re PR tree-optimization/32044 (final value replacement too aggressive for e.g. target...
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
3 Foundation, Inc.
4 Contributed by Sebastian Pop <s.pop@laposte.net>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2a: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 2b: Multivariate chains of recurrences.
159
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
170
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
178 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
179 The result of this call is {{0, +, 1}_1, +, 1}_2.
180
181 Example 3: Higher degree polynomials.
182
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
189
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
194
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
197
198 Example 4: Lucas, Fibonacci, or mixers in general.
199
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
206
207 a -> (1, c)_1
208 c -> {3, +, a}_1
209
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
215
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
218
219 Example 5: Flip-flops, or exchangers.
220
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
227
228 a -> (1, c)_1
229 c -> (3, a)_1
230
231 Based on these symbolic chrecs, it is possible to refine this
232 information into the more precise PERIODIC_CHRECs:
233
234 a -> |1, 3|_1
235 c -> |3, 1|_1
236
237 This transformation is not yet implemented.
238
239 Further readings:
240
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
248
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
255 */
256
257 #include "config.h"
258 #include "system.h"
259 #include "coretypes.h"
260 #include "tm.h"
261 #include "ggc.h"
262 #include "tree.h"
263 #include "real.h"
264
265 /* These RTL headers are needed for basic-block.h. */
266 #include "rtl.h"
267 #include "basic-block.h"
268 #include "diagnostic.h"
269 #include "tree-flow.h"
270 #include "tree-dump.h"
271 #include "timevar.h"
272 #include "cfgloop.h"
273 #include "tree-chrec.h"
274 #include "tree-scalar-evolution.h"
275 #include "tree-pass.h"
276 #include "flags.h"
277 #include "params.h"
278
279 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
280
281 /* The cached information about an SSA name VAR, claiming that below
282 basic block INSTANTIATED_BELOW, the value of VAR can be expressed
283 as CHREC. */
284
285 struct scev_info_str GTY(())
286 {
287 basic_block instantiated_below;
288 tree var;
289 tree chrec;
290 };
291
292 /* Counters for the scev database. */
293 static unsigned nb_set_scev = 0;
294 static unsigned nb_get_scev = 0;
295
296 /* The following trees are unique elements. Thus the comparison of
297 another element to these elements should be done on the pointer to
298 these trees, and not on their value. */
299
300 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
301 tree chrec_not_analyzed_yet;
302
303 /* Reserved to the cases where the analyzer has detected an
304 undecidable property at compile time. */
305 tree chrec_dont_know;
306
307 /* When the analyzer has detected that a property will never
308 happen, then it qualifies it with chrec_known. */
309 tree chrec_known;
310
311 static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
312
313 \f
314 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
315
316 static inline struct scev_info_str *
317 new_scev_info_str (basic_block instantiated_below, tree var)
318 {
319 struct scev_info_str *res;
320
321 res = GGC_NEW (struct scev_info_str);
322 res->var = var;
323 res->chrec = chrec_not_analyzed_yet;
324 res->instantiated_below = instantiated_below;
325
326 return res;
327 }
328
329 /* Computes a hash function for database element ELT. */
330
331 static hashval_t
332 hash_scev_info (const void *elt)
333 {
334 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
335 }
336
337 /* Compares database elements E1 and E2. */
338
339 static int
340 eq_scev_info (const void *e1, const void *e2)
341 {
342 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
343 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
344
345 return (elt1->var == elt2->var
346 && elt1->instantiated_below == elt2->instantiated_below);
347 }
348
349 /* Deletes database element E. */
350
351 static void
352 del_scev_info (void *e)
353 {
354 ggc_free (e);
355 }
356
357 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
358 A first query on VAR returns chrec_not_analyzed_yet. */
359
360 static tree *
361 find_var_scev_info (basic_block instantiated_below, tree var)
362 {
363 struct scev_info_str *res;
364 struct scev_info_str tmp;
365 PTR *slot;
366
367 tmp.var = var;
368 tmp.instantiated_below = instantiated_below;
369 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
370
371 if (!*slot)
372 *slot = new_scev_info_str (instantiated_below, var);
373 res = (struct scev_info_str *) *slot;
374
375 return &res->chrec;
376 }
377
378 /* Return true when CHREC contains symbolic names defined in
379 LOOP_NB. */
380
381 bool
382 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
383 {
384 int i, n;
385
386 if (chrec == NULL_TREE)
387 return false;
388
389 if (is_gimple_min_invariant (chrec))
390 return false;
391
392 if (TREE_CODE (chrec) == VAR_DECL
393 || TREE_CODE (chrec) == PARM_DECL
394 || TREE_CODE (chrec) == FUNCTION_DECL
395 || TREE_CODE (chrec) == LABEL_DECL
396 || TREE_CODE (chrec) == RESULT_DECL
397 || TREE_CODE (chrec) == FIELD_DECL)
398 return true;
399
400 if (TREE_CODE (chrec) == SSA_NAME)
401 {
402 gimple def = SSA_NAME_DEF_STMT (chrec);
403 struct loop *def_loop = loop_containing_stmt (def);
404 struct loop *loop = get_loop (loop_nb);
405
406 if (def_loop == NULL)
407 return false;
408
409 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
410 return true;
411
412 return false;
413 }
414
415 n = TREE_OPERAND_LENGTH (chrec);
416 for (i = 0; i < n; i++)
417 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
418 loop_nb))
419 return true;
420 return false;
421 }
422
423 /* Return true when PHI is a loop-phi-node. */
424
425 static bool
426 loop_phi_node_p (gimple phi)
427 {
428 /* The implementation of this function is based on the following
429 property: "all the loop-phi-nodes of a loop are contained in the
430 loop's header basic block". */
431
432 return loop_containing_stmt (phi)->header == gimple_bb (phi);
433 }
434
435 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
436 In general, in the case of multivariate evolutions we want to get
437 the evolution in different loops. LOOP specifies the level for
438 which to get the evolution.
439
440 Example:
441
442 | for (j = 0; j < 100; j++)
443 | {
444 | for (k = 0; k < 100; k++)
445 | {
446 | i = k + j; - Here the value of i is a function of j, k.
447 | }
448 | ... = i - Here the value of i is a function of j.
449 | }
450 | ... = i - Here the value of i is a scalar.
451
452 Example:
453
454 | i_0 = ...
455 | loop_1 10 times
456 | i_1 = phi (i_0, i_2)
457 | i_2 = i_1 + 2
458 | endloop
459
460 This loop has the same effect as:
461 LOOP_1 has the same effect as:
462
463 | i_1 = i_0 + 20
464
465 The overall effect of the loop, "i_0 + 20" in the previous example,
466 is obtained by passing in the parameters: LOOP = 1,
467 EVOLUTION_FN = {i_0, +, 2}_1.
468 */
469
470 static tree
471 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
472 {
473 bool val = false;
474
475 if (evolution_fn == chrec_dont_know)
476 return chrec_dont_know;
477
478 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
479 {
480 struct loop *inner_loop = get_chrec_loop (evolution_fn);
481
482 if (inner_loop == loop
483 || flow_loop_nested_p (loop, inner_loop))
484 {
485 tree nb_iter = number_of_latch_executions (inner_loop);
486
487 if (nb_iter == chrec_dont_know)
488 return chrec_dont_know;
489 else
490 {
491 tree res;
492
493 /* evolution_fn is the evolution function in LOOP. Get
494 its value in the nb_iter-th iteration. */
495 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
496
497 /* Continue the computation until ending on a parent of LOOP. */
498 return compute_overall_effect_of_inner_loop (loop, res);
499 }
500 }
501 else
502 return evolution_fn;
503 }
504
505 /* If the evolution function is an invariant, there is nothing to do. */
506 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
507 return evolution_fn;
508
509 else
510 return chrec_dont_know;
511 }
512
513 /* Determine whether the CHREC is always positive/negative. If the expression
514 cannot be statically analyzed, return false, otherwise set the answer into
515 VALUE. */
516
517 bool
518 chrec_is_positive (tree chrec, bool *value)
519 {
520 bool value0, value1, value2;
521 tree end_value, nb_iter;
522
523 switch (TREE_CODE (chrec))
524 {
525 case POLYNOMIAL_CHREC:
526 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
527 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
528 return false;
529
530 /* FIXME -- overflows. */
531 if (value0 == value1)
532 {
533 *value = value0;
534 return true;
535 }
536
537 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
538 and the proof consists in showing that the sign never
539 changes during the execution of the loop, from 0 to
540 loop->nb_iterations. */
541 if (!evolution_function_is_affine_p (chrec))
542 return false;
543
544 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
545 if (chrec_contains_undetermined (nb_iter))
546 return false;
547
548 #if 0
549 /* TODO -- If the test is after the exit, we may decrease the number of
550 iterations by one. */
551 if (after_exit)
552 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
553 #endif
554
555 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
556
557 if (!chrec_is_positive (end_value, &value2))
558 return false;
559
560 *value = value0;
561 return value0 == value1;
562
563 case INTEGER_CST:
564 *value = (tree_int_cst_sgn (chrec) == 1);
565 return true;
566
567 default:
568 return false;
569 }
570 }
571
572 /* Associate CHREC to SCALAR. */
573
574 static void
575 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
576 {
577 tree *scalar_info;
578
579 if (TREE_CODE (scalar) != SSA_NAME)
580 return;
581
582 scalar_info = find_var_scev_info (instantiated_below, scalar);
583
584 if (dump_file)
585 {
586 if (dump_flags & TDF_DETAILS)
587 {
588 fprintf (dump_file, "(set_scalar_evolution \n");
589 fprintf (dump_file, " instantiated_below = %d \n",
590 instantiated_below->index);
591 fprintf (dump_file, " (scalar = ");
592 print_generic_expr (dump_file, scalar, 0);
593 fprintf (dump_file, ")\n (scalar_evolution = ");
594 print_generic_expr (dump_file, chrec, 0);
595 fprintf (dump_file, "))\n");
596 }
597 if (dump_flags & TDF_STATS)
598 nb_set_scev++;
599 }
600
601 *scalar_info = chrec;
602 }
603
604 /* Retrieve the chrec associated to SCALAR instantiated below
605 INSTANTIATED_BELOW block. */
606
607 static tree
608 get_scalar_evolution (basic_block instantiated_below, tree scalar)
609 {
610 tree res;
611
612 if (dump_file)
613 {
614 if (dump_flags & TDF_DETAILS)
615 {
616 fprintf (dump_file, "(get_scalar_evolution \n");
617 fprintf (dump_file, " (scalar = ");
618 print_generic_expr (dump_file, scalar, 0);
619 fprintf (dump_file, ")\n");
620 }
621 if (dump_flags & TDF_STATS)
622 nb_get_scev++;
623 }
624
625 switch (TREE_CODE (scalar))
626 {
627 case SSA_NAME:
628 res = *find_var_scev_info (instantiated_below, scalar);
629 break;
630
631 case REAL_CST:
632 case FIXED_CST:
633 case INTEGER_CST:
634 res = scalar;
635 break;
636
637 default:
638 res = chrec_not_analyzed_yet;
639 break;
640 }
641
642 if (dump_file && (dump_flags & TDF_DETAILS))
643 {
644 fprintf (dump_file, " (scalar_evolution = ");
645 print_generic_expr (dump_file, res, 0);
646 fprintf (dump_file, "))\n");
647 }
648
649 return res;
650 }
651
652 /* Helper function for add_to_evolution. Returns the evolution
653 function for an assignment of the form "a = b + c", where "a" and
654 "b" are on the strongly connected component. CHREC_BEFORE is the
655 information that we already have collected up to this point.
656 TO_ADD is the evolution of "c".
657
658 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
659 evolution the expression TO_ADD, otherwise construct an evolution
660 part for this loop. */
661
662 static tree
663 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
664 gimple at_stmt)
665 {
666 tree type, left, right;
667 struct loop *loop = get_loop (loop_nb), *chloop;
668
669 switch (TREE_CODE (chrec_before))
670 {
671 case POLYNOMIAL_CHREC:
672 chloop = get_chrec_loop (chrec_before);
673 if (chloop == loop
674 || flow_loop_nested_p (chloop, loop))
675 {
676 unsigned var;
677
678 type = chrec_type (chrec_before);
679
680 /* When there is no evolution part in this loop, build it. */
681 if (chloop != loop)
682 {
683 var = loop_nb;
684 left = chrec_before;
685 right = SCALAR_FLOAT_TYPE_P (type)
686 ? build_real (type, dconst0)
687 : build_int_cst (type, 0);
688 }
689 else
690 {
691 var = CHREC_VARIABLE (chrec_before);
692 left = CHREC_LEFT (chrec_before);
693 right = CHREC_RIGHT (chrec_before);
694 }
695
696 to_add = chrec_convert (type, to_add, at_stmt);
697 right = chrec_convert_rhs (type, right, at_stmt);
698 right = chrec_fold_plus (chrec_type (right), right, to_add);
699 return build_polynomial_chrec (var, left, right);
700 }
701 else
702 {
703 gcc_assert (flow_loop_nested_p (loop, chloop));
704
705 /* Search the evolution in LOOP_NB. */
706 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
707 to_add, at_stmt);
708 right = CHREC_RIGHT (chrec_before);
709 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
710 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
711 left, right);
712 }
713
714 default:
715 /* These nodes do not depend on a loop. */
716 if (chrec_before == chrec_dont_know)
717 return chrec_dont_know;
718
719 left = chrec_before;
720 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
721 return build_polynomial_chrec (loop_nb, left, right);
722 }
723 }
724
725 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
726 of LOOP_NB.
727
728 Description (provided for completeness, for those who read code in
729 a plane, and for my poor 62 bytes brain that would have forgotten
730 all this in the next two or three months):
731
732 The algorithm of translation of programs from the SSA representation
733 into the chrecs syntax is based on a pattern matching. After having
734 reconstructed the overall tree expression for a loop, there are only
735 two cases that can arise:
736
737 1. a = loop-phi (init, a + expr)
738 2. a = loop-phi (init, expr)
739
740 where EXPR is either a scalar constant with respect to the analyzed
741 loop (this is a degree 0 polynomial), or an expression containing
742 other loop-phi definitions (these are higher degree polynomials).
743
744 Examples:
745
746 1.
747 | init = ...
748 | loop_1
749 | a = phi (init, a + 5)
750 | endloop
751
752 2.
753 | inita = ...
754 | initb = ...
755 | loop_1
756 | a = phi (inita, 2 * b + 3)
757 | b = phi (initb, b + 1)
758 | endloop
759
760 For the first case, the semantics of the SSA representation is:
761
762 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
763
764 that is, there is a loop index "x" that determines the scalar value
765 of the variable during the loop execution. During the first
766 iteration, the value is that of the initial condition INIT, while
767 during the subsequent iterations, it is the sum of the initial
768 condition with the sum of all the values of EXPR from the initial
769 iteration to the before last considered iteration.
770
771 For the second case, the semantics of the SSA program is:
772
773 | a (x) = init, if x = 0;
774 | expr (x - 1), otherwise.
775
776 The second case corresponds to the PEELED_CHREC, whose syntax is
777 close to the syntax of a loop-phi-node:
778
779 | phi (init, expr) vs. (init, expr)_x
780
781 The proof of the translation algorithm for the first case is a
782 proof by structural induction based on the degree of EXPR.
783
784 Degree 0:
785 When EXPR is a constant with respect to the analyzed loop, or in
786 other words when EXPR is a polynomial of degree 0, the evolution of
787 the variable A in the loop is an affine function with an initial
788 condition INIT, and a step EXPR. In order to show this, we start
789 from the semantics of the SSA representation:
790
791 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
792
793 and since "expr (j)" is a constant with respect to "j",
794
795 f (x) = init + x * expr
796
797 Finally, based on the semantics of the pure sum chrecs, by
798 identification we get the corresponding chrecs syntax:
799
800 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
801 f (x) -> {init, +, expr}_x
802
803 Higher degree:
804 Suppose that EXPR is a polynomial of degree N with respect to the
805 analyzed loop_x for which we have already determined that it is
806 written under the chrecs syntax:
807
808 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
809
810 We start from the semantics of the SSA program:
811
812 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
813 |
814 | f (x) = init + \sum_{j = 0}^{x - 1}
815 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
816 |
817 | f (x) = init + \sum_{j = 0}^{x - 1}
818 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
819 |
820 | f (x) = init + \sum_{k = 0}^{n - 1}
821 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
822 |
823 | f (x) = init + \sum_{k = 0}^{n - 1}
824 | (b_k * \binom{x}{k + 1})
825 |
826 | f (x) = init + b_0 * \binom{x}{1} + ...
827 | + b_{n-1} * \binom{x}{n}
828 |
829 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
830 | + b_{n-1} * \binom{x}{n}
831 |
832
833 And finally from the definition of the chrecs syntax, we identify:
834 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
835
836 This shows the mechanism that stands behind the add_to_evolution
837 function. An important point is that the use of symbolic
838 parameters avoids the need of an analysis schedule.
839
840 Example:
841
842 | inita = ...
843 | initb = ...
844 | loop_1
845 | a = phi (inita, a + 2 + b)
846 | b = phi (initb, b + 1)
847 | endloop
848
849 When analyzing "a", the algorithm keeps "b" symbolically:
850
851 | a -> {inita, +, 2 + b}_1
852
853 Then, after instantiation, the analyzer ends on the evolution:
854
855 | a -> {inita, +, 2 + initb, +, 1}_1
856
857 */
858
859 static tree
860 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
861 tree to_add, gimple at_stmt)
862 {
863 tree type = chrec_type (to_add);
864 tree res = NULL_TREE;
865
866 if (to_add == NULL_TREE)
867 return chrec_before;
868
869 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
870 instantiated at this point. */
871 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
872 /* This should not happen. */
873 return chrec_dont_know;
874
875 if (dump_file && (dump_flags & TDF_DETAILS))
876 {
877 fprintf (dump_file, "(add_to_evolution \n");
878 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
879 fprintf (dump_file, " (chrec_before = ");
880 print_generic_expr (dump_file, chrec_before, 0);
881 fprintf (dump_file, ")\n (to_add = ");
882 print_generic_expr (dump_file, to_add, 0);
883 fprintf (dump_file, ")\n");
884 }
885
886 if (code == MINUS_EXPR)
887 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
888 ? build_real (type, dconstm1)
889 : build_int_cst_type (type, -1));
890
891 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
892
893 if (dump_file && (dump_flags & TDF_DETAILS))
894 {
895 fprintf (dump_file, " (res = ");
896 print_generic_expr (dump_file, res, 0);
897 fprintf (dump_file, "))\n");
898 }
899
900 return res;
901 }
902
903 /* Helper function. */
904
905 static inline tree
906 set_nb_iterations_in_loop (struct loop *loop,
907 tree res)
908 {
909 if (dump_file && (dump_flags & TDF_DETAILS))
910 {
911 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
912 print_generic_expr (dump_file, res, 0);
913 fprintf (dump_file, "))\n");
914 }
915
916 loop->nb_iterations = res;
917 return res;
918 }
919
920 \f
921
922 /* This section selects the loops that will be good candidates for the
923 scalar evolution analysis. For the moment, greedily select all the
924 loop nests we could analyze. */
925
926 /* For a loop with a single exit edge, return the COND_EXPR that
927 guards the exit edge. If the expression is too difficult to
928 analyze, then give up. */
929
930 gimple
931 get_loop_exit_condition (const struct loop *loop)
932 {
933 gimple res = NULL;
934 edge exit_edge = single_exit (loop);
935
936 if (dump_file && (dump_flags & TDF_DETAILS))
937 fprintf (dump_file, "(get_loop_exit_condition \n ");
938
939 if (exit_edge)
940 {
941 gimple stmt;
942
943 stmt = last_stmt (exit_edge->src);
944 if (gimple_code (stmt) == GIMPLE_COND)
945 res = stmt;
946 }
947
948 if (dump_file && (dump_flags & TDF_DETAILS))
949 {
950 print_gimple_stmt (dump_file, res, 0, 0);
951 fprintf (dump_file, ")\n");
952 }
953
954 return res;
955 }
956
957 /* Recursively determine and enqueue the exit conditions for a loop. */
958
959 static void
960 get_exit_conditions_rec (struct loop *loop,
961 VEC(gimple,heap) **exit_conditions)
962 {
963 if (!loop)
964 return;
965
966 /* Recurse on the inner loops, then on the next (sibling) loops. */
967 get_exit_conditions_rec (loop->inner, exit_conditions);
968 get_exit_conditions_rec (loop->next, exit_conditions);
969
970 if (single_exit (loop))
971 {
972 gimple loop_condition = get_loop_exit_condition (loop);
973
974 if (loop_condition)
975 VEC_safe_push (gimple, heap, *exit_conditions, loop_condition);
976 }
977 }
978
979 /* Select the candidate loop nests for the analysis. This function
980 initializes the EXIT_CONDITIONS array. */
981
982 static void
983 select_loops_exit_conditions (VEC(gimple,heap) **exit_conditions)
984 {
985 struct loop *function_body = current_loops->tree_root;
986
987 get_exit_conditions_rec (function_body->inner, exit_conditions);
988 }
989
990 \f
991 /* Depth first search algorithm. */
992
993 typedef enum t_bool {
994 t_false,
995 t_true,
996 t_dont_know
997 } t_bool;
998
999
1000 static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
1001
1002 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
1003 Return true if the strongly connected component has been found. */
1004
1005 static t_bool
1006 follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
1007 tree type, tree rhs0, enum tree_code code, tree rhs1,
1008 gimple halting_phi, tree *evolution_of_loop, int limit)
1009 {
1010 t_bool res = t_false;
1011 tree evol;
1012
1013 switch (code)
1014 {
1015 case POINTER_PLUS_EXPR:
1016 case PLUS_EXPR:
1017 if (TREE_CODE (rhs0) == SSA_NAME)
1018 {
1019 if (TREE_CODE (rhs1) == SSA_NAME)
1020 {
1021 /* Match an assignment under the form:
1022 "a = b + c". */
1023
1024 /* We want only assignments of form "name + name" contribute to
1025 LIMIT, as the other cases do not necessarily contribute to
1026 the complexity of the expression. */
1027 limit++;
1028
1029 evol = *evolution_of_loop;
1030 res = follow_ssa_edge
1031 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
1032
1033 if (res == t_true)
1034 *evolution_of_loop = add_to_evolution
1035 (loop->num,
1036 chrec_convert (type, evol, at_stmt),
1037 code, rhs1, at_stmt);
1038
1039 else if (res == t_false)
1040 {
1041 res = follow_ssa_edge
1042 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1043 evolution_of_loop, limit);
1044
1045 if (res == t_true)
1046 *evolution_of_loop = add_to_evolution
1047 (loop->num,
1048 chrec_convert (type, *evolution_of_loop, at_stmt),
1049 code, rhs0, at_stmt);
1050
1051 else if (res == t_dont_know)
1052 *evolution_of_loop = chrec_dont_know;
1053 }
1054
1055 else if (res == t_dont_know)
1056 *evolution_of_loop = chrec_dont_know;
1057 }
1058
1059 else
1060 {
1061 /* Match an assignment under the form:
1062 "a = b + ...". */
1063 res = follow_ssa_edge
1064 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1065 evolution_of_loop, limit);
1066 if (res == t_true)
1067 *evolution_of_loop = add_to_evolution
1068 (loop->num, chrec_convert (type, *evolution_of_loop,
1069 at_stmt),
1070 code, rhs1, at_stmt);
1071
1072 else if (res == t_dont_know)
1073 *evolution_of_loop = chrec_dont_know;
1074 }
1075 }
1076
1077 else if (TREE_CODE (rhs1) == SSA_NAME)
1078 {
1079 /* Match an assignment under the form:
1080 "a = ... + c". */
1081 res = follow_ssa_edge
1082 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1083 evolution_of_loop, limit);
1084 if (res == t_true)
1085 *evolution_of_loop = add_to_evolution
1086 (loop->num, chrec_convert (type, *evolution_of_loop,
1087 at_stmt),
1088 code, rhs0, at_stmt);
1089
1090 else if (res == t_dont_know)
1091 *evolution_of_loop = chrec_dont_know;
1092 }
1093
1094 else
1095 /* Otherwise, match an assignment under the form:
1096 "a = ... + ...". */
1097 /* And there is nothing to do. */
1098 res = t_false;
1099 break;
1100
1101 case MINUS_EXPR:
1102 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1103 if (TREE_CODE (rhs0) == SSA_NAME)
1104 {
1105 /* Match an assignment under the form:
1106 "a = b - ...". */
1107
1108 /* We want only assignments of form "name - name" contribute to
1109 LIMIT, as the other cases do not necessarily contribute to
1110 the complexity of the expression. */
1111 if (TREE_CODE (rhs1) == SSA_NAME)
1112 limit++;
1113
1114 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1115 evolution_of_loop, limit);
1116 if (res == t_true)
1117 *evolution_of_loop = add_to_evolution
1118 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1119 MINUS_EXPR, rhs1, at_stmt);
1120
1121 else if (res == t_dont_know)
1122 *evolution_of_loop = chrec_dont_know;
1123 }
1124 else
1125 /* Otherwise, match an assignment under the form:
1126 "a = ... - ...". */
1127 /* And there is nothing to do. */
1128 res = t_false;
1129 break;
1130
1131 default:
1132 res = t_false;
1133 }
1134
1135 return res;
1136 }
1137
1138 /* Follow the ssa edge into the expression EXPR.
1139 Return true if the strongly connected component has been found. */
1140
1141 static t_bool
1142 follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
1143 gimple halting_phi, tree *evolution_of_loop, int limit)
1144 {
1145 t_bool res = t_false;
1146 tree rhs0, rhs1;
1147 tree type = TREE_TYPE (expr);
1148 enum tree_code code;
1149
1150 /* The EXPR is one of the following cases:
1151 - an SSA_NAME,
1152 - an INTEGER_CST,
1153 - a PLUS_EXPR,
1154 - a POINTER_PLUS_EXPR,
1155 - a MINUS_EXPR,
1156 - an ASSERT_EXPR,
1157 - other cases are not yet handled. */
1158 code = TREE_CODE (expr);
1159 switch (code)
1160 {
1161 case NOP_EXPR:
1162 /* This assignment is under the form "a_1 = (cast) rhs. */
1163 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1164 halting_phi, evolution_of_loop, limit);
1165 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1166 break;
1167
1168 case INTEGER_CST:
1169 /* This assignment is under the form "a_1 = 7". */
1170 res = t_false;
1171 break;
1172
1173 case SSA_NAME:
1174 /* This assignment is under the form: "a_1 = b_2". */
1175 res = follow_ssa_edge
1176 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1177 break;
1178
1179 case POINTER_PLUS_EXPR:
1180 case PLUS_EXPR:
1181 case MINUS_EXPR:
1182 /* This case is under the form "rhs0 +- rhs1". */
1183 rhs0 = TREE_OPERAND (expr, 0);
1184 rhs1 = TREE_OPERAND (expr, 1);
1185 STRIP_TYPE_NOPS (rhs0);
1186 STRIP_TYPE_NOPS (rhs1);
1187 return follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1188 halting_phi, evolution_of_loop, limit);
1189
1190 case ASSERT_EXPR:
1191 {
1192 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1193 It must be handled as a copy assignment of the form a_1 = a_2. */
1194 tree op0 = ASSERT_EXPR_VAR (expr);
1195 if (TREE_CODE (op0) == SSA_NAME)
1196 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1197 halting_phi, evolution_of_loop, limit);
1198 else
1199 res = t_false;
1200 break;
1201 }
1202
1203
1204 default:
1205 res = t_false;
1206 break;
1207 }
1208
1209 return res;
1210 }
1211
1212 /* Follow the ssa edge into the right hand side of an assignment STMT.
1213 Return true if the strongly connected component has been found. */
1214
1215 static t_bool
1216 follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1217 gimple halting_phi, tree *evolution_of_loop, int limit)
1218 {
1219 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1220 enum tree_code code = gimple_assign_rhs_code (stmt);
1221
1222 switch (get_gimple_rhs_class (code))
1223 {
1224 case GIMPLE_BINARY_RHS:
1225 return follow_ssa_edge_binary (loop, stmt, type,
1226 gimple_assign_rhs1 (stmt), code,
1227 gimple_assign_rhs2 (stmt),
1228 halting_phi, evolution_of_loop, limit);
1229 case GIMPLE_SINGLE_RHS:
1230 return follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1231 halting_phi, evolution_of_loop, limit);
1232 case GIMPLE_UNARY_RHS:
1233 if (code == NOP_EXPR)
1234 {
1235 /* This assignment is under the form "a_1 = (cast) rhs. */
1236 t_bool res
1237 = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1238 halting_phi, evolution_of_loop, limit);
1239 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1240 return res;
1241 }
1242 /* FALLTHRU */
1243
1244 default:
1245 return t_false;
1246 }
1247 }
1248
1249 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1250
1251 static bool
1252 backedge_phi_arg_p (gimple phi, int i)
1253 {
1254 const_edge e = gimple_phi_arg_edge (phi, i);
1255
1256 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1257 about updating it anywhere, and this should work as well most of the
1258 time. */
1259 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1260 return true;
1261
1262 return false;
1263 }
1264
1265 /* Helper function for one branch of the condition-phi-node. Return
1266 true if the strongly connected component has been found following
1267 this path. */
1268
1269 static inline t_bool
1270 follow_ssa_edge_in_condition_phi_branch (int i,
1271 struct loop *loop,
1272 gimple condition_phi,
1273 gimple halting_phi,
1274 tree *evolution_of_branch,
1275 tree init_cond, int limit)
1276 {
1277 tree branch = PHI_ARG_DEF (condition_phi, i);
1278 *evolution_of_branch = chrec_dont_know;
1279
1280 /* Do not follow back edges (they must belong to an irreducible loop, which
1281 we really do not want to worry about). */
1282 if (backedge_phi_arg_p (condition_phi, i))
1283 return t_false;
1284
1285 if (TREE_CODE (branch) == SSA_NAME)
1286 {
1287 *evolution_of_branch = init_cond;
1288 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1289 evolution_of_branch, limit);
1290 }
1291
1292 /* This case occurs when one of the condition branches sets
1293 the variable to a constant: i.e. a phi-node like
1294 "a_2 = PHI <a_7(5), 2(6)>;".
1295
1296 FIXME: This case have to be refined correctly:
1297 in some cases it is possible to say something better than
1298 chrec_dont_know, for example using a wrap-around notation. */
1299 return t_false;
1300 }
1301
1302 /* This function merges the branches of a condition-phi-node in a
1303 loop. */
1304
1305 static t_bool
1306 follow_ssa_edge_in_condition_phi (struct loop *loop,
1307 gimple condition_phi,
1308 gimple halting_phi,
1309 tree *evolution_of_loop, int limit)
1310 {
1311 int i, n;
1312 tree init = *evolution_of_loop;
1313 tree evolution_of_branch;
1314 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1315 halting_phi,
1316 &evolution_of_branch,
1317 init, limit);
1318 if (res == t_false || res == t_dont_know)
1319 return res;
1320
1321 *evolution_of_loop = evolution_of_branch;
1322
1323 /* If the phi node is just a copy, do not increase the limit. */
1324 n = gimple_phi_num_args (condition_phi);
1325 if (n > 1)
1326 limit++;
1327
1328 for (i = 1; i < n; i++)
1329 {
1330 /* Quickly give up when the evolution of one of the branches is
1331 not known. */
1332 if (*evolution_of_loop == chrec_dont_know)
1333 return t_true;
1334
1335 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1336 halting_phi,
1337 &evolution_of_branch,
1338 init, limit);
1339 if (res == t_false || res == t_dont_know)
1340 return res;
1341
1342 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1343 evolution_of_branch);
1344 }
1345
1346 return t_true;
1347 }
1348
1349 /* Follow an SSA edge in an inner loop. It computes the overall
1350 effect of the loop, and following the symbolic initial conditions,
1351 it follows the edges in the parent loop. The inner loop is
1352 considered as a single statement. */
1353
1354 static t_bool
1355 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1356 gimple loop_phi_node,
1357 gimple halting_phi,
1358 tree *evolution_of_loop, int limit)
1359 {
1360 struct loop *loop = loop_containing_stmt (loop_phi_node);
1361 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1362
1363 /* Sometimes, the inner loop is too difficult to analyze, and the
1364 result of the analysis is a symbolic parameter. */
1365 if (ev == PHI_RESULT (loop_phi_node))
1366 {
1367 t_bool res = t_false;
1368 int i, n = gimple_phi_num_args (loop_phi_node);
1369
1370 for (i = 0; i < n; i++)
1371 {
1372 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1373 basic_block bb;
1374
1375 /* Follow the edges that exit the inner loop. */
1376 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1377 if (!flow_bb_inside_loop_p (loop, bb))
1378 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1379 arg, halting_phi,
1380 evolution_of_loop, limit);
1381 if (res == t_true)
1382 break;
1383 }
1384
1385 /* If the path crosses this loop-phi, give up. */
1386 if (res == t_true)
1387 *evolution_of_loop = chrec_dont_know;
1388
1389 return res;
1390 }
1391
1392 /* Otherwise, compute the overall effect of the inner loop. */
1393 ev = compute_overall_effect_of_inner_loop (loop, ev);
1394 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1395 evolution_of_loop, limit);
1396 }
1397
1398 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1399 path that is analyzed on the return walk. */
1400
1401 static t_bool
1402 follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
1403 tree *evolution_of_loop, int limit)
1404 {
1405 struct loop *def_loop;
1406
1407 if (gimple_nop_p (def))
1408 return t_false;
1409
1410 /* Give up if the path is longer than the MAX that we allow. */
1411 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1412 return t_dont_know;
1413
1414 def_loop = loop_containing_stmt (def);
1415
1416 switch (gimple_code (def))
1417 {
1418 case GIMPLE_PHI:
1419 if (!loop_phi_node_p (def))
1420 /* DEF is a condition-phi-node. Follow the branches, and
1421 record their evolutions. Finally, merge the collected
1422 information and set the approximation to the main
1423 variable. */
1424 return follow_ssa_edge_in_condition_phi
1425 (loop, def, halting_phi, evolution_of_loop, limit);
1426
1427 /* When the analyzed phi is the halting_phi, the
1428 depth-first search is over: we have found a path from
1429 the halting_phi to itself in the loop. */
1430 if (def == halting_phi)
1431 return t_true;
1432
1433 /* Otherwise, the evolution of the HALTING_PHI depends
1434 on the evolution of another loop-phi-node, i.e. the
1435 evolution function is a higher degree polynomial. */
1436 if (def_loop == loop)
1437 return t_false;
1438
1439 /* Inner loop. */
1440 if (flow_loop_nested_p (loop, def_loop))
1441 return follow_ssa_edge_inner_loop_phi
1442 (loop, def, halting_phi, evolution_of_loop, limit + 1);
1443
1444 /* Outer loop. */
1445 return t_false;
1446
1447 case GIMPLE_ASSIGN:
1448 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
1449 evolution_of_loop, limit);
1450
1451 default:
1452 /* At this level of abstraction, the program is just a set
1453 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1454 other node to be handled. */
1455 return t_false;
1456 }
1457 }
1458
1459 \f
1460
1461 /* Given a LOOP_PHI_NODE, this function determines the evolution
1462 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1463
1464 static tree
1465 analyze_evolution_in_loop (gimple loop_phi_node,
1466 tree init_cond)
1467 {
1468 int i, n = gimple_phi_num_args (loop_phi_node);
1469 tree evolution_function = chrec_not_analyzed_yet;
1470 struct loop *loop = loop_containing_stmt (loop_phi_node);
1471 basic_block bb;
1472
1473 if (dump_file && (dump_flags & TDF_DETAILS))
1474 {
1475 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1476 fprintf (dump_file, " (loop_phi_node = ");
1477 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1478 fprintf (dump_file, ")\n");
1479 }
1480
1481 for (i = 0; i < n; i++)
1482 {
1483 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1484 gimple ssa_chain;
1485 tree ev_fn;
1486 t_bool res;
1487
1488 /* Select the edges that enter the loop body. */
1489 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1490 if (!flow_bb_inside_loop_p (loop, bb))
1491 continue;
1492
1493 if (TREE_CODE (arg) == SSA_NAME)
1494 {
1495 ssa_chain = SSA_NAME_DEF_STMT (arg);
1496
1497 /* Pass in the initial condition to the follow edge function. */
1498 ev_fn = init_cond;
1499 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1500 }
1501 else
1502 res = t_false;
1503
1504 /* When it is impossible to go back on the same
1505 loop_phi_node by following the ssa edges, the
1506 evolution is represented by a peeled chrec, i.e. the
1507 first iteration, EV_FN has the value INIT_COND, then
1508 all the other iterations it has the value of ARG.
1509 For the moment, PEELED_CHREC nodes are not built. */
1510 if (res != t_true)
1511 ev_fn = chrec_dont_know;
1512
1513 /* When there are multiple back edges of the loop (which in fact never
1514 happens currently, but nevertheless), merge their evolutions. */
1515 evolution_function = chrec_merge (evolution_function, ev_fn);
1516 }
1517
1518 if (dump_file && (dump_flags & TDF_DETAILS))
1519 {
1520 fprintf (dump_file, " (evolution_function = ");
1521 print_generic_expr (dump_file, evolution_function, 0);
1522 fprintf (dump_file, "))\n");
1523 }
1524
1525 return evolution_function;
1526 }
1527
1528 /* Given a loop-phi-node, return the initial conditions of the
1529 variable on entry of the loop. When the CCP has propagated
1530 constants into the loop-phi-node, the initial condition is
1531 instantiated, otherwise the initial condition is kept symbolic.
1532 This analyzer does not analyze the evolution outside the current
1533 loop, and leaves this task to the on-demand tree reconstructor. */
1534
1535 static tree
1536 analyze_initial_condition (gimple loop_phi_node)
1537 {
1538 int i, n;
1539 tree init_cond = chrec_not_analyzed_yet;
1540 struct loop *loop = loop_containing_stmt (loop_phi_node);
1541
1542 if (dump_file && (dump_flags & TDF_DETAILS))
1543 {
1544 fprintf (dump_file, "(analyze_initial_condition \n");
1545 fprintf (dump_file, " (loop_phi_node = \n");
1546 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1547 fprintf (dump_file, ")\n");
1548 }
1549
1550 n = gimple_phi_num_args (loop_phi_node);
1551 for (i = 0; i < n; i++)
1552 {
1553 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1554 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1555
1556 /* When the branch is oriented to the loop's body, it does
1557 not contribute to the initial condition. */
1558 if (flow_bb_inside_loop_p (loop, bb))
1559 continue;
1560
1561 if (init_cond == chrec_not_analyzed_yet)
1562 {
1563 init_cond = branch;
1564 continue;
1565 }
1566
1567 if (TREE_CODE (branch) == SSA_NAME)
1568 {
1569 init_cond = chrec_dont_know;
1570 break;
1571 }
1572
1573 init_cond = chrec_merge (init_cond, branch);
1574 }
1575
1576 /* Ooops -- a loop without an entry??? */
1577 if (init_cond == chrec_not_analyzed_yet)
1578 init_cond = chrec_dont_know;
1579
1580 if (dump_file && (dump_flags & TDF_DETAILS))
1581 {
1582 fprintf (dump_file, " (init_cond = ");
1583 print_generic_expr (dump_file, init_cond, 0);
1584 fprintf (dump_file, "))\n");
1585 }
1586
1587 return init_cond;
1588 }
1589
1590 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1591
1592 static tree
1593 interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
1594 {
1595 tree res;
1596 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1597 tree init_cond;
1598
1599 if (phi_loop != loop)
1600 {
1601 struct loop *subloop;
1602 tree evolution_fn = analyze_scalar_evolution
1603 (phi_loop, PHI_RESULT (loop_phi_node));
1604
1605 /* Dive one level deeper. */
1606 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1607
1608 /* Interpret the subloop. */
1609 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1610 return res;
1611 }
1612
1613 /* Otherwise really interpret the loop phi. */
1614 init_cond = analyze_initial_condition (loop_phi_node);
1615 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1616
1617 return res;
1618 }
1619
1620 /* This function merges the branches of a condition-phi-node,
1621 contained in the outermost loop, and whose arguments are already
1622 analyzed. */
1623
1624 static tree
1625 interpret_condition_phi (struct loop *loop, gimple condition_phi)
1626 {
1627 int i, n = gimple_phi_num_args (condition_phi);
1628 tree res = chrec_not_analyzed_yet;
1629
1630 for (i = 0; i < n; i++)
1631 {
1632 tree branch_chrec;
1633
1634 if (backedge_phi_arg_p (condition_phi, i))
1635 {
1636 res = chrec_dont_know;
1637 break;
1638 }
1639
1640 branch_chrec = analyze_scalar_evolution
1641 (loop, PHI_ARG_DEF (condition_phi, i));
1642
1643 res = chrec_merge (res, branch_chrec);
1644 }
1645
1646 return res;
1647 }
1648
1649 /* Interpret the operation RHS1 OP RHS2. If we didn't
1650 analyze this node before, follow the definitions until ending
1651 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1652 return path, this function propagates evolutions (ala constant copy
1653 propagation). OPND1 is not a GIMPLE expression because we could
1654 analyze the effect of an inner loop: see interpret_loop_phi. */
1655
1656 static tree
1657 interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1658 tree type, tree rhs1, enum tree_code code, tree rhs2)
1659 {
1660 tree res, chrec1, chrec2;
1661
1662 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1663 {
1664 if (is_gimple_min_invariant (rhs1))
1665 return chrec_convert (type, rhs1, at_stmt);
1666
1667 if (code == SSA_NAME)
1668 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1669 at_stmt);
1670
1671 if (code == ASSERT_EXPR)
1672 {
1673 rhs1 = ASSERT_EXPR_VAR (rhs1);
1674 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1675 at_stmt);
1676 }
1677
1678 return chrec_dont_know;
1679 }
1680
1681 switch (code)
1682 {
1683 case POINTER_PLUS_EXPR:
1684 chrec1 = analyze_scalar_evolution (loop, rhs1);
1685 chrec2 = analyze_scalar_evolution (loop, rhs2);
1686 chrec1 = chrec_convert (type, chrec1, at_stmt);
1687 chrec2 = chrec_convert (sizetype, chrec2, at_stmt);
1688 res = chrec_fold_plus (type, chrec1, chrec2);
1689 break;
1690
1691 case PLUS_EXPR:
1692 chrec1 = analyze_scalar_evolution (loop, rhs1);
1693 chrec2 = analyze_scalar_evolution (loop, rhs2);
1694 chrec1 = chrec_convert (type, chrec1, at_stmt);
1695 chrec2 = chrec_convert (type, chrec2, at_stmt);
1696 res = chrec_fold_plus (type, chrec1, chrec2);
1697 break;
1698
1699 case MINUS_EXPR:
1700 chrec1 = analyze_scalar_evolution (loop, rhs1);
1701 chrec2 = analyze_scalar_evolution (loop, rhs2);
1702 chrec1 = chrec_convert (type, chrec1, at_stmt);
1703 chrec2 = chrec_convert (type, chrec2, at_stmt);
1704 res = chrec_fold_minus (type, chrec1, chrec2);
1705 break;
1706
1707 case NEGATE_EXPR:
1708 chrec1 = analyze_scalar_evolution (loop, rhs1);
1709 chrec1 = chrec_convert (type, chrec1, at_stmt);
1710 /* TYPE may be integer, real or complex, so use fold_convert. */
1711 res = chrec_fold_multiply (type, chrec1,
1712 fold_convert (type, integer_minus_one_node));
1713 break;
1714
1715 case MULT_EXPR:
1716 chrec1 = analyze_scalar_evolution (loop, rhs1);
1717 chrec2 = analyze_scalar_evolution (loop, rhs2);
1718 chrec1 = chrec_convert (type, chrec1, at_stmt);
1719 chrec2 = chrec_convert (type, chrec2, at_stmt);
1720 res = chrec_fold_multiply (type, chrec1, chrec2);
1721 break;
1722
1723 CASE_CONVERT:
1724 chrec1 = analyze_scalar_evolution (loop, rhs1);
1725 res = chrec_convert (type, chrec1, at_stmt);
1726 break;
1727
1728 default:
1729 res = chrec_dont_know;
1730 break;
1731 }
1732
1733 return res;
1734 }
1735
1736 /* Interpret the expression EXPR. */
1737
1738 static tree
1739 interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1740 {
1741 enum tree_code code;
1742 tree type = TREE_TYPE (expr), op0, op1;
1743
1744 if (automatically_generated_chrec_p (expr))
1745 return expr;
1746
1747 if (TREE_CODE (expr) == POLYNOMIAL_CHREC)
1748 return chrec_dont_know;
1749
1750 extract_ops_from_tree (expr, &code, &op0, &op1);
1751
1752 return interpret_rhs_expr (loop, at_stmt, type,
1753 op0, code, op1);
1754 }
1755
1756 /* Interpret the rhs of the assignment STMT. */
1757
1758 static tree
1759 interpret_gimple_assign (struct loop *loop, gimple stmt)
1760 {
1761 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1762 enum tree_code code = gimple_assign_rhs_code (stmt);
1763
1764 return interpret_rhs_expr (loop, stmt, type,
1765 gimple_assign_rhs1 (stmt), code,
1766 gimple_assign_rhs2 (stmt));
1767 }
1768
1769 \f
1770
1771 /* This section contains all the entry points:
1772 - number_of_iterations_in_loop,
1773 - analyze_scalar_evolution,
1774 - instantiate_parameters.
1775 */
1776
1777 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1778 common ancestor of DEF_LOOP and USE_LOOP. */
1779
1780 static tree
1781 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1782 struct loop *def_loop,
1783 tree ev)
1784 {
1785 tree res;
1786 if (def_loop == wrto_loop)
1787 return ev;
1788
1789 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
1790 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1791
1792 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1793 }
1794
1795 /* Helper recursive function. */
1796
1797 static tree
1798 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1799 {
1800 tree type = TREE_TYPE (var);
1801 gimple def;
1802 basic_block bb;
1803 struct loop *def_loop;
1804
1805 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1806 return chrec_dont_know;
1807
1808 if (TREE_CODE (var) != SSA_NAME)
1809 return interpret_expr (loop, NULL, var);
1810
1811 def = SSA_NAME_DEF_STMT (var);
1812 bb = gimple_bb (def);
1813 def_loop = bb ? bb->loop_father : NULL;
1814
1815 if (bb == NULL
1816 || !flow_bb_inside_loop_p (loop, bb))
1817 {
1818 /* Keep the symbolic form. */
1819 res = var;
1820 goto set_and_end;
1821 }
1822
1823 if (res != chrec_not_analyzed_yet)
1824 {
1825 if (loop != bb->loop_father)
1826 res = compute_scalar_evolution_in_loop
1827 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1828
1829 goto set_and_end;
1830 }
1831
1832 if (loop != def_loop)
1833 {
1834 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1835 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1836
1837 goto set_and_end;
1838 }
1839
1840 switch (gimple_code (def))
1841 {
1842 case GIMPLE_ASSIGN:
1843 res = interpret_gimple_assign (loop, def);
1844 break;
1845
1846 case GIMPLE_PHI:
1847 if (loop_phi_node_p (def))
1848 res = interpret_loop_phi (loop, def);
1849 else
1850 res = interpret_condition_phi (loop, def);
1851 break;
1852
1853 default:
1854 res = chrec_dont_know;
1855 break;
1856 }
1857
1858 set_and_end:
1859
1860 /* Keep the symbolic form. */
1861 if (res == chrec_dont_know)
1862 res = var;
1863
1864 if (loop == def_loop)
1865 set_scalar_evolution (block_before_loop (loop), var, res);
1866
1867 return res;
1868 }
1869
1870 /* Entry point for the scalar evolution analyzer.
1871 Analyzes and returns the scalar evolution of the ssa_name VAR.
1872 LOOP_NB is the identifier number of the loop in which the variable
1873 is used.
1874
1875 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1876 pointer to the statement that uses this variable, in order to
1877 determine the evolution function of the variable, use the following
1878 calls:
1879
1880 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1881 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1882 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
1883 */
1884
1885 tree
1886 analyze_scalar_evolution (struct loop *loop, tree var)
1887 {
1888 tree res;
1889
1890 if (dump_file && (dump_flags & TDF_DETAILS))
1891 {
1892 fprintf (dump_file, "(analyze_scalar_evolution \n");
1893 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1894 fprintf (dump_file, " (scalar = ");
1895 print_generic_expr (dump_file, var, 0);
1896 fprintf (dump_file, ")\n");
1897 }
1898
1899 res = get_scalar_evolution (block_before_loop (loop), var);
1900 res = analyze_scalar_evolution_1 (loop, var, res);
1901
1902 if (dump_file && (dump_flags & TDF_DETAILS))
1903 fprintf (dump_file, ")\n");
1904
1905 return res;
1906 }
1907
1908 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1909 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1910 of VERSION).
1911
1912 FOLDED_CASTS is set to true if resolve_mixers used
1913 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1914 at the moment in order to keep things simple). */
1915
1916 static tree
1917 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1918 tree version, bool *folded_casts)
1919 {
1920 bool val = false;
1921 tree ev = version, tmp;
1922
1923 if (folded_casts)
1924 *folded_casts = false;
1925 while (1)
1926 {
1927 tmp = analyze_scalar_evolution (use_loop, ev);
1928 ev = resolve_mixers (use_loop, tmp);
1929
1930 if (folded_casts && tmp != ev)
1931 *folded_casts = true;
1932
1933 if (use_loop == wrto_loop)
1934 return ev;
1935
1936 /* If the value of the use changes in the inner loop, we cannot express
1937 its value in the outer loop (we might try to return interval chrec,
1938 but we do not have a user for it anyway) */
1939 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1940 || !val)
1941 return chrec_dont_know;
1942
1943 use_loop = loop_outer (use_loop);
1944 }
1945 }
1946
1947 /* Returns from CACHE the value for VERSION instantiated below
1948 INSTANTIATED_BELOW block. */
1949
1950 static tree
1951 get_instantiated_value (htab_t cache, basic_block instantiated_below,
1952 tree version)
1953 {
1954 struct scev_info_str *info, pattern;
1955
1956 pattern.var = version;
1957 pattern.instantiated_below = instantiated_below;
1958 info = (struct scev_info_str *) htab_find (cache, &pattern);
1959
1960 if (info)
1961 return info->chrec;
1962 else
1963 return NULL_TREE;
1964 }
1965
1966 /* Sets in CACHE the value of VERSION instantiated below basic block
1967 INSTANTIATED_BELOW to VAL. */
1968
1969 static void
1970 set_instantiated_value (htab_t cache, basic_block instantiated_below,
1971 tree version, tree val)
1972 {
1973 struct scev_info_str *info, pattern;
1974 PTR *slot;
1975
1976 pattern.var = version;
1977 pattern.instantiated_below = instantiated_below;
1978 slot = htab_find_slot (cache, &pattern, INSERT);
1979
1980 if (!*slot)
1981 *slot = new_scev_info_str (instantiated_below, version);
1982 info = (struct scev_info_str *) *slot;
1983 info->chrec = val;
1984 }
1985
1986 /* Return the closed_loop_phi node for VAR. If there is none, return
1987 NULL_TREE. */
1988
1989 static tree
1990 loop_closed_phi_def (tree var)
1991 {
1992 struct loop *loop;
1993 edge exit;
1994 gimple phi;
1995 gimple_stmt_iterator psi;
1996
1997 if (var == NULL_TREE
1998 || TREE_CODE (var) != SSA_NAME)
1999 return NULL_TREE;
2000
2001 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2002 exit = single_exit (loop);
2003 if (!exit)
2004 return NULL_TREE;
2005
2006 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2007 {
2008 phi = gsi_stmt (psi);
2009 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2010 return PHI_RESULT (phi);
2011 }
2012
2013 return NULL_TREE;
2014 }
2015
2016 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2017 and EVOLUTION_LOOP, that were left under a symbolic form.
2018
2019 CHREC is the scalar evolution to instantiate.
2020
2021 CACHE is the cache of already instantiated values.
2022
2023 FOLD_CONVERSIONS should be set to true when the conversions that
2024 may wrap in signed/pointer type are folded, as long as the value of
2025 the chrec is preserved.
2026
2027 SIZE_EXPR is used for computing the size of the expression to be
2028 instantiated, and to stop if it exceeds some limit. */
2029
2030 static tree
2031 instantiate_scev_1 (basic_block instantiate_below,
2032 struct loop *evolution_loop, tree chrec,
2033 bool fold_conversions, htab_t cache, int size_expr)
2034 {
2035 tree res, op0, op1, op2;
2036 basic_block def_bb;
2037 struct loop *def_loop;
2038 tree type = chrec_type (chrec);
2039
2040 /* Give up if the expression is larger than the MAX that we allow. */
2041 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2042 return chrec_dont_know;
2043
2044 if (automatically_generated_chrec_p (chrec)
2045 || is_gimple_min_invariant (chrec))
2046 return chrec;
2047
2048 switch (TREE_CODE (chrec))
2049 {
2050 case SSA_NAME:
2051 def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2052
2053 /* A parameter (or loop invariant and we do not want to include
2054 evolutions in outer loops), nothing to do. */
2055 if (!def_bb
2056 || loop_depth (def_bb->loop_father) == 0
2057 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2058 return chrec;
2059
2060 /* We cache the value of instantiated variable to avoid exponential
2061 time complexity due to reevaluations. We also store the convenient
2062 value in the cache in order to prevent infinite recursion -- we do
2063 not want to instantiate the SSA_NAME if it is in a mixer
2064 structure. This is used for avoiding the instantiation of
2065 recursively defined functions, such as:
2066
2067 | a_2 -> {0, +, 1, +, a_2}_1 */
2068
2069 res = get_instantiated_value (cache, instantiate_below, chrec);
2070 if (res)
2071 return res;
2072
2073 res = chrec_dont_know;
2074 set_instantiated_value (cache, instantiate_below, chrec, res);
2075
2076 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2077
2078 /* If the analysis yields a parametric chrec, instantiate the
2079 result again. */
2080 res = analyze_scalar_evolution (def_loop, chrec);
2081
2082 /* Don't instantiate loop-closed-ssa phi nodes. */
2083 if (TREE_CODE (res) == SSA_NAME
2084 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2085 || (loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2086 > loop_depth (def_loop))))
2087 {
2088 if (res == chrec)
2089 res = loop_closed_phi_def (chrec);
2090 else
2091 res = chrec;
2092
2093 if (res == NULL_TREE)
2094 res = chrec_dont_know;
2095 }
2096
2097 else if (res != chrec_dont_know)
2098 res = instantiate_scev_1 (instantiate_below, evolution_loop, res,
2099 fold_conversions, cache, size_expr);
2100
2101 /* Store the correct value to the cache. */
2102 set_instantiated_value (cache, instantiate_below, chrec, res);
2103 return res;
2104
2105 case POLYNOMIAL_CHREC:
2106 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2107 CHREC_LEFT (chrec), fold_conversions, cache,
2108 size_expr);
2109 if (op0 == chrec_dont_know)
2110 return chrec_dont_know;
2111
2112 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2113 CHREC_RIGHT (chrec), fold_conversions, cache,
2114 size_expr);
2115 if (op1 == chrec_dont_know)
2116 return chrec_dont_know;
2117
2118 if (CHREC_LEFT (chrec) != op0
2119 || CHREC_RIGHT (chrec) != op1)
2120 {
2121 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2122 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2123 }
2124 return chrec;
2125
2126 case POINTER_PLUS_EXPR:
2127 case PLUS_EXPR:
2128 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2129 TREE_OPERAND (chrec, 0), fold_conversions, cache,
2130 size_expr);
2131 if (op0 == chrec_dont_know)
2132 return chrec_dont_know;
2133
2134 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2135 TREE_OPERAND (chrec, 1), fold_conversions, cache,
2136 size_expr);
2137 if (op1 == chrec_dont_know)
2138 return chrec_dont_know;
2139
2140 if (TREE_OPERAND (chrec, 0) != op0
2141 || TREE_OPERAND (chrec, 1) != op1)
2142 {
2143 op0 = chrec_convert (type, op0, NULL);
2144 op1 = chrec_convert_rhs (type, op1, NULL);
2145 chrec = chrec_fold_plus (type, op0, op1);
2146 }
2147 return chrec;
2148
2149 case MINUS_EXPR:
2150 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2151 TREE_OPERAND (chrec, 0), fold_conversions, cache,
2152 size_expr);
2153 if (op0 == chrec_dont_know)
2154 return chrec_dont_know;
2155
2156 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2157 TREE_OPERAND (chrec, 1),
2158 fold_conversions, cache, size_expr);
2159 if (op1 == chrec_dont_know)
2160 return chrec_dont_know;
2161
2162 if (TREE_OPERAND (chrec, 0) != op0
2163 || TREE_OPERAND (chrec, 1) != op1)
2164 {
2165 op0 = chrec_convert (type, op0, NULL);
2166 op1 = chrec_convert (type, op1, NULL);
2167 chrec = chrec_fold_minus (type, op0, op1);
2168 }
2169 return chrec;
2170
2171 case MULT_EXPR:
2172 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2173 TREE_OPERAND (chrec, 0),
2174 fold_conversions, cache, size_expr);
2175 if (op0 == chrec_dont_know)
2176 return chrec_dont_know;
2177
2178 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2179 TREE_OPERAND (chrec, 1),
2180 fold_conversions, cache, size_expr);
2181 if (op1 == chrec_dont_know)
2182 return chrec_dont_know;
2183
2184 if (TREE_OPERAND (chrec, 0) != op0
2185 || TREE_OPERAND (chrec, 1) != op1)
2186 {
2187 op0 = chrec_convert (type, op0, NULL);
2188 op1 = chrec_convert (type, op1, NULL);
2189 chrec = chrec_fold_multiply (type, op0, op1);
2190 }
2191 return chrec;
2192
2193 CASE_CONVERT:
2194 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2195 TREE_OPERAND (chrec, 0),
2196 fold_conversions, cache, size_expr);
2197 if (op0 == chrec_dont_know)
2198 return chrec_dont_know;
2199
2200 if (fold_conversions)
2201 {
2202 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2203 if (tmp)
2204 return tmp;
2205 }
2206
2207 if (op0 == TREE_OPERAND (chrec, 0))
2208 return chrec;
2209
2210 /* If we used chrec_convert_aggressive, we can no longer assume that
2211 signed chrecs do not overflow, as chrec_convert does, so avoid
2212 calling it in that case. */
2213 if (fold_conversions)
2214 return fold_convert (TREE_TYPE (chrec), op0);
2215
2216 return chrec_convert (TREE_TYPE (chrec), op0, NULL);
2217
2218 case SCEV_NOT_KNOWN:
2219 return chrec_dont_know;
2220
2221 case SCEV_KNOWN:
2222 return chrec_known;
2223
2224 default:
2225 break;
2226 }
2227
2228 if (VL_EXP_CLASS_P (chrec))
2229 return chrec_dont_know;
2230
2231 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2232 {
2233 case 3:
2234 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2235 TREE_OPERAND (chrec, 0),
2236 fold_conversions, cache, size_expr);
2237 if (op0 == chrec_dont_know)
2238 return chrec_dont_know;
2239
2240 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2241 TREE_OPERAND (chrec, 1),
2242 fold_conversions, cache, size_expr);
2243 if (op1 == chrec_dont_know)
2244 return chrec_dont_know;
2245
2246 op2 = instantiate_scev_1 (instantiate_below, evolution_loop,
2247 TREE_OPERAND (chrec, 2),
2248 fold_conversions, cache, size_expr);
2249 if (op2 == chrec_dont_know)
2250 return chrec_dont_know;
2251
2252 if (op0 == TREE_OPERAND (chrec, 0)
2253 && op1 == TREE_OPERAND (chrec, 1)
2254 && op2 == TREE_OPERAND (chrec, 2))
2255 return chrec;
2256
2257 return fold_build3 (TREE_CODE (chrec),
2258 TREE_TYPE (chrec), op0, op1, op2);
2259
2260 case 2:
2261 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2262 TREE_OPERAND (chrec, 0),
2263 fold_conversions, cache, size_expr);
2264 if (op0 == chrec_dont_know)
2265 return chrec_dont_know;
2266
2267 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2268 TREE_OPERAND (chrec, 1),
2269 fold_conversions, cache, size_expr);
2270 if (op1 == chrec_dont_know)
2271 return chrec_dont_know;
2272
2273 if (op0 == TREE_OPERAND (chrec, 0)
2274 && op1 == TREE_OPERAND (chrec, 1))
2275 return chrec;
2276 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2277
2278 case 1:
2279 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2280 TREE_OPERAND (chrec, 0),
2281 fold_conversions, cache, size_expr);
2282 if (op0 == chrec_dont_know)
2283 return chrec_dont_know;
2284 if (op0 == TREE_OPERAND (chrec, 0))
2285 return chrec;
2286 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2287
2288 case 0:
2289 return chrec;
2290
2291 default:
2292 break;
2293 }
2294
2295 /* Too complicated to handle. */
2296 return chrec_dont_know;
2297 }
2298
2299 /* Analyze all the parameters of the chrec that were left under a
2300 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2301 recursive instantiation of parameters: a parameter is a variable
2302 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2303 a function parameter. */
2304
2305 tree
2306 instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
2307 tree chrec)
2308 {
2309 tree res;
2310 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2311
2312 if (dump_file && (dump_flags & TDF_DETAILS))
2313 {
2314 fprintf (dump_file, "(instantiate_scev \n");
2315 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
2316 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2317 fprintf (dump_file, " (chrec = ");
2318 print_generic_expr (dump_file, chrec, 0);
2319 fprintf (dump_file, ")\n");
2320 }
2321
2322 res = instantiate_scev_1 (instantiate_below, evolution_loop, chrec, false,
2323 cache, 0);
2324
2325 if (dump_file && (dump_flags & TDF_DETAILS))
2326 {
2327 fprintf (dump_file, " (res = ");
2328 print_generic_expr (dump_file, res, 0);
2329 fprintf (dump_file, "))\n");
2330 }
2331
2332 htab_delete (cache);
2333
2334 return res;
2335 }
2336
2337 /* Similar to instantiate_parameters, but does not introduce the
2338 evolutions in outer loops for LOOP invariants in CHREC, and does not
2339 care about causing overflows, as long as they do not affect value
2340 of an expression. */
2341
2342 tree
2343 resolve_mixers (struct loop *loop, tree chrec)
2344 {
2345 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2346 tree ret = instantiate_scev_1 (block_before_loop (loop), loop, chrec, true,
2347 cache, 0);
2348 htab_delete (cache);
2349 return ret;
2350 }
2351
2352 /* Entry point for the analysis of the number of iterations pass.
2353 This function tries to safely approximate the number of iterations
2354 the loop will run. When this property is not decidable at compile
2355 time, the result is chrec_dont_know. Otherwise the result is
2356 a scalar or a symbolic parameter.
2357
2358 Example of analysis: suppose that the loop has an exit condition:
2359
2360 "if (b > 49) goto end_loop;"
2361
2362 and that in a previous analysis we have determined that the
2363 variable 'b' has an evolution function:
2364
2365 "EF = {23, +, 5}_2".
2366
2367 When we evaluate the function at the point 5, i.e. the value of the
2368 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2369 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2370 the loop body has been executed 6 times. */
2371
2372 tree
2373 number_of_latch_executions (struct loop *loop)
2374 {
2375 tree res, type;
2376 edge exit;
2377 struct tree_niter_desc niter_desc;
2378
2379 /* Determine whether the number_of_iterations_in_loop has already
2380 been computed. */
2381 res = loop->nb_iterations;
2382 if (res)
2383 return res;
2384 res = chrec_dont_know;
2385
2386 if (dump_file && (dump_flags & TDF_DETAILS))
2387 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2388
2389 exit = single_exit (loop);
2390 if (!exit)
2391 goto end;
2392
2393 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2394 goto end;
2395
2396 type = TREE_TYPE (niter_desc.niter);
2397 if (integer_nonzerop (niter_desc.may_be_zero))
2398 res = build_int_cst (type, 0);
2399 else if (integer_zerop (niter_desc.may_be_zero))
2400 res = niter_desc.niter;
2401 else
2402 res = chrec_dont_know;
2403
2404 end:
2405 return set_nb_iterations_in_loop (loop, res);
2406 }
2407
2408 /* Returns the number of executions of the exit condition of LOOP,
2409 i.e., the number by one higher than number_of_latch_executions.
2410 Note that unlike number_of_latch_executions, this number does
2411 not necessarily fit in the unsigned variant of the type of
2412 the control variable -- if the number of iterations is a constant,
2413 we return chrec_dont_know if adding one to number_of_latch_executions
2414 overflows; however, in case the number of iterations is symbolic
2415 expression, the caller is responsible for dealing with this
2416 the possible overflow. */
2417
2418 tree
2419 number_of_exit_cond_executions (struct loop *loop)
2420 {
2421 tree ret = number_of_latch_executions (loop);
2422 tree type = chrec_type (ret);
2423
2424 if (chrec_contains_undetermined (ret))
2425 return ret;
2426
2427 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2428 if (TREE_CODE (ret) == INTEGER_CST
2429 && TREE_OVERFLOW (ret))
2430 return chrec_dont_know;
2431
2432 return ret;
2433 }
2434
2435 /* One of the drivers for testing the scalar evolutions analysis.
2436 This function computes the number of iterations for all the loops
2437 from the EXIT_CONDITIONS array. */
2438
2439 static void
2440 number_of_iterations_for_all_loops (VEC(gimple,heap) **exit_conditions)
2441 {
2442 unsigned int i;
2443 unsigned nb_chrec_dont_know_loops = 0;
2444 unsigned nb_static_loops = 0;
2445 gimple cond;
2446
2447 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2448 {
2449 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2450 if (chrec_contains_undetermined (res))
2451 nb_chrec_dont_know_loops++;
2452 else
2453 nb_static_loops++;
2454 }
2455
2456 if (dump_file)
2457 {
2458 fprintf (dump_file, "\n(\n");
2459 fprintf (dump_file, "-----------------------------------------\n");
2460 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2461 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2462 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2463 fprintf (dump_file, "-----------------------------------------\n");
2464 fprintf (dump_file, ")\n\n");
2465
2466 print_loops (dump_file, 3);
2467 }
2468 }
2469
2470 \f
2471
2472 /* Counters for the stats. */
2473
2474 struct chrec_stats
2475 {
2476 unsigned nb_chrecs;
2477 unsigned nb_affine;
2478 unsigned nb_affine_multivar;
2479 unsigned nb_higher_poly;
2480 unsigned nb_chrec_dont_know;
2481 unsigned nb_undetermined;
2482 };
2483
2484 /* Reset the counters. */
2485
2486 static inline void
2487 reset_chrecs_counters (struct chrec_stats *stats)
2488 {
2489 stats->nb_chrecs = 0;
2490 stats->nb_affine = 0;
2491 stats->nb_affine_multivar = 0;
2492 stats->nb_higher_poly = 0;
2493 stats->nb_chrec_dont_know = 0;
2494 stats->nb_undetermined = 0;
2495 }
2496
2497 /* Dump the contents of a CHREC_STATS structure. */
2498
2499 static void
2500 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2501 {
2502 fprintf (file, "\n(\n");
2503 fprintf (file, "-----------------------------------------\n");
2504 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2505 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2506 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2507 stats->nb_higher_poly);
2508 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2509 fprintf (file, "-----------------------------------------\n");
2510 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2511 fprintf (file, "%d\twith undetermined coefficients\n",
2512 stats->nb_undetermined);
2513 fprintf (file, "-----------------------------------------\n");
2514 fprintf (file, "%d\tchrecs in the scev database\n",
2515 (int) htab_elements (scalar_evolution_info));
2516 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2517 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2518 fprintf (file, "-----------------------------------------\n");
2519 fprintf (file, ")\n\n");
2520 }
2521
2522 /* Gather statistics about CHREC. */
2523
2524 static void
2525 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2526 {
2527 if (dump_file && (dump_flags & TDF_STATS))
2528 {
2529 fprintf (dump_file, "(classify_chrec ");
2530 print_generic_expr (dump_file, chrec, 0);
2531 fprintf (dump_file, "\n");
2532 }
2533
2534 stats->nb_chrecs++;
2535
2536 if (chrec == NULL_TREE)
2537 {
2538 stats->nb_undetermined++;
2539 return;
2540 }
2541
2542 switch (TREE_CODE (chrec))
2543 {
2544 case POLYNOMIAL_CHREC:
2545 if (evolution_function_is_affine_p (chrec))
2546 {
2547 if (dump_file && (dump_flags & TDF_STATS))
2548 fprintf (dump_file, " affine_univariate\n");
2549 stats->nb_affine++;
2550 }
2551 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2552 {
2553 if (dump_file && (dump_flags & TDF_STATS))
2554 fprintf (dump_file, " affine_multivariate\n");
2555 stats->nb_affine_multivar++;
2556 }
2557 else
2558 {
2559 if (dump_file && (dump_flags & TDF_STATS))
2560 fprintf (dump_file, " higher_degree_polynomial\n");
2561 stats->nb_higher_poly++;
2562 }
2563
2564 break;
2565
2566 default:
2567 break;
2568 }
2569
2570 if (chrec_contains_undetermined (chrec))
2571 {
2572 if (dump_file && (dump_flags & TDF_STATS))
2573 fprintf (dump_file, " undetermined\n");
2574 stats->nb_undetermined++;
2575 }
2576
2577 if (dump_file && (dump_flags & TDF_STATS))
2578 fprintf (dump_file, ")\n");
2579 }
2580
2581 /* One of the drivers for testing the scalar evolutions analysis.
2582 This function analyzes the scalar evolution of all the scalars
2583 defined as loop phi nodes in one of the loops from the
2584 EXIT_CONDITIONS array.
2585
2586 TODO Optimization: A loop is in canonical form if it contains only
2587 a single scalar loop phi node. All the other scalars that have an
2588 evolution in the loop are rewritten in function of this single
2589 index. This allows the parallelization of the loop. */
2590
2591 static void
2592 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(gimple,heap) **exit_conditions)
2593 {
2594 unsigned int i;
2595 struct chrec_stats stats;
2596 gimple cond, phi;
2597 gimple_stmt_iterator psi;
2598
2599 reset_chrecs_counters (&stats);
2600
2601 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2602 {
2603 struct loop *loop;
2604 basic_block bb;
2605 tree chrec;
2606
2607 loop = loop_containing_stmt (cond);
2608 bb = loop->header;
2609
2610 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2611 {
2612 phi = gsi_stmt (psi);
2613 if (is_gimple_reg (PHI_RESULT (phi)))
2614 {
2615 chrec = instantiate_parameters
2616 (loop,
2617 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2618
2619 if (dump_file && (dump_flags & TDF_STATS))
2620 gather_chrec_stats (chrec, &stats);
2621 }
2622 }
2623 }
2624
2625 if (dump_file && (dump_flags & TDF_STATS))
2626 dump_chrecs_stats (dump_file, &stats);
2627 }
2628
2629 /* Callback for htab_traverse, gathers information on chrecs in the
2630 hashtable. */
2631
2632 static int
2633 gather_stats_on_scev_database_1 (void **slot, void *stats)
2634 {
2635 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2636
2637 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2638
2639 return 1;
2640 }
2641
2642 /* Classify the chrecs of the whole database. */
2643
2644 void
2645 gather_stats_on_scev_database (void)
2646 {
2647 struct chrec_stats stats;
2648
2649 if (!dump_file)
2650 return;
2651
2652 reset_chrecs_counters (&stats);
2653
2654 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2655 &stats);
2656
2657 dump_chrecs_stats (dump_file, &stats);
2658 }
2659
2660 \f
2661
2662 /* Initializer. */
2663
2664 static void
2665 initialize_scalar_evolutions_analyzer (void)
2666 {
2667 /* The elements below are unique. */
2668 if (chrec_dont_know == NULL_TREE)
2669 {
2670 chrec_not_analyzed_yet = NULL_TREE;
2671 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2672 chrec_known = make_node (SCEV_KNOWN);
2673 TREE_TYPE (chrec_dont_know) = void_type_node;
2674 TREE_TYPE (chrec_known) = void_type_node;
2675 }
2676 }
2677
2678 /* Initialize the analysis of scalar evolutions for LOOPS. */
2679
2680 void
2681 scev_initialize (void)
2682 {
2683 loop_iterator li;
2684 struct loop *loop;
2685
2686 scalar_evolution_info = htab_create_alloc (100,
2687 hash_scev_info,
2688 eq_scev_info,
2689 del_scev_info,
2690 ggc_calloc,
2691 ggc_free);
2692
2693 initialize_scalar_evolutions_analyzer ();
2694
2695 FOR_EACH_LOOP (li, loop, 0)
2696 {
2697 loop->nb_iterations = NULL_TREE;
2698 }
2699 }
2700
2701 /* Cleans up the information cached by the scalar evolutions analysis. */
2702
2703 void
2704 scev_reset (void)
2705 {
2706 loop_iterator li;
2707 struct loop *loop;
2708
2709 if (!scalar_evolution_info || !current_loops)
2710 return;
2711
2712 htab_empty (scalar_evolution_info);
2713 FOR_EACH_LOOP (li, loop, 0)
2714 {
2715 loop->nb_iterations = NULL_TREE;
2716 }
2717 }
2718
2719 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2720 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2721 want step to be invariant in LOOP. Otherwise we require it to be an
2722 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2723 overflow (e.g. because it is computed in signed arithmetics). */
2724
2725 bool
2726 simple_iv (struct loop *loop, gimple stmt, tree op, affine_iv *iv,
2727 bool allow_nonconstant_step)
2728 {
2729 basic_block bb = gimple_bb (stmt);
2730 tree type, ev;
2731 bool folded_casts;
2732
2733 iv->base = NULL_TREE;
2734 iv->step = NULL_TREE;
2735 iv->no_overflow = false;
2736
2737 type = TREE_TYPE (op);
2738 if (TREE_CODE (type) != INTEGER_TYPE
2739 && TREE_CODE (type) != POINTER_TYPE)
2740 return false;
2741
2742 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2743 &folded_casts);
2744 if (chrec_contains_undetermined (ev))
2745 return false;
2746
2747 if (tree_does_not_contain_chrecs (ev)
2748 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2749 {
2750 iv->base = ev;
2751 iv->step = build_int_cst (TREE_TYPE (ev), 0);
2752 iv->no_overflow = true;
2753 return true;
2754 }
2755
2756 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2757 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2758 return false;
2759
2760 iv->step = CHREC_RIGHT (ev);
2761 if (allow_nonconstant_step)
2762 {
2763 if (tree_contains_chrecs (iv->step, NULL)
2764 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2765 return false;
2766 }
2767 else if (TREE_CODE (iv->step) != INTEGER_CST)
2768 return false;
2769
2770 iv->base = CHREC_LEFT (ev);
2771 if (tree_contains_chrecs (iv->base, NULL)
2772 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2773 return false;
2774
2775 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2776
2777 return true;
2778 }
2779
2780 /* Runs the analysis of scalar evolutions. */
2781
2782 void
2783 scev_analysis (void)
2784 {
2785 VEC(gimple,heap) *exit_conditions;
2786
2787 exit_conditions = VEC_alloc (gimple, heap, 37);
2788 select_loops_exit_conditions (&exit_conditions);
2789
2790 if (dump_file && (dump_flags & TDF_STATS))
2791 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2792
2793 number_of_iterations_for_all_loops (&exit_conditions);
2794 VEC_free (gimple, heap, exit_conditions);
2795 }
2796
2797 /* Finalize the scalar evolution analysis. */
2798
2799 void
2800 scev_finalize (void)
2801 {
2802 if (!scalar_evolution_info)
2803 return;
2804 htab_delete (scalar_evolution_info);
2805 scalar_evolution_info = NULL;
2806 }
2807
2808 /* Returns true if the expression EXPR is considered to be too expensive
2809 for scev_const_prop. */
2810
2811 bool
2812 expression_expensive_p (tree expr)
2813 {
2814 enum tree_code code;
2815
2816 if (is_gimple_val (expr))
2817 return false;
2818
2819 code = TREE_CODE (expr);
2820 if (code == TRUNC_DIV_EXPR
2821 || code == CEIL_DIV_EXPR
2822 || code == FLOOR_DIV_EXPR
2823 || code == ROUND_DIV_EXPR
2824 || code == TRUNC_MOD_EXPR
2825 || code == CEIL_MOD_EXPR
2826 || code == FLOOR_MOD_EXPR
2827 || code == ROUND_MOD_EXPR
2828 || code == EXACT_DIV_EXPR)
2829 {
2830 /* Division by power of two is usually cheap, so we allow it.
2831 Forbid anything else. */
2832 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
2833 return true;
2834 }
2835
2836 switch (TREE_CODE_CLASS (code))
2837 {
2838 case tcc_binary:
2839 case tcc_comparison:
2840 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
2841 return true;
2842
2843 /* Fallthru. */
2844 case tcc_unary:
2845 return expression_expensive_p (TREE_OPERAND (expr, 0));
2846
2847 default:
2848 return true;
2849 }
2850 }
2851
2852 /* Replace ssa names for that scev can prove they are constant by the
2853 appropriate constants. Also perform final value replacement in loops,
2854 in case the replacement expressions are cheap.
2855
2856 We only consider SSA names defined by phi nodes; rest is left to the
2857 ordinary constant propagation pass. */
2858
2859 unsigned int
2860 scev_const_prop (void)
2861 {
2862 basic_block bb;
2863 tree name, type, ev;
2864 gimple phi, ass;
2865 struct loop *loop, *ex_loop;
2866 bitmap ssa_names_to_remove = NULL;
2867 unsigned i;
2868 loop_iterator li;
2869 gimple_stmt_iterator psi;
2870
2871 if (number_of_loops () <= 1)
2872 return 0;
2873
2874 FOR_EACH_BB (bb)
2875 {
2876 loop = bb->loop_father;
2877
2878 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2879 {
2880 phi = gsi_stmt (psi);
2881 name = PHI_RESULT (phi);
2882
2883 if (!is_gimple_reg (name))
2884 continue;
2885
2886 type = TREE_TYPE (name);
2887
2888 if (!POINTER_TYPE_P (type)
2889 && !INTEGRAL_TYPE_P (type))
2890 continue;
2891
2892 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2893 if (!is_gimple_min_invariant (ev)
2894 || !may_propagate_copy (name, ev))
2895 continue;
2896
2897 /* Replace the uses of the name. */
2898 if (name != ev)
2899 replace_uses_by (name, ev);
2900
2901 if (!ssa_names_to_remove)
2902 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2903 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2904 }
2905 }
2906
2907 /* Remove the ssa names that were replaced by constants. We do not
2908 remove them directly in the previous cycle, since this
2909 invalidates scev cache. */
2910 if (ssa_names_to_remove)
2911 {
2912 bitmap_iterator bi;
2913
2914 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2915 {
2916 gimple_stmt_iterator psi;
2917 name = ssa_name (i);
2918 phi = SSA_NAME_DEF_STMT (name);
2919
2920 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
2921 psi = gsi_for_stmt (phi);
2922 remove_phi_node (&psi, true);
2923 }
2924
2925 BITMAP_FREE (ssa_names_to_remove);
2926 scev_reset ();
2927 }
2928
2929 /* Now the regular final value replacement. */
2930 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
2931 {
2932 edge exit;
2933 tree def, rslt, niter;
2934 gimple_stmt_iterator bsi;
2935
2936 /* If we do not know exact number of iterations of the loop, we cannot
2937 replace the final value. */
2938 exit = single_exit (loop);
2939 if (!exit)
2940 continue;
2941
2942 niter = number_of_latch_executions (loop);
2943 if (niter == chrec_dont_know)
2944 continue;
2945
2946 /* Ensure that it is possible to insert new statements somewhere. */
2947 if (!single_pred_p (exit->dest))
2948 split_loop_exit_edge (exit);
2949 bsi = gsi_after_labels (exit->dest);
2950
2951 ex_loop = superloop_at_depth (loop,
2952 loop_depth (exit->dest->loop_father) + 1);
2953
2954 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
2955 {
2956 phi = gsi_stmt (psi);
2957 rslt = PHI_RESULT (phi);
2958 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2959 if (!is_gimple_reg (def))
2960 {
2961 gsi_next (&psi);
2962 continue;
2963 }
2964
2965 if (!POINTER_TYPE_P (TREE_TYPE (def))
2966 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2967 {
2968 gsi_next (&psi);
2969 continue;
2970 }
2971
2972 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2973 def = compute_overall_effect_of_inner_loop (ex_loop, def);
2974 if (!tree_does_not_contain_chrecs (def)
2975 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2976 /* Moving the computation from the loop may prolong life range
2977 of some ssa names, which may cause problems if they appear
2978 on abnormal edges. */
2979 || contains_abnormal_ssa_name_p (def)
2980 /* Do not emit expensive expressions. The rationale is that
2981 when someone writes a code like
2982
2983 while (n > 45) n -= 45;
2984
2985 he probably knows that n is not large, and does not want it
2986 to be turned into n %= 45. */
2987 || expression_expensive_p (def))
2988 {
2989 gsi_next (&psi);
2990 continue;
2991 }
2992
2993 /* Eliminate the PHI node and replace it by a computation outside
2994 the loop. */
2995 def = unshare_expr (def);
2996 remove_phi_node (&psi, false);
2997
2998 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
2999 true, GSI_SAME_STMT);
3000 ass = gimple_build_assign (rslt, def);
3001 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
3002 }
3003 }
3004 return 0;
3005 }
3006
3007 #include "gt-tree-scalar-evolution.h"