re PR tree-optimization/46985 (ICE: SIGSEGV in is_gimple_min_invariant (gimple.c...
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <s.pop@laposte.net>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2a: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 2b: Multivariate chains of recurrences.
159
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
170
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
178 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
179 The result of this call is {{0, +, 1}_1, +, 1}_2.
180
181 Example 3: Higher degree polynomials.
182
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
189
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
194
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
197
198 Example 4: Lucas, Fibonacci, or mixers in general.
199
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
206
207 a -> (1, c)_1
208 c -> {3, +, a}_1
209
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
215
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
218
219 Example 5: Flip-flops, or exchangers.
220
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
227
228 a -> (1, c)_1
229 c -> (3, a)_1
230
231 Based on these symbolic chrecs, it is possible to refine this
232 information into the more precise PERIODIC_CHRECs:
233
234 a -> |1, 3|_1
235 c -> |3, 1|_1
236
237 This transformation is not yet implemented.
238
239 Further readings:
240
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
248
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
255 */
256
257 #include "config.h"
258 #include "system.h"
259 #include "coretypes.h"
260 #include "tm.h"
261 #include "ggc.h"
262 #include "tree.h"
263 #include "basic-block.h"
264 #include "tree-pretty-print.h"
265 #include "gimple-pretty-print.h"
266 #include "tree-flow.h"
267 #include "tree-dump.h"
268 #include "timevar.h"
269 #include "cfgloop.h"
270 #include "tree-chrec.h"
271 #include "tree-scalar-evolution.h"
272 #include "tree-pass.h"
273 #include "flags.h"
274 #include "params.h"
275
276 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
277
278 /* The cached information about an SSA name VAR, claiming that below
279 basic block INSTANTIATED_BELOW, the value of VAR can be expressed
280 as CHREC. */
281
282 struct GTY(()) scev_info_str {
283 basic_block instantiated_below;
284 tree var;
285 tree chrec;
286 };
287
288 /* Counters for the scev database. */
289 static unsigned nb_set_scev = 0;
290 static unsigned nb_get_scev = 0;
291
292 /* The following trees are unique elements. Thus the comparison of
293 another element to these elements should be done on the pointer to
294 these trees, and not on their value. */
295
296 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
297 tree chrec_not_analyzed_yet;
298
299 /* Reserved to the cases where the analyzer has detected an
300 undecidable property at compile time. */
301 tree chrec_dont_know;
302
303 /* When the analyzer has detected that a property will never
304 happen, then it qualifies it with chrec_known. */
305 tree chrec_known;
306
307 static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
308
309 \f
310 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
311
312 static inline struct scev_info_str *
313 new_scev_info_str (basic_block instantiated_below, tree var)
314 {
315 struct scev_info_str *res;
316
317 res = ggc_alloc_scev_info_str ();
318 res->var = var;
319 res->chrec = chrec_not_analyzed_yet;
320 res->instantiated_below = instantiated_below;
321
322 return res;
323 }
324
325 /* Computes a hash function for database element ELT. */
326
327 static hashval_t
328 hash_scev_info (const void *elt)
329 {
330 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
331 }
332
333 /* Compares database elements E1 and E2. */
334
335 static int
336 eq_scev_info (const void *e1, const void *e2)
337 {
338 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
339 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
340
341 return (elt1->var == elt2->var
342 && elt1->instantiated_below == elt2->instantiated_below);
343 }
344
345 /* Deletes database element E. */
346
347 static void
348 del_scev_info (void *e)
349 {
350 ggc_free (e);
351 }
352
353 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
354 A first query on VAR returns chrec_not_analyzed_yet. */
355
356 static tree *
357 find_var_scev_info (basic_block instantiated_below, tree var)
358 {
359 struct scev_info_str *res;
360 struct scev_info_str tmp;
361 PTR *slot;
362
363 tmp.var = var;
364 tmp.instantiated_below = instantiated_below;
365 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
366
367 if (!*slot)
368 *slot = new_scev_info_str (instantiated_below, var);
369 res = (struct scev_info_str *) *slot;
370
371 return &res->chrec;
372 }
373
374 /* Return true when CHREC contains symbolic names defined in
375 LOOP_NB. */
376
377 bool
378 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
379 {
380 int i, n;
381
382 if (chrec == NULL_TREE)
383 return false;
384
385 if (is_gimple_min_invariant (chrec))
386 return false;
387
388 if (TREE_CODE (chrec) == SSA_NAME)
389 {
390 gimple def;
391 loop_p def_loop, loop;
392
393 if (SSA_NAME_IS_DEFAULT_DEF (chrec))
394 return false;
395
396 def = SSA_NAME_DEF_STMT (chrec);
397 def_loop = loop_containing_stmt (def);
398 loop = get_loop (loop_nb);
399
400 if (def_loop == NULL)
401 return false;
402
403 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
404 return true;
405
406 return false;
407 }
408
409 n = TREE_OPERAND_LENGTH (chrec);
410 for (i = 0; i < n; i++)
411 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
412 loop_nb))
413 return true;
414 return false;
415 }
416
417 /* Return true when PHI is a loop-phi-node. */
418
419 static bool
420 loop_phi_node_p (gimple phi)
421 {
422 /* The implementation of this function is based on the following
423 property: "all the loop-phi-nodes of a loop are contained in the
424 loop's header basic block". */
425
426 return loop_containing_stmt (phi)->header == gimple_bb (phi);
427 }
428
429 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
430 In general, in the case of multivariate evolutions we want to get
431 the evolution in different loops. LOOP specifies the level for
432 which to get the evolution.
433
434 Example:
435
436 | for (j = 0; j < 100; j++)
437 | {
438 | for (k = 0; k < 100; k++)
439 | {
440 | i = k + j; - Here the value of i is a function of j, k.
441 | }
442 | ... = i - Here the value of i is a function of j.
443 | }
444 | ... = i - Here the value of i is a scalar.
445
446 Example:
447
448 | i_0 = ...
449 | loop_1 10 times
450 | i_1 = phi (i_0, i_2)
451 | i_2 = i_1 + 2
452 | endloop
453
454 This loop has the same effect as:
455 LOOP_1 has the same effect as:
456
457 | i_1 = i_0 + 20
458
459 The overall effect of the loop, "i_0 + 20" in the previous example,
460 is obtained by passing in the parameters: LOOP = 1,
461 EVOLUTION_FN = {i_0, +, 2}_1.
462 */
463
464 tree
465 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
466 {
467 bool val = false;
468
469 if (evolution_fn == chrec_dont_know)
470 return chrec_dont_know;
471
472 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
473 {
474 struct loop *inner_loop = get_chrec_loop (evolution_fn);
475
476 if (inner_loop == loop
477 || flow_loop_nested_p (loop, inner_loop))
478 {
479 tree nb_iter = number_of_latch_executions (inner_loop);
480
481 if (nb_iter == chrec_dont_know)
482 return chrec_dont_know;
483 else
484 {
485 tree res;
486
487 /* evolution_fn is the evolution function in LOOP. Get
488 its value in the nb_iter-th iteration. */
489 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
490
491 if (chrec_contains_symbols_defined_in_loop (res, loop->num))
492 res = instantiate_parameters (loop, res);
493
494 /* Continue the computation until ending on a parent of LOOP. */
495 return compute_overall_effect_of_inner_loop (loop, res);
496 }
497 }
498 else
499 return evolution_fn;
500 }
501
502 /* If the evolution function is an invariant, there is nothing to do. */
503 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
504 return evolution_fn;
505
506 else
507 return chrec_dont_know;
508 }
509
510 /* Determine whether the CHREC is always positive/negative. If the expression
511 cannot be statically analyzed, return false, otherwise set the answer into
512 VALUE. */
513
514 bool
515 chrec_is_positive (tree chrec, bool *value)
516 {
517 bool value0, value1, value2;
518 tree end_value, nb_iter;
519
520 switch (TREE_CODE (chrec))
521 {
522 case POLYNOMIAL_CHREC:
523 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
524 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
525 return false;
526
527 /* FIXME -- overflows. */
528 if (value0 == value1)
529 {
530 *value = value0;
531 return true;
532 }
533
534 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
535 and the proof consists in showing that the sign never
536 changes during the execution of the loop, from 0 to
537 loop->nb_iterations. */
538 if (!evolution_function_is_affine_p (chrec))
539 return false;
540
541 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
542 if (chrec_contains_undetermined (nb_iter))
543 return false;
544
545 #if 0
546 /* TODO -- If the test is after the exit, we may decrease the number of
547 iterations by one. */
548 if (after_exit)
549 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
550 #endif
551
552 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
553
554 if (!chrec_is_positive (end_value, &value2))
555 return false;
556
557 *value = value0;
558 return value0 == value1;
559
560 case INTEGER_CST:
561 *value = (tree_int_cst_sgn (chrec) == 1);
562 return true;
563
564 default:
565 return false;
566 }
567 }
568
569 /* Associate CHREC to SCALAR. */
570
571 static void
572 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
573 {
574 tree *scalar_info;
575
576 if (TREE_CODE (scalar) != SSA_NAME)
577 return;
578
579 scalar_info = find_var_scev_info (instantiated_below, scalar);
580
581 if (dump_file)
582 {
583 if (dump_flags & TDF_DETAILS)
584 {
585 fprintf (dump_file, "(set_scalar_evolution \n");
586 fprintf (dump_file, " instantiated_below = %d \n",
587 instantiated_below->index);
588 fprintf (dump_file, " (scalar = ");
589 print_generic_expr (dump_file, scalar, 0);
590 fprintf (dump_file, ")\n (scalar_evolution = ");
591 print_generic_expr (dump_file, chrec, 0);
592 fprintf (dump_file, "))\n");
593 }
594 if (dump_flags & TDF_STATS)
595 nb_set_scev++;
596 }
597
598 *scalar_info = chrec;
599 }
600
601 /* Retrieve the chrec associated to SCALAR instantiated below
602 INSTANTIATED_BELOW block. */
603
604 static tree
605 get_scalar_evolution (basic_block instantiated_below, tree scalar)
606 {
607 tree res;
608
609 if (dump_file)
610 {
611 if (dump_flags & TDF_DETAILS)
612 {
613 fprintf (dump_file, "(get_scalar_evolution \n");
614 fprintf (dump_file, " (scalar = ");
615 print_generic_expr (dump_file, scalar, 0);
616 fprintf (dump_file, ")\n");
617 }
618 if (dump_flags & TDF_STATS)
619 nb_get_scev++;
620 }
621
622 switch (TREE_CODE (scalar))
623 {
624 case SSA_NAME:
625 res = *find_var_scev_info (instantiated_below, scalar);
626 break;
627
628 case REAL_CST:
629 case FIXED_CST:
630 case INTEGER_CST:
631 res = scalar;
632 break;
633
634 default:
635 res = chrec_not_analyzed_yet;
636 break;
637 }
638
639 if (dump_file && (dump_flags & TDF_DETAILS))
640 {
641 fprintf (dump_file, " (scalar_evolution = ");
642 print_generic_expr (dump_file, res, 0);
643 fprintf (dump_file, "))\n");
644 }
645
646 return res;
647 }
648
649 /* Helper function for add_to_evolution. Returns the evolution
650 function for an assignment of the form "a = b + c", where "a" and
651 "b" are on the strongly connected component. CHREC_BEFORE is the
652 information that we already have collected up to this point.
653 TO_ADD is the evolution of "c".
654
655 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
656 evolution the expression TO_ADD, otherwise construct an evolution
657 part for this loop. */
658
659 static tree
660 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
661 gimple at_stmt)
662 {
663 tree type, left, right;
664 struct loop *loop = get_loop (loop_nb), *chloop;
665
666 switch (TREE_CODE (chrec_before))
667 {
668 case POLYNOMIAL_CHREC:
669 chloop = get_chrec_loop (chrec_before);
670 if (chloop == loop
671 || flow_loop_nested_p (chloop, loop))
672 {
673 unsigned var;
674
675 type = chrec_type (chrec_before);
676
677 /* When there is no evolution part in this loop, build it. */
678 if (chloop != loop)
679 {
680 var = loop_nb;
681 left = chrec_before;
682 right = SCALAR_FLOAT_TYPE_P (type)
683 ? build_real (type, dconst0)
684 : build_int_cst (type, 0);
685 }
686 else
687 {
688 var = CHREC_VARIABLE (chrec_before);
689 left = CHREC_LEFT (chrec_before);
690 right = CHREC_RIGHT (chrec_before);
691 }
692
693 to_add = chrec_convert (type, to_add, at_stmt);
694 right = chrec_convert_rhs (type, right, at_stmt);
695 right = chrec_fold_plus (chrec_type (right), right, to_add);
696 return build_polynomial_chrec (var, left, right);
697 }
698 else
699 {
700 gcc_assert (flow_loop_nested_p (loop, chloop));
701
702 /* Search the evolution in LOOP_NB. */
703 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
704 to_add, at_stmt);
705 right = CHREC_RIGHT (chrec_before);
706 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
707 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
708 left, right);
709 }
710
711 default:
712 /* These nodes do not depend on a loop. */
713 if (chrec_before == chrec_dont_know)
714 return chrec_dont_know;
715
716 left = chrec_before;
717 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
718 return build_polynomial_chrec (loop_nb, left, right);
719 }
720 }
721
722 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
723 of LOOP_NB.
724
725 Description (provided for completeness, for those who read code in
726 a plane, and for my poor 62 bytes brain that would have forgotten
727 all this in the next two or three months):
728
729 The algorithm of translation of programs from the SSA representation
730 into the chrecs syntax is based on a pattern matching. After having
731 reconstructed the overall tree expression for a loop, there are only
732 two cases that can arise:
733
734 1. a = loop-phi (init, a + expr)
735 2. a = loop-phi (init, expr)
736
737 where EXPR is either a scalar constant with respect to the analyzed
738 loop (this is a degree 0 polynomial), or an expression containing
739 other loop-phi definitions (these are higher degree polynomials).
740
741 Examples:
742
743 1.
744 | init = ...
745 | loop_1
746 | a = phi (init, a + 5)
747 | endloop
748
749 2.
750 | inita = ...
751 | initb = ...
752 | loop_1
753 | a = phi (inita, 2 * b + 3)
754 | b = phi (initb, b + 1)
755 | endloop
756
757 For the first case, the semantics of the SSA representation is:
758
759 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
760
761 that is, there is a loop index "x" that determines the scalar value
762 of the variable during the loop execution. During the first
763 iteration, the value is that of the initial condition INIT, while
764 during the subsequent iterations, it is the sum of the initial
765 condition with the sum of all the values of EXPR from the initial
766 iteration to the before last considered iteration.
767
768 For the second case, the semantics of the SSA program is:
769
770 | a (x) = init, if x = 0;
771 | expr (x - 1), otherwise.
772
773 The second case corresponds to the PEELED_CHREC, whose syntax is
774 close to the syntax of a loop-phi-node:
775
776 | phi (init, expr) vs. (init, expr)_x
777
778 The proof of the translation algorithm for the first case is a
779 proof by structural induction based on the degree of EXPR.
780
781 Degree 0:
782 When EXPR is a constant with respect to the analyzed loop, or in
783 other words when EXPR is a polynomial of degree 0, the evolution of
784 the variable A in the loop is an affine function with an initial
785 condition INIT, and a step EXPR. In order to show this, we start
786 from the semantics of the SSA representation:
787
788 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
789
790 and since "expr (j)" is a constant with respect to "j",
791
792 f (x) = init + x * expr
793
794 Finally, based on the semantics of the pure sum chrecs, by
795 identification we get the corresponding chrecs syntax:
796
797 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
798 f (x) -> {init, +, expr}_x
799
800 Higher degree:
801 Suppose that EXPR is a polynomial of degree N with respect to the
802 analyzed loop_x for which we have already determined that it is
803 written under the chrecs syntax:
804
805 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
806
807 We start from the semantics of the SSA program:
808
809 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
810 |
811 | f (x) = init + \sum_{j = 0}^{x - 1}
812 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
813 |
814 | f (x) = init + \sum_{j = 0}^{x - 1}
815 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
816 |
817 | f (x) = init + \sum_{k = 0}^{n - 1}
818 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
819 |
820 | f (x) = init + \sum_{k = 0}^{n - 1}
821 | (b_k * \binom{x}{k + 1})
822 |
823 | f (x) = init + b_0 * \binom{x}{1} + ...
824 | + b_{n-1} * \binom{x}{n}
825 |
826 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
827 | + b_{n-1} * \binom{x}{n}
828 |
829
830 And finally from the definition of the chrecs syntax, we identify:
831 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
832
833 This shows the mechanism that stands behind the add_to_evolution
834 function. An important point is that the use of symbolic
835 parameters avoids the need of an analysis schedule.
836
837 Example:
838
839 | inita = ...
840 | initb = ...
841 | loop_1
842 | a = phi (inita, a + 2 + b)
843 | b = phi (initb, b + 1)
844 | endloop
845
846 When analyzing "a", the algorithm keeps "b" symbolically:
847
848 | a -> {inita, +, 2 + b}_1
849
850 Then, after instantiation, the analyzer ends on the evolution:
851
852 | a -> {inita, +, 2 + initb, +, 1}_1
853
854 */
855
856 static tree
857 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
858 tree to_add, gimple at_stmt)
859 {
860 tree type = chrec_type (to_add);
861 tree res = NULL_TREE;
862
863 if (to_add == NULL_TREE)
864 return chrec_before;
865
866 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
867 instantiated at this point. */
868 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
869 /* This should not happen. */
870 return chrec_dont_know;
871
872 if (dump_file && (dump_flags & TDF_DETAILS))
873 {
874 fprintf (dump_file, "(add_to_evolution \n");
875 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
876 fprintf (dump_file, " (chrec_before = ");
877 print_generic_expr (dump_file, chrec_before, 0);
878 fprintf (dump_file, ")\n (to_add = ");
879 print_generic_expr (dump_file, to_add, 0);
880 fprintf (dump_file, ")\n");
881 }
882
883 if (code == MINUS_EXPR)
884 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
885 ? build_real (type, dconstm1)
886 : build_int_cst_type (type, -1));
887
888 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
889
890 if (dump_file && (dump_flags & TDF_DETAILS))
891 {
892 fprintf (dump_file, " (res = ");
893 print_generic_expr (dump_file, res, 0);
894 fprintf (dump_file, "))\n");
895 }
896
897 return res;
898 }
899
900 \f
901
902 /* This section selects the loops that will be good candidates for the
903 scalar evolution analysis. For the moment, greedily select all the
904 loop nests we could analyze. */
905
906 /* For a loop with a single exit edge, return the COND_EXPR that
907 guards the exit edge. If the expression is too difficult to
908 analyze, then give up. */
909
910 gimple
911 get_loop_exit_condition (const struct loop *loop)
912 {
913 gimple res = NULL;
914 edge exit_edge = single_exit (loop);
915
916 if (dump_file && (dump_flags & TDF_DETAILS))
917 fprintf (dump_file, "(get_loop_exit_condition \n ");
918
919 if (exit_edge)
920 {
921 gimple stmt;
922
923 stmt = last_stmt (exit_edge->src);
924 if (gimple_code (stmt) == GIMPLE_COND)
925 res = stmt;
926 }
927
928 if (dump_file && (dump_flags & TDF_DETAILS))
929 {
930 print_gimple_stmt (dump_file, res, 0, 0);
931 fprintf (dump_file, ")\n");
932 }
933
934 return res;
935 }
936
937 /* Recursively determine and enqueue the exit conditions for a loop. */
938
939 static void
940 get_exit_conditions_rec (struct loop *loop,
941 VEC(gimple,heap) **exit_conditions)
942 {
943 if (!loop)
944 return;
945
946 /* Recurse on the inner loops, then on the next (sibling) loops. */
947 get_exit_conditions_rec (loop->inner, exit_conditions);
948 get_exit_conditions_rec (loop->next, exit_conditions);
949
950 if (single_exit (loop))
951 {
952 gimple loop_condition = get_loop_exit_condition (loop);
953
954 if (loop_condition)
955 VEC_safe_push (gimple, heap, *exit_conditions, loop_condition);
956 }
957 }
958
959 /* Select the candidate loop nests for the analysis. This function
960 initializes the EXIT_CONDITIONS array. */
961
962 static void
963 select_loops_exit_conditions (VEC(gimple,heap) **exit_conditions)
964 {
965 struct loop *function_body = current_loops->tree_root;
966
967 get_exit_conditions_rec (function_body->inner, exit_conditions);
968 }
969
970 \f
971 /* Depth first search algorithm. */
972
973 typedef enum t_bool {
974 t_false,
975 t_true,
976 t_dont_know
977 } t_bool;
978
979
980 static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
981
982 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
983 Return true if the strongly connected component has been found. */
984
985 static t_bool
986 follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
987 tree type, tree rhs0, enum tree_code code, tree rhs1,
988 gimple halting_phi, tree *evolution_of_loop, int limit)
989 {
990 t_bool res = t_false;
991 tree evol;
992
993 switch (code)
994 {
995 case POINTER_PLUS_EXPR:
996 case PLUS_EXPR:
997 if (TREE_CODE (rhs0) == SSA_NAME)
998 {
999 if (TREE_CODE (rhs1) == SSA_NAME)
1000 {
1001 /* Match an assignment under the form:
1002 "a = b + c". */
1003
1004 /* We want only assignments of form "name + name" contribute to
1005 LIMIT, as the other cases do not necessarily contribute to
1006 the complexity of the expression. */
1007 limit++;
1008
1009 evol = *evolution_of_loop;
1010 res = follow_ssa_edge
1011 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
1012
1013 if (res == t_true)
1014 *evolution_of_loop = add_to_evolution
1015 (loop->num,
1016 chrec_convert (type, evol, at_stmt),
1017 code, rhs1, at_stmt);
1018
1019 else if (res == t_false)
1020 {
1021 res = follow_ssa_edge
1022 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1023 evolution_of_loop, limit);
1024
1025 if (res == t_true)
1026 *evolution_of_loop = add_to_evolution
1027 (loop->num,
1028 chrec_convert (type, *evolution_of_loop, at_stmt),
1029 code, rhs0, at_stmt);
1030
1031 else if (res == t_dont_know)
1032 *evolution_of_loop = chrec_dont_know;
1033 }
1034
1035 else if (res == t_dont_know)
1036 *evolution_of_loop = chrec_dont_know;
1037 }
1038
1039 else
1040 {
1041 /* Match an assignment under the form:
1042 "a = b + ...". */
1043 res = follow_ssa_edge
1044 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1045 evolution_of_loop, limit);
1046 if (res == t_true)
1047 *evolution_of_loop = add_to_evolution
1048 (loop->num, chrec_convert (type, *evolution_of_loop,
1049 at_stmt),
1050 code, rhs1, at_stmt);
1051
1052 else if (res == t_dont_know)
1053 *evolution_of_loop = chrec_dont_know;
1054 }
1055 }
1056
1057 else if (TREE_CODE (rhs1) == SSA_NAME)
1058 {
1059 /* Match an assignment under the form:
1060 "a = ... + c". */
1061 res = follow_ssa_edge
1062 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1063 evolution_of_loop, limit);
1064 if (res == t_true)
1065 *evolution_of_loop = add_to_evolution
1066 (loop->num, chrec_convert (type, *evolution_of_loop,
1067 at_stmt),
1068 code, rhs0, at_stmt);
1069
1070 else if (res == t_dont_know)
1071 *evolution_of_loop = chrec_dont_know;
1072 }
1073
1074 else
1075 /* Otherwise, match an assignment under the form:
1076 "a = ... + ...". */
1077 /* And there is nothing to do. */
1078 res = t_false;
1079 break;
1080
1081 case MINUS_EXPR:
1082 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1083 if (TREE_CODE (rhs0) == SSA_NAME)
1084 {
1085 /* Match an assignment under the form:
1086 "a = b - ...". */
1087
1088 /* We want only assignments of form "name - name" contribute to
1089 LIMIT, as the other cases do not necessarily contribute to
1090 the complexity of the expression. */
1091 if (TREE_CODE (rhs1) == SSA_NAME)
1092 limit++;
1093
1094 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1095 evolution_of_loop, limit);
1096 if (res == t_true)
1097 *evolution_of_loop = add_to_evolution
1098 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1099 MINUS_EXPR, rhs1, at_stmt);
1100
1101 else if (res == t_dont_know)
1102 *evolution_of_loop = chrec_dont_know;
1103 }
1104 else
1105 /* Otherwise, match an assignment under the form:
1106 "a = ... - ...". */
1107 /* And there is nothing to do. */
1108 res = t_false;
1109 break;
1110
1111 default:
1112 res = t_false;
1113 }
1114
1115 return res;
1116 }
1117
1118 /* Follow the ssa edge into the expression EXPR.
1119 Return true if the strongly connected component has been found. */
1120
1121 static t_bool
1122 follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
1123 gimple halting_phi, tree *evolution_of_loop, int limit)
1124 {
1125 enum tree_code code = TREE_CODE (expr);
1126 tree type = TREE_TYPE (expr), rhs0, rhs1;
1127 t_bool res;
1128
1129 /* The EXPR is one of the following cases:
1130 - an SSA_NAME,
1131 - an INTEGER_CST,
1132 - a PLUS_EXPR,
1133 - a POINTER_PLUS_EXPR,
1134 - a MINUS_EXPR,
1135 - an ASSERT_EXPR,
1136 - other cases are not yet handled. */
1137
1138 switch (code)
1139 {
1140 CASE_CONVERT:
1141 /* This assignment is under the form "a_1 = (cast) rhs. */
1142 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1143 halting_phi, evolution_of_loop, limit);
1144 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1145 break;
1146
1147 case INTEGER_CST:
1148 /* This assignment is under the form "a_1 = 7". */
1149 res = t_false;
1150 break;
1151
1152 case SSA_NAME:
1153 /* This assignment is under the form: "a_1 = b_2". */
1154 res = follow_ssa_edge
1155 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1156 break;
1157
1158 case POINTER_PLUS_EXPR:
1159 case PLUS_EXPR:
1160 case MINUS_EXPR:
1161 /* This case is under the form "rhs0 +- rhs1". */
1162 rhs0 = TREE_OPERAND (expr, 0);
1163 rhs1 = TREE_OPERAND (expr, 1);
1164 type = TREE_TYPE (rhs0);
1165 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1166 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1167 res = follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1168 halting_phi, evolution_of_loop, limit);
1169 break;
1170
1171 case ADDR_EXPR:
1172 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1173 if (TREE_CODE (TREE_OPERAND (expr, 0)) == MEM_REF)
1174 {
1175 expr = TREE_OPERAND (expr, 0);
1176 rhs0 = TREE_OPERAND (expr, 0);
1177 rhs1 = TREE_OPERAND (expr, 1);
1178 type = TREE_TYPE (rhs0);
1179 STRIP_USELESS_TYPE_CONVERSION (rhs0);
1180 STRIP_USELESS_TYPE_CONVERSION (rhs1);
1181 res = follow_ssa_edge_binary (loop, at_stmt, type,
1182 rhs0, POINTER_PLUS_EXPR, rhs1,
1183 halting_phi, evolution_of_loop, limit);
1184 }
1185 else
1186 res = t_false;
1187 break;
1188
1189 case ASSERT_EXPR:
1190 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1191 It must be handled as a copy assignment of the form a_1 = a_2. */
1192 rhs0 = ASSERT_EXPR_VAR (expr);
1193 if (TREE_CODE (rhs0) == SSA_NAME)
1194 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0),
1195 halting_phi, evolution_of_loop, limit);
1196 else
1197 res = t_false;
1198 break;
1199
1200 default:
1201 res = t_false;
1202 break;
1203 }
1204
1205 return res;
1206 }
1207
1208 /* Follow the ssa edge into the right hand side of an assignment STMT.
1209 Return true if the strongly connected component has been found. */
1210
1211 static t_bool
1212 follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1213 gimple halting_phi, tree *evolution_of_loop, int limit)
1214 {
1215 enum tree_code code = gimple_assign_rhs_code (stmt);
1216 tree type = gimple_expr_type (stmt), rhs1, rhs2;
1217 t_bool res;
1218
1219 switch (code)
1220 {
1221 CASE_CONVERT:
1222 /* This assignment is under the form "a_1 = (cast) rhs. */
1223 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1224 halting_phi, evolution_of_loop, limit);
1225 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, stmt);
1226 break;
1227
1228 case POINTER_PLUS_EXPR:
1229 case PLUS_EXPR:
1230 case MINUS_EXPR:
1231 rhs1 = gimple_assign_rhs1 (stmt);
1232 rhs2 = gimple_assign_rhs2 (stmt);
1233 type = TREE_TYPE (rhs1);
1234 res = follow_ssa_edge_binary (loop, stmt, type, rhs1, code, rhs2,
1235 halting_phi, evolution_of_loop, limit);
1236 break;
1237
1238 default:
1239 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1240 res = follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1241 halting_phi, evolution_of_loop, limit);
1242 else
1243 res = t_false;
1244 break;
1245 }
1246
1247 return res;
1248 }
1249
1250 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1251
1252 static bool
1253 backedge_phi_arg_p (gimple phi, int i)
1254 {
1255 const_edge e = gimple_phi_arg_edge (phi, i);
1256
1257 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1258 about updating it anywhere, and this should work as well most of the
1259 time. */
1260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1261 return true;
1262
1263 return false;
1264 }
1265
1266 /* Helper function for one branch of the condition-phi-node. Return
1267 true if the strongly connected component has been found following
1268 this path. */
1269
1270 static inline t_bool
1271 follow_ssa_edge_in_condition_phi_branch (int i,
1272 struct loop *loop,
1273 gimple condition_phi,
1274 gimple halting_phi,
1275 tree *evolution_of_branch,
1276 tree init_cond, int limit)
1277 {
1278 tree branch = PHI_ARG_DEF (condition_phi, i);
1279 *evolution_of_branch = chrec_dont_know;
1280
1281 /* Do not follow back edges (they must belong to an irreducible loop, which
1282 we really do not want to worry about). */
1283 if (backedge_phi_arg_p (condition_phi, i))
1284 return t_false;
1285
1286 if (TREE_CODE (branch) == SSA_NAME)
1287 {
1288 *evolution_of_branch = init_cond;
1289 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1290 evolution_of_branch, limit);
1291 }
1292
1293 /* This case occurs when one of the condition branches sets
1294 the variable to a constant: i.e. a phi-node like
1295 "a_2 = PHI <a_7(5), 2(6)>;".
1296
1297 FIXME: This case have to be refined correctly:
1298 in some cases it is possible to say something better than
1299 chrec_dont_know, for example using a wrap-around notation. */
1300 return t_false;
1301 }
1302
1303 /* This function merges the branches of a condition-phi-node in a
1304 loop. */
1305
1306 static t_bool
1307 follow_ssa_edge_in_condition_phi (struct loop *loop,
1308 gimple condition_phi,
1309 gimple halting_phi,
1310 tree *evolution_of_loop, int limit)
1311 {
1312 int i, n;
1313 tree init = *evolution_of_loop;
1314 tree evolution_of_branch;
1315 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1316 halting_phi,
1317 &evolution_of_branch,
1318 init, limit);
1319 if (res == t_false || res == t_dont_know)
1320 return res;
1321
1322 *evolution_of_loop = evolution_of_branch;
1323
1324 n = gimple_phi_num_args (condition_phi);
1325 for (i = 1; i < n; i++)
1326 {
1327 /* Quickly give up when the evolution of one of the branches is
1328 not known. */
1329 if (*evolution_of_loop == chrec_dont_know)
1330 return t_true;
1331
1332 /* Increase the limit by the PHI argument number to avoid exponential
1333 time and memory complexity. */
1334 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1335 halting_phi,
1336 &evolution_of_branch,
1337 init, limit + i);
1338 if (res == t_false || res == t_dont_know)
1339 return res;
1340
1341 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1342 evolution_of_branch);
1343 }
1344
1345 return t_true;
1346 }
1347
1348 /* Follow an SSA edge in an inner loop. It computes the overall
1349 effect of the loop, and following the symbolic initial conditions,
1350 it follows the edges in the parent loop. The inner loop is
1351 considered as a single statement. */
1352
1353 static t_bool
1354 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1355 gimple loop_phi_node,
1356 gimple halting_phi,
1357 tree *evolution_of_loop, int limit)
1358 {
1359 struct loop *loop = loop_containing_stmt (loop_phi_node);
1360 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1361
1362 /* Sometimes, the inner loop is too difficult to analyze, and the
1363 result of the analysis is a symbolic parameter. */
1364 if (ev == PHI_RESULT (loop_phi_node))
1365 {
1366 t_bool res = t_false;
1367 int i, n = gimple_phi_num_args (loop_phi_node);
1368
1369 for (i = 0; i < n; i++)
1370 {
1371 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1372 basic_block bb;
1373
1374 /* Follow the edges that exit the inner loop. */
1375 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1376 if (!flow_bb_inside_loop_p (loop, bb))
1377 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1378 arg, halting_phi,
1379 evolution_of_loop, limit);
1380 if (res == t_true)
1381 break;
1382 }
1383
1384 /* If the path crosses this loop-phi, give up. */
1385 if (res == t_true)
1386 *evolution_of_loop = chrec_dont_know;
1387
1388 return res;
1389 }
1390
1391 /* Otherwise, compute the overall effect of the inner loop. */
1392 ev = compute_overall_effect_of_inner_loop (loop, ev);
1393 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1394 evolution_of_loop, limit);
1395 }
1396
1397 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1398 path that is analyzed on the return walk. */
1399
1400 static t_bool
1401 follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
1402 tree *evolution_of_loop, int limit)
1403 {
1404 struct loop *def_loop;
1405
1406 if (gimple_nop_p (def))
1407 return t_false;
1408
1409 /* Give up if the path is longer than the MAX that we allow. */
1410 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1411 return t_dont_know;
1412
1413 def_loop = loop_containing_stmt (def);
1414
1415 switch (gimple_code (def))
1416 {
1417 case GIMPLE_PHI:
1418 if (!loop_phi_node_p (def))
1419 /* DEF is a condition-phi-node. Follow the branches, and
1420 record their evolutions. Finally, merge the collected
1421 information and set the approximation to the main
1422 variable. */
1423 return follow_ssa_edge_in_condition_phi
1424 (loop, def, halting_phi, evolution_of_loop, limit);
1425
1426 /* When the analyzed phi is the halting_phi, the
1427 depth-first search is over: we have found a path from
1428 the halting_phi to itself in the loop. */
1429 if (def == halting_phi)
1430 return t_true;
1431
1432 /* Otherwise, the evolution of the HALTING_PHI depends
1433 on the evolution of another loop-phi-node, i.e. the
1434 evolution function is a higher degree polynomial. */
1435 if (def_loop == loop)
1436 return t_false;
1437
1438 /* Inner loop. */
1439 if (flow_loop_nested_p (loop, def_loop))
1440 return follow_ssa_edge_inner_loop_phi
1441 (loop, def, halting_phi, evolution_of_loop, limit + 1);
1442
1443 /* Outer loop. */
1444 return t_false;
1445
1446 case GIMPLE_ASSIGN:
1447 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
1448 evolution_of_loop, limit);
1449
1450 default:
1451 /* At this level of abstraction, the program is just a set
1452 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1453 other node to be handled. */
1454 return t_false;
1455 }
1456 }
1457
1458 \f
1459
1460 /* Given a LOOP_PHI_NODE, this function determines the evolution
1461 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1462
1463 static tree
1464 analyze_evolution_in_loop (gimple loop_phi_node,
1465 tree init_cond)
1466 {
1467 int i, n = gimple_phi_num_args (loop_phi_node);
1468 tree evolution_function = chrec_not_analyzed_yet;
1469 struct loop *loop = loop_containing_stmt (loop_phi_node);
1470 basic_block bb;
1471
1472 if (dump_file && (dump_flags & TDF_DETAILS))
1473 {
1474 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1475 fprintf (dump_file, " (loop_phi_node = ");
1476 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1477 fprintf (dump_file, ")\n");
1478 }
1479
1480 for (i = 0; i < n; i++)
1481 {
1482 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1483 gimple ssa_chain;
1484 tree ev_fn;
1485 t_bool res;
1486
1487 /* Select the edges that enter the loop body. */
1488 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1489 if (!flow_bb_inside_loop_p (loop, bb))
1490 continue;
1491
1492 if (TREE_CODE (arg) == SSA_NAME)
1493 {
1494 bool val = false;
1495
1496 ssa_chain = SSA_NAME_DEF_STMT (arg);
1497
1498 /* Pass in the initial condition to the follow edge function. */
1499 ev_fn = init_cond;
1500 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1501
1502 /* If ev_fn has no evolution in the inner loop, and the
1503 init_cond is not equal to ev_fn, then we have an
1504 ambiguity between two possible values, as we cannot know
1505 the number of iterations at this point. */
1506 if (TREE_CODE (ev_fn) != POLYNOMIAL_CHREC
1507 && no_evolution_in_loop_p (ev_fn, loop->num, &val) && val
1508 && !operand_equal_p (init_cond, ev_fn, 0))
1509 ev_fn = chrec_dont_know;
1510 }
1511 else
1512 res = t_false;
1513
1514 /* When it is impossible to go back on the same
1515 loop_phi_node by following the ssa edges, the
1516 evolution is represented by a peeled chrec, i.e. the
1517 first iteration, EV_FN has the value INIT_COND, then
1518 all the other iterations it has the value of ARG.
1519 For the moment, PEELED_CHREC nodes are not built. */
1520 if (res != t_true)
1521 ev_fn = chrec_dont_know;
1522
1523 /* When there are multiple back edges of the loop (which in fact never
1524 happens currently, but nevertheless), merge their evolutions. */
1525 evolution_function = chrec_merge (evolution_function, ev_fn);
1526 }
1527
1528 if (dump_file && (dump_flags & TDF_DETAILS))
1529 {
1530 fprintf (dump_file, " (evolution_function = ");
1531 print_generic_expr (dump_file, evolution_function, 0);
1532 fprintf (dump_file, "))\n");
1533 }
1534
1535 return evolution_function;
1536 }
1537
1538 /* Given a loop-phi-node, return the initial conditions of the
1539 variable on entry of the loop. When the CCP has propagated
1540 constants into the loop-phi-node, the initial condition is
1541 instantiated, otherwise the initial condition is kept symbolic.
1542 This analyzer does not analyze the evolution outside the current
1543 loop, and leaves this task to the on-demand tree reconstructor. */
1544
1545 static tree
1546 analyze_initial_condition (gimple loop_phi_node)
1547 {
1548 int i, n;
1549 tree init_cond = chrec_not_analyzed_yet;
1550 struct loop *loop = loop_containing_stmt (loop_phi_node);
1551
1552 if (dump_file && (dump_flags & TDF_DETAILS))
1553 {
1554 fprintf (dump_file, "(analyze_initial_condition \n");
1555 fprintf (dump_file, " (loop_phi_node = \n");
1556 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1557 fprintf (dump_file, ")\n");
1558 }
1559
1560 n = gimple_phi_num_args (loop_phi_node);
1561 for (i = 0; i < n; i++)
1562 {
1563 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1564 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1565
1566 /* When the branch is oriented to the loop's body, it does
1567 not contribute to the initial condition. */
1568 if (flow_bb_inside_loop_p (loop, bb))
1569 continue;
1570
1571 if (init_cond == chrec_not_analyzed_yet)
1572 {
1573 init_cond = branch;
1574 continue;
1575 }
1576
1577 if (TREE_CODE (branch) == SSA_NAME)
1578 {
1579 init_cond = chrec_dont_know;
1580 break;
1581 }
1582
1583 init_cond = chrec_merge (init_cond, branch);
1584 }
1585
1586 /* Ooops -- a loop without an entry??? */
1587 if (init_cond == chrec_not_analyzed_yet)
1588 init_cond = chrec_dont_know;
1589
1590 /* During early loop unrolling we do not have fully constant propagated IL.
1591 Handle degenerate PHIs here to not miss important unrollings. */
1592 if (TREE_CODE (init_cond) == SSA_NAME)
1593 {
1594 gimple def = SSA_NAME_DEF_STMT (init_cond);
1595 tree res;
1596 if (gimple_code (def) == GIMPLE_PHI
1597 && (res = degenerate_phi_result (def)) != NULL_TREE
1598 /* Only allow invariants here, otherwise we may break
1599 loop-closed SSA form. */
1600 && is_gimple_min_invariant (res))
1601 init_cond = res;
1602 }
1603
1604 if (dump_file && (dump_flags & TDF_DETAILS))
1605 {
1606 fprintf (dump_file, " (init_cond = ");
1607 print_generic_expr (dump_file, init_cond, 0);
1608 fprintf (dump_file, "))\n");
1609 }
1610
1611 return init_cond;
1612 }
1613
1614 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1615
1616 static tree
1617 interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
1618 {
1619 tree res;
1620 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1621 tree init_cond;
1622
1623 if (phi_loop != loop)
1624 {
1625 struct loop *subloop;
1626 tree evolution_fn = analyze_scalar_evolution
1627 (phi_loop, PHI_RESULT (loop_phi_node));
1628
1629 /* Dive one level deeper. */
1630 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1631
1632 /* Interpret the subloop. */
1633 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1634 return res;
1635 }
1636
1637 /* Otherwise really interpret the loop phi. */
1638 init_cond = analyze_initial_condition (loop_phi_node);
1639 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1640
1641 /* Verify we maintained the correct initial condition throughout
1642 possible conversions in the SSA chain. */
1643 if (res != chrec_dont_know)
1644 {
1645 tree new_init = res;
1646 if (CONVERT_EXPR_P (res)
1647 && TREE_CODE (TREE_OPERAND (res, 0)) == POLYNOMIAL_CHREC)
1648 new_init = fold_convert (TREE_TYPE (res),
1649 CHREC_LEFT (TREE_OPERAND (res, 0)));
1650 else if (TREE_CODE (res) == POLYNOMIAL_CHREC)
1651 new_init = CHREC_LEFT (res);
1652 STRIP_USELESS_TYPE_CONVERSION (new_init);
1653 gcc_assert (TREE_CODE (new_init) != POLYNOMIAL_CHREC);
1654 if (!operand_equal_p (init_cond, new_init, 0))
1655 return chrec_dont_know;
1656 }
1657
1658 return res;
1659 }
1660
1661 /* This function merges the branches of a condition-phi-node,
1662 contained in the outermost loop, and whose arguments are already
1663 analyzed. */
1664
1665 static tree
1666 interpret_condition_phi (struct loop *loop, gimple condition_phi)
1667 {
1668 int i, n = gimple_phi_num_args (condition_phi);
1669 tree res = chrec_not_analyzed_yet;
1670
1671 for (i = 0; i < n; i++)
1672 {
1673 tree branch_chrec;
1674
1675 if (backedge_phi_arg_p (condition_phi, i))
1676 {
1677 res = chrec_dont_know;
1678 break;
1679 }
1680
1681 branch_chrec = analyze_scalar_evolution
1682 (loop, PHI_ARG_DEF (condition_phi, i));
1683
1684 res = chrec_merge (res, branch_chrec);
1685 }
1686
1687 return res;
1688 }
1689
1690 /* Interpret the operation RHS1 OP RHS2. If we didn't
1691 analyze this node before, follow the definitions until ending
1692 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1693 return path, this function propagates evolutions (ala constant copy
1694 propagation). OPND1 is not a GIMPLE expression because we could
1695 analyze the effect of an inner loop: see interpret_loop_phi. */
1696
1697 static tree
1698 interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1699 tree type, tree rhs1, enum tree_code code, tree rhs2)
1700 {
1701 tree res, chrec1, chrec2;
1702
1703 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1704 {
1705 if (is_gimple_min_invariant (rhs1))
1706 return chrec_convert (type, rhs1, at_stmt);
1707
1708 if (code == SSA_NAME)
1709 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1710 at_stmt);
1711
1712 if (code == ASSERT_EXPR)
1713 {
1714 rhs1 = ASSERT_EXPR_VAR (rhs1);
1715 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1716 at_stmt);
1717 }
1718 }
1719
1720 switch (code)
1721 {
1722 case ADDR_EXPR:
1723 /* Handle &MEM[ptr + CST] which is equivalent to POINTER_PLUS_EXPR. */
1724 if (TREE_CODE (TREE_OPERAND (rhs1, 0)) != MEM_REF)
1725 {
1726 res = chrec_dont_know;
1727 break;
1728 }
1729
1730 rhs2 = TREE_OPERAND (TREE_OPERAND (rhs1, 0), 1);
1731 rhs1 = TREE_OPERAND (TREE_OPERAND (rhs1, 0), 0);
1732 /* Fall through. */
1733
1734 case POINTER_PLUS_EXPR:
1735 chrec1 = analyze_scalar_evolution (loop, rhs1);
1736 chrec2 = analyze_scalar_evolution (loop, rhs2);
1737 chrec1 = chrec_convert (type, chrec1, at_stmt);
1738 chrec2 = chrec_convert (sizetype, chrec2, at_stmt);
1739 res = chrec_fold_plus (type, chrec1, chrec2);
1740 break;
1741
1742 case PLUS_EXPR:
1743 chrec1 = analyze_scalar_evolution (loop, rhs1);
1744 chrec2 = analyze_scalar_evolution (loop, rhs2);
1745 chrec1 = chrec_convert (type, chrec1, at_stmt);
1746 chrec2 = chrec_convert (type, chrec2, at_stmt);
1747 res = chrec_fold_plus (type, chrec1, chrec2);
1748 break;
1749
1750 case MINUS_EXPR:
1751 chrec1 = analyze_scalar_evolution (loop, rhs1);
1752 chrec2 = analyze_scalar_evolution (loop, rhs2);
1753 chrec1 = chrec_convert (type, chrec1, at_stmt);
1754 chrec2 = chrec_convert (type, chrec2, at_stmt);
1755 res = chrec_fold_minus (type, chrec1, chrec2);
1756 break;
1757
1758 case NEGATE_EXPR:
1759 chrec1 = analyze_scalar_evolution (loop, rhs1);
1760 chrec1 = chrec_convert (type, chrec1, at_stmt);
1761 /* TYPE may be integer, real or complex, so use fold_convert. */
1762 res = chrec_fold_multiply (type, chrec1,
1763 fold_convert (type, integer_minus_one_node));
1764 break;
1765
1766 case BIT_NOT_EXPR:
1767 /* Handle ~X as -1 - X. */
1768 chrec1 = analyze_scalar_evolution (loop, rhs1);
1769 chrec1 = chrec_convert (type, chrec1, at_stmt);
1770 res = chrec_fold_minus (type,
1771 fold_convert (type, integer_minus_one_node),
1772 chrec1);
1773 break;
1774
1775 case MULT_EXPR:
1776 chrec1 = analyze_scalar_evolution (loop, rhs1);
1777 chrec2 = analyze_scalar_evolution (loop, rhs2);
1778 chrec1 = chrec_convert (type, chrec1, at_stmt);
1779 chrec2 = chrec_convert (type, chrec2, at_stmt);
1780 res = chrec_fold_multiply (type, chrec1, chrec2);
1781 break;
1782
1783 CASE_CONVERT:
1784 chrec1 = analyze_scalar_evolution (loop, rhs1);
1785 res = chrec_convert (type, chrec1, at_stmt);
1786 break;
1787
1788 default:
1789 res = chrec_dont_know;
1790 break;
1791 }
1792
1793 return res;
1794 }
1795
1796 /* Interpret the expression EXPR. */
1797
1798 static tree
1799 interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1800 {
1801 enum tree_code code;
1802 tree type = TREE_TYPE (expr), op0, op1;
1803
1804 if (automatically_generated_chrec_p (expr))
1805 return expr;
1806
1807 if (TREE_CODE (expr) == POLYNOMIAL_CHREC)
1808 return chrec_dont_know;
1809
1810 extract_ops_from_tree (expr, &code, &op0, &op1);
1811
1812 return interpret_rhs_expr (loop, at_stmt, type,
1813 op0, code, op1);
1814 }
1815
1816 /* Interpret the rhs of the assignment STMT. */
1817
1818 static tree
1819 interpret_gimple_assign (struct loop *loop, gimple stmt)
1820 {
1821 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1822 enum tree_code code = gimple_assign_rhs_code (stmt);
1823
1824 return interpret_rhs_expr (loop, stmt, type,
1825 gimple_assign_rhs1 (stmt), code,
1826 gimple_assign_rhs2 (stmt));
1827 }
1828
1829 \f
1830
1831 /* This section contains all the entry points:
1832 - number_of_iterations_in_loop,
1833 - analyze_scalar_evolution,
1834 - instantiate_parameters.
1835 */
1836
1837 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1838 common ancestor of DEF_LOOP and USE_LOOP. */
1839
1840 static tree
1841 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1842 struct loop *def_loop,
1843 tree ev)
1844 {
1845 bool val;
1846 tree res;
1847
1848 if (def_loop == wrto_loop)
1849 return ev;
1850
1851 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
1852 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1853
1854 if (no_evolution_in_loop_p (res, wrto_loop->num, &val) && val)
1855 return res;
1856
1857 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1858 }
1859
1860 /* Helper recursive function. */
1861
1862 static tree
1863 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1864 {
1865 tree type = TREE_TYPE (var);
1866 gimple def;
1867 basic_block bb;
1868 struct loop *def_loop;
1869
1870 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1871 return chrec_dont_know;
1872
1873 if (TREE_CODE (var) != SSA_NAME)
1874 return interpret_expr (loop, NULL, var);
1875
1876 def = SSA_NAME_DEF_STMT (var);
1877 bb = gimple_bb (def);
1878 def_loop = bb ? bb->loop_father : NULL;
1879
1880 if (bb == NULL
1881 || !flow_bb_inside_loop_p (loop, bb))
1882 {
1883 /* Keep the symbolic form. */
1884 res = var;
1885 goto set_and_end;
1886 }
1887
1888 if (res != chrec_not_analyzed_yet)
1889 {
1890 if (loop != bb->loop_father)
1891 res = compute_scalar_evolution_in_loop
1892 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1893
1894 goto set_and_end;
1895 }
1896
1897 if (loop != def_loop)
1898 {
1899 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1900 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1901
1902 goto set_and_end;
1903 }
1904
1905 switch (gimple_code (def))
1906 {
1907 case GIMPLE_ASSIGN:
1908 res = interpret_gimple_assign (loop, def);
1909 break;
1910
1911 case GIMPLE_PHI:
1912 if (loop_phi_node_p (def))
1913 res = interpret_loop_phi (loop, def);
1914 else
1915 res = interpret_condition_phi (loop, def);
1916 break;
1917
1918 default:
1919 res = chrec_dont_know;
1920 break;
1921 }
1922
1923 set_and_end:
1924
1925 /* Keep the symbolic form. */
1926 if (res == chrec_dont_know)
1927 res = var;
1928
1929 if (loop == def_loop)
1930 set_scalar_evolution (block_before_loop (loop), var, res);
1931
1932 return res;
1933 }
1934
1935 /* Analyzes and returns the scalar evolution of the ssa_name VAR in
1936 LOOP. LOOP is the loop in which the variable is used.
1937
1938 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1939 pointer to the statement that uses this variable, in order to
1940 determine the evolution function of the variable, use the following
1941 calls:
1942
1943 loop_p loop = loop_containing_stmt (stmt);
1944 tree chrec_with_symbols = analyze_scalar_evolution (loop, var);
1945 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
1946 */
1947
1948 tree
1949 analyze_scalar_evolution (struct loop *loop, tree var)
1950 {
1951 tree res;
1952
1953 if (dump_file && (dump_flags & TDF_DETAILS))
1954 {
1955 fprintf (dump_file, "(analyze_scalar_evolution \n");
1956 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1957 fprintf (dump_file, " (scalar = ");
1958 print_generic_expr (dump_file, var, 0);
1959 fprintf (dump_file, ")\n");
1960 }
1961
1962 res = get_scalar_evolution (block_before_loop (loop), var);
1963 res = analyze_scalar_evolution_1 (loop, var, res);
1964
1965 if (dump_file && (dump_flags & TDF_DETAILS))
1966 fprintf (dump_file, ")\n");
1967
1968 return res;
1969 }
1970
1971 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1972 WRTO_LOOP (which should be a superloop of USE_LOOP)
1973
1974 FOLDED_CASTS is set to true if resolve_mixers used
1975 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1976 at the moment in order to keep things simple).
1977
1978 To illustrate the meaning of USE_LOOP and WRTO_LOOP, consider the following
1979 example:
1980
1981 for (i = 0; i < 100; i++) -- loop 1
1982 {
1983 for (j = 0; j < 100; j++) -- loop 2
1984 {
1985 k1 = i;
1986 k2 = j;
1987
1988 use2 (k1, k2);
1989
1990 for (t = 0; t < 100; t++) -- loop 3
1991 use3 (k1, k2);
1992
1993 }
1994 use1 (k1, k2);
1995 }
1996
1997 Both k1 and k2 are invariants in loop3, thus
1998 analyze_scalar_evolution_in_loop (loop3, loop3, k1) = k1
1999 analyze_scalar_evolution_in_loop (loop3, loop3, k2) = k2
2000
2001 As they are invariant, it does not matter whether we consider their
2002 usage in loop 3 or loop 2, hence
2003 analyze_scalar_evolution_in_loop (loop2, loop3, k1) =
2004 analyze_scalar_evolution_in_loop (loop2, loop2, k1) = i
2005 analyze_scalar_evolution_in_loop (loop2, loop3, k2) =
2006 analyze_scalar_evolution_in_loop (loop2, loop2, k2) = [0,+,1]_2
2007
2008 Similarly for their evolutions with respect to loop 1. The values of K2
2009 in the use in loop 2 vary independently on loop 1, thus we cannot express
2010 the evolution with respect to loop 1:
2011 analyze_scalar_evolution_in_loop (loop1, loop3, k1) =
2012 analyze_scalar_evolution_in_loop (loop1, loop2, k1) = [0,+,1]_1
2013 analyze_scalar_evolution_in_loop (loop1, loop3, k2) =
2014 analyze_scalar_evolution_in_loop (loop1, loop2, k2) = dont_know
2015
2016 The value of k2 in the use in loop 1 is known, though:
2017 analyze_scalar_evolution_in_loop (loop1, loop1, k1) = [0,+,1]_1
2018 analyze_scalar_evolution_in_loop (loop1, loop1, k2) = 100
2019 */
2020
2021 static tree
2022 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2023 tree version, bool *folded_casts)
2024 {
2025 bool val = false;
2026 tree ev = version, tmp;
2027
2028 /* We cannot just do
2029
2030 tmp = analyze_scalar_evolution (use_loop, version);
2031 ev = resolve_mixers (wrto_loop, tmp);
2032
2033 as resolve_mixers would query the scalar evolution with respect to
2034 wrto_loop. For example, in the situation described in the function
2035 comment, suppose that wrto_loop = loop1, use_loop = loop3 and
2036 version = k2. Then
2037
2038 analyze_scalar_evolution (use_loop, version) = k2
2039
2040 and resolve_mixers (loop1, k2) finds that the value of k2 in loop 1
2041 is 100, which is a wrong result, since we are interested in the
2042 value in loop 3.
2043
2044 Instead, we need to proceed from use_loop to wrto_loop loop by loop,
2045 each time checking that there is no evolution in the inner loop. */
2046
2047 if (folded_casts)
2048 *folded_casts = false;
2049 while (1)
2050 {
2051 tmp = analyze_scalar_evolution (use_loop, ev);
2052 ev = resolve_mixers (use_loop, tmp);
2053
2054 if (folded_casts && tmp != ev)
2055 *folded_casts = true;
2056
2057 if (use_loop == wrto_loop)
2058 return ev;
2059
2060 /* If the value of the use changes in the inner loop, we cannot express
2061 its value in the outer loop (we might try to return interval chrec,
2062 but we do not have a user for it anyway) */
2063 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2064 || !val)
2065 return chrec_dont_know;
2066
2067 use_loop = loop_outer (use_loop);
2068 }
2069 }
2070
2071 /* Returns from CACHE the value for VERSION instantiated below
2072 INSTANTIATED_BELOW block. */
2073
2074 static tree
2075 get_instantiated_value (htab_t cache, basic_block instantiated_below,
2076 tree version)
2077 {
2078 struct scev_info_str *info, pattern;
2079
2080 pattern.var = version;
2081 pattern.instantiated_below = instantiated_below;
2082 info = (struct scev_info_str *) htab_find (cache, &pattern);
2083
2084 if (info)
2085 return info->chrec;
2086 else
2087 return NULL_TREE;
2088 }
2089
2090 /* Sets in CACHE the value of VERSION instantiated below basic block
2091 INSTANTIATED_BELOW to VAL. */
2092
2093 static void
2094 set_instantiated_value (htab_t cache, basic_block instantiated_below,
2095 tree version, tree val)
2096 {
2097 struct scev_info_str *info, pattern;
2098 PTR *slot;
2099
2100 pattern.var = version;
2101 pattern.instantiated_below = instantiated_below;
2102 slot = htab_find_slot (cache, &pattern, INSERT);
2103
2104 if (!*slot)
2105 *slot = new_scev_info_str (instantiated_below, version);
2106 info = (struct scev_info_str *) *slot;
2107 info->chrec = val;
2108 }
2109
2110 /* Return the closed_loop_phi node for VAR. If there is none, return
2111 NULL_TREE. */
2112
2113 static tree
2114 loop_closed_phi_def (tree var)
2115 {
2116 struct loop *loop;
2117 edge exit;
2118 gimple phi;
2119 gimple_stmt_iterator psi;
2120
2121 if (var == NULL_TREE
2122 || TREE_CODE (var) != SSA_NAME)
2123 return NULL_TREE;
2124
2125 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2126 exit = single_exit (loop);
2127 if (!exit)
2128 return NULL_TREE;
2129
2130 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
2131 {
2132 phi = gsi_stmt (psi);
2133 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2134 return PHI_RESULT (phi);
2135 }
2136
2137 return NULL_TREE;
2138 }
2139
2140 static tree instantiate_scev_r (basic_block, struct loop *, tree, bool,
2141 htab_t, int);
2142
2143 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2144 and EVOLUTION_LOOP, that were left under a symbolic form.
2145
2146 CHREC is an SSA_NAME to be instantiated.
2147
2148 CACHE is the cache of already instantiated values.
2149
2150 FOLD_CONVERSIONS should be set to true when the conversions that
2151 may wrap in signed/pointer type are folded, as long as the value of
2152 the chrec is preserved.
2153
2154 SIZE_EXPR is used for computing the size of the expression to be
2155 instantiated, and to stop if it exceeds some limit. */
2156
2157 static tree
2158 instantiate_scev_name (basic_block instantiate_below,
2159 struct loop *evolution_loop, tree chrec,
2160 bool fold_conversions, htab_t cache, int size_expr)
2161 {
2162 tree res;
2163 struct loop *def_loop;
2164 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2165
2166 /* A parameter (or loop invariant and we do not want to include
2167 evolutions in outer loops), nothing to do. */
2168 if (!def_bb
2169 || loop_depth (def_bb->loop_father) == 0
2170 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2171 return chrec;
2172
2173 /* We cache the value of instantiated variable to avoid exponential
2174 time complexity due to reevaluations. We also store the convenient
2175 value in the cache in order to prevent infinite recursion -- we do
2176 not want to instantiate the SSA_NAME if it is in a mixer
2177 structure. This is used for avoiding the instantiation of
2178 recursively defined functions, such as:
2179
2180 | a_2 -> {0, +, 1, +, a_2}_1 */
2181
2182 res = get_instantiated_value (cache, instantiate_below, chrec);
2183 if (res)
2184 return res;
2185
2186 res = chrec_dont_know;
2187 set_instantiated_value (cache, instantiate_below, chrec, res);
2188
2189 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2190
2191 /* If the analysis yields a parametric chrec, instantiate the
2192 result again. */
2193 res = analyze_scalar_evolution (def_loop, chrec);
2194
2195 /* Don't instantiate default definitions. */
2196 if (TREE_CODE (res) == SSA_NAME
2197 && SSA_NAME_IS_DEFAULT_DEF (res))
2198 ;
2199
2200 /* Don't instantiate loop-closed-ssa phi nodes. */
2201 else if (TREE_CODE (res) == SSA_NAME
2202 && loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2203 > loop_depth (def_loop))
2204 {
2205 if (res == chrec)
2206 res = loop_closed_phi_def (chrec);
2207 else
2208 res = chrec;
2209
2210 /* When there is no loop_closed_phi_def, it means that the
2211 variable is not used after the loop: try to still compute the
2212 value of the variable when exiting the loop. */
2213 if (res == NULL_TREE)
2214 {
2215 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (chrec));
2216 res = analyze_scalar_evolution (loop, chrec);
2217 res = compute_overall_effect_of_inner_loop (loop, res);
2218 res = instantiate_scev_r (instantiate_below, evolution_loop, res,
2219 fold_conversions, cache, size_expr);
2220 }
2221 else if (!dominated_by_p (CDI_DOMINATORS, instantiate_below,
2222 gimple_bb (SSA_NAME_DEF_STMT (res))))
2223 res = chrec_dont_know;
2224 }
2225
2226 else if (res != chrec_dont_know)
2227 res = instantiate_scev_r (instantiate_below, evolution_loop, res,
2228 fold_conversions, cache, size_expr);
2229
2230 /* Store the correct value to the cache. */
2231 set_instantiated_value (cache, instantiate_below, chrec, res);
2232 return res;
2233 }
2234
2235 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2236 and EVOLUTION_LOOP, that were left under a symbolic form.
2237
2238 CHREC is a polynomial chain of recurrence to be instantiated.
2239
2240 CACHE is the cache of already instantiated values.
2241
2242 FOLD_CONVERSIONS should be set to true when the conversions that
2243 may wrap in signed/pointer type are folded, as long as the value of
2244 the chrec is preserved.
2245
2246 SIZE_EXPR is used for computing the size of the expression to be
2247 instantiated, and to stop if it exceeds some limit. */
2248
2249 static tree
2250 instantiate_scev_poly (basic_block instantiate_below,
2251 struct loop *evolution_loop, tree chrec,
2252 bool fold_conversions, htab_t cache, int size_expr)
2253 {
2254 tree op1;
2255 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2256 CHREC_LEFT (chrec), fold_conversions, cache,
2257 size_expr);
2258 if (op0 == chrec_dont_know)
2259 return chrec_dont_know;
2260
2261 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2262 CHREC_RIGHT (chrec), fold_conversions, cache,
2263 size_expr);
2264 if (op1 == chrec_dont_know)
2265 return chrec_dont_know;
2266
2267 if (CHREC_LEFT (chrec) != op0
2268 || CHREC_RIGHT (chrec) != op1)
2269 {
2270 unsigned var = CHREC_VARIABLE (chrec);
2271
2272 /* When the instantiated stride or base has an evolution in an
2273 innermost loop, return chrec_dont_know, as this is not a
2274 valid SCEV representation. In the reduced testcase for
2275 PR40281 we would have {0, +, {1, +, 1}_2}_1 that has no
2276 meaning. */
2277 if ((tree_is_chrec (op0) && CHREC_VARIABLE (op0) > var)
2278 || (tree_is_chrec (op1) && CHREC_VARIABLE (op1) > var))
2279 return chrec_dont_know;
2280
2281 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2282 chrec = build_polynomial_chrec (var, op0, op1);
2283 }
2284
2285 return chrec;
2286 }
2287
2288 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2289 and EVOLUTION_LOOP, that were left under a symbolic form.
2290
2291 "C0 CODE C1" is a binary expression of type TYPE to be instantiated.
2292
2293 CACHE is the cache of already instantiated values.
2294
2295 FOLD_CONVERSIONS should be set to true when the conversions that
2296 may wrap in signed/pointer type are folded, as long as the value of
2297 the chrec is preserved.
2298
2299 SIZE_EXPR is used for computing the size of the expression to be
2300 instantiated, and to stop if it exceeds some limit. */
2301
2302 static tree
2303 instantiate_scev_binary (basic_block instantiate_below,
2304 struct loop *evolution_loop, tree chrec, enum tree_code code,
2305 tree type, tree c0, tree c1,
2306 bool fold_conversions, htab_t cache, int size_expr)
2307 {
2308 tree op1;
2309 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2310 c0, fold_conversions, cache,
2311 size_expr);
2312 if (op0 == chrec_dont_know)
2313 return chrec_dont_know;
2314
2315 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2316 c1, fold_conversions, cache,
2317 size_expr);
2318 if (op1 == chrec_dont_know)
2319 return chrec_dont_know;
2320
2321 if (c0 != op0
2322 || c1 != op1)
2323 {
2324 op0 = chrec_convert (type, op0, NULL);
2325 op1 = chrec_convert_rhs (type, op1, NULL);
2326
2327 switch (code)
2328 {
2329 case POINTER_PLUS_EXPR:
2330 case PLUS_EXPR:
2331 return chrec_fold_plus (type, op0, op1);
2332
2333 case MINUS_EXPR:
2334 return chrec_fold_minus (type, op0, op1);
2335
2336 case MULT_EXPR:
2337 return chrec_fold_multiply (type, op0, op1);
2338
2339 default:
2340 gcc_unreachable ();
2341 }
2342 }
2343
2344 return chrec ? chrec : fold_build2 (code, type, c0, c1);
2345 }
2346
2347 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2348 and EVOLUTION_LOOP, that were left under a symbolic form.
2349
2350 "CHREC" is an array reference to be instantiated.
2351
2352 CACHE is the cache of already instantiated values.
2353
2354 FOLD_CONVERSIONS should be set to true when the conversions that
2355 may wrap in signed/pointer type are folded, as long as the value of
2356 the chrec is preserved.
2357
2358 SIZE_EXPR is used for computing the size of the expression to be
2359 instantiated, and to stop if it exceeds some limit. */
2360
2361 static tree
2362 instantiate_array_ref (basic_block instantiate_below,
2363 struct loop *evolution_loop, tree chrec,
2364 bool fold_conversions, htab_t cache, int size_expr)
2365 {
2366 tree res;
2367 tree index = TREE_OPERAND (chrec, 1);
2368 tree op1 = instantiate_scev_r (instantiate_below, evolution_loop, index,
2369 fold_conversions, cache, size_expr);
2370
2371 if (op1 == chrec_dont_know)
2372 return chrec_dont_know;
2373
2374 if (chrec && op1 == index)
2375 return chrec;
2376
2377 res = unshare_expr (chrec);
2378 TREE_OPERAND (res, 1) = op1;
2379 return res;
2380 }
2381
2382 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2383 and EVOLUTION_LOOP, that were left under a symbolic form.
2384
2385 "CHREC" that stands for a convert expression "(TYPE) OP" is to be
2386 instantiated.
2387
2388 CACHE is the cache of already instantiated values.
2389
2390 FOLD_CONVERSIONS should be set to true when the conversions that
2391 may wrap in signed/pointer type are folded, as long as the value of
2392 the chrec is preserved.
2393
2394 SIZE_EXPR is used for computing the size of the expression to be
2395 instantiated, and to stop if it exceeds some limit. */
2396
2397 static tree
2398 instantiate_scev_convert (basic_block instantiate_below,
2399 struct loop *evolution_loop, tree chrec,
2400 tree type, tree op,
2401 bool fold_conversions, htab_t cache, int size_expr)
2402 {
2403 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, op,
2404 fold_conversions, cache, size_expr);
2405
2406 if (op0 == chrec_dont_know)
2407 return chrec_dont_know;
2408
2409 if (fold_conversions)
2410 {
2411 tree tmp = chrec_convert_aggressive (type, op0);
2412 if (tmp)
2413 return tmp;
2414 }
2415
2416 if (chrec && op0 == op)
2417 return chrec;
2418
2419 /* If we used chrec_convert_aggressive, we can no longer assume that
2420 signed chrecs do not overflow, as chrec_convert does, so avoid
2421 calling it in that case. */
2422 if (fold_conversions)
2423 return fold_convert (type, op0);
2424
2425 return chrec_convert (type, op0, NULL);
2426 }
2427
2428 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2429 and EVOLUTION_LOOP, that were left under a symbolic form.
2430
2431 CHREC is a BIT_NOT_EXPR or a NEGATE_EXPR expression to be instantiated.
2432 Handle ~X as -1 - X.
2433 Handle -X as -1 * X.
2434
2435 CACHE is the cache of already instantiated values.
2436
2437 FOLD_CONVERSIONS should be set to true when the conversions that
2438 may wrap in signed/pointer type are folded, as long as the value of
2439 the chrec is preserved.
2440
2441 SIZE_EXPR is used for computing the size of the expression to be
2442 instantiated, and to stop if it exceeds some limit. */
2443
2444 static tree
2445 instantiate_scev_not (basic_block instantiate_below,
2446 struct loop *evolution_loop, tree chrec,
2447 enum tree_code code, tree type, tree op,
2448 bool fold_conversions, htab_t cache, int size_expr)
2449 {
2450 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop, op,
2451 fold_conversions, cache, size_expr);
2452
2453 if (op0 == chrec_dont_know)
2454 return chrec_dont_know;
2455
2456 if (op != op0)
2457 {
2458 op0 = chrec_convert (type, op0, NULL);
2459
2460 switch (code)
2461 {
2462 case BIT_NOT_EXPR:
2463 return chrec_fold_minus
2464 (type, fold_convert (type, integer_minus_one_node), op0);
2465
2466 case NEGATE_EXPR:
2467 return chrec_fold_multiply
2468 (type, fold_convert (type, integer_minus_one_node), op0);
2469
2470 default:
2471 gcc_unreachable ();
2472 }
2473 }
2474
2475 return chrec ? chrec : fold_build1 (code, type, op0);
2476 }
2477
2478 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2479 and EVOLUTION_LOOP, that were left under a symbolic form.
2480
2481 CHREC is an expression with 3 operands to be instantiated.
2482
2483 CACHE is the cache of already instantiated values.
2484
2485 FOLD_CONVERSIONS should be set to true when the conversions that
2486 may wrap in signed/pointer type are folded, as long as the value of
2487 the chrec is preserved.
2488
2489 SIZE_EXPR is used for computing the size of the expression to be
2490 instantiated, and to stop if it exceeds some limit. */
2491
2492 static tree
2493 instantiate_scev_3 (basic_block instantiate_below,
2494 struct loop *evolution_loop, tree chrec,
2495 bool fold_conversions, htab_t cache, int size_expr)
2496 {
2497 tree op1, op2;
2498 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2499 TREE_OPERAND (chrec, 0),
2500 fold_conversions, cache, size_expr);
2501 if (op0 == chrec_dont_know)
2502 return chrec_dont_know;
2503
2504 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2505 TREE_OPERAND (chrec, 1),
2506 fold_conversions, cache, size_expr);
2507 if (op1 == chrec_dont_know)
2508 return chrec_dont_know;
2509
2510 op2 = instantiate_scev_r (instantiate_below, evolution_loop,
2511 TREE_OPERAND (chrec, 2),
2512 fold_conversions, cache, size_expr);
2513 if (op2 == chrec_dont_know)
2514 return chrec_dont_know;
2515
2516 if (op0 == TREE_OPERAND (chrec, 0)
2517 && op1 == TREE_OPERAND (chrec, 1)
2518 && op2 == TREE_OPERAND (chrec, 2))
2519 return chrec;
2520
2521 return fold_build3 (TREE_CODE (chrec),
2522 TREE_TYPE (chrec), op0, op1, op2);
2523 }
2524
2525 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2526 and EVOLUTION_LOOP, that were left under a symbolic form.
2527
2528 CHREC is an expression with 2 operands to be instantiated.
2529
2530 CACHE is the cache of already instantiated values.
2531
2532 FOLD_CONVERSIONS should be set to true when the conversions that
2533 may wrap in signed/pointer type are folded, as long as the value of
2534 the chrec is preserved.
2535
2536 SIZE_EXPR is used for computing the size of the expression to be
2537 instantiated, and to stop if it exceeds some limit. */
2538
2539 static tree
2540 instantiate_scev_2 (basic_block instantiate_below,
2541 struct loop *evolution_loop, tree chrec,
2542 bool fold_conversions, htab_t cache, int size_expr)
2543 {
2544 tree op1;
2545 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2546 TREE_OPERAND (chrec, 0),
2547 fold_conversions, cache, size_expr);
2548 if (op0 == chrec_dont_know)
2549 return chrec_dont_know;
2550
2551 op1 = instantiate_scev_r (instantiate_below, evolution_loop,
2552 TREE_OPERAND (chrec, 1),
2553 fold_conversions, cache, size_expr);
2554 if (op1 == chrec_dont_know)
2555 return chrec_dont_know;
2556
2557 if (op0 == TREE_OPERAND (chrec, 0)
2558 && op1 == TREE_OPERAND (chrec, 1))
2559 return chrec;
2560
2561 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2562 }
2563
2564 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2565 and EVOLUTION_LOOP, that were left under a symbolic form.
2566
2567 CHREC is an expression with 2 operands to be instantiated.
2568
2569 CACHE is the cache of already instantiated values.
2570
2571 FOLD_CONVERSIONS should be set to true when the conversions that
2572 may wrap in signed/pointer type are folded, as long as the value of
2573 the chrec is preserved.
2574
2575 SIZE_EXPR is used for computing the size of the expression to be
2576 instantiated, and to stop if it exceeds some limit. */
2577
2578 static tree
2579 instantiate_scev_1 (basic_block instantiate_below,
2580 struct loop *evolution_loop, tree chrec,
2581 bool fold_conversions, htab_t cache, int size_expr)
2582 {
2583 tree op0 = instantiate_scev_r (instantiate_below, evolution_loop,
2584 TREE_OPERAND (chrec, 0),
2585 fold_conversions, cache, size_expr);
2586
2587 if (op0 == chrec_dont_know)
2588 return chrec_dont_know;
2589
2590 if (op0 == TREE_OPERAND (chrec, 0))
2591 return chrec;
2592
2593 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2594 }
2595
2596 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2597 and EVOLUTION_LOOP, that were left under a symbolic form.
2598
2599 CHREC is the scalar evolution to instantiate.
2600
2601 CACHE is the cache of already instantiated values.
2602
2603 FOLD_CONVERSIONS should be set to true when the conversions that
2604 may wrap in signed/pointer type are folded, as long as the value of
2605 the chrec is preserved.
2606
2607 SIZE_EXPR is used for computing the size of the expression to be
2608 instantiated, and to stop if it exceeds some limit. */
2609
2610 static tree
2611 instantiate_scev_r (basic_block instantiate_below,
2612 struct loop *evolution_loop, tree chrec,
2613 bool fold_conversions, htab_t cache, int size_expr)
2614 {
2615 /* Give up if the expression is larger than the MAX that we allow. */
2616 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2617 return chrec_dont_know;
2618
2619 if (chrec == NULL_TREE
2620 || automatically_generated_chrec_p (chrec)
2621 || is_gimple_min_invariant (chrec))
2622 return chrec;
2623
2624 switch (TREE_CODE (chrec))
2625 {
2626 case SSA_NAME:
2627 return instantiate_scev_name (instantiate_below, evolution_loop, chrec,
2628 fold_conversions, cache, size_expr);
2629
2630 case POLYNOMIAL_CHREC:
2631 return instantiate_scev_poly (instantiate_below, evolution_loop, chrec,
2632 fold_conversions, cache, size_expr);
2633
2634 case POINTER_PLUS_EXPR:
2635 case PLUS_EXPR:
2636 case MINUS_EXPR:
2637 case MULT_EXPR:
2638 return instantiate_scev_binary (instantiate_below, evolution_loop, chrec,
2639 TREE_CODE (chrec), chrec_type (chrec),
2640 TREE_OPERAND (chrec, 0),
2641 TREE_OPERAND (chrec, 1),
2642 fold_conversions, cache, size_expr);
2643
2644 CASE_CONVERT:
2645 return instantiate_scev_convert (instantiate_below, evolution_loop, chrec,
2646 TREE_TYPE (chrec), TREE_OPERAND (chrec, 0),
2647 fold_conversions, cache, size_expr);
2648
2649 case NEGATE_EXPR:
2650 case BIT_NOT_EXPR:
2651 return instantiate_scev_not (instantiate_below, evolution_loop, chrec,
2652 TREE_CODE (chrec), TREE_TYPE (chrec),
2653 TREE_OPERAND (chrec, 0),
2654 fold_conversions, cache, size_expr);
2655
2656 case SCEV_NOT_KNOWN:
2657 return chrec_dont_know;
2658
2659 case SCEV_KNOWN:
2660 return chrec_known;
2661
2662 case ARRAY_REF:
2663 return instantiate_array_ref (instantiate_below, evolution_loop, chrec,
2664 fold_conversions, cache, size_expr);
2665
2666 default:
2667 break;
2668 }
2669
2670 if (VL_EXP_CLASS_P (chrec))
2671 return chrec_dont_know;
2672
2673 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2674 {
2675 case 3:
2676 return instantiate_scev_3 (instantiate_below, evolution_loop, chrec,
2677 fold_conversions, cache, size_expr);
2678
2679 case 2:
2680 return instantiate_scev_2 (instantiate_below, evolution_loop, chrec,
2681 fold_conversions, cache, size_expr);
2682
2683 case 1:
2684 return instantiate_scev_1 (instantiate_below, evolution_loop, chrec,
2685 fold_conversions, cache, size_expr);
2686
2687 case 0:
2688 return chrec;
2689
2690 default:
2691 break;
2692 }
2693
2694 /* Too complicated to handle. */
2695 return chrec_dont_know;
2696 }
2697
2698 /* Analyze all the parameters of the chrec that were left under a
2699 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2700 recursive instantiation of parameters: a parameter is a variable
2701 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2702 a function parameter. */
2703
2704 tree
2705 instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
2706 tree chrec)
2707 {
2708 tree res;
2709 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2710
2711 if (dump_file && (dump_flags & TDF_DETAILS))
2712 {
2713 fprintf (dump_file, "(instantiate_scev \n");
2714 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
2715 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2716 fprintf (dump_file, " (chrec = ");
2717 print_generic_expr (dump_file, chrec, 0);
2718 fprintf (dump_file, ")\n");
2719 }
2720
2721 res = instantiate_scev_r (instantiate_below, evolution_loop, chrec, false,
2722 cache, 0);
2723
2724 if (dump_file && (dump_flags & TDF_DETAILS))
2725 {
2726 fprintf (dump_file, " (res = ");
2727 print_generic_expr (dump_file, res, 0);
2728 fprintf (dump_file, "))\n");
2729 }
2730
2731 htab_delete (cache);
2732
2733 return res;
2734 }
2735
2736 /* Similar to instantiate_parameters, but does not introduce the
2737 evolutions in outer loops for LOOP invariants in CHREC, and does not
2738 care about causing overflows, as long as they do not affect value
2739 of an expression. */
2740
2741 tree
2742 resolve_mixers (struct loop *loop, tree chrec)
2743 {
2744 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2745 tree ret = instantiate_scev_r (block_before_loop (loop), loop, chrec, true,
2746 cache, 0);
2747 htab_delete (cache);
2748 return ret;
2749 }
2750
2751 /* Entry point for the analysis of the number of iterations pass.
2752 This function tries to safely approximate the number of iterations
2753 the loop will run. When this property is not decidable at compile
2754 time, the result is chrec_dont_know. Otherwise the result is a
2755 scalar or a symbolic parameter. When the number of iterations may
2756 be equal to zero and the property cannot be determined at compile
2757 time, the result is a COND_EXPR that represents in a symbolic form
2758 the conditions under which the number of iterations is not zero.
2759
2760 Example of analysis: suppose that the loop has an exit condition:
2761
2762 "if (b > 49) goto end_loop;"
2763
2764 and that in a previous analysis we have determined that the
2765 variable 'b' has an evolution function:
2766
2767 "EF = {23, +, 5}_2".
2768
2769 When we evaluate the function at the point 5, i.e. the value of the
2770 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2771 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2772 the loop body has been executed 6 times. */
2773
2774 tree
2775 number_of_latch_executions (struct loop *loop)
2776 {
2777 edge exit;
2778 struct tree_niter_desc niter_desc;
2779 tree may_be_zero;
2780 tree res;
2781
2782 /* Determine whether the number of iterations in loop has already
2783 been computed. */
2784 res = loop->nb_iterations;
2785 if (res)
2786 return res;
2787
2788 may_be_zero = NULL_TREE;
2789
2790 if (dump_file && (dump_flags & TDF_DETAILS))
2791 fprintf (dump_file, "(number_of_iterations_in_loop = \n");
2792
2793 res = chrec_dont_know;
2794 exit = single_exit (loop);
2795
2796 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
2797 {
2798 may_be_zero = niter_desc.may_be_zero;
2799 res = niter_desc.niter;
2800 }
2801
2802 if (res == chrec_dont_know
2803 || !may_be_zero
2804 || integer_zerop (may_be_zero))
2805 ;
2806 else if (integer_nonzerop (may_be_zero))
2807 res = build_int_cst (TREE_TYPE (res), 0);
2808
2809 else if (COMPARISON_CLASS_P (may_be_zero))
2810 res = fold_build3 (COND_EXPR, TREE_TYPE (res), may_be_zero,
2811 build_int_cst (TREE_TYPE (res), 0), res);
2812 else
2813 res = chrec_dont_know;
2814
2815 if (dump_file && (dump_flags & TDF_DETAILS))
2816 {
2817 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
2818 print_generic_expr (dump_file, res, 0);
2819 fprintf (dump_file, "))\n");
2820 }
2821
2822 loop->nb_iterations = res;
2823 return res;
2824 }
2825
2826 /* Returns the number of executions of the exit condition of LOOP,
2827 i.e., the number by one higher than number_of_latch_executions.
2828 Note that unlike number_of_latch_executions, this number does
2829 not necessarily fit in the unsigned variant of the type of
2830 the control variable -- if the number of iterations is a constant,
2831 we return chrec_dont_know if adding one to number_of_latch_executions
2832 overflows; however, in case the number of iterations is symbolic
2833 expression, the caller is responsible for dealing with this
2834 the possible overflow. */
2835
2836 tree
2837 number_of_exit_cond_executions (struct loop *loop)
2838 {
2839 tree ret = number_of_latch_executions (loop);
2840 tree type = chrec_type (ret);
2841
2842 if (chrec_contains_undetermined (ret))
2843 return ret;
2844
2845 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2846 if (TREE_CODE (ret) == INTEGER_CST
2847 && TREE_OVERFLOW (ret))
2848 return chrec_dont_know;
2849
2850 return ret;
2851 }
2852
2853 /* One of the drivers for testing the scalar evolutions analysis.
2854 This function computes the number of iterations for all the loops
2855 from the EXIT_CONDITIONS array. */
2856
2857 static void
2858 number_of_iterations_for_all_loops (VEC(gimple,heap) **exit_conditions)
2859 {
2860 unsigned int i;
2861 unsigned nb_chrec_dont_know_loops = 0;
2862 unsigned nb_static_loops = 0;
2863 gimple cond;
2864
2865 FOR_EACH_VEC_ELT (gimple, *exit_conditions, i, cond)
2866 {
2867 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2868 if (chrec_contains_undetermined (res))
2869 nb_chrec_dont_know_loops++;
2870 else
2871 nb_static_loops++;
2872 }
2873
2874 if (dump_file)
2875 {
2876 fprintf (dump_file, "\n(\n");
2877 fprintf (dump_file, "-----------------------------------------\n");
2878 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2879 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2880 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2881 fprintf (dump_file, "-----------------------------------------\n");
2882 fprintf (dump_file, ")\n\n");
2883
2884 print_loops (dump_file, 3);
2885 }
2886 }
2887
2888 \f
2889
2890 /* Counters for the stats. */
2891
2892 struct chrec_stats
2893 {
2894 unsigned nb_chrecs;
2895 unsigned nb_affine;
2896 unsigned nb_affine_multivar;
2897 unsigned nb_higher_poly;
2898 unsigned nb_chrec_dont_know;
2899 unsigned nb_undetermined;
2900 };
2901
2902 /* Reset the counters. */
2903
2904 static inline void
2905 reset_chrecs_counters (struct chrec_stats *stats)
2906 {
2907 stats->nb_chrecs = 0;
2908 stats->nb_affine = 0;
2909 stats->nb_affine_multivar = 0;
2910 stats->nb_higher_poly = 0;
2911 stats->nb_chrec_dont_know = 0;
2912 stats->nb_undetermined = 0;
2913 }
2914
2915 /* Dump the contents of a CHREC_STATS structure. */
2916
2917 static void
2918 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2919 {
2920 fprintf (file, "\n(\n");
2921 fprintf (file, "-----------------------------------------\n");
2922 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2923 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2924 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2925 stats->nb_higher_poly);
2926 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2927 fprintf (file, "-----------------------------------------\n");
2928 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2929 fprintf (file, "%d\twith undetermined coefficients\n",
2930 stats->nb_undetermined);
2931 fprintf (file, "-----------------------------------------\n");
2932 fprintf (file, "%d\tchrecs in the scev database\n",
2933 (int) htab_elements (scalar_evolution_info));
2934 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2935 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2936 fprintf (file, "-----------------------------------------\n");
2937 fprintf (file, ")\n\n");
2938 }
2939
2940 /* Gather statistics about CHREC. */
2941
2942 static void
2943 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2944 {
2945 if (dump_file && (dump_flags & TDF_STATS))
2946 {
2947 fprintf (dump_file, "(classify_chrec ");
2948 print_generic_expr (dump_file, chrec, 0);
2949 fprintf (dump_file, "\n");
2950 }
2951
2952 stats->nb_chrecs++;
2953
2954 if (chrec == NULL_TREE)
2955 {
2956 stats->nb_undetermined++;
2957 return;
2958 }
2959
2960 switch (TREE_CODE (chrec))
2961 {
2962 case POLYNOMIAL_CHREC:
2963 if (evolution_function_is_affine_p (chrec))
2964 {
2965 if (dump_file && (dump_flags & TDF_STATS))
2966 fprintf (dump_file, " affine_univariate\n");
2967 stats->nb_affine++;
2968 }
2969 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2970 {
2971 if (dump_file && (dump_flags & TDF_STATS))
2972 fprintf (dump_file, " affine_multivariate\n");
2973 stats->nb_affine_multivar++;
2974 }
2975 else
2976 {
2977 if (dump_file && (dump_flags & TDF_STATS))
2978 fprintf (dump_file, " higher_degree_polynomial\n");
2979 stats->nb_higher_poly++;
2980 }
2981
2982 break;
2983
2984 default:
2985 break;
2986 }
2987
2988 if (chrec_contains_undetermined (chrec))
2989 {
2990 if (dump_file && (dump_flags & TDF_STATS))
2991 fprintf (dump_file, " undetermined\n");
2992 stats->nb_undetermined++;
2993 }
2994
2995 if (dump_file && (dump_flags & TDF_STATS))
2996 fprintf (dump_file, ")\n");
2997 }
2998
2999 /* One of the drivers for testing the scalar evolutions analysis.
3000 This function analyzes the scalar evolution of all the scalars
3001 defined as loop phi nodes in one of the loops from the
3002 EXIT_CONDITIONS array.
3003
3004 TODO Optimization: A loop is in canonical form if it contains only
3005 a single scalar loop phi node. All the other scalars that have an
3006 evolution in the loop are rewritten in function of this single
3007 index. This allows the parallelization of the loop. */
3008
3009 static void
3010 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(gimple,heap) **exit_conditions)
3011 {
3012 unsigned int i;
3013 struct chrec_stats stats;
3014 gimple cond, phi;
3015 gimple_stmt_iterator psi;
3016
3017 reset_chrecs_counters (&stats);
3018
3019 FOR_EACH_VEC_ELT (gimple, *exit_conditions, i, cond)
3020 {
3021 struct loop *loop;
3022 basic_block bb;
3023 tree chrec;
3024
3025 loop = loop_containing_stmt (cond);
3026 bb = loop->header;
3027
3028 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
3029 {
3030 phi = gsi_stmt (psi);
3031 if (is_gimple_reg (PHI_RESULT (phi)))
3032 {
3033 chrec = instantiate_parameters
3034 (loop,
3035 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
3036
3037 if (dump_file && (dump_flags & TDF_STATS))
3038 gather_chrec_stats (chrec, &stats);
3039 }
3040 }
3041 }
3042
3043 if (dump_file && (dump_flags & TDF_STATS))
3044 dump_chrecs_stats (dump_file, &stats);
3045 }
3046
3047 /* Callback for htab_traverse, gathers information on chrecs in the
3048 hashtable. */
3049
3050 static int
3051 gather_stats_on_scev_database_1 (void **slot, void *stats)
3052 {
3053 struct scev_info_str *entry = (struct scev_info_str *) *slot;
3054
3055 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
3056
3057 return 1;
3058 }
3059
3060 /* Classify the chrecs of the whole database. */
3061
3062 void
3063 gather_stats_on_scev_database (void)
3064 {
3065 struct chrec_stats stats;
3066
3067 if (!dump_file)
3068 return;
3069
3070 reset_chrecs_counters (&stats);
3071
3072 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
3073 &stats);
3074
3075 dump_chrecs_stats (dump_file, &stats);
3076 }
3077
3078 \f
3079
3080 /* Initializer. */
3081
3082 static void
3083 initialize_scalar_evolutions_analyzer (void)
3084 {
3085 /* The elements below are unique. */
3086 if (chrec_dont_know == NULL_TREE)
3087 {
3088 chrec_not_analyzed_yet = NULL_TREE;
3089 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
3090 chrec_known = make_node (SCEV_KNOWN);
3091 TREE_TYPE (chrec_dont_know) = void_type_node;
3092 TREE_TYPE (chrec_known) = void_type_node;
3093 }
3094 }
3095
3096 /* Initialize the analysis of scalar evolutions for LOOPS. */
3097
3098 void
3099 scev_initialize (void)
3100 {
3101 loop_iterator li;
3102 struct loop *loop;
3103
3104
3105 scalar_evolution_info = htab_create_ggc (100, hash_scev_info, eq_scev_info,
3106 del_scev_info);
3107
3108 initialize_scalar_evolutions_analyzer ();
3109
3110 FOR_EACH_LOOP (li, loop, 0)
3111 {
3112 loop->nb_iterations = NULL_TREE;
3113 }
3114 }
3115
3116 /* Cleans up the information cached by the scalar evolutions analysis
3117 in the hash table. */
3118
3119 void
3120 scev_reset_htab (void)
3121 {
3122 if (!scalar_evolution_info)
3123 return;
3124
3125 htab_empty (scalar_evolution_info);
3126 }
3127
3128 /* Cleans up the information cached by the scalar evolutions analysis
3129 in the hash table and in the loop->nb_iterations. */
3130
3131 void
3132 scev_reset (void)
3133 {
3134 loop_iterator li;
3135 struct loop *loop;
3136
3137 scev_reset_htab ();
3138
3139 if (!current_loops)
3140 return;
3141
3142 FOR_EACH_LOOP (li, loop, 0)
3143 {
3144 loop->nb_iterations = NULL_TREE;
3145 }
3146 }
3147
3148 /* Checks whether use of OP in USE_LOOP behaves as a simple affine iv with
3149 respect to WRTO_LOOP and returns its base and step in IV if possible
3150 (see analyze_scalar_evolution_in_loop for more details on USE_LOOP
3151 and WRTO_LOOP). If ALLOW_NONCONSTANT_STEP is true, we want step to be
3152 invariant in LOOP. Otherwise we require it to be an integer constant.
3153
3154 IV->no_overflow is set to true if we are sure the iv cannot overflow (e.g.
3155 because it is computed in signed arithmetics). Consequently, adding an
3156 induction variable
3157
3158 for (i = IV->base; ; i += IV->step)
3159
3160 is only safe if IV->no_overflow is false, or TYPE_OVERFLOW_UNDEFINED is
3161 false for the type of the induction variable, or you can prove that i does
3162 not wrap by some other argument. Otherwise, this might introduce undefined
3163 behavior, and
3164
3165 for (i = iv->base; ; i = (type) ((unsigned type) i + (unsigned type) iv->step))
3166
3167 must be used instead. */
3168
3169 bool
3170 simple_iv (struct loop *wrto_loop, struct loop *use_loop, tree op,
3171 affine_iv *iv, bool allow_nonconstant_step)
3172 {
3173 tree type, ev;
3174 bool folded_casts;
3175
3176 iv->base = NULL_TREE;
3177 iv->step = NULL_TREE;
3178 iv->no_overflow = false;
3179
3180 type = TREE_TYPE (op);
3181 if (TREE_CODE (type) != INTEGER_TYPE
3182 && TREE_CODE (type) != POINTER_TYPE)
3183 return false;
3184
3185 ev = analyze_scalar_evolution_in_loop (wrto_loop, use_loop, op,
3186 &folded_casts);
3187 if (chrec_contains_undetermined (ev)
3188 || chrec_contains_symbols_defined_in_loop (ev, wrto_loop->num))
3189 return false;
3190
3191 if (tree_does_not_contain_chrecs (ev))
3192 {
3193 iv->base = ev;
3194 iv->step = build_int_cst (TREE_TYPE (ev), 0);
3195 iv->no_overflow = true;
3196 return true;
3197 }
3198
3199 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
3200 || CHREC_VARIABLE (ev) != (unsigned) wrto_loop->num)
3201 return false;
3202
3203 iv->step = CHREC_RIGHT (ev);
3204 if ((!allow_nonconstant_step && TREE_CODE (iv->step) != INTEGER_CST)
3205 || tree_contains_chrecs (iv->step, NULL))
3206 return false;
3207
3208 iv->base = CHREC_LEFT (ev);
3209 if (tree_contains_chrecs (iv->base, NULL))
3210 return false;
3211
3212 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
3213
3214 return true;
3215 }
3216
3217 /* Runs the analysis of scalar evolutions. */
3218
3219 void
3220 scev_analysis (void)
3221 {
3222 VEC(gimple,heap) *exit_conditions;
3223
3224 exit_conditions = VEC_alloc (gimple, heap, 37);
3225 select_loops_exit_conditions (&exit_conditions);
3226
3227 if (dump_file && (dump_flags & TDF_STATS))
3228 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
3229
3230 number_of_iterations_for_all_loops (&exit_conditions);
3231 VEC_free (gimple, heap, exit_conditions);
3232 }
3233
3234 /* Finalize the scalar evolution analysis. */
3235
3236 void
3237 scev_finalize (void)
3238 {
3239 if (!scalar_evolution_info)
3240 return;
3241 htab_delete (scalar_evolution_info);
3242 scalar_evolution_info = NULL;
3243 }
3244
3245 /* Returns true if the expression EXPR is considered to be too expensive
3246 for scev_const_prop. */
3247
3248 bool
3249 expression_expensive_p (tree expr)
3250 {
3251 enum tree_code code;
3252
3253 if (is_gimple_val (expr))
3254 return false;
3255
3256 code = TREE_CODE (expr);
3257 if (code == TRUNC_DIV_EXPR
3258 || code == CEIL_DIV_EXPR
3259 || code == FLOOR_DIV_EXPR
3260 || code == ROUND_DIV_EXPR
3261 || code == TRUNC_MOD_EXPR
3262 || code == CEIL_MOD_EXPR
3263 || code == FLOOR_MOD_EXPR
3264 || code == ROUND_MOD_EXPR
3265 || code == EXACT_DIV_EXPR)
3266 {
3267 /* Division by power of two is usually cheap, so we allow it.
3268 Forbid anything else. */
3269 if (!integer_pow2p (TREE_OPERAND (expr, 1)))
3270 return true;
3271 }
3272
3273 switch (TREE_CODE_CLASS (code))
3274 {
3275 case tcc_binary:
3276 case tcc_comparison:
3277 if (expression_expensive_p (TREE_OPERAND (expr, 1)))
3278 return true;
3279
3280 /* Fallthru. */
3281 case tcc_unary:
3282 return expression_expensive_p (TREE_OPERAND (expr, 0));
3283
3284 default:
3285 return true;
3286 }
3287 }
3288
3289 /* Replace ssa names for that scev can prove they are constant by the
3290 appropriate constants. Also perform final value replacement in loops,
3291 in case the replacement expressions are cheap.
3292
3293 We only consider SSA names defined by phi nodes; rest is left to the
3294 ordinary constant propagation pass. */
3295
3296 unsigned int
3297 scev_const_prop (void)
3298 {
3299 basic_block bb;
3300 tree name, type, ev;
3301 gimple phi, ass;
3302 struct loop *loop, *ex_loop;
3303 bitmap ssa_names_to_remove = NULL;
3304 unsigned i;
3305 loop_iterator li;
3306 gimple_stmt_iterator psi;
3307
3308 if (number_of_loops () <= 1)
3309 return 0;
3310
3311 FOR_EACH_BB (bb)
3312 {
3313 loop = bb->loop_father;
3314
3315 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
3316 {
3317 phi = gsi_stmt (psi);
3318 name = PHI_RESULT (phi);
3319
3320 if (!is_gimple_reg (name))
3321 continue;
3322
3323 type = TREE_TYPE (name);
3324
3325 if (!POINTER_TYPE_P (type)
3326 && !INTEGRAL_TYPE_P (type))
3327 continue;
3328
3329 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
3330 if (!is_gimple_min_invariant (ev)
3331 || !may_propagate_copy (name, ev))
3332 continue;
3333
3334 /* Replace the uses of the name. */
3335 if (name != ev)
3336 replace_uses_by (name, ev);
3337
3338 if (!ssa_names_to_remove)
3339 ssa_names_to_remove = BITMAP_ALLOC (NULL);
3340 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
3341 }
3342 }
3343
3344 /* Remove the ssa names that were replaced by constants. We do not
3345 remove them directly in the previous cycle, since this
3346 invalidates scev cache. */
3347 if (ssa_names_to_remove)
3348 {
3349 bitmap_iterator bi;
3350
3351 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
3352 {
3353 gimple_stmt_iterator psi;
3354 name = ssa_name (i);
3355 phi = SSA_NAME_DEF_STMT (name);
3356
3357 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
3358 psi = gsi_for_stmt (phi);
3359 remove_phi_node (&psi, true);
3360 }
3361
3362 BITMAP_FREE (ssa_names_to_remove);
3363 scev_reset ();
3364 }
3365
3366 /* Now the regular final value replacement. */
3367 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
3368 {
3369 edge exit;
3370 tree def, rslt, niter;
3371 gimple_stmt_iterator bsi;
3372
3373 /* If we do not know exact number of iterations of the loop, we cannot
3374 replace the final value. */
3375 exit = single_exit (loop);
3376 if (!exit)
3377 continue;
3378
3379 niter = number_of_latch_executions (loop);
3380 if (niter == chrec_dont_know)
3381 continue;
3382
3383 /* Ensure that it is possible to insert new statements somewhere. */
3384 if (!single_pred_p (exit->dest))
3385 split_loop_exit_edge (exit);
3386 bsi = gsi_after_labels (exit->dest);
3387
3388 ex_loop = superloop_at_depth (loop,
3389 loop_depth (exit->dest->loop_father) + 1);
3390
3391 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
3392 {
3393 phi = gsi_stmt (psi);
3394 rslt = PHI_RESULT (phi);
3395 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
3396 if (!is_gimple_reg (def))
3397 {
3398 gsi_next (&psi);
3399 continue;
3400 }
3401
3402 if (!POINTER_TYPE_P (TREE_TYPE (def))
3403 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3404 {
3405 gsi_next (&psi);
3406 continue;
3407 }
3408
3409 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
3410 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3411 if (!tree_does_not_contain_chrecs (def)
3412 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3413 /* Moving the computation from the loop may prolong life range
3414 of some ssa names, which may cause problems if they appear
3415 on abnormal edges. */
3416 || contains_abnormal_ssa_name_p (def)
3417 /* Do not emit expensive expressions. The rationale is that
3418 when someone writes a code like
3419
3420 while (n > 45) n -= 45;
3421
3422 he probably knows that n is not large, and does not want it
3423 to be turned into n %= 45. */
3424 || expression_expensive_p (def))
3425 {
3426 gsi_next (&psi);
3427 continue;
3428 }
3429
3430 /* Eliminate the PHI node and replace it by a computation outside
3431 the loop. */
3432 def = unshare_expr (def);
3433 remove_phi_node (&psi, false);
3434
3435 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
3436 true, GSI_SAME_STMT);
3437 ass = gimple_build_assign (rslt, def);
3438 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
3439 }
3440 }
3441 return 0;
3442 }
3443
3444 #include "gt-tree-scalar-evolution.h"