tree-ssa-loop-ivcanon.c: New file.
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "errors.h"
239 #include "ggc.h"
240 #include "tree.h"
241
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254
255 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
256 static tree resolve_mixers (struct loop *, tree);
257
258 /* The cached information about a ssa name VAR, claiming that inside LOOP,
259 the value of VAR can be expressed as CHREC. */
260
261 struct scev_info_str
262 {
263 tree var;
264 tree chrec;
265 };
266
267 /* Counters for the scev database. */
268 static unsigned nb_set_scev = 0;
269 static unsigned nb_get_scev = 0;
270
271 /* The following trees are unique elements. Thus the comparison of
272 another element to these elements should be done on the pointer to
273 these trees, and not on their value. */
274
275 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
276 tree chrec_not_analyzed_yet;
277
278 /* Reserved to the cases where the analyzer has detected an
279 undecidable property at compile time. */
280 tree chrec_dont_know;
281
282 /* When the analyzer has detected that a property will never
283 happen, then it qualifies it with chrec_known. */
284 tree chrec_known;
285
286 static bitmap already_instantiated;
287
288 static htab_t scalar_evolution_info;
289
290 \f
291 /* Constructs a new SCEV_INFO_STR structure. */
292
293 static inline struct scev_info_str *
294 new_scev_info_str (tree var)
295 {
296 struct scev_info_str *res;
297
298 res = xmalloc (sizeof (struct scev_info_str));
299 res->var = var;
300 res->chrec = chrec_not_analyzed_yet;
301
302 return res;
303 }
304
305 /* Computes a hash function for database element ELT. */
306
307 static hashval_t
308 hash_scev_info (const void *elt)
309 {
310 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
311 }
312
313 /* Compares database elements E1 and E2. */
314
315 static int
316 eq_scev_info (const void *e1, const void *e2)
317 {
318 const struct scev_info_str *elt1 = e1;
319 const struct scev_info_str *elt2 = e2;
320
321 return elt1->var == elt2->var;
322 }
323
324 /* Deletes database element E. */
325
326 static void
327 del_scev_info (void *e)
328 {
329 free (e);
330 }
331
332 /* Get the index corresponding to VAR in the current LOOP. If
333 it's the first time we ask for this VAR, then we return
334 chrec_not_analysed_yet for this VAR and return its index. */
335
336 static tree *
337 find_var_scev_info (tree var)
338 {
339 struct scev_info_str *res;
340 struct scev_info_str tmp;
341 PTR *slot;
342
343 tmp.var = var;
344 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
345
346 if (!*slot)
347 *slot = new_scev_info_str (var);
348 res = *slot;
349
350 return &res->chrec;
351 }
352
353 /* Tries to express CHREC in wider type TYPE. */
354
355 tree
356 count_ev_in_wider_type (tree type, tree chrec)
357 {
358 tree base, step;
359 struct loop *loop;
360
361 if (!evolution_function_is_affine_p (chrec))
362 return fold_convert (type, chrec);
363
364 base = CHREC_LEFT (chrec);
365 step = CHREC_RIGHT (chrec);
366 loop = current_loops->parray[CHREC_VARIABLE (chrec)];
367
368 /* TODO -- if we knew the statement at that the conversion occurs,
369 we could pass it to can_count_iv_in_wider_type and get a better
370 result. */
371 step = can_count_iv_in_wider_type (loop, type, base, step, NULL_TREE);
372 if (!step)
373 return fold_convert (type, chrec);
374 base = chrec_convert (type, base);
375
376 return build_polynomial_chrec (CHREC_VARIABLE (chrec),
377 base, step);
378 }
379
380 /* Return true when CHREC contains symbolic names defined in
381 LOOP_NB. */
382
383 bool
384 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
385 {
386 if (chrec == NULL_TREE)
387 return false;
388
389 if (TREE_INVARIANT (chrec))
390 return false;
391
392 if (TREE_CODE (chrec) == VAR_DECL
393 || TREE_CODE (chrec) == PARM_DECL
394 || TREE_CODE (chrec) == FUNCTION_DECL
395 || TREE_CODE (chrec) == LABEL_DECL
396 || TREE_CODE (chrec) == RESULT_DECL
397 || TREE_CODE (chrec) == FIELD_DECL)
398 return true;
399
400 if (TREE_CODE (chrec) == SSA_NAME)
401 {
402 tree def = SSA_NAME_DEF_STMT (chrec);
403 struct loop *def_loop = loop_containing_stmt (def);
404 struct loop *loop = current_loops->parray[loop_nb];
405
406 if (def_loop == NULL)
407 return false;
408
409 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
410 return true;
411
412 return false;
413 }
414
415 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
416 {
417 case 3:
418 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
419 loop_nb))
420 return true;
421
422 case 2:
423 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
424 loop_nb))
425 return true;
426
427 case 1:
428 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
429 loop_nb))
430 return true;
431
432 default:
433 return false;
434 }
435 }
436
437 /* Return true when PHI is a loop-phi-node. */
438
439 static bool
440 loop_phi_node_p (tree phi)
441 {
442 /* The implementation of this function is based on the following
443 property: "all the loop-phi-nodes of a loop are contained in the
444 loop's header basic block". */
445
446 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
447 }
448
449 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
450 In general, in the case of multivariate evolutions we want to get
451 the evolution in different loops. LOOP specifies the level for
452 which to get the evolution.
453
454 Example:
455
456 | for (j = 0; j < 100; j++)
457 | {
458 | for (k = 0; k < 100; k++)
459 | {
460 | i = k + j; - Here the value of i is a function of j, k.
461 | }
462 | ... = i - Here the value of i is a function of j.
463 | }
464 | ... = i - Here the value of i is a scalar.
465
466 Example:
467
468 | i_0 = ...
469 | loop_1 10 times
470 | i_1 = phi (i_0, i_2)
471 | i_2 = i_1 + 2
472 | endloop
473
474 This loop has the same effect as:
475 LOOP_1 has the same effect as:
476
477 | i_1 = i_0 + 20
478
479 The overall effect of the loop, "i_0 + 20" in the previous example,
480 is obtained by passing in the parameters: LOOP = 1,
481 EVOLUTION_FN = {i_0, +, 2}_1.
482 */
483
484 static tree
485 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
486 {
487 bool val = false;
488
489 if (evolution_fn == chrec_dont_know)
490 return chrec_dont_know;
491
492 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
493 {
494 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
495 {
496 struct loop *inner_loop =
497 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
498 tree nb_iter = number_of_iterations_in_loop (inner_loop);
499
500 if (nb_iter == chrec_dont_know)
501 return chrec_dont_know;
502 else
503 {
504 tree res;
505
506 /* Number of iterations is off by one (the ssa name we
507 analyze must be defined before the exit). */
508 nb_iter = chrec_fold_minus (chrec_type (nb_iter),
509 nb_iter,
510 fold_convert (chrec_type (nb_iter),
511 integer_one_node));
512
513 /* evolution_fn is the evolution function in LOOP. Get
514 its value in the nb_iter-th iteration. */
515 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
516
517 /* Continue the computation until ending on a parent of LOOP. */
518 return compute_overall_effect_of_inner_loop (loop, res);
519 }
520 }
521 else
522 return evolution_fn;
523 }
524
525 /* If the evolution function is an invariant, there is nothing to do. */
526 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
527 return evolution_fn;
528
529 else
530 return chrec_dont_know;
531 }
532
533 /* Determine whether the CHREC is always positive/negative. If the expression
534 cannot be statically analyzed, return false, otherwise set the answer into
535 VALUE. */
536
537 bool
538 chrec_is_positive (tree chrec, bool *value)
539 {
540 bool value0, value1;
541 bool value2;
542 tree end_value;
543 tree nb_iter;
544
545 switch (TREE_CODE (chrec))
546 {
547 case POLYNOMIAL_CHREC:
548 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
549 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
550 return false;
551
552 /* FIXME -- overflows. */
553 if (value0 == value1)
554 {
555 *value = value0;
556 return true;
557 }
558
559 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
560 and the proof consists in showing that the sign never
561 changes during the execution of the loop, from 0 to
562 loop->nb_iterations. */
563 if (!evolution_function_is_affine_p (chrec))
564 return false;
565
566 nb_iter = number_of_iterations_in_loop
567 (current_loops->parray[CHREC_VARIABLE (chrec)]);
568
569 if (chrec_contains_undetermined (nb_iter))
570 return false;
571
572 nb_iter = chrec_fold_minus
573 (chrec_type (nb_iter), nb_iter,
574 fold_convert (chrec_type (nb_iter), integer_one_node));
575
576 #if 0
577 /* TODO -- If the test is after the exit, we may decrease the number of
578 iterations by one. */
579 if (after_exit)
580 nb_iter = chrec_fold_minus
581 (chrec_type (nb_iter), nb_iter,
582 fold_convert (chrec_type (nb_iter), integer_one_node));
583 #endif
584
585 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
586
587 if (!chrec_is_positive (end_value, &value2))
588 return false;
589
590 *value = value0;
591 return value0 == value1;
592
593 case INTEGER_CST:
594 *value = (tree_int_cst_sgn (chrec) == 1);
595 return true;
596
597 default:
598 return false;
599 }
600 }
601
602 /* Associate CHREC to SCALAR. */
603
604 static void
605 set_scalar_evolution (tree scalar, tree chrec)
606 {
607 tree *scalar_info;
608
609 if (TREE_CODE (scalar) != SSA_NAME)
610 return;
611
612 scalar_info = find_var_scev_info (scalar);
613
614 if (dump_file)
615 {
616 if (dump_flags & TDF_DETAILS)
617 {
618 fprintf (dump_file, "(set_scalar_evolution \n");
619 fprintf (dump_file, " (scalar = ");
620 print_generic_expr (dump_file, scalar, 0);
621 fprintf (dump_file, ")\n (scalar_evolution = ");
622 print_generic_expr (dump_file, chrec, 0);
623 fprintf (dump_file, "))\n");
624 }
625 if (dump_flags & TDF_STATS)
626 nb_set_scev++;
627 }
628
629 *scalar_info = chrec;
630 }
631
632 /* Retrieve the chrec associated to SCALAR in the LOOP. */
633
634 static tree
635 get_scalar_evolution (tree scalar)
636 {
637 tree res;
638
639 if (dump_file)
640 {
641 if (dump_flags & TDF_DETAILS)
642 {
643 fprintf (dump_file, "(get_scalar_evolution \n");
644 fprintf (dump_file, " (scalar = ");
645 print_generic_expr (dump_file, scalar, 0);
646 fprintf (dump_file, ")\n");
647 }
648 if (dump_flags & TDF_STATS)
649 nb_get_scev++;
650 }
651
652 switch (TREE_CODE (scalar))
653 {
654 case SSA_NAME:
655 res = *find_var_scev_info (scalar);
656 break;
657
658 case REAL_CST:
659 case INTEGER_CST:
660 res = scalar;
661 break;
662
663 default:
664 res = chrec_not_analyzed_yet;
665 break;
666 }
667
668 if (dump_file && (dump_flags & TDF_DETAILS))
669 {
670 fprintf (dump_file, " (scalar_evolution = ");
671 print_generic_expr (dump_file, res, 0);
672 fprintf (dump_file, "))\n");
673 }
674
675 return res;
676 }
677
678 /* Helper function for add_to_evolution. Returns the evolution
679 function for an assignment of the form "a = b + c", where "a" and
680 "b" are on the strongly connected component. CHREC_BEFORE is the
681 information that we already have collected up to this point.
682 TO_ADD is the evolution of "c".
683
684 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
685 evolution the expression TO_ADD, otherwise construct an evolution
686 part for this loop. */
687
688 static tree
689 add_to_evolution_1 (unsigned loop_nb,
690 tree chrec_before,
691 tree to_add)
692 {
693 switch (TREE_CODE (chrec_before))
694 {
695 case POLYNOMIAL_CHREC:
696 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
697 {
698 unsigned var;
699 tree left, right;
700 tree type = chrec_type (chrec_before);
701
702 /* When there is no evolution part in this loop, build it. */
703 if (CHREC_VARIABLE (chrec_before) < loop_nb)
704 {
705 var = loop_nb;
706 left = chrec_before;
707 right = fold_convert (type, integer_zero_node);
708 }
709 else
710 {
711 var = CHREC_VARIABLE (chrec_before);
712 left = CHREC_LEFT (chrec_before);
713 right = CHREC_RIGHT (chrec_before);
714 }
715
716 return build_polynomial_chrec
717 (var, left, chrec_fold_plus (type, right, to_add));
718 }
719 else
720 /* Search the evolution in LOOP_NB. */
721 return build_polynomial_chrec
722 (CHREC_VARIABLE (chrec_before),
723 add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before), to_add),
724 CHREC_RIGHT (chrec_before));
725
726 default:
727 /* These nodes do not depend on a loop. */
728 if (chrec_before == chrec_dont_know)
729 return chrec_dont_know;
730 return build_polynomial_chrec (loop_nb, chrec_before, to_add);
731 }
732 }
733
734 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
735 of LOOP_NB.
736
737 Description (provided for completeness, for those who read code in
738 a plane, and for my poor 62 bytes brain that would have forgotten
739 all this in the next two or three months):
740
741 The algorithm of translation of programs from the SSA representation
742 into the chrecs syntax is based on a pattern matching. After having
743 reconstructed the overall tree expression for a loop, there are only
744 two cases that can arise:
745
746 1. a = loop-phi (init, a + expr)
747 2. a = loop-phi (init, expr)
748
749 where EXPR is either a scalar constant with respect to the analyzed
750 loop (this is a degree 0 polynomial), or an expression containing
751 other loop-phi definitions (these are higher degree polynomials).
752
753 Examples:
754
755 1.
756 | init = ...
757 | loop_1
758 | a = phi (init, a + 5)
759 | endloop
760
761 2.
762 | inita = ...
763 | initb = ...
764 | loop_1
765 | a = phi (inita, 2 * b + 3)
766 | b = phi (initb, b + 1)
767 | endloop
768
769 For the first case, the semantics of the SSA representation is:
770
771 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
772
773 that is, there is a loop index "x" that determines the scalar value
774 of the variable during the loop execution. During the first
775 iteration, the value is that of the initial condition INIT, while
776 during the subsequent iterations, it is the sum of the initial
777 condition with the sum of all the values of EXPR from the initial
778 iteration to the before last considered iteration.
779
780 For the second case, the semantics of the SSA program is:
781
782 | a (x) = init, if x = 0;
783 | expr (x - 1), otherwise.
784
785 The second case corresponds to the PEELED_CHREC, whose syntax is
786 close to the syntax of a loop-phi-node:
787
788 | phi (init, expr) vs. (init, expr)_x
789
790 The proof of the translation algorithm for the first case is a
791 proof by structural induction based on the degree of EXPR.
792
793 Degree 0:
794 When EXPR is a constant with respect to the analyzed loop, or in
795 other words when EXPR is a polynomial of degree 0, the evolution of
796 the variable A in the loop is an affine function with an initial
797 condition INIT, and a step EXPR. In order to show this, we start
798 from the semantics of the SSA representation:
799
800 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
801
802 and since "expr (j)" is a constant with respect to "j",
803
804 f (x) = init + x * expr
805
806 Finally, based on the semantics of the pure sum chrecs, by
807 identification we get the corresponding chrecs syntax:
808
809 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
810 f (x) -> {init, +, expr}_x
811
812 Higher degree:
813 Suppose that EXPR is a polynomial of degree N with respect to the
814 analyzed loop_x for which we have already determined that it is
815 written under the chrecs syntax:
816
817 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
818
819 We start from the semantics of the SSA program:
820
821 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
822 |
823 | f (x) = init + \sum_{j = 0}^{x - 1}
824 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
825 |
826 | f (x) = init + \sum_{j = 0}^{x - 1}
827 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
828 |
829 | f (x) = init + \sum_{k = 0}^{n - 1}
830 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
831 |
832 | f (x) = init + \sum_{k = 0}^{n - 1}
833 | (b_k * \binom{x}{k + 1})
834 |
835 | f (x) = init + b_0 * \binom{x}{1} + ...
836 | + b_{n-1} * \binom{x}{n}
837 |
838 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
839 | + b_{n-1} * \binom{x}{n}
840 |
841
842 And finally from the definition of the chrecs syntax, we identify:
843 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
844
845 This shows the mechanism that stands behind the add_to_evolution
846 function. An important point is that the use of symbolic
847 parameters avoids the need of an analysis schedule.
848
849 Example:
850
851 | inita = ...
852 | initb = ...
853 | loop_1
854 | a = phi (inita, a + 2 + b)
855 | b = phi (initb, b + 1)
856 | endloop
857
858 When analyzing "a", the algorithm keeps "b" symbolically:
859
860 | a -> {inita, +, 2 + b}_1
861
862 Then, after instantiation, the analyzer ends on the evolution:
863
864 | a -> {inita, +, 2 + initb, +, 1}_1
865
866 */
867
868 static tree
869 add_to_evolution (unsigned loop_nb,
870 tree chrec_before,
871 enum tree_code code,
872 tree to_add)
873 {
874 tree type = chrec_type (to_add);
875 tree res = NULL_TREE;
876
877 if (to_add == NULL_TREE)
878 return chrec_before;
879
880 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
881 instantiated at this point. */
882 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
883 /* This should not happen. */
884 return chrec_dont_know;
885
886 if (dump_file && (dump_flags & TDF_DETAILS))
887 {
888 fprintf (dump_file, "(add_to_evolution \n");
889 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
890 fprintf (dump_file, " (chrec_before = ");
891 print_generic_expr (dump_file, chrec_before, 0);
892 fprintf (dump_file, ")\n (to_add = ");
893 print_generic_expr (dump_file, to_add, 0);
894 fprintf (dump_file, ")\n");
895 }
896
897 if (code == MINUS_EXPR)
898 to_add = chrec_fold_multiply (type, to_add,
899 fold_convert (type, integer_minus_one_node));
900
901 res = add_to_evolution_1 (loop_nb, chrec_before, to_add);
902
903 if (dump_file && (dump_flags & TDF_DETAILS))
904 {
905 fprintf (dump_file, " (res = ");
906 print_generic_expr (dump_file, res, 0);
907 fprintf (dump_file, "))\n");
908 }
909
910 return res;
911 }
912
913 /* Helper function. */
914
915 static inline tree
916 set_nb_iterations_in_loop (struct loop *loop,
917 tree res)
918 {
919 res = chrec_fold_plus (chrec_type (res), res, integer_one_node);
920 /* FIXME HWI: However we want to store one iteration less than the
921 count of the loop in order to be compatible with the other
922 nb_iter computations in loop-iv. This also allows the
923 representation of nb_iters that are equal to MAX_INT. */
924 if ((TREE_CODE (res) == INTEGER_CST && TREE_INT_CST_LOW (res) == 0)
925 || TREE_OVERFLOW (res))
926 res = chrec_dont_know;
927
928 if (dump_file && (dump_flags & TDF_DETAILS))
929 {
930 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
931 print_generic_expr (dump_file, res, 0);
932 fprintf (dump_file, "))\n");
933 }
934
935 loop->nb_iterations = res;
936 return res;
937 }
938
939 \f
940
941 /* This section selects the loops that will be good candidates for the
942 scalar evolution analysis. For the moment, greedily select all the
943 loop nests we could analyze. */
944
945 /* Return true when it is possible to analyze the condition expression
946 EXPR. */
947
948 static bool
949 analyzable_condition (tree expr)
950 {
951 tree condition;
952
953 if (TREE_CODE (expr) != COND_EXPR)
954 return false;
955
956 condition = TREE_OPERAND (expr, 0);
957
958 switch (TREE_CODE (condition))
959 {
960 case SSA_NAME:
961 /* Volatile expressions are not analyzable. */
962 if (TREE_THIS_VOLATILE (SSA_NAME_VAR (condition)))
963 return false;
964 return true;
965
966 case LT_EXPR:
967 case LE_EXPR:
968 case GT_EXPR:
969 case GE_EXPR:
970 case EQ_EXPR:
971 case NE_EXPR:
972 {
973 tree opnd0, opnd1;
974
975 opnd0 = TREE_OPERAND (condition, 0);
976 opnd1 = TREE_OPERAND (condition, 1);
977
978 if (TREE_CODE (opnd0) == SSA_NAME
979 && TREE_THIS_VOLATILE (SSA_NAME_VAR (opnd0)))
980 return false;
981
982 if (TREE_CODE (opnd1) == SSA_NAME
983 && TREE_THIS_VOLATILE (SSA_NAME_VAR (opnd1)))
984 return false;
985
986 return true;
987 }
988
989 default:
990 return false;
991 }
992
993 return false;
994 }
995
996 /* For a loop with a single exit edge, return the COND_EXPR that
997 guards the exit edge. If the expression is too difficult to
998 analyze, then give up. */
999
1000 tree
1001 get_loop_exit_condition (struct loop *loop)
1002 {
1003 tree res = NULL_TREE;
1004 edge exit_edge = loop->single_exit;
1005
1006
1007 if (dump_file && (dump_flags & TDF_DETAILS))
1008 fprintf (dump_file, "(get_loop_exit_condition \n ");
1009
1010 if (exit_edge)
1011 {
1012 tree expr;
1013
1014 expr = last_stmt (exit_edge->src);
1015 if (analyzable_condition (expr))
1016 res = expr;
1017 }
1018
1019 if (dump_file && (dump_flags & TDF_DETAILS))
1020 {
1021 print_generic_expr (dump_file, res, 0);
1022 fprintf (dump_file, ")\n");
1023 }
1024
1025 return res;
1026 }
1027
1028 /* Recursively determine and enqueue the exit conditions for a loop. */
1029
1030 static void
1031 get_exit_conditions_rec (struct loop *loop,
1032 varray_type *exit_conditions)
1033 {
1034 if (!loop)
1035 return;
1036
1037 /* Recurse on the inner loops, then on the next (sibling) loops. */
1038 get_exit_conditions_rec (loop->inner, exit_conditions);
1039 get_exit_conditions_rec (loop->next, exit_conditions);
1040
1041 if (loop->single_exit)
1042 {
1043 tree loop_condition = get_loop_exit_condition (loop);
1044
1045 if (loop_condition)
1046 VARRAY_PUSH_TREE (*exit_conditions, loop_condition);
1047 }
1048 }
1049
1050 /* Select the candidate loop nests for the analysis. This function
1051 initializes the EXIT_CONDITIONS array. */
1052
1053 static void
1054 select_loops_exit_conditions (struct loops *loops,
1055 varray_type *exit_conditions)
1056 {
1057 struct loop *function_body = loops->parray[0];
1058
1059 get_exit_conditions_rec (function_body->inner, exit_conditions);
1060 }
1061
1062 \f
1063 /* Depth first search algorithm. */
1064
1065 static bool follow_ssa_edge (struct loop *loop, tree, tree, tree *);
1066
1067 /* Follow the ssa edge into the right hand side RHS of an assignment.
1068 Return true if the strongly connected component has been found. */
1069
1070 static bool
1071 follow_ssa_edge_in_rhs (struct loop *loop,
1072 tree rhs,
1073 tree halting_phi,
1074 tree *evolution_of_loop)
1075 {
1076 bool res = false;
1077 tree rhs0, rhs1;
1078 tree type_rhs = TREE_TYPE (rhs);
1079
1080 /* The RHS is one of the following cases:
1081 - an SSA_NAME,
1082 - an INTEGER_CST,
1083 - a PLUS_EXPR,
1084 - a MINUS_EXPR,
1085 - other cases are not yet handled.
1086 */
1087 switch (TREE_CODE (rhs))
1088 {
1089 case NOP_EXPR:
1090 /* This assignment is under the form "a_1 = (cast) rhs. */
1091 res = follow_ssa_edge_in_rhs (loop, TREE_OPERAND (rhs, 0), halting_phi,
1092 evolution_of_loop);
1093 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs), *evolution_of_loop);
1094 break;
1095
1096 case INTEGER_CST:
1097 /* This assignment is under the form "a_1 = 7". */
1098 res = false;
1099 break;
1100
1101 case SSA_NAME:
1102 /* This assignment is under the form: "a_1 = b_2". */
1103 res = follow_ssa_edge
1104 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop);
1105 break;
1106
1107 case PLUS_EXPR:
1108 /* This case is under the form "rhs0 + rhs1". */
1109 rhs0 = TREE_OPERAND (rhs, 0);
1110 rhs1 = TREE_OPERAND (rhs, 1);
1111 STRIP_TYPE_NOPS (rhs0);
1112 STRIP_TYPE_NOPS (rhs1);
1113
1114 if (TREE_CODE (rhs0) == SSA_NAME)
1115 {
1116 if (TREE_CODE (rhs1) == SSA_NAME)
1117 {
1118 /* Match an assignment under the form:
1119 "a = b + c". */
1120 res = follow_ssa_edge
1121 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1122 evolution_of_loop);
1123
1124 if (res)
1125 *evolution_of_loop = add_to_evolution
1126 (loop->num,
1127 chrec_convert (type_rhs, *evolution_of_loop),
1128 PLUS_EXPR, rhs1);
1129
1130 else
1131 {
1132 res = follow_ssa_edge
1133 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1134 evolution_of_loop);
1135
1136 if (res)
1137 *evolution_of_loop = add_to_evolution
1138 (loop->num,
1139 chrec_convert (type_rhs, *evolution_of_loop),
1140 PLUS_EXPR, rhs0);
1141 }
1142 }
1143
1144 else
1145 {
1146 /* Match an assignment under the form:
1147 "a = b + ...". */
1148 res = follow_ssa_edge
1149 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1150 evolution_of_loop);
1151 if (res)
1152 *evolution_of_loop = add_to_evolution
1153 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1154 PLUS_EXPR, rhs1);
1155 }
1156 }
1157
1158 else if (TREE_CODE (rhs1) == SSA_NAME)
1159 {
1160 /* Match an assignment under the form:
1161 "a = ... + c". */
1162 res = follow_ssa_edge
1163 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1164 evolution_of_loop);
1165 if (res)
1166 *evolution_of_loop = add_to_evolution
1167 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1168 PLUS_EXPR, rhs0);
1169 }
1170
1171 else
1172 /* Otherwise, match an assignment under the form:
1173 "a = ... + ...". */
1174 /* And there is nothing to do. */
1175 res = false;
1176
1177 break;
1178
1179 case MINUS_EXPR:
1180 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1181 rhs0 = TREE_OPERAND (rhs, 0);
1182 rhs1 = TREE_OPERAND (rhs, 1);
1183 STRIP_TYPE_NOPS (rhs0);
1184 STRIP_TYPE_NOPS (rhs1);
1185
1186 if (TREE_CODE (rhs0) == SSA_NAME)
1187 {
1188 if (TREE_CODE (rhs1) == SSA_NAME)
1189 {
1190 /* Match an assignment under the form:
1191 "a = b - c". */
1192 res = follow_ssa_edge
1193 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1194 evolution_of_loop);
1195
1196 if (res)
1197 *evolution_of_loop = add_to_evolution
1198 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1199 MINUS_EXPR, rhs1);
1200
1201 else
1202 {
1203 res = follow_ssa_edge
1204 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1205 evolution_of_loop);
1206
1207 if (res)
1208 *evolution_of_loop = add_to_evolution
1209 (loop->num,
1210 chrec_fold_multiply (type_rhs,
1211 *evolution_of_loop,
1212 fold_convert (type_rhs,
1213 integer_minus_one_node)),
1214 PLUS_EXPR, rhs0);
1215 }
1216 }
1217
1218 else
1219 {
1220 /* Match an assignment under the form:
1221 "a = b - ...". */
1222 res = follow_ssa_edge
1223 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1224 evolution_of_loop);
1225 if (res)
1226 *evolution_of_loop = add_to_evolution
1227 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1228 MINUS_EXPR, rhs1);
1229 }
1230 }
1231
1232 else if (TREE_CODE (rhs1) == SSA_NAME)
1233 {
1234 /* Match an assignment under the form:
1235 "a = ... - c". */
1236 res = follow_ssa_edge
1237 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1238 evolution_of_loop);
1239 if (res)
1240 *evolution_of_loop = add_to_evolution
1241 (loop->num,
1242 chrec_fold_multiply (type_rhs,
1243 *evolution_of_loop,
1244 fold_convert (type_rhs, integer_minus_one_node)),
1245 PLUS_EXPR, rhs0);
1246 }
1247
1248 else
1249 /* Otherwise, match an assignment under the form:
1250 "a = ... - ...". */
1251 /* And there is nothing to do. */
1252 res = false;
1253
1254 break;
1255
1256 case MULT_EXPR:
1257 /* This case is under the form "opnd0 = rhs0 * rhs1". */
1258 rhs0 = TREE_OPERAND (rhs, 0);
1259 rhs1 = TREE_OPERAND (rhs, 1);
1260 STRIP_TYPE_NOPS (rhs0);
1261 STRIP_TYPE_NOPS (rhs1);
1262
1263 if (TREE_CODE (rhs0) == SSA_NAME)
1264 {
1265 if (TREE_CODE (rhs1) == SSA_NAME)
1266 {
1267 /* Match an assignment under the form:
1268 "a = b * c". */
1269 res = follow_ssa_edge
1270 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1271 evolution_of_loop);
1272
1273 if (res)
1274 *evolution_of_loop = chrec_dont_know;
1275
1276 else
1277 {
1278 res = follow_ssa_edge
1279 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1280 evolution_of_loop);
1281
1282 if (res)
1283 *evolution_of_loop = chrec_dont_know;
1284 }
1285 }
1286
1287 else
1288 {
1289 /* Match an assignment under the form:
1290 "a = b * ...". */
1291 res = follow_ssa_edge
1292 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1293 evolution_of_loop);
1294 if (res)
1295 *evolution_of_loop = chrec_dont_know;
1296 }
1297 }
1298
1299 else if (TREE_CODE (rhs1) == SSA_NAME)
1300 {
1301 /* Match an assignment under the form:
1302 "a = ... * c". */
1303 res = follow_ssa_edge
1304 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1305 evolution_of_loop);
1306 if (res)
1307 *evolution_of_loop = chrec_dont_know;
1308 }
1309
1310 else
1311 /* Otherwise, match an assignment under the form:
1312 "a = ... * ...". */
1313 /* And there is nothing to do. */
1314 res = false;
1315
1316 break;
1317
1318 default:
1319 res = false;
1320 break;
1321 }
1322
1323 return res;
1324 }
1325
1326 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1327
1328 static bool
1329 backedge_phi_arg_p (tree phi, int i)
1330 {
1331 edge e = PHI_ARG_EDGE (phi, i);
1332
1333 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1334 about updating it anywhere, and this should work as well most of the
1335 time. */
1336 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1337 return true;
1338
1339 return false;
1340 }
1341
1342 /* Helper function for one branch of the condition-phi-node. Return
1343 true if the strongly connected component has been found following
1344 this path. */
1345
1346 static inline bool
1347 follow_ssa_edge_in_condition_phi_branch (int i,
1348 struct loop *loop,
1349 tree condition_phi,
1350 tree halting_phi,
1351 tree *evolution_of_branch,
1352 tree init_cond)
1353 {
1354 tree branch = PHI_ARG_DEF (condition_phi, i);
1355 *evolution_of_branch = chrec_dont_know;
1356
1357 /* Do not follow back edges (they must belong to an irreducible loop, which
1358 we really do not want to worry about). */
1359 if (backedge_phi_arg_p (condition_phi, i))
1360 return false;
1361
1362 if (TREE_CODE (branch) == SSA_NAME)
1363 {
1364 *evolution_of_branch = init_cond;
1365 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1366 evolution_of_branch);
1367 }
1368
1369 /* This case occurs when one of the condition branches sets
1370 the variable to a constant: ie. a phi-node like
1371 "a_2 = PHI <a_7(5), 2(6)>;".
1372
1373 FIXME: This case have to be refined correctly:
1374 in some cases it is possible to say something better than
1375 chrec_dont_know, for example using a wrap-around notation. */
1376 return false;
1377 }
1378
1379 /* This function merges the branches of a condition-phi-node in a
1380 loop. */
1381
1382 static bool
1383 follow_ssa_edge_in_condition_phi (struct loop *loop,
1384 tree condition_phi,
1385 tree halting_phi,
1386 tree *evolution_of_loop)
1387 {
1388 int i;
1389 tree init = *evolution_of_loop;
1390 tree evolution_of_branch;
1391
1392 if (!follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1393 halting_phi,
1394 &evolution_of_branch,
1395 init))
1396 return false;
1397 *evolution_of_loop = evolution_of_branch;
1398
1399 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1400 {
1401 if (!follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1402 halting_phi,
1403 &evolution_of_branch,
1404 init))
1405 return false;
1406
1407 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1408 evolution_of_branch);
1409 }
1410
1411 return true;
1412 }
1413
1414 /* Follow an SSA edge in an inner loop. It computes the overall
1415 effect of the loop, and following the symbolic initial conditions,
1416 it follows the edges in the parent loop. The inner loop is
1417 considered as a single statement. */
1418
1419 static bool
1420 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1421 tree loop_phi_node,
1422 tree halting_phi,
1423 tree *evolution_of_loop)
1424 {
1425 struct loop *loop = loop_containing_stmt (loop_phi_node);
1426 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1427
1428 /* Sometimes, the inner loop is too difficult to analyze, and the
1429 result of the analysis is a symbolic parameter. */
1430 if (ev == PHI_RESULT (loop_phi_node))
1431 {
1432 bool res = false;
1433 int i;
1434
1435 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1436 {
1437 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1438 basic_block bb;
1439
1440 /* Follow the edges that exit the inner loop. */
1441 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1442 if (!flow_bb_inside_loop_p (loop, bb))
1443 res = res || follow_ssa_edge_in_rhs (outer_loop, arg, halting_phi,
1444 evolution_of_loop);
1445 }
1446
1447 /* If the path crosses this loop-phi, give up. */
1448 if (res == true)
1449 *evolution_of_loop = chrec_dont_know;
1450
1451 return res;
1452 }
1453
1454 /* Otherwise, compute the overall effect of the inner loop. */
1455 ev = compute_overall_effect_of_inner_loop (loop, ev);
1456 return follow_ssa_edge_in_rhs (outer_loop, ev, halting_phi,
1457 evolution_of_loop);
1458 }
1459
1460 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1461 path that is analyzed on the return walk. */
1462
1463 static bool
1464 follow_ssa_edge (struct loop *loop,
1465 tree def,
1466 tree halting_phi,
1467 tree *evolution_of_loop)
1468 {
1469 struct loop *def_loop;
1470
1471 if (TREE_CODE (def) == NOP_EXPR)
1472 return false;
1473
1474 def_loop = loop_containing_stmt (def);
1475
1476 switch (TREE_CODE (def))
1477 {
1478 case PHI_NODE:
1479 if (!loop_phi_node_p (def))
1480 /* DEF is a condition-phi-node. Follow the branches, and
1481 record their evolutions. Finally, merge the collected
1482 information and set the approximation to the main
1483 variable. */
1484 return follow_ssa_edge_in_condition_phi
1485 (loop, def, halting_phi, evolution_of_loop);
1486
1487 /* When the analyzed phi is the halting_phi, the
1488 depth-first search is over: we have found a path from
1489 the halting_phi to itself in the loop. */
1490 if (def == halting_phi)
1491 return true;
1492
1493 /* Otherwise, the evolution of the HALTING_PHI depends
1494 on the evolution of another loop-phi-node, ie. the
1495 evolution function is a higher degree polynomial. */
1496 if (def_loop == loop)
1497 return false;
1498
1499 /* Inner loop. */
1500 if (flow_loop_nested_p (loop, def_loop))
1501 return follow_ssa_edge_inner_loop_phi
1502 (loop, def, halting_phi, evolution_of_loop);
1503
1504 /* Outer loop. */
1505 return false;
1506
1507 case MODIFY_EXPR:
1508 return follow_ssa_edge_in_rhs (loop,
1509 TREE_OPERAND (def, 1),
1510 halting_phi,
1511 evolution_of_loop);
1512
1513 default:
1514 /* At this level of abstraction, the program is just a set
1515 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1516 other node to be handled. */
1517 return false;
1518 }
1519 }
1520
1521 \f
1522
1523 /* Given a LOOP_PHI_NODE, this function determines the evolution
1524 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1525
1526 static tree
1527 analyze_evolution_in_loop (tree loop_phi_node,
1528 tree init_cond)
1529 {
1530 int i;
1531 tree evolution_function = chrec_not_analyzed_yet;
1532 struct loop *loop = loop_containing_stmt (loop_phi_node);
1533 basic_block bb;
1534
1535 if (dump_file && (dump_flags & TDF_DETAILS))
1536 {
1537 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1538 fprintf (dump_file, " (loop_phi_node = ");
1539 print_generic_expr (dump_file, loop_phi_node, 0);
1540 fprintf (dump_file, ")\n");
1541 }
1542
1543 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1544 {
1545 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1546 tree ssa_chain, ev_fn;
1547 bool res;
1548
1549 /* Select the edges that enter the loop body. */
1550 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1551 if (!flow_bb_inside_loop_p (loop, bb))
1552 continue;
1553
1554 if (TREE_CODE (arg) == SSA_NAME)
1555 {
1556 ssa_chain = SSA_NAME_DEF_STMT (arg);
1557
1558 /* Pass in the initial condition to the follow edge function. */
1559 ev_fn = init_cond;
1560 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn);
1561 }
1562 else
1563 res = false;
1564
1565 /* When it is impossible to go back on the same
1566 loop_phi_node by following the ssa edges, the
1567 evolution is represented by a peeled chrec, ie. the
1568 first iteration, EV_FN has the value INIT_COND, then
1569 all the other iterations it has the value of ARG.
1570 For the moment, PEELED_CHREC nodes are not built. */
1571 if (!res)
1572 ev_fn = chrec_dont_know;
1573
1574 /* When there are multiple back edges of the loop (which in fact never
1575 happens currently, but nevertheless), merge their evolutions. */
1576 evolution_function = chrec_merge (evolution_function, ev_fn);
1577 }
1578
1579 if (dump_file && (dump_flags & TDF_DETAILS))
1580 {
1581 fprintf (dump_file, " (evolution_function = ");
1582 print_generic_expr (dump_file, evolution_function, 0);
1583 fprintf (dump_file, "))\n");
1584 }
1585
1586 return evolution_function;
1587 }
1588
1589 /* Given a loop-phi-node, return the initial conditions of the
1590 variable on entry of the loop. When the CCP has propagated
1591 constants into the loop-phi-node, the initial condition is
1592 instantiated, otherwise the initial condition is kept symbolic.
1593 This analyzer does not analyze the evolution outside the current
1594 loop, and leaves this task to the on-demand tree reconstructor. */
1595
1596 static tree
1597 analyze_initial_condition (tree loop_phi_node)
1598 {
1599 int i;
1600 tree init_cond = chrec_not_analyzed_yet;
1601 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1602
1603 if (dump_file && (dump_flags & TDF_DETAILS))
1604 {
1605 fprintf (dump_file, "(analyze_initial_condition \n");
1606 fprintf (dump_file, " (loop_phi_node = \n");
1607 print_generic_expr (dump_file, loop_phi_node, 0);
1608 fprintf (dump_file, ")\n");
1609 }
1610
1611 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1612 {
1613 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1614 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1615
1616 /* When the branch is oriented to the loop's body, it does
1617 not contribute to the initial condition. */
1618 if (flow_bb_inside_loop_p (loop, bb))
1619 continue;
1620
1621 if (init_cond == chrec_not_analyzed_yet)
1622 {
1623 init_cond = branch;
1624 continue;
1625 }
1626
1627 if (TREE_CODE (branch) == SSA_NAME)
1628 {
1629 init_cond = chrec_dont_know;
1630 break;
1631 }
1632
1633 init_cond = chrec_merge (init_cond, branch);
1634 }
1635
1636 /* Ooops -- a loop without an entry??? */
1637 if (init_cond == chrec_not_analyzed_yet)
1638 init_cond = chrec_dont_know;
1639
1640 if (dump_file && (dump_flags & TDF_DETAILS))
1641 {
1642 fprintf (dump_file, " (init_cond = ");
1643 print_generic_expr (dump_file, init_cond, 0);
1644 fprintf (dump_file, "))\n");
1645 }
1646
1647 return init_cond;
1648 }
1649
1650 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1651
1652 static tree
1653 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1654 {
1655 tree res;
1656 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1657 tree init_cond;
1658
1659 if (phi_loop != loop)
1660 {
1661 struct loop *subloop;
1662 tree evolution_fn = analyze_scalar_evolution
1663 (phi_loop, PHI_RESULT (loop_phi_node));
1664
1665 /* Dive one level deeper. */
1666 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1667
1668 /* Interpret the subloop. */
1669 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1670 return res;
1671 }
1672
1673 /* Otherwise really interpret the loop phi. */
1674 init_cond = analyze_initial_condition (loop_phi_node);
1675 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1676
1677 return res;
1678 }
1679
1680 /* This function merges the branches of a condition-phi-node,
1681 contained in the outermost loop, and whose arguments are already
1682 analyzed. */
1683
1684 static tree
1685 interpret_condition_phi (struct loop *loop, tree condition_phi)
1686 {
1687 int i;
1688 tree res = chrec_not_analyzed_yet;
1689
1690 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1691 {
1692 tree branch_chrec;
1693
1694 if (backedge_phi_arg_p (condition_phi, i))
1695 {
1696 res = chrec_dont_know;
1697 break;
1698 }
1699
1700 branch_chrec = analyze_scalar_evolution
1701 (loop, PHI_ARG_DEF (condition_phi, i));
1702
1703 res = chrec_merge (res, branch_chrec);
1704 }
1705
1706 return res;
1707 }
1708
1709 /* Interpret the right hand side of a modify_expr OPND1. If we didn't
1710 analyzed this node before, follow the definitions until ending
1711 either on an analyzed modify_expr, or on a loop-phi-node. On the
1712 return path, this function propagates evolutions (ala constant copy
1713 propagation). OPND1 is not a GIMPLE expression because we could
1714 analyze the effect of an inner loop: see interpret_loop_phi. */
1715
1716 static tree
1717 interpret_rhs_modify_expr (struct loop *loop,
1718 tree opnd1, tree type)
1719 {
1720 tree res, opnd10, opnd11, chrec10, chrec11;
1721
1722 if (is_gimple_min_invariant (opnd1))
1723 return chrec_convert (type, opnd1);
1724
1725 switch (TREE_CODE (opnd1))
1726 {
1727 case PLUS_EXPR:
1728 opnd10 = TREE_OPERAND (opnd1, 0);
1729 opnd11 = TREE_OPERAND (opnd1, 1);
1730 chrec10 = analyze_scalar_evolution (loop, opnd10);
1731 chrec11 = analyze_scalar_evolution (loop, opnd11);
1732 chrec10 = chrec_convert (type, chrec10);
1733 chrec11 = chrec_convert (type, chrec11);
1734 res = chrec_fold_plus (type, chrec10, chrec11);
1735 break;
1736
1737 case MINUS_EXPR:
1738 opnd10 = TREE_OPERAND (opnd1, 0);
1739 opnd11 = TREE_OPERAND (opnd1, 1);
1740 chrec10 = analyze_scalar_evolution (loop, opnd10);
1741 chrec11 = analyze_scalar_evolution (loop, opnd11);
1742 chrec10 = chrec_convert (type, chrec10);
1743 chrec11 = chrec_convert (type, chrec11);
1744 res = chrec_fold_minus (type, chrec10, chrec11);
1745 break;
1746
1747 case NEGATE_EXPR:
1748 opnd10 = TREE_OPERAND (opnd1, 0);
1749 chrec10 = analyze_scalar_evolution (loop, opnd10);
1750 chrec10 = chrec_convert (type, chrec10);
1751 res = chrec_fold_minus (type, fold_convert (type, integer_zero_node),
1752 chrec10);
1753 break;
1754
1755 case MULT_EXPR:
1756 opnd10 = TREE_OPERAND (opnd1, 0);
1757 opnd11 = TREE_OPERAND (opnd1, 1);
1758 chrec10 = analyze_scalar_evolution (loop, opnd10);
1759 chrec11 = analyze_scalar_evolution (loop, opnd11);
1760 chrec10 = chrec_convert (type, chrec10);
1761 chrec11 = chrec_convert (type, chrec11);
1762 res = chrec_fold_multiply (type, chrec10, chrec11);
1763 break;
1764
1765 case SSA_NAME:
1766 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1));
1767 break;
1768
1769 case NOP_EXPR:
1770 case CONVERT_EXPR:
1771 opnd10 = TREE_OPERAND (opnd1, 0);
1772 chrec10 = analyze_scalar_evolution (loop, opnd10);
1773 res = chrec_convert (type, chrec10);
1774 break;
1775
1776 default:
1777 res = chrec_dont_know;
1778 break;
1779 }
1780
1781 return res;
1782 }
1783
1784 \f
1785
1786 /* This section contains all the entry points:
1787 - number_of_iterations_in_loop,
1788 - analyze_scalar_evolution,
1789 - instantiate_parameters.
1790 */
1791
1792 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1793 common ancestor of DEF_LOOP and USE_LOOP. */
1794
1795 static tree
1796 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1797 struct loop *def_loop,
1798 tree ev)
1799 {
1800 tree res;
1801 if (def_loop == wrto_loop)
1802 return ev;
1803
1804 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1805 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1806
1807 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1808 }
1809
1810 /* Helper recursive function. */
1811
1812 static tree
1813 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1814 {
1815 tree def, type = TREE_TYPE (var);
1816 basic_block bb;
1817 struct loop *def_loop;
1818
1819 if (loop == NULL)
1820 return chrec_dont_know;
1821
1822 if (TREE_CODE (var) != SSA_NAME)
1823 return interpret_rhs_modify_expr (loop, var, type);
1824
1825 def = SSA_NAME_DEF_STMT (var);
1826 bb = bb_for_stmt (def);
1827 def_loop = bb ? bb->loop_father : NULL;
1828
1829 if (bb == NULL
1830 || !flow_bb_inside_loop_p (loop, bb))
1831 {
1832 /* Keep the symbolic form. */
1833 res = var;
1834 goto set_and_end;
1835 }
1836
1837 if (res != chrec_not_analyzed_yet)
1838 {
1839 if (loop != bb->loop_father)
1840 res = compute_scalar_evolution_in_loop
1841 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1842
1843 goto set_and_end;
1844 }
1845
1846 if (loop != def_loop)
1847 {
1848 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1849 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1850
1851 goto set_and_end;
1852 }
1853
1854 switch (TREE_CODE (def))
1855 {
1856 case MODIFY_EXPR:
1857 res = interpret_rhs_modify_expr (loop, TREE_OPERAND (def, 1), type);
1858 break;
1859
1860 case PHI_NODE:
1861 if (loop_phi_node_p (def))
1862 res = interpret_loop_phi (loop, def);
1863 else
1864 res = interpret_condition_phi (loop, def);
1865 break;
1866
1867 default:
1868 res = chrec_dont_know;
1869 break;
1870 }
1871
1872 set_and_end:
1873
1874 /* Keep the symbolic form. */
1875 if (res == chrec_dont_know)
1876 res = var;
1877
1878 if (loop == def_loop)
1879 set_scalar_evolution (var, res);
1880
1881 return res;
1882 }
1883
1884 /* Entry point for the scalar evolution analyzer.
1885 Analyzes and returns the scalar evolution of the ssa_name VAR.
1886 LOOP_NB is the identifier number of the loop in which the variable
1887 is used.
1888
1889 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1890 pointer to the statement that uses this variable, in order to
1891 determine the evolution function of the variable, use the following
1892 calls:
1893
1894 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1895 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1896 tree chrec_instantiated = instantiate_parameters
1897 (loop_nb, chrec_with_symbols);
1898 */
1899
1900 tree
1901 analyze_scalar_evolution (struct loop *loop, tree var)
1902 {
1903 tree res;
1904
1905 if (dump_file && (dump_flags & TDF_DETAILS))
1906 {
1907 fprintf (dump_file, "(analyze_scalar_evolution \n");
1908 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1909 fprintf (dump_file, " (scalar = ");
1910 print_generic_expr (dump_file, var, 0);
1911 fprintf (dump_file, ")\n");
1912 }
1913
1914 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1915
1916 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1917 res = var;
1918
1919 if (dump_file && (dump_flags & TDF_DETAILS))
1920 fprintf (dump_file, ")\n");
1921
1922 return res;
1923 }
1924
1925 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1926 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1927 of VERSION). */
1928
1929 static tree
1930 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1931 tree version)
1932 {
1933 bool val = false;
1934 tree ev = version;
1935
1936 while (1)
1937 {
1938 ev = analyze_scalar_evolution (use_loop, ev);
1939 ev = resolve_mixers (use_loop, ev);
1940
1941 if (use_loop == wrto_loop)
1942 return ev;
1943
1944 /* If the value of the use changes in the inner loop, we cannot express
1945 its value in the outer loop (we might try to return interval chrec,
1946 but we do not have a user for it anyway) */
1947 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1948 || !val)
1949 return chrec_dont_know;
1950
1951 use_loop = use_loop->outer;
1952 }
1953 }
1954
1955 /* Analyze all the parameters of the chrec that were left under a symbolic form,
1956 with respect to LOOP. CHREC is the chrec to instantiate. If
1957 ALLOW_SUPERLOOP_CHRECS is true, replacing loop invariants with
1958 outer loop chrecs is done. */
1959
1960 static tree
1961 instantiate_parameters_1 (struct loop *loop, tree chrec,
1962 bool allow_superloop_chrecs)
1963 {
1964 tree res, op0, op1, op2;
1965 basic_block def_bb;
1966 struct loop *def_loop;
1967
1968 if (chrec == NULL_TREE
1969 || automatically_generated_chrec_p (chrec))
1970 return chrec;
1971
1972 if (is_gimple_min_invariant (chrec))
1973 return chrec;
1974
1975 switch (TREE_CODE (chrec))
1976 {
1977 case SSA_NAME:
1978 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
1979
1980 /* A parameter (or loop invariant and we do not want to include
1981 evolutions in outer loops), nothing to do. */
1982 if (!def_bb
1983 || (!allow_superloop_chrecs
1984 && !flow_bb_inside_loop_p (loop, def_bb)))
1985 return chrec;
1986
1987 /* Don't instantiate the SSA_NAME if it is in a mixer
1988 structure. This is used for avoiding the instantiation of
1989 recursively defined functions, such as:
1990
1991 | a_2 -> {0, +, 1, +, a_2}_1 */
1992
1993 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
1994 {
1995 if (!flow_bb_inside_loop_p (loop, def_bb))
1996 {
1997 /* We may keep the loop invariant in symbolic form. */
1998 return chrec;
1999 }
2000 else
2001 {
2002 /* Something with unknown behavior in LOOP. */
2003 return chrec_dont_know;
2004 }
2005 }
2006
2007 def_loop = find_common_loop (loop, def_bb->loop_father);
2008
2009 /* If the analysis yields a parametric chrec, instantiate the
2010 result again. Avoid the cyclic instantiation in mixers. */
2011 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2012 res = analyze_scalar_evolution (def_loop, chrec);
2013 res = instantiate_parameters_1 (loop, res, allow_superloop_chrecs);
2014 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2015 return res;
2016
2017 case POLYNOMIAL_CHREC:
2018 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2019 allow_superloop_chrecs);
2020 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2021 allow_superloop_chrecs);
2022 return build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2023
2024 case PLUS_EXPR:
2025 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2026 allow_superloop_chrecs);
2027 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2028 allow_superloop_chrecs);
2029 return chrec_fold_plus (TREE_TYPE (chrec), op0, op1);
2030
2031 case MINUS_EXPR:
2032 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2033 allow_superloop_chrecs);
2034 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2035 allow_superloop_chrecs);
2036 return chrec_fold_minus (TREE_TYPE (chrec), op0, op1);
2037
2038 case MULT_EXPR:
2039 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2040 allow_superloop_chrecs);
2041 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2042 allow_superloop_chrecs);
2043 return chrec_fold_multiply (TREE_TYPE (chrec), op0, op1);
2044
2045 case NOP_EXPR:
2046 case CONVERT_EXPR:
2047 case NON_LVALUE_EXPR:
2048 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2049 allow_superloop_chrecs);
2050 if (op0 == chrec_dont_know)
2051 return chrec_dont_know;
2052
2053 return chrec_convert (TREE_TYPE (chrec), op0);
2054
2055 case SCEV_NOT_KNOWN:
2056 return chrec_dont_know;
2057
2058 case SCEV_KNOWN:
2059 return chrec_known;
2060
2061 default:
2062 break;
2063 }
2064
2065 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2066 {
2067 case 3:
2068 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2069 allow_superloop_chrecs);
2070 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2071 allow_superloop_chrecs);
2072 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2073 allow_superloop_chrecs);
2074 if (op0 == chrec_dont_know
2075 || op1 == chrec_dont_know
2076 || op2 == chrec_dont_know)
2077 return chrec_dont_know;
2078 return fold (build (TREE_CODE (chrec),
2079 TREE_TYPE (chrec), op0, op1, op2));
2080
2081 case 2:
2082 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2083 allow_superloop_chrecs);
2084 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2085 allow_superloop_chrecs);
2086 if (op0 == chrec_dont_know
2087 || op1 == chrec_dont_know)
2088 return chrec_dont_know;
2089 return fold (build (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1));
2090
2091 case 1:
2092 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2093 allow_superloop_chrecs);
2094 if (op0 == chrec_dont_know)
2095 return chrec_dont_know;
2096 return fold (build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0));
2097
2098 case 0:
2099 return chrec;
2100
2101 default:
2102 break;
2103 }
2104
2105 /* Too complicated to handle. */
2106 return chrec_dont_know;
2107 }
2108
2109 /* Analyze all the parameters of the chrec that were left under a
2110 symbolic form. LOOP is the loop in which symbolic names have to
2111 be analyzed and instantiated. */
2112
2113 tree
2114 instantiate_parameters (struct loop *loop,
2115 tree chrec)
2116 {
2117 tree res;
2118
2119 if (dump_file && (dump_flags & TDF_DETAILS))
2120 {
2121 fprintf (dump_file, "(instantiate_parameters \n");
2122 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2123 fprintf (dump_file, " (chrec = ");
2124 print_generic_expr (dump_file, chrec, 0);
2125 fprintf (dump_file, ")\n");
2126 }
2127
2128 res = instantiate_parameters_1 (loop, chrec, true);
2129
2130 if (dump_file && (dump_flags & TDF_DETAILS))
2131 {
2132 fprintf (dump_file, " (res = ");
2133 print_generic_expr (dump_file, res, 0);
2134 fprintf (dump_file, "))\n");
2135 }
2136
2137 return res;
2138 }
2139
2140 /* Similar to instantiate_parameters, but does not introduce the
2141 evolutions in outer loops for LOOP invariants in CHREC. */
2142
2143 static tree
2144 resolve_mixers (struct loop *loop, tree chrec)
2145 {
2146 return instantiate_parameters_1 (loop, chrec, false);
2147 }
2148
2149 /* Entry point for the analysis of the number of iterations pass.
2150 This function tries to safely approximate the number of iterations
2151 the loop will run. When this property is not decidable at compile
2152 time, the result is chrec_dont_know. Otherwise the result is
2153 a scalar or a symbolic parameter.
2154
2155 Example of analysis: suppose that the loop has an exit condition:
2156
2157 "if (b > 49) goto end_loop;"
2158
2159 and that in a previous analysis we have determined that the
2160 variable 'b' has an evolution function:
2161
2162 "EF = {23, +, 5}_2".
2163
2164 When we evaluate the function at the point 5, i.e. the value of the
2165 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2166 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2167 the loop body has been executed 6 times. */
2168
2169 tree
2170 number_of_iterations_in_loop (struct loop *loop)
2171 {
2172 tree res, type;
2173 edge exit;
2174 struct tree_niter_desc niter_desc;
2175
2176 /* Determine whether the number_of_iterations_in_loop has already
2177 been computed. */
2178 res = loop->nb_iterations;
2179 if (res)
2180 return res;
2181 res = chrec_dont_know;
2182
2183 if (dump_file && (dump_flags & TDF_DETAILS))
2184 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2185
2186 exit = loop->single_exit;
2187 if (!exit)
2188 goto end;
2189
2190 if (!number_of_iterations_exit (loop, exit, &niter_desc))
2191 goto end;
2192
2193 type = TREE_TYPE (niter_desc.niter);
2194 if (integer_nonzerop (niter_desc.may_be_zero))
2195 res = fold_convert (type, integer_zero_node);
2196 else if (integer_zerop (niter_desc.may_be_zero))
2197 res = niter_desc.niter;
2198 else
2199 res = chrec_dont_know;
2200
2201 end:
2202 return set_nb_iterations_in_loop (loop, res);
2203 }
2204
2205 /* One of the drivers for testing the scalar evolutions analysis.
2206 This function computes the number of iterations for all the loops
2207 from the EXIT_CONDITIONS array. */
2208
2209 static void
2210 number_of_iterations_for_all_loops (varray_type exit_conditions)
2211 {
2212 unsigned int i;
2213 unsigned nb_chrec_dont_know_loops = 0;
2214 unsigned nb_static_loops = 0;
2215
2216 for (i = 0; i < VARRAY_ACTIVE_SIZE (exit_conditions); i++)
2217 {
2218 tree res = number_of_iterations_in_loop
2219 (loop_containing_stmt (VARRAY_TREE (exit_conditions, i)));
2220 if (chrec_contains_undetermined (res))
2221 nb_chrec_dont_know_loops++;
2222 else
2223 nb_static_loops++;
2224 }
2225
2226 if (dump_file)
2227 {
2228 fprintf (dump_file, "\n(\n");
2229 fprintf (dump_file, "-----------------------------------------\n");
2230 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2231 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2232 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2233 fprintf (dump_file, "-----------------------------------------\n");
2234 fprintf (dump_file, ")\n\n");
2235
2236 print_loop_ir (dump_file);
2237 }
2238 }
2239
2240 \f
2241
2242 /* Counters for the stats. */
2243
2244 struct chrec_stats
2245 {
2246 unsigned nb_chrecs;
2247 unsigned nb_affine;
2248 unsigned nb_affine_multivar;
2249 unsigned nb_higher_poly;
2250 unsigned nb_chrec_dont_know;
2251 unsigned nb_undetermined;
2252 };
2253
2254 /* Reset the counters. */
2255
2256 static inline void
2257 reset_chrecs_counters (struct chrec_stats *stats)
2258 {
2259 stats->nb_chrecs = 0;
2260 stats->nb_affine = 0;
2261 stats->nb_affine_multivar = 0;
2262 stats->nb_higher_poly = 0;
2263 stats->nb_chrec_dont_know = 0;
2264 stats->nb_undetermined = 0;
2265 }
2266
2267 /* Dump the contents of a CHREC_STATS structure. */
2268
2269 static void
2270 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2271 {
2272 fprintf (file, "\n(\n");
2273 fprintf (file, "-----------------------------------------\n");
2274 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2275 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2276 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2277 stats->nb_higher_poly);
2278 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2279 fprintf (file, "-----------------------------------------\n");
2280 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2281 fprintf (file, "%d\twith undetermined coefficients\n",
2282 stats->nb_undetermined);
2283 fprintf (file, "-----------------------------------------\n");
2284 fprintf (file, "%d\tchrecs in the scev database\n",
2285 (int) htab_elements (scalar_evolution_info));
2286 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2287 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2288 fprintf (file, "-----------------------------------------\n");
2289 fprintf (file, ")\n\n");
2290 }
2291
2292 /* Gather statistics about CHREC. */
2293
2294 static void
2295 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2296 {
2297 if (dump_file && (dump_flags & TDF_STATS))
2298 {
2299 fprintf (dump_file, "(classify_chrec ");
2300 print_generic_expr (dump_file, chrec, 0);
2301 fprintf (dump_file, "\n");
2302 }
2303
2304 stats->nb_chrecs++;
2305
2306 if (chrec == NULL_TREE)
2307 {
2308 stats->nb_undetermined++;
2309 return;
2310 }
2311
2312 switch (TREE_CODE (chrec))
2313 {
2314 case POLYNOMIAL_CHREC:
2315 if (evolution_function_is_affine_p (chrec))
2316 {
2317 if (dump_file && (dump_flags & TDF_STATS))
2318 fprintf (dump_file, " affine_univariate\n");
2319 stats->nb_affine++;
2320 }
2321 else if (evolution_function_is_affine_multivariate_p (chrec))
2322 {
2323 if (dump_file && (dump_flags & TDF_STATS))
2324 fprintf (dump_file, " affine_multivariate\n");
2325 stats->nb_affine_multivar++;
2326 }
2327 else
2328 {
2329 if (dump_file && (dump_flags & TDF_STATS))
2330 fprintf (dump_file, " higher_degree_polynomial\n");
2331 stats->nb_higher_poly++;
2332 }
2333
2334 break;
2335
2336 default:
2337 break;
2338 }
2339
2340 if (chrec_contains_undetermined (chrec))
2341 {
2342 if (dump_file && (dump_flags & TDF_STATS))
2343 fprintf (dump_file, " undetermined\n");
2344 stats->nb_undetermined++;
2345 }
2346
2347 if (dump_file && (dump_flags & TDF_STATS))
2348 fprintf (dump_file, ")\n");
2349 }
2350
2351 /* One of the drivers for testing the scalar evolutions analysis.
2352 This function analyzes the scalar evolution of all the scalars
2353 defined as loop phi nodes in one of the loops from the
2354 EXIT_CONDITIONS array.
2355
2356 TODO Optimization: A loop is in canonical form if it contains only
2357 a single scalar loop phi node. All the other scalars that have an
2358 evolution in the loop are rewritten in function of this single
2359 index. This allows the parallelization of the loop. */
2360
2361 static void
2362 analyze_scalar_evolution_for_all_loop_phi_nodes (varray_type exit_conditions)
2363 {
2364 unsigned int i;
2365 struct chrec_stats stats;
2366
2367 reset_chrecs_counters (&stats);
2368
2369 for (i = 0; i < VARRAY_ACTIVE_SIZE (exit_conditions); i++)
2370 {
2371 struct loop *loop;
2372 basic_block bb;
2373 tree phi, chrec;
2374
2375 loop = loop_containing_stmt (VARRAY_TREE (exit_conditions, i));
2376 bb = loop->header;
2377
2378 for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
2379 if (is_gimple_reg (PHI_RESULT (phi)))
2380 {
2381 chrec = instantiate_parameters
2382 (loop,
2383 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2384
2385 if (dump_file && (dump_flags & TDF_STATS))
2386 gather_chrec_stats (chrec, &stats);
2387 }
2388 }
2389
2390 if (dump_file && (dump_flags & TDF_STATS))
2391 dump_chrecs_stats (dump_file, &stats);
2392 }
2393
2394 /* Callback for htab_traverse, gathers information on chrecs in the
2395 hashtable. */
2396
2397 static int
2398 gather_stats_on_scev_database_1 (void **slot, void *stats)
2399 {
2400 struct scev_info_str *entry = *slot;
2401
2402 gather_chrec_stats (entry->chrec, stats);
2403
2404 return 1;
2405 }
2406
2407 /* Classify the chrecs of the whole database. */
2408
2409 void
2410 gather_stats_on_scev_database (void)
2411 {
2412 struct chrec_stats stats;
2413
2414 if (!dump_file)
2415 return;
2416
2417 reset_chrecs_counters (&stats);
2418
2419 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2420 &stats);
2421
2422 dump_chrecs_stats (dump_file, &stats);
2423 }
2424
2425 \f
2426
2427 /* Initializer. */
2428
2429 static void
2430 initialize_scalar_evolutions_analyzer (void)
2431 {
2432 /* The elements below are unique. */
2433 if (chrec_dont_know == NULL_TREE)
2434 {
2435 chrec_not_analyzed_yet = NULL_TREE;
2436 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2437 chrec_known = make_node (SCEV_KNOWN);
2438 TREE_TYPE (chrec_dont_know) = NULL_TREE;
2439 TREE_TYPE (chrec_known) = NULL_TREE;
2440 }
2441 }
2442
2443 /* Initialize the analysis of scalar evolutions for LOOPS. */
2444
2445 void
2446 scev_initialize (struct loops *loops)
2447 {
2448 unsigned i;
2449 current_loops = loops;
2450
2451 scalar_evolution_info = htab_create (100, hash_scev_info,
2452 eq_scev_info, del_scev_info);
2453 already_instantiated = BITMAP_XMALLOC ();
2454
2455 initialize_scalar_evolutions_analyzer ();
2456
2457 for (i = 1; i < loops->num; i++)
2458 if (loops->parray[i])
2459 loops->parray[i]->nb_iterations = NULL_TREE;
2460 }
2461
2462 /* Cleans up the information cached by the scalar evolutions analysis. */
2463
2464 void
2465 scev_reset (void)
2466 {
2467 unsigned i;
2468 struct loop *loop;
2469
2470 if (!scalar_evolution_info || !current_loops)
2471 return;
2472
2473 htab_empty (scalar_evolution_info);
2474 for (i = 1; i < current_loops->num; i++)
2475 {
2476 loop = current_loops->parray[i];
2477 if (loop)
2478 loop->nb_iterations = NULL_TREE;
2479 }
2480 }
2481
2482 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2483 its BASE and STEP if possible. */
2484
2485 bool
2486 simple_iv (struct loop *loop, tree stmt, tree op, tree *base, tree *step)
2487 {
2488 basic_block bb = bb_for_stmt (stmt);
2489 tree type, ev;
2490
2491 *base = NULL_TREE;
2492 *step = NULL_TREE;
2493
2494 type = TREE_TYPE (op);
2495 if (TREE_CODE (type) != INTEGER_TYPE
2496 && TREE_CODE (type) != POINTER_TYPE)
2497 return false;
2498
2499 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op);
2500 if (chrec_contains_undetermined (ev))
2501 return false;
2502
2503 if (tree_does_not_contain_chrecs (ev)
2504 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2505 {
2506 *base = ev;
2507 return true;
2508 }
2509
2510 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2511 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2512 return false;
2513
2514 *step = CHREC_RIGHT (ev);
2515 if (TREE_CODE (*step) != INTEGER_CST)
2516 return false;
2517 *base = CHREC_LEFT (ev);
2518 if (tree_contains_chrecs (*base)
2519 || chrec_contains_symbols_defined_in_loop (*base, loop->num))
2520 return false;
2521
2522 return true;
2523 }
2524
2525 /* Runs the analysis of scalar evolutions. */
2526
2527 void
2528 scev_analysis (void)
2529 {
2530 varray_type exit_conditions;
2531
2532 VARRAY_GENERIC_PTR_INIT (exit_conditions, 37, "exit_conditions");
2533 select_loops_exit_conditions (current_loops, &exit_conditions);
2534
2535 if (dump_file && (dump_flags & TDF_STATS))
2536 analyze_scalar_evolution_for_all_loop_phi_nodes (exit_conditions);
2537
2538 number_of_iterations_for_all_loops (exit_conditions);
2539 VARRAY_CLEAR (exit_conditions);
2540 }
2541
2542 /* Finalize the scalar evolution analysis. */
2543
2544 void
2545 scev_finalize (void)
2546 {
2547 htab_delete (scalar_evolution_info);
2548 BITMAP_XFREE (already_instantiated);
2549 }
2550