664 break;
665 }
666
667 if (dump_file && (dump_flags & TDF_DETAILS))
668 {
669 fprintf (dump_file, " (scalar_evolution = ");
670 print_generic_expr (dump_file, res, 0);
671 fprintf (dump_file, "))\n");
672 }
673
674 return res;
675 }
676
677 /* Helper function for add_to_evolution. Returns the evolution
678 function for an assignment of the form "a = b + c", where "a" and
679 "b" are on the strongly connected component. CHREC_BEFORE is the
680 information that we already have collected up to this point.
681 TO_ADD is the evolution of "c".
682
683 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
684 evolution the expression TO_ADD, otherwise construct an evolution
685 part for this loop. */
686
687 static tree
688 add_to_evolution_1 (unsigned loop_nb,
689 tree chrec_before,
690 tree to_add)
691 {
692 switch (TREE_CODE (chrec_before))
693 {
694 case POLYNOMIAL_CHREC:
695 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
696 {
697 unsigned var;
698 tree left, right;
699 tree type = chrec_type (chrec_before);
700
701 /* When there is no evolution part in this loop, build it. */
702 if (CHREC_VARIABLE (chrec_before) < loop_nb)
703 {
704 var = loop_nb;
705 left = chrec_before;
706 right = build_int_cst (type, 0);
707 }
708 else
709 {
710 var = CHREC_VARIABLE (chrec_before);
711 left = CHREC_LEFT (chrec_before);
712 right = CHREC_RIGHT (chrec_before);
713 }
714
715 return build_polynomial_chrec
716 (var, left, chrec_fold_plus (type, right, to_add));
717 }
718 else
719 /* Search the evolution in LOOP_NB. */
720 return build_polynomial_chrec
721 (CHREC_VARIABLE (chrec_before),
722 add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before), to_add),
723 CHREC_RIGHT (chrec_before));
724
725 default:
726 /* These nodes do not depend on a loop. */
727 if (chrec_before == chrec_dont_know)
728 return chrec_dont_know;
729 return build_polynomial_chrec (loop_nb, chrec_before, to_add);
730 }
731 }
732
733 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
734 of LOOP_NB.
735
736 Description (provided for completeness, for those who read code in
737 a plane, and for my poor 62 bytes brain that would have forgotten
738 all this in the next two or three months):
739
740 The algorithm of translation of programs from the SSA representation
741 into the chrecs syntax is based on a pattern matching. After having
742 reconstructed the overall tree expression for a loop, there are only
743 two cases that can arise:
744
745 1. a = loop-phi (init, a + expr)
746 2. a = loop-phi (init, expr)
747
748 where EXPR is either a scalar constant with respect to the analyzed
749 loop (this is a degree 0 polynomial), or an expression containing
750 other loop-phi definitions (these are higher degree polynomials).
751
752 Examples:
753
754 1.
755 | init = ...
756 | loop_1
757 | a = phi (init, a + 5)
758 | endloop
759
760 2.
761 | inita = ...
762 | initb = ...
763 | loop_1
764 | a = phi (inita, 2 * b + 3)
765 | b = phi (initb, b + 1)
766 | endloop
767
768 For the first case, the semantics of the SSA representation is:
769
770 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
771
772 that is, there is a loop index "x" that determines the scalar value
773 of the variable during the loop execution. During the first
774 iteration, the value is that of the initial condition INIT, while
775 during the subsequent iterations, it is the sum of the initial
776 condition with the sum of all the values of EXPR from the initial
777 iteration to the before last considered iteration.
778
779 For the second case, the semantics of the SSA program is:
780
781 | a (x) = init, if x = 0;
782 | expr (x - 1), otherwise.
783
784 The second case corresponds to the PEELED_CHREC, whose syntax is
785 close to the syntax of a loop-phi-node:
786
787 | phi (init, expr) vs. (init, expr)_x
788
789 The proof of the translation algorithm for the first case is a
790 proof by structural induction based on the degree of EXPR.
791
792 Degree 0:
793 When EXPR is a constant with respect to the analyzed loop, or in
794 other words when EXPR is a polynomial of degree 0, the evolution of
795 the variable A in the loop is an affine function with an initial
796 condition INIT, and a step EXPR. In order to show this, we start
797 from the semantics of the SSA representation:
798
799 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
800
801 and since "expr (j)" is a constant with respect to "j",
802
803 f (x) = init + x * expr
804
805 Finally, based on the semantics of the pure sum chrecs, by
806 identification we get the corresponding chrecs syntax:
807
808 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
809 f (x) -> {init, +, expr}_x
810
811 Higher degree:
812 Suppose that EXPR is a polynomial of degree N with respect to the
813 analyzed loop_x for which we have already determined that it is
814 written under the chrecs syntax:
815
816 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
817
818 We start from the semantics of the SSA program:
819
820 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
821 |
822 | f (x) = init + \sum_{j = 0}^{x - 1}
823 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
824 |
825 | f (x) = init + \sum_{j = 0}^{x - 1}
826 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
827 |
828 | f (x) = init + \sum_{k = 0}^{n - 1}
829 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
830 |
831 | f (x) = init + \sum_{k = 0}^{n - 1}
832 | (b_k * \binom{x}{k + 1})
833 |
834 | f (x) = init + b_0 * \binom{x}{1} + ...
835 | + b_{n-1} * \binom{x}{n}
836 |
837 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
838 | + b_{n-1} * \binom{x}{n}
839 |
840
841 And finally from the definition of the chrecs syntax, we identify:
842 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
843
844 This shows the mechanism that stands behind the add_to_evolution
845 function. An important point is that the use of symbolic
846 parameters avoids the need of an analysis schedule.
847
848 Example:
849
850 | inita = ...
851 | initb = ...
852 | loop_1
853 | a = phi (inita, a + 2 + b)
854 | b = phi (initb, b + 1)
855 | endloop
856
857 When analyzing "a", the algorithm keeps "b" symbolically:
858
859 | a -> {inita, +, 2 + b}_1
860
861 Then, after instantiation, the analyzer ends on the evolution:
862
863 | a -> {inita, +, 2 + initb, +, 1}_1
864
865 */
866
867 static tree
868 add_to_evolution (unsigned loop_nb,
869 tree chrec_before,
870 enum tree_code code,
871 tree to_add)
872 {
873 tree type = chrec_type (to_add);
874 tree res = NULL_TREE;
875
876 if (to_add == NULL_TREE)
877 return chrec_before;
878
879 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
880 instantiated at this point. */
881 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
882 /* This should not happen. */
883 return chrec_dont_know;
884
885 if (dump_file && (dump_flags & TDF_DETAILS))
886 {
887 fprintf (dump_file, "(add_to_evolution \n");
888 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
889 fprintf (dump_file, " (chrec_before = ");
890 print_generic_expr (dump_file, chrec_before, 0);
891 fprintf (dump_file, ")\n (to_add = ");
892 print_generic_expr (dump_file, to_add, 0);
893 fprintf (dump_file, ")\n");
894 }
895
896 if (code == MINUS_EXPR)
897 to_add = chrec_fold_multiply (type, to_add,
898 build_int_cst_type (type, -1));
899
900 res = add_to_evolution_1 (loop_nb, chrec_before, to_add);
901
902 if (dump_file && (dump_flags & TDF_DETAILS))
903 {
904 fprintf (dump_file, " (res = ");
905 print_generic_expr (dump_file, res, 0);
906 fprintf (dump_file, "))\n");
907 }
908
909 return res;
910 }
911
912 /* Helper function. */
913
914 static inline tree
915 set_nb_iterations_in_loop (struct loop *loop,
916 tree res)
917 {
918 res = chrec_fold_plus (chrec_type (res), res,
919 build_int_cst_type (chrec_type (res), 1));
920
921 /* FIXME HWI: However we want to store one iteration less than the
922 count of the loop in order to be compatible with the other
923 nb_iter computations in loop-iv. This also allows the
924 representation of nb_iters that are equal to MAX_INT. */
925 if ((TREE_CODE (res) == INTEGER_CST && TREE_INT_CST_LOW (res) == 0)
926 || TREE_OVERFLOW (res))
927 res = chrec_dont_know;
928
929 if (dump_file && (dump_flags & TDF_DETAILS))
930 {
931 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
932 print_generic_expr (dump_file, res, 0);
933 fprintf (dump_file, "))\n");
934 }
935
936 loop->nb_iterations = res;
937 return res;
938 }
939
940 \f
941
942 /* This section selects the loops that will be good candidates for the
943 scalar evolution analysis. For the moment, greedily select all the
944 loop nests we could analyze. */
945
946 /* Return true when it is possible to analyze the condition expression
947 EXPR. */
948
949 static bool
950 analyzable_condition (tree expr)
951 {
952 tree condition;
953
954 if (TREE_CODE (expr) != COND_EXPR)
955 return false;
956
957 condition = TREE_OPERAND (expr, 0);
958
959 switch (TREE_CODE (condition))
960 {
961 case SSA_NAME:
962 /* Volatile expressions are not analyzable. */
963 if (TREE_THIS_VOLATILE (SSA_NAME_VAR (condition)))
964 return false;
965 return true;
966
967 case LT_EXPR:
968 case LE_EXPR:
969 case GT_EXPR:
970 case GE_EXPR:
971 case EQ_EXPR:
972 case NE_EXPR:
973 {
974 tree opnd0, opnd1;
975
976 opnd0 = TREE_OPERAND (condition, 0);
977 opnd1 = TREE_OPERAND (condition, 1);
978
979 if (TREE_CODE (opnd0) == SSA_NAME
980 && TREE_THIS_VOLATILE (SSA_NAME_VAR (opnd0)))
981 return false;
982
983 if (TREE_CODE (opnd1) == SSA_NAME
984 && TREE_THIS_VOLATILE (SSA_NAME_VAR (opnd1)))
985 return false;
986
987 return true;
988 }
989
990 default:
991 return false;
992 }
993
994 return false;
995 }
996
997 /* For a loop with a single exit edge, return the COND_EXPR that
998 guards the exit edge. If the expression is too difficult to
999 analyze, then give up. */
1000
1001 tree
1002 get_loop_exit_condition (struct loop *loop)
1003 {
1004 tree res = NULL_TREE;
1005 edge exit_edge = loop->single_exit;
1006
1007
1008 if (dump_file && (dump_flags & TDF_DETAILS))
1009 fprintf (dump_file, "(get_loop_exit_condition \n ");
1010
1011 if (exit_edge)
1012 {
1013 tree expr;
1014
1015 expr = last_stmt (exit_edge->src);
1016 if (analyzable_condition (expr))
1017 res = expr;
1018 }
1019
1020 if (dump_file && (dump_flags & TDF_DETAILS))
1021 {
1022 print_generic_expr (dump_file, res, 0);
1023 fprintf (dump_file, ")\n");
1024 }
1025
1026 return res;
1027 }
1028
1029 /* Recursively determine and enqueue the exit conditions for a loop. */
1030
1031 static void
1032 get_exit_conditions_rec (struct loop *loop,
1033 varray_type *exit_conditions)
1034 {
1035 if (!loop)
1036 return;
1037
1038 /* Recurse on the inner loops, then on the next (sibling) loops. */
1039 get_exit_conditions_rec (loop->inner, exit_conditions);
1040 get_exit_conditions_rec (loop->next, exit_conditions);
1041
1042 if (loop->single_exit)
1043 {
1044 tree loop_condition = get_loop_exit_condition (loop);
1045
1046 if (loop_condition)
1047 VARRAY_PUSH_TREE (*exit_conditions, loop_condition);
1048 }
1049 }
1050
1051 /* Select the candidate loop nests for the analysis. This function
1052 initializes the EXIT_CONDITIONS array. */
1053
1054 static void
1055 select_loops_exit_conditions (struct loops *loops,
1056 varray_type *exit_conditions)
1057 {
1058 struct loop *function_body = loops->parray[0];
1059
1060 get_exit_conditions_rec (function_body->inner, exit_conditions);
1061 }
1062
1063 \f
1064 /* Depth first search algorithm. */
1065
1066 static bool follow_ssa_edge (struct loop *loop, tree, tree, tree *);
1067
1068 /* Follow the ssa edge into the right hand side RHS of an assignment.
1069 Return true if the strongly connected component has been found. */
1070
1071 static bool
1072 follow_ssa_edge_in_rhs (struct loop *loop,
1073 tree rhs,
1074 tree halting_phi,
1075 tree *evolution_of_loop)
1076 {
1077 bool res = false;
1078 tree rhs0, rhs1;
1079 tree type_rhs = TREE_TYPE (rhs);
1080
1081 /* The RHS is one of the following cases:
1082 - an SSA_NAME,
1083 - an INTEGER_CST,
1084 - a PLUS_EXPR,
1085 - a MINUS_EXPR,
1086 - other cases are not yet handled.
1087 */
1088 switch (TREE_CODE (rhs))
1089 {
1090 case NOP_EXPR:
1091 /* This assignment is under the form "a_1 = (cast) rhs. */
1092 res = follow_ssa_edge_in_rhs (loop, TREE_OPERAND (rhs, 0), halting_phi,
1093 evolution_of_loop);
1094 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs), *evolution_of_loop);
1095 break;
1096
1097 case INTEGER_CST:
1098 /* This assignment is under the form "a_1 = 7". */
1099 res = false;
1100 break;
1101
1102 case SSA_NAME:
1103 /* This assignment is under the form: "a_1 = b_2". */
1104 res = follow_ssa_edge
1105 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop);
1106 break;
1107
1108 case PLUS_EXPR:
1109 /* This case is under the form "rhs0 + rhs1". */
1110 rhs0 = TREE_OPERAND (rhs, 0);
1111 rhs1 = TREE_OPERAND (rhs, 1);
1112 STRIP_TYPE_NOPS (rhs0);
1113 STRIP_TYPE_NOPS (rhs1);
1114
1115 if (TREE_CODE (rhs0) == SSA_NAME)
1116 {
1117 if (TREE_CODE (rhs1) == SSA_NAME)
1118 {
1119 /* Match an assignment under the form:
1120 "a = b + c". */
1121 res = follow_ssa_edge
1122 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1123 evolution_of_loop);
1124
1125 if (res)
1126 *evolution_of_loop = add_to_evolution
1127 (loop->num,
1128 chrec_convert (type_rhs, *evolution_of_loop),
1129 PLUS_EXPR, rhs1);
1130
1131 else
1132 {
1133 res = follow_ssa_edge
1134 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1135 evolution_of_loop);
1136
1137 if (res)
1138 *evolution_of_loop = add_to_evolution
1139 (loop->num,
1140 chrec_convert (type_rhs, *evolution_of_loop),
1141 PLUS_EXPR, rhs0);
1142 }
1143 }
1144
1145 else
1146 {
1147 /* Match an assignment under the form:
1148 "a = b + ...". */
1149 res = follow_ssa_edge
1150 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1151 evolution_of_loop);
1152 if (res)
1153 *evolution_of_loop = add_to_evolution
1154 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1155 PLUS_EXPR, rhs1);
1156 }
1157 }
1158
1159 else if (TREE_CODE (rhs1) == SSA_NAME)
1160 {
1161 /* Match an assignment under the form:
1162 "a = ... + c". */
1163 res = follow_ssa_edge
1164 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1165 evolution_of_loop);
1166 if (res)
1167 *evolution_of_loop = add_to_evolution
1168 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1169 PLUS_EXPR, rhs0);
1170 }
1171
1172 else
1173 /* Otherwise, match an assignment under the form:
1174 "a = ... + ...". */
1175 /* And there is nothing to do. */
1176 res = false;
1177
1178 break;
1179
1180 case MINUS_EXPR:
1181 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1182 rhs0 = TREE_OPERAND (rhs, 0);
1183 rhs1 = TREE_OPERAND (rhs, 1);
1184 STRIP_TYPE_NOPS (rhs0);
1185 STRIP_TYPE_NOPS (rhs1);
1186
1187 if (TREE_CODE (rhs0) == SSA_NAME)
1188 {
1189 if (TREE_CODE (rhs1) == SSA_NAME)
1190 {
1191 /* Match an assignment under the form:
1192 "a = b - c". */
1193 res = follow_ssa_edge
1194 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1195 evolution_of_loop);
1196
1197 if (res)
1198 *evolution_of_loop = add_to_evolution
1199 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1200 MINUS_EXPR, rhs1);
1201
1202 else
1203 {
1204 res = follow_ssa_edge
1205 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1206 evolution_of_loop);
1207
1208 if (res)
1209 *evolution_of_loop = add_to_evolution
1210 (loop->num,
1211 chrec_fold_multiply (type_rhs,
1212 *evolution_of_loop,
1213 build_int_cst_type (type_rhs, -1)),
1214 PLUS_EXPR, rhs0);
1215 }
1216 }
1217
1218 else
1219 {
1220 /* Match an assignment under the form:
1221 "a = b - ...". */
1222 res = follow_ssa_edge
1223 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1224 evolution_of_loop);
1225 if (res)
1226 *evolution_of_loop = add_to_evolution
1227 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1228 MINUS_EXPR, rhs1);
1229 }
1230 }
1231
1232 else if (TREE_CODE (rhs1) == SSA_NAME)
1233 {
1234 /* Match an assignment under the form:
1235 "a = ... - c". */
1236 res = follow_ssa_edge
1237 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1238 evolution_of_loop);
1239 if (res)
1240 *evolution_of_loop = add_to_evolution
1241 (loop->num,
1242 chrec_fold_multiply (type_rhs,
1243 *evolution_of_loop,
1244 build_int_cst_type (type_rhs, -1)),
1245 PLUS_EXPR, rhs0);
1246 }
1247
1248 else
1249 /* Otherwise, match an assignment under the form:
1250 "a = ... - ...". */
1251 /* And there is nothing to do. */
1252 res = false;
1253
1254 break;
1255
1256 case MULT_EXPR:
1257 /* This case is under the form "opnd0 = rhs0 * rhs1". */
1258 rhs0 = TREE_OPERAND (rhs, 0);
1259 rhs1 = TREE_OPERAND (rhs, 1);
1260 STRIP_TYPE_NOPS (rhs0);
1261 STRIP_TYPE_NOPS (rhs1);
1262
1263 if (TREE_CODE (rhs0) == SSA_NAME)
1264 {
1265 if (TREE_CODE (rhs1) == SSA_NAME)
1266 {
1267 /* Match an assignment under the form:
1268 "a = b * c". */
1269 res = follow_ssa_edge
1270 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1271 evolution_of_loop);
1272
1273 if (res)
1274 *evolution_of_loop = chrec_dont_know;
1275
1276 else
1277 {
1278 res = follow_ssa_edge
1279 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1280 evolution_of_loop);
1281
1282 if (res)
1283 *evolution_of_loop = chrec_dont_know;
1284 }
1285 }
1286
1287 else
1288 {
1289 /* Match an assignment under the form:
1290 "a = b * ...". */
1291 res = follow_ssa_edge
1292 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1293 evolution_of_loop);
1294 if (res)
1295 *evolution_of_loop = chrec_dont_know;
1296 }
1297 }
1298
1299 else if (TREE_CODE (rhs1) == SSA_NAME)
1300 {
1301 /* Match an assignment under the form:
1302 "a = ... * c". */
1303 res = follow_ssa_edge
1304 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1305 evolution_of_loop);
1306 if (res)
1307 *evolution_of_loop = chrec_dont_know;
1308 }
1309
1310 else
1311 /* Otherwise, match an assignment under the form:
1312 "a = ... * ...". */
1313 /* And there is nothing to do. */
1314 res = false;
1315
1316 break;
1317
1318 default:
1319 res = false;
1320 break;
1321 }
1322
1323 return res;
1324 }
1325
1326 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1327
1328 static bool
1329 backedge_phi_arg_p (tree phi, int i)
1330 {
1331 edge e = PHI_ARG_EDGE (phi, i);
1332
1333 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1334 about updating it anywhere, and this should work as well most of the
1335 time. */
1336 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1337 return true;
1338
1339 return false;
1340 }
1341
1342 /* Helper function for one branch of the condition-phi-node. Return
1343 true if the strongly connected component has been found following
1344 this path. */
1345
1346 static inline bool
1347 follow_ssa_edge_in_condition_phi_branch (int i,
1348 struct loop *loop,
1349 tree condition_phi,
1350 tree halting_phi,
1351 tree *evolution_of_branch,
1352 tree init_cond)
1353 {
1354 tree branch = PHI_ARG_DEF (condition_phi, i);
1355 *evolution_of_branch = chrec_dont_know;
1356
1357 /* Do not follow back edges (they must belong to an irreducible loop, which
1358 we really do not want to worry about). */
1359 if (backedge_phi_arg_p (condition_phi, i))
1360 return false;
1361
1362 if (TREE_CODE (branch) == SSA_NAME)
1363 {
1364 *evolution_of_branch = init_cond;
1365 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1366 evolution_of_branch);
1367 }
1368
1369 /* This case occurs when one of the condition branches sets
1370 the variable to a constant: i.e. a phi-node like
1371 "a_2 = PHI <a_7(5), 2(6)>;".
1372
1373 FIXME: This case have to be refined correctly:
1374 in some cases it is possible to say something better than
1375 chrec_dont_know, for example using a wrap-around notation. */
1376 return false;
1377 }
1378
1379 /* This function merges the branches of a condition-phi-node in a
1380 loop. */
1381
1382 static bool
1383 follow_ssa_edge_in_condition_phi (struct loop *loop,
1384 tree condition_phi,
1385 tree halting_phi,
1386 tree *evolution_of_loop)
1387 {
1388 int i;
1389 tree init = *evolution_of_loop;
1390 tree evolution_of_branch;
1391
1392 if (!follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1393 halting_phi,
1394 &evolution_of_branch,
1395 init))
1396 return false;
1397 *evolution_of_loop = evolution_of_branch;
1398
1399 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1400 {
1401 if (!follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1402 halting_phi,
1403 &evolution_of_branch,
1404 init))
1405 return false;
1406
1407 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1408 evolution_of_branch);
1409 }
1410
1411 return true;
1412 }
1413
1414 /* Follow an SSA edge in an inner loop. It computes the overall
1415 effect of the loop, and following the symbolic initial conditions,
1416 it follows the edges in the parent loop. The inner loop is
1417 considered as a single statement. */
1418
1419 static bool
1420 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1421 tree loop_phi_node,
1422 tree halting_phi,
1423 tree *evolution_of_loop)
1424 {
1425 struct loop *loop = loop_containing_stmt (loop_phi_node);
1426 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1427
1428 /* Sometimes, the inner loop is too difficult to analyze, and the
1429 result of the analysis is a symbolic parameter. */
1430 if (ev == PHI_RESULT (loop_phi_node))
1431 {
1432 bool res = false;
1433 int i;
1434
1435 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1436 {
1437 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1438 basic_block bb;
1439
1440 /* Follow the edges that exit the inner loop. */
1441 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1442 if (!flow_bb_inside_loop_p (loop, bb))
1443 res = res || follow_ssa_edge_in_rhs (outer_loop, arg, halting_phi,
1444 evolution_of_loop);
1445 }
1446
1447 /* If the path crosses this loop-phi, give up. */
1448 if (res == true)
1449 *evolution_of_loop = chrec_dont_know;
1450
1451 return res;
1452 }
1453
1454 /* Otherwise, compute the overall effect of the inner loop. */
1455 ev = compute_overall_effect_of_inner_loop (loop, ev);
1456 return follow_ssa_edge_in_rhs (outer_loop, ev, halting_phi,
1457 evolution_of_loop);
1458 }
1459
1460 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1461 path that is analyzed on the return walk. */
1462
1463 static bool
1464 follow_ssa_edge (struct loop *loop,
1465 tree def,
1466 tree halting_phi,
1467 tree *evolution_of_loop)
1468 {
1469 struct loop *def_loop;
1470
1471 if (TREE_CODE (def) == NOP_EXPR)
1472 return false;
1473
1474 def_loop = loop_containing_stmt (def);
1475
1476 switch (TREE_CODE (def))
1477 {
1478 case PHI_NODE:
1479 if (!loop_phi_node_p (def))
1480 /* DEF is a condition-phi-node. Follow the branches, and
1481 record their evolutions. Finally, merge the collected
1482 information and set the approximation to the main
1483 variable. */
1484 return follow_ssa_edge_in_condition_phi
1485 (loop, def, halting_phi, evolution_of_loop);
1486
1487 /* When the analyzed phi is the halting_phi, the
1488 depth-first search is over: we have found a path from
1489 the halting_phi to itself in the loop. */
1490 if (def == halting_phi)
1491 return true;
1492
1493 /* Otherwise, the evolution of the HALTING_PHI depends
1494 on the evolution of another loop-phi-node, i.e. the
1495 evolution function is a higher degree polynomial. */
1496 if (def_loop == loop)
1497 return false;
1498
1499 /* Inner loop. */
1500 if (flow_loop_nested_p (loop, def_loop))
1501 return follow_ssa_edge_inner_loop_phi
1502 (loop, def, halting_phi, evolution_of_loop);
1503
1504 /* Outer loop. */
1505 return false;
1506
1507 case MODIFY_EXPR:
1508 return follow_ssa_edge_in_rhs (loop,
1509 TREE_OPERAND (def, 1),
1510 halting_phi,
1511 evolution_of_loop);
1512
1513 default:
1514 /* At this level of abstraction, the program is just a set
1515 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1516 other node to be handled. */
1517 return false;
1518 }
1519 }
1520
1521 \f
1522
1523 /* Given a LOOP_PHI_NODE, this function determines the evolution
1524 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1525
1526 static tree
1527 analyze_evolution_in_loop (tree loop_phi_node,
1528 tree init_cond)
1529 {
1530 int i;
1531 tree evolution_function = chrec_not_analyzed_yet;
1532 struct loop *loop = loop_containing_stmt (loop_phi_node);
1533 basic_block bb;
1534
1535 if (dump_file && (dump_flags & TDF_DETAILS))
1536 {
1537 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1538 fprintf (dump_file, " (loop_phi_node = ");
1539 print_generic_expr (dump_file, loop_phi_node, 0);
1540 fprintf (dump_file, ")\n");
1541 }
1542
1543 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1544 {
1545 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1546 tree ssa_chain, ev_fn;
1547 bool res;
1548
1549 /* Select the edges that enter the loop body. */
1550 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1551 if (!flow_bb_inside_loop_p (loop, bb))
1552 continue;
1553
1554 if (TREE_CODE (arg) == SSA_NAME)
1555 {
1556 ssa_chain = SSA_NAME_DEF_STMT (arg);
1557
1558 /* Pass in the initial condition to the follow edge function. */
1559 ev_fn = init_cond;
1560 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn);
1561 }
1562 else
1563 res = false;
1564
1565 /* When it is impossible to go back on the same
1566 loop_phi_node by following the ssa edges, the
1567 evolution is represented by a peeled chrec, i.e. the
1568 first iteration, EV_FN has the value INIT_COND, then
1569 all the other iterations it has the value of ARG.
1570 For the moment, PEELED_CHREC nodes are not built. */
1571 if (!res)
1572 ev_fn = chrec_dont_know;
1573
1574 /* When there are multiple back edges of the loop (which in fact never
1575 happens currently, but nevertheless), merge their evolutions. */
1576 evolution_function = chrec_merge (evolution_function, ev_fn);
1577 }
1578
1579 if (dump_file && (dump_flags & TDF_DETAILS))
1580 {
1581 fprintf (dump_file, " (evolution_function = ");
1582 print_generic_expr (dump_file, evolution_function, 0);
1583 fprintf (dump_file, "))\n");
1584 }
1585
1586 return evolution_function;
1587 }
1588
1589 /* Given a loop-phi-node, return the initial conditions of the
1590 variable on entry of the loop. When the CCP has propagated
1591 constants into the loop-phi-node, the initial condition is
1592 instantiated, otherwise the initial condition is kept symbolic.
1593 This analyzer does not analyze the evolution outside the current
1594 loop, and leaves this task to the on-demand tree reconstructor. */
1595
1596 static tree
1597 analyze_initial_condition (tree loop_phi_node)
1598 {
1599 int i;
1600 tree init_cond = chrec_not_analyzed_yet;
1601 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1602
1603 if (dump_file && (dump_flags & TDF_DETAILS))
1604 {
1605 fprintf (dump_file, "(analyze_initial_condition \n");
1606 fprintf (dump_file, " (loop_phi_node = \n");
1607 print_generic_expr (dump_file, loop_phi_node, 0);
1608 fprintf (dump_file, ")\n");
1609 }
1610
1611 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1612 {
1613 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1614 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1615
1616 /* When the branch is oriented to the loop's body, it does
1617 not contribute to the initial condition. */
1618 if (flow_bb_inside_loop_p (loop, bb))
1619 continue;
1620
1621 if (init_cond == chrec_not_analyzed_yet)
1622 {
1623 init_cond = branch;
1624 continue;
1625 }
1626
1627 if (TREE_CODE (branch) == SSA_NAME)
1628 {
1629 init_cond = chrec_dont_know;
1630 break;
1631 }
1632
1633 init_cond = chrec_merge (init_cond, branch);
1634 }
1635
1636 /* Ooops -- a loop without an entry??? */
1637 if (init_cond == chrec_not_analyzed_yet)
1638 init_cond = chrec_dont_know;
1639
1640 if (dump_file && (dump_flags & TDF_DETAILS))
1641 {
1642 fprintf (dump_file, " (init_cond = ");
1643 print_generic_expr (dump_file, init_cond, 0);
1644 fprintf (dump_file, "))\n");
1645 }
1646
1647 return init_cond;
1648 }
1649
1650 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1651
1652 static tree
1653 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1654 {
1655 tree res;
1656 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1657 tree init_cond;
1658
1659 if (phi_loop != loop)
1660 {
1661 struct loop *subloop;
1662 tree evolution_fn = analyze_scalar_evolution
1663 (phi_loop, PHI_RESULT (loop_phi_node));
1664
1665 /* Dive one level deeper. */
1666 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1667
1668 /* Interpret the subloop. */
1669 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1670 return res;
1671 }
1672
1673 /* Otherwise really interpret the loop phi. */
1674 init_cond = analyze_initial_condition (loop_phi_node);
1675 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1676
1677 return res;
1678 }
1679
1680 /* This function merges the branches of a condition-phi-node,
1681 contained in the outermost loop, and whose arguments are already
1682 analyzed. */
1683
1684 static tree
1685 interpret_condition_phi (struct loop *loop, tree condition_phi)
1686 {
1687 int i;
1688 tree res = chrec_not_analyzed_yet;
1689
1690 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1691 {
1692 tree branch_chrec;
1693
1694 if (backedge_phi_arg_p (condition_phi, i))
1695 {
1696 res = chrec_dont_know;
1697 break;
1698 }
1699
1700 branch_chrec = analyze_scalar_evolution
1701 (loop, PHI_ARG_DEF (condition_phi, i));
1702
1703 res = chrec_merge (res, branch_chrec);
1704 }
1705
1706 return res;
1707 }
1708
1709 /* Interpret the right hand side of a modify_expr OPND1. If we didn't
1710 analyzed this node before, follow the definitions until ending
1711 either on an analyzed modify_expr, or on a loop-phi-node. On the
1712 return path, this function propagates evolutions (ala constant copy
1713 propagation). OPND1 is not a GIMPLE expression because we could
1714 analyze the effect of an inner loop: see interpret_loop_phi. */
1715
1716 static tree
1717 interpret_rhs_modify_expr (struct loop *loop,
1718 tree opnd1, tree type)
1719 {
1720 tree res, opnd10, opnd11, chrec10, chrec11;
1721
1722 if (is_gimple_min_invariant (opnd1))
1723 return chrec_convert (type, opnd1);
1724
1725 switch (TREE_CODE (opnd1))
1726 {
1727 case PLUS_EXPR:
1728 opnd10 = TREE_OPERAND (opnd1, 0);
1729 opnd11 = TREE_OPERAND (opnd1, 1);
1730 chrec10 = analyze_scalar_evolution (loop, opnd10);
1731 chrec11 = analyze_scalar_evolution (loop, opnd11);
1732 chrec10 = chrec_convert (type, chrec10);
1733 chrec11 = chrec_convert (type, chrec11);
1734 res = chrec_fold_plus (type, chrec10, chrec11);
1735 break;
1736
1737 case MINUS_EXPR:
1738 opnd10 = TREE_OPERAND (opnd1, 0);
1739 opnd11 = TREE_OPERAND (opnd1, 1);
1740 chrec10 = analyze_scalar_evolution (loop, opnd10);
1741 chrec11 = analyze_scalar_evolution (loop, opnd11);
1742 chrec10 = chrec_convert (type, chrec10);
1743 chrec11 = chrec_convert (type, chrec11);
1744 res = chrec_fold_minus (type, chrec10, chrec11);
1745 break;
1746
1747 case NEGATE_EXPR:
1748 opnd10 = TREE_OPERAND (opnd1, 0);
1749 chrec10 = analyze_scalar_evolution (loop, opnd10);
1750 chrec10 = chrec_convert (type, chrec10);
1751 res = chrec_fold_minus (type, build_int_cst (type, 0), chrec10);
1752 break;
1753
1754 case MULT_EXPR:
1755 opnd10 = TREE_OPERAND (opnd1, 0);
1756 opnd11 = TREE_OPERAND (opnd1, 1);
1757 chrec10 = analyze_scalar_evolution (loop, opnd10);
1758 chrec11 = analyze_scalar_evolution (loop, opnd11);
1759 chrec10 = chrec_convert (type, chrec10);
1760 chrec11 = chrec_convert (type, chrec11);
1761 res = chrec_fold_multiply (type, chrec10, chrec11);
1762 break;
1763
1764 case SSA_NAME:
1765 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1));
1766 break;
1767
1768 case NOP_EXPR:
1769 case CONVERT_EXPR:
1770 opnd10 = TREE_OPERAND (opnd1, 0);
1771 chrec10 = analyze_scalar_evolution (loop, opnd10);
1772 res = chrec_convert (type, chrec10);
1773 break;
1774
1775 default:
1776 res = chrec_dont_know;
1777 break;
1778 }
1779
1780 return res;
1781 }
1782
1783 \f
1784
1785 /* This section contains all the entry points:
1786 - number_of_iterations_in_loop,
1787 - analyze_scalar_evolution,
1788 - instantiate_parameters.
1789 */
1790
1791 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1792 common ancestor of DEF_LOOP and USE_LOOP. */
1793
1794 static tree
1795 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1796 struct loop *def_loop,
1797 tree ev)
1798 {
1799 tree res;
1800 if (def_loop == wrto_loop)
1801 return ev;
1802
1803 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1804 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1805
1806 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1807 }
1808
1809 /* Helper recursive function. */
1810
1811 static tree
1812 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1813 {
1814 tree def, type = TREE_TYPE (var);
1815 basic_block bb;
1816 struct loop *def_loop;
1817
1818 if (loop == NULL)
1819 return chrec_dont_know;
1820
1821 if (TREE_CODE (var) != SSA_NAME)
1822 return interpret_rhs_modify_expr (loop, var, type);
1823
1824 def = SSA_NAME_DEF_STMT (var);
1825 bb = bb_for_stmt (def);
1826 def_loop = bb ? bb->loop_father : NULL;
1827
1828 if (bb == NULL
1829 || !flow_bb_inside_loop_p (loop, bb))
1830 {
1831 /* Keep the symbolic form. */
1832 res = var;
1833 goto set_and_end;
1834 }
1835
1836 if (res != chrec_not_analyzed_yet)
1837 {
1838 if (loop != bb->loop_father)
1839 res = compute_scalar_evolution_in_loop
1840 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1841
1842 goto set_and_end;
1843 }
1844
1845 if (loop != def_loop)
1846 {
1847 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1848 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1849
1850 goto set_and_end;
1851 }
1852
1853 switch (TREE_CODE (def))
1854 {
1855 case MODIFY_EXPR:
1856 res = interpret_rhs_modify_expr (loop, TREE_OPERAND (def, 1), type);
1857 break;
1858
1859 case PHI_NODE:
1860 if (loop_phi_node_p (def))
1861 res = interpret_loop_phi (loop, def);
1862 else
1863 res = interpret_condition_phi (loop, def);
1864 break;
1865
1866 default:
1867 res = chrec_dont_know;
1868 break;
1869 }
1870
1871 set_and_end:
1872
1873 /* Keep the symbolic form. */
1874 if (res == chrec_dont_know)
1875 res = var;
1876
1877 if (loop == def_loop)
1878 set_scalar_evolution (var, res);
1879
1880 return res;
1881 }
1882
1883 /* Entry point for the scalar evolution analyzer.
1884 Analyzes and returns the scalar evolution of the ssa_name VAR.
1885 LOOP_NB is the identifier number of the loop in which the variable
1886 is used.
1887
1888 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1889 pointer to the statement that uses this variable, in order to
1890 determine the evolution function of the variable, use the following
1891 calls:
1892
1893 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1894 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1895 tree chrec_instantiated = instantiate_parameters
1896 (loop_nb, chrec_with_symbols);
1897 */
1898
1899 tree
1900 analyze_scalar_evolution (struct loop *loop, tree var)
1901 {
1902 tree res;
1903
1904 if (dump_file && (dump_flags & TDF_DETAILS))
1905 {
1906 fprintf (dump_file, "(analyze_scalar_evolution \n");
1907 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1908 fprintf (dump_file, " (scalar = ");
1909 print_generic_expr (dump_file, var, 0);
1910 fprintf (dump_file, ")\n");
1911 }
1912
1913 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1914
1915 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1916 res = var;
1917
1918 if (dump_file && (dump_flags & TDF_DETAILS))
1919 fprintf (dump_file, ")\n");
1920
1921 return res;
1922 }
1923
1924 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1925 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1926 of VERSION). */
1927
1928 static tree
1929 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1930 tree version)
1931 {
1932 bool val = false;
1933 tree ev = version;
1934
1935 while (1)
1936 {
1937 ev = analyze_scalar_evolution (use_loop, ev);
1938 ev = resolve_mixers (use_loop, ev);
1939
1940 if (use_loop == wrto_loop)
1941 return ev;
1942
1943 /* If the value of the use changes in the inner loop, we cannot express
1944 its value in the outer loop (we might try to return interval chrec,
1945 but we do not have a user for it anyway) */
1946 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1947 || !val)
1948 return chrec_dont_know;
1949
1950 use_loop = use_loop->outer;
1951 }
1952 }
1953
1954 /* Analyze all the parameters of the chrec that were left under a symbolic form,
1955 with respect to LOOP. CHREC is the chrec to instantiate. If
1956 ALLOW_SUPERLOOP_CHRECS is true, replacing loop invariants with
1957 outer loop chrecs is done. */
1958
1959 static tree
1960 instantiate_parameters_1 (struct loop *loop, tree chrec,
1961 bool allow_superloop_chrecs)
1962 {
1963 tree res, op0, op1, op2;
1964 basic_block def_bb;
1965 struct loop *def_loop;
1966
1967 if (chrec == NULL_TREE
1968 || automatically_generated_chrec_p (chrec))
1969 return chrec;
1970
1971 if (is_gimple_min_invariant (chrec))
1972 return chrec;
1973
1974 switch (TREE_CODE (chrec))
1975 {
1976 case SSA_NAME:
1977 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
1978
1979 /* A parameter (or loop invariant and we do not want to include
1980 evolutions in outer loops), nothing to do. */
1981 if (!def_bb
1982 || (!allow_superloop_chrecs
1983 && !flow_bb_inside_loop_p (loop, def_bb)))
1984 return chrec;
1985
1986 /* Don't instantiate the SSA_NAME if it is in a mixer
1987 structure. This is used for avoiding the instantiation of
1988 recursively defined functions, such as:
1989
1990 | a_2 -> {0, +, 1, +, a_2}_1 */
1991
1992 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
1993 {
1994 if (!flow_bb_inside_loop_p (loop, def_bb))
1995 {
1996 /* We may keep the loop invariant in symbolic form. */
1997 return chrec;
1998 }
1999 else
2000 {
2001 /* Something with unknown behavior in LOOP. */
2002 return chrec_dont_know;
2003 }
2004 }
2005
2006 def_loop = find_common_loop (loop, def_bb->loop_father);
2007
2008 /* If the analysis yields a parametric chrec, instantiate the
2009 result again. Avoid the cyclic instantiation in mixers. */
2010 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2011 res = analyze_scalar_evolution (def_loop, chrec);
2012 res = instantiate_parameters_1 (loop, res, allow_superloop_chrecs);
2013 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2014 return res;
2015
2016 case POLYNOMIAL_CHREC:
2017 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2018 allow_superloop_chrecs);
2019 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2020 allow_superloop_chrecs);
2021 return build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2022
2023 case PLUS_EXPR:
2024 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2025 allow_superloop_chrecs);
2026 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2027 allow_superloop_chrecs);
2028 return chrec_fold_plus (TREE_TYPE (chrec), op0, op1);
2029
2030 case MINUS_EXPR:
2031 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2032 allow_superloop_chrecs);
2033 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2034 allow_superloop_chrecs);
2035 return chrec_fold_minus (TREE_TYPE (chrec), op0, op1);
2036
2037 case MULT_EXPR:
2038 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2039 allow_superloop_chrecs);
2040 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2041 allow_superloop_chrecs);
2042 return chrec_fold_multiply (TREE_TYPE (chrec), op0, op1);
2043
2044 case NOP_EXPR:
2045 case CONVERT_EXPR:
2046 case NON_LVALUE_EXPR:
2047 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2048 allow_superloop_chrecs);
2049 if (op0 == chrec_dont_know)
2050 return chrec_dont_know;
2051
2052 return chrec_convert (TREE_TYPE (chrec), op0);
2053
2054 case SCEV_NOT_KNOWN:
2055 return chrec_dont_know;
2056
2057 case SCEV_KNOWN:
2058 return chrec_known;
2059
2060 default:
2061 break;
2062 }
2063
2064 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2065 {
2066 case 3:
2067 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2068 allow_superloop_chrecs);
2069 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2070 allow_superloop_chrecs);
2071 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2072 allow_superloop_chrecs);
2073 if (op0 == chrec_dont_know
2074 || op1 == chrec_dont_know
2075 || op2 == chrec_dont_know)
2076 return chrec_dont_know;
2077 return fold (build (TREE_CODE (chrec),
2078 TREE_TYPE (chrec), op0, op1, op2));
2079
2080 case 2:
2081 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2082 allow_superloop_chrecs);
2083 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2084 allow_superloop_chrecs);
2085 if (op0 == chrec_dont_know
2086 || op1 == chrec_dont_know)
2087 return chrec_dont_know;
2088 return fold (build (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1));
2089
2090 case 1:
2091 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2092 allow_superloop_chrecs);
2093 if (op0 == chrec_dont_know)
2094 return chrec_dont_know;
2095 return fold (build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0));
2096
2097 case 0:
2098 return chrec;
2099
2100 default:
2101 break;
2102 }
2103
2104 /* Too complicated to handle. */
2105 return chrec_dont_know;
2106 }
2107
2108 /* Analyze all the parameters of the chrec that were left under a
2109 symbolic form. LOOP is the loop in which symbolic names have to
2110 be analyzed and instantiated. */
2111
2112 tree
2113 instantiate_parameters (struct loop *loop,
2114 tree chrec)
2115 {
2116 tree res;
2117
2118 if (dump_file && (dump_flags & TDF_DETAILS))
2119 {
2120 fprintf (dump_file, "(instantiate_parameters \n");
2121 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2122 fprintf (dump_file, " (chrec = ");
2123 print_generic_expr (dump_file, chrec, 0);
2124 fprintf (dump_file, ")\n");
2125 }
2126
2127 res = instantiate_parameters_1 (loop, chrec, true);
2128
2129 if (dump_file && (dump_flags & TDF_DETAILS))
2130 {
2131 fprintf (dump_file, " (res = ");
2132 print_generic_expr (dump_file, res, 0);
2133 fprintf (dump_file, "))\n");
2134 }
2135
2136 return res;
2137 }
2138
2139 /* Similar to instantiate_parameters, but does not introduce the
2140 evolutions in outer loops for LOOP invariants in CHREC. */
2141
2142 static tree
2143 resolve_mixers (struct loop *loop, tree chrec)
2144 {
2145 return instantiate_parameters_1 (loop, chrec, false);
2146 }
2147
2148 /* Entry point for the analysis of the number of iterations pass.
2149 This function tries to safely approximate the number of iterations
2150 the loop will run. When this property is not decidable at compile
2151 time, the result is chrec_dont_know. Otherwise the result is
2152 a scalar or a symbolic parameter.
2153
2154 Example of analysis: suppose that the loop has an exit condition:
2155
2156 "if (b > 49) goto end_loop;"
2157
2158 and that in a previous analysis we have determined that the
2159 variable 'b' has an evolution function:
2160
2161 "EF = {23, +, 5}_2".
2162
2163 When we evaluate the function at the point 5, i.e. the value of the
2164 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2165 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2166 the loop body has been executed 6 times. */
2167
2168 tree
2169 number_of_iterations_in_loop (struct loop *loop)
2170 {
2171 tree res, type;
2172 edge exit;
2173 struct tree_niter_desc niter_desc;
2174
2175 /* Determine whether the number_of_iterations_in_loop has already
2176 been computed. */
2177 res = loop->nb_iterations;
2178 if (res)
2179 return res;
2180 res = chrec_dont_know;
2181
2182 if (dump_file && (dump_flags & TDF_DETAILS))
2183 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2184
2185 exit = loop->single_exit;
2186 if (!exit)
2187 goto end;
2188
2189 if (!number_of_iterations_exit (loop, exit, &niter_desc))
2190 goto end;
2191
2192 type = TREE_TYPE (niter_desc.niter);
2193 if (integer_nonzerop (niter_desc.may_be_zero))
2194 res = build_int_cst (type, 0);
2195 else if (integer_zerop (niter_desc.may_be_zero))
2196 res = niter_desc.niter;
2197 else
2198 res = chrec_dont_know;
2199
2200 end:
2201 return set_nb_iterations_in_loop (loop, res);
2202 }
2203
2204 /* One of the drivers for testing the scalar evolutions analysis.
2205 This function computes the number of iterations for all the loops
2206 from the EXIT_CONDITIONS array. */
2207
2208 static void
2209 number_of_iterations_for_all_loops (varray_type exit_conditions)
2210 {
2211 unsigned int i;
2212 unsigned nb_chrec_dont_know_loops = 0;
2213 unsigned nb_static_loops = 0;
2214
2215 for (i = 0; i < VARRAY_ACTIVE_SIZE (exit_conditions); i++)
2216 {
2217 tree res = number_of_iterations_in_loop
2218 (loop_containing_stmt (VARRAY_TREE (exit_conditions, i)));
2219 if (chrec_contains_undetermined (res))
2220 nb_chrec_dont_know_loops++;
2221 else
2222 nb_static_loops++;
2223 }
2224
2225 if (dump_file)
2226 {
2227 fprintf (dump_file, "\n(\n");
2228 fprintf (dump_file, "-----------------------------------------\n");
2229 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2230 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2231 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2232 fprintf (dump_file, "-----------------------------------------\n");
2233 fprintf (dump_file, ")\n\n");
2234
2235 print_loop_ir (dump_file);
2236 }
2237 }
2238
2239 \f
2240
2241 /* Counters for the stats. */
2242
2243 struct chrec_stats
2244 {
2245 unsigned nb_chrecs;
2246 unsigned nb_affine;
2247 unsigned nb_affine_multivar;
2248 unsigned nb_higher_poly;
2249 unsigned nb_chrec_dont_know;
2250 unsigned nb_undetermined;
2251 };
2252
2253 /* Reset the counters. */
2254
2255 static inline void
2256 reset_chrecs_counters (struct chrec_stats *stats)
2257 {
2258 stats->nb_chrecs = 0;
2259 stats->nb_affine = 0;
2260 stats->nb_affine_multivar = 0;
2261 stats->nb_higher_poly = 0;
2262 stats->nb_chrec_dont_know = 0;
2263 stats->nb_undetermined = 0;
2264 }
2265
2266 /* Dump the contents of a CHREC_STATS structure. */
2267
2268 static void
2269 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2270 {
2271 fprintf (file, "\n(\n");
2272 fprintf (file, "-----------------------------------------\n");
2273 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2274 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2275 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2276 stats->nb_higher_poly);
2277 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2278 fprintf (file, "-----------------------------------------\n");
2279 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2280 fprintf (file, "%d\twith undetermined coefficients\n",
2281 stats->nb_undetermined);
2282 fprintf (file, "-----------------------------------------\n");
2283 fprintf (file, "%d\tchrecs in the scev database\n",
2284 (int) htab_elements (scalar_evolution_info));
2285 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2286 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2287 fprintf (file, "-----------------------------------------\n");
2288 fprintf (file, ")\n\n");
2289 }
2290
2291 /* Gather statistics about CHREC. */
2292
2293 static void
2294 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2295 {
2296 if (dump_file && (dump_flags & TDF_STATS))
2297 {
2298 fprintf (dump_file, "(classify_chrec ");
2299 print_generic_expr (dump_file, chrec, 0);
2300 fprintf (dump_file, "\n");
2301 }
2302
2303 stats->nb_chrecs++;
2304
2305 if (chrec == NULL_TREE)
2306 {
2307 stats->nb_undetermined++;
2308 return;
2309 }
2310
2311 switch (TREE_CODE (chrec))
2312 {
2313 case POLYNOMIAL_CHREC:
2314 if (evolution_function_is_affine_p (chrec))
2315 {
2316 if (dump_file && (dump_flags & TDF_STATS))
2317 fprintf (dump_file, " affine_univariate\n");
2318 stats->nb_affine++;
2319 }
2320 else if (evolution_function_is_affine_multivariate_p (chrec))
2321 {
2322 if (dump_file && (dump_flags & TDF_STATS))
2323 fprintf (dump_file, " affine_multivariate\n");
2324 stats->nb_affine_multivar++;
2325 }
2326 else
2327 {
2328 if (dump_file && (dump_flags & TDF_STATS))
2329 fprintf (dump_file, " higher_degree_polynomial\n");
2330 stats->nb_higher_poly++;
2331 }
2332
2333 break;
2334
2335 default:
2336 break;
2337 }
2338
2339 if (chrec_contains_undetermined (chrec))
2340 {
2341 if (dump_file && (dump_flags & TDF_STATS))
2342 fprintf (dump_file, " undetermined\n");
2343 stats->nb_undetermined++;
2344 }
2345
2346 if (dump_file && (dump_flags & TDF_STATS))
2347 fprintf (dump_file, ")\n");
2348 }
2349
2350 /* One of the drivers for testing the scalar evolutions analysis.
2351 This function analyzes the scalar evolution of all the scalars
2352 defined as loop phi nodes in one of the loops from the
2353 EXIT_CONDITIONS array.
2354
2355 TODO Optimization: A loop is in canonical form if it contains only
2356 a single scalar loop phi node. All the other scalars that have an
2357 evolution in the loop are rewritten in function of this single
2358 index. This allows the parallelization of the loop. */
2359
2360 static void
2361 analyze_scalar_evolution_for_all_loop_phi_nodes (varray_type exit_conditions)
2362 {
2363 unsigned int i;
2364 struct chrec_stats stats;
2365
2366 reset_chrecs_counters (&stats);
2367
2368 for (i = 0; i < VARRAY_ACTIVE_SIZE (exit_conditions); i++)
2369 {
2370 struct loop *loop;
2371 basic_block bb;
2372 tree phi, chrec;
2373
2374 loop = loop_containing_stmt (VARRAY_TREE (exit_conditions, i));
2375 bb = loop->header;
2376
2377 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
2378 if (is_gimple_reg (PHI_RESULT (phi)))
2379 {
2380 chrec = instantiate_parameters
2381 (loop,
2382 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2383
2384 if (dump_file && (dump_flags & TDF_STATS))
2385 gather_chrec_stats (chrec, &stats);
2386 }
2387 }
2388
2389 if (dump_file && (dump_flags & TDF_STATS))
2390 dump_chrecs_stats (dump_file, &stats);
2391 }
2392
2393 /* Callback for htab_traverse, gathers information on chrecs in the
2394 hashtable. */
2395
2396 static int
2397 gather_stats_on_scev_database_1 (void **slot, void *stats)
2398 {
2399 struct scev_info_str *entry = *slot;
2400
2401 gather_chrec_stats (entry->chrec, stats);
2402
2403 return 1;
2404 }
2405
2406 /* Classify the chrecs of the whole database. */
2407
2408 void
2409 gather_stats_on_scev_database (void)
2410 {
2411 struct chrec_stats stats;
2412
2413 if (!dump_file)
2414 return;
2415
2416 reset_chrecs_counters (&stats);
2417
2418 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2419 &stats);
2420
2421 dump_chrecs_stats (dump_file, &stats);
2422 }
2423
2424 \f
2425
2426 /* Initializer. */
2427
2428 static void
2429 initialize_scalar_evolutions_analyzer (void)
2430 {
2431 /* The elements below are unique. */
2432 if (chrec_dont_know == NULL_TREE)
2433 {
2434 chrec_not_analyzed_yet = NULL_TREE;
2435 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2436 chrec_known = make_node (SCEV_KNOWN);
2437 TREE_TYPE (chrec_dont_know) = NULL_TREE;
2438 TREE_TYPE (chrec_known) = NULL_TREE;
2439 }
2440 }
2441
2442 /* Initialize the analysis of scalar evolutions for LOOPS. */
2443
2444 void
2445 scev_initialize (struct loops *loops)
2446 {
2447 unsigned i;
2448 current_loops = loops;
2449
2450 scalar_evolution_info = htab_create (100, hash_scev_info,
2451 eq_scev_info, del_scev_info);
2452 already_instantiated = BITMAP_XMALLOC ();
2453
2454 initialize_scalar_evolutions_analyzer ();
2455
2456 for (i = 1; i < loops->num; i++)
2457 if (loops->parray[i])
2458 loops->parray[i]->nb_iterations = NULL_TREE;
2459 }
2460
2461 /* Cleans up the information cached by the scalar evolutions analysis. */
2462
2463 void
2464 scev_reset (void)
2465 {
2466 unsigned i;
2467 struct loop *loop;
2468
2469 if (!scalar_evolution_info || !current_loops)
2470 return;
2471
2472 htab_empty (scalar_evolution_info);
2473 for (i = 1; i < current_loops->num; i++)
2474 {
2475 loop = current_loops->parray[i];
2476 if (loop)
2477 loop->nb_iterations = NULL_TREE;
2478 }
2479 }
2480
2481 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2482 its BASE and STEP if possible. */
2483
2484 bool
2485 simple_iv (struct loop *loop, tree stmt, tree op, tree *base, tree *step)
2486 {
2487 basic_block bb = bb_for_stmt (stmt);
2488 tree type, ev;
2489
2490 *base = NULL_TREE;
2491 *step = NULL_TREE;
2492
2493 type = TREE_TYPE (op);
2494 if (TREE_CODE (type) != INTEGER_TYPE
2495 && TREE_CODE (type) != POINTER_TYPE)
2496 return false;
2497
2498 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op);
2499 if (chrec_contains_undetermined (ev))
2500 return false;
2501
2502 if (tree_does_not_contain_chrecs (ev)
2503 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2504 {
2505 *base = ev;
2506 return true;
2507 }
2508
2509 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2510 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2511 return false;
2512
2513 *step = CHREC_RIGHT (ev);
2514 if (TREE_CODE (*step) != INTEGER_CST)
2515 return false;
2516 *base = CHREC_LEFT (ev);
2517 if (tree_contains_chrecs (*base)
2518 || chrec_contains_symbols_defined_in_loop (*base, loop->num))
2519 return false;
2520
2521 return true;
2522 }
2523
2524 /* Runs the analysis of scalar evolutions. */
2525
2526 void
2527 scev_analysis (void)
2528 {
2529 varray_type exit_conditions;
2530
2531 VARRAY_GENERIC_PTR_INIT (exit_conditions, 37, "exit_conditions");
2532 select_loops_exit_conditions (current_loops, &exit_conditions);
2533
2534 if (dump_file && (dump_flags & TDF_STATS))
2535 analyze_scalar_evolution_for_all_loop_phi_nodes (exit_conditions);
2536
2537 number_of_iterations_for_all_loops (exit_conditions);
2538 VARRAY_CLEAR (exit_conditions);
2539 }
2540
2541 /* Finalize the scalar evolution analysis. */
2542
2543 void
2544 scev_finalize (void)
2545 {
2546 htab_delete (scalar_evolution_info);
2547 BITMAP_XFREE (already_instantiated);
2548 }
2549