tree-scalar-evolution.c (set_nb_iterations_in_loop): Only check for TREE_OVERFLOW...
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a MODIFY_EXPR: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "errors.h"
239 #include "ggc.h"
240 #include "tree.h"
241
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254
255 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
256 static tree resolve_mixers (struct loop *, tree);
257
258 /* The cached information about a ssa name VAR, claiming that inside LOOP,
259 the value of VAR can be expressed as CHREC. */
260
261 struct scev_info_str
262 {
263 tree var;
264 tree chrec;
265 };
266
267 /* Counters for the scev database. */
268 static unsigned nb_set_scev = 0;
269 static unsigned nb_get_scev = 0;
270
271 /* The following trees are unique elements. Thus the comparison of
272 another element to these elements should be done on the pointer to
273 these trees, and not on their value. */
274
275 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
276 tree chrec_not_analyzed_yet;
277
278 /* Reserved to the cases where the analyzer has detected an
279 undecidable property at compile time. */
280 tree chrec_dont_know;
281
282 /* When the analyzer has detected that a property will never
283 happen, then it qualifies it with chrec_known. */
284 tree chrec_known;
285
286 static bitmap already_instantiated;
287
288 static htab_t scalar_evolution_info;
289
290 \f
291 /* Constructs a new SCEV_INFO_STR structure. */
292
293 static inline struct scev_info_str *
294 new_scev_info_str (tree var)
295 {
296 struct scev_info_str *res;
297
298 res = xmalloc (sizeof (struct scev_info_str));
299 res->var = var;
300 res->chrec = chrec_not_analyzed_yet;
301
302 return res;
303 }
304
305 /* Computes a hash function for database element ELT. */
306
307 static hashval_t
308 hash_scev_info (const void *elt)
309 {
310 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
311 }
312
313 /* Compares database elements E1 and E2. */
314
315 static int
316 eq_scev_info (const void *e1, const void *e2)
317 {
318 const struct scev_info_str *elt1 = e1;
319 const struct scev_info_str *elt2 = e2;
320
321 return elt1->var == elt2->var;
322 }
323
324 /* Deletes database element E. */
325
326 static void
327 del_scev_info (void *e)
328 {
329 free (e);
330 }
331
332 /* Get the index corresponding to VAR in the current LOOP. If
333 it's the first time we ask for this VAR, then we return
334 chrec_not_analyzed_yet for this VAR and return its index. */
335
336 static tree *
337 find_var_scev_info (tree var)
338 {
339 struct scev_info_str *res;
340 struct scev_info_str tmp;
341 PTR *slot;
342
343 tmp.var = var;
344 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
345
346 if (!*slot)
347 *slot = new_scev_info_str (var);
348 res = *slot;
349
350 return &res->chrec;
351 }
352
353 /* Tries to express CHREC in wider type TYPE. */
354
355 tree
356 count_ev_in_wider_type (tree type, tree chrec)
357 {
358 tree base, step;
359 struct loop *loop;
360
361 if (!evolution_function_is_affine_p (chrec))
362 return fold_convert (type, chrec);
363
364 base = CHREC_LEFT (chrec);
365 step = CHREC_RIGHT (chrec);
366 loop = current_loops->parray[CHREC_VARIABLE (chrec)];
367
368 /* TODO -- if we knew the statement at that the conversion occurs,
369 we could pass it to can_count_iv_in_wider_type and get a better
370 result. */
371 step = can_count_iv_in_wider_type (loop, type, base, step, NULL_TREE);
372 if (!step)
373 return fold_convert (type, chrec);
374 base = chrec_convert (type, base);
375
376 return build_polynomial_chrec (CHREC_VARIABLE (chrec),
377 base, step);
378 }
379
380 /* Return true when CHREC contains symbolic names defined in
381 LOOP_NB. */
382
383 bool
384 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
385 {
386 if (chrec == NULL_TREE)
387 return false;
388
389 if (TREE_INVARIANT (chrec))
390 return false;
391
392 if (TREE_CODE (chrec) == VAR_DECL
393 || TREE_CODE (chrec) == PARM_DECL
394 || TREE_CODE (chrec) == FUNCTION_DECL
395 || TREE_CODE (chrec) == LABEL_DECL
396 || TREE_CODE (chrec) == RESULT_DECL
397 || TREE_CODE (chrec) == FIELD_DECL)
398 return true;
399
400 if (TREE_CODE (chrec) == SSA_NAME)
401 {
402 tree def = SSA_NAME_DEF_STMT (chrec);
403 struct loop *def_loop = loop_containing_stmt (def);
404 struct loop *loop = current_loops->parray[loop_nb];
405
406 if (def_loop == NULL)
407 return false;
408
409 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
410 return true;
411
412 return false;
413 }
414
415 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
416 {
417 case 3:
418 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
419 loop_nb))
420 return true;
421
422 case 2:
423 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
424 loop_nb))
425 return true;
426
427 case 1:
428 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
429 loop_nb))
430 return true;
431
432 default:
433 return false;
434 }
435 }
436
437 /* Return true when PHI is a loop-phi-node. */
438
439 static bool
440 loop_phi_node_p (tree phi)
441 {
442 /* The implementation of this function is based on the following
443 property: "all the loop-phi-nodes of a loop are contained in the
444 loop's header basic block". */
445
446 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
447 }
448
449 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
450 In general, in the case of multivariate evolutions we want to get
451 the evolution in different loops. LOOP specifies the level for
452 which to get the evolution.
453
454 Example:
455
456 | for (j = 0; j < 100; j++)
457 | {
458 | for (k = 0; k < 100; k++)
459 | {
460 | i = k + j; - Here the value of i is a function of j, k.
461 | }
462 | ... = i - Here the value of i is a function of j.
463 | }
464 | ... = i - Here the value of i is a scalar.
465
466 Example:
467
468 | i_0 = ...
469 | loop_1 10 times
470 | i_1 = phi (i_0, i_2)
471 | i_2 = i_1 + 2
472 | endloop
473
474 This loop has the same effect as:
475 LOOP_1 has the same effect as:
476
477 | i_1 = i_0 + 20
478
479 The overall effect of the loop, "i_0 + 20" in the previous example,
480 is obtained by passing in the parameters: LOOP = 1,
481 EVOLUTION_FN = {i_0, +, 2}_1.
482 */
483
484 static tree
485 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
486 {
487 bool val = false;
488
489 if (evolution_fn == chrec_dont_know)
490 return chrec_dont_know;
491
492 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
493 {
494 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
495 {
496 struct loop *inner_loop =
497 current_loops->parray[CHREC_VARIABLE (evolution_fn)];
498 tree nb_iter = number_of_iterations_in_loop (inner_loop);
499
500 if (nb_iter == chrec_dont_know)
501 return chrec_dont_know;
502 else
503 {
504 tree res;
505
506 /* Number of iterations is off by one (the ssa name we
507 analyze must be defined before the exit). */
508 nb_iter = chrec_fold_minus (chrec_type (nb_iter),
509 nb_iter,
510 build_int_cst_type (chrec_type (nb_iter), 1));
511
512 /* evolution_fn is the evolution function in LOOP. Get
513 its value in the nb_iter-th iteration. */
514 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
515
516 /* Continue the computation until ending on a parent of LOOP. */
517 return compute_overall_effect_of_inner_loop (loop, res);
518 }
519 }
520 else
521 return evolution_fn;
522 }
523
524 /* If the evolution function is an invariant, there is nothing to do. */
525 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
526 return evolution_fn;
527
528 else
529 return chrec_dont_know;
530 }
531
532 /* Determine whether the CHREC is always positive/negative. If the expression
533 cannot be statically analyzed, return false, otherwise set the answer into
534 VALUE. */
535
536 bool
537 chrec_is_positive (tree chrec, bool *value)
538 {
539 bool value0, value1;
540 bool value2;
541 tree end_value;
542 tree nb_iter;
543
544 switch (TREE_CODE (chrec))
545 {
546 case POLYNOMIAL_CHREC:
547 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
548 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
549 return false;
550
551 /* FIXME -- overflows. */
552 if (value0 == value1)
553 {
554 *value = value0;
555 return true;
556 }
557
558 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
559 and the proof consists in showing that the sign never
560 changes during the execution of the loop, from 0 to
561 loop->nb_iterations. */
562 if (!evolution_function_is_affine_p (chrec))
563 return false;
564
565 nb_iter = number_of_iterations_in_loop
566 (current_loops->parray[CHREC_VARIABLE (chrec)]);
567
568 if (chrec_contains_undetermined (nb_iter))
569 return false;
570
571 nb_iter = chrec_fold_minus
572 (chrec_type (nb_iter), nb_iter,
573 build_int_cst (chrec_type (nb_iter), 1));
574
575 #if 0
576 /* TODO -- If the test is after the exit, we may decrease the number of
577 iterations by one. */
578 if (after_exit)
579 nb_iter = chrec_fold_minus
580 (chrec_type (nb_iter), nb_iter,
581 build_int_cst (chrec_type (nb_iter), 1));
582 #endif
583
584 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
585
586 if (!chrec_is_positive (end_value, &value2))
587 return false;
588
589 *value = value0;
590 return value0 == value1;
591
592 case INTEGER_CST:
593 *value = (tree_int_cst_sgn (chrec) == 1);
594 return true;
595
596 default:
597 return false;
598 }
599 }
600
601 /* Associate CHREC to SCALAR. */
602
603 static void
604 set_scalar_evolution (tree scalar, tree chrec)
605 {
606 tree *scalar_info;
607
608 if (TREE_CODE (scalar) != SSA_NAME)
609 return;
610
611 scalar_info = find_var_scev_info (scalar);
612
613 if (dump_file)
614 {
615 if (dump_flags & TDF_DETAILS)
616 {
617 fprintf (dump_file, "(set_scalar_evolution \n");
618 fprintf (dump_file, " (scalar = ");
619 print_generic_expr (dump_file, scalar, 0);
620 fprintf (dump_file, ")\n (scalar_evolution = ");
621 print_generic_expr (dump_file, chrec, 0);
622 fprintf (dump_file, "))\n");
623 }
624 if (dump_flags & TDF_STATS)
625 nb_set_scev++;
626 }
627
628 *scalar_info = chrec;
629 }
630
631 /* Retrieve the chrec associated to SCALAR in the LOOP. */
632
633 static tree
634 get_scalar_evolution (tree scalar)
635 {
636 tree res;
637
638 if (dump_file)
639 {
640 if (dump_flags & TDF_DETAILS)
641 {
642 fprintf (dump_file, "(get_scalar_evolution \n");
643 fprintf (dump_file, " (scalar = ");
644 print_generic_expr (dump_file, scalar, 0);
645 fprintf (dump_file, ")\n");
646 }
647 if (dump_flags & TDF_STATS)
648 nb_get_scev++;
649 }
650
651 switch (TREE_CODE (scalar))
652 {
653 case SSA_NAME:
654 res = *find_var_scev_info (scalar);
655 break;
656
657 case REAL_CST:
658 case INTEGER_CST:
659 res = scalar;
660 break;
661
662 default:
663 res = chrec_not_analyzed_yet;
664 break;
665 }
666
667 if (dump_file && (dump_flags & TDF_DETAILS))
668 {
669 fprintf (dump_file, " (scalar_evolution = ");
670 print_generic_expr (dump_file, res, 0);
671 fprintf (dump_file, "))\n");
672 }
673
674 return res;
675 }
676
677 /* Helper function for add_to_evolution. Returns the evolution
678 function for an assignment of the form "a = b + c", where "a" and
679 "b" are on the strongly connected component. CHREC_BEFORE is the
680 information that we already have collected up to this point.
681 TO_ADD is the evolution of "c".
682
683 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
684 evolution the expression TO_ADD, otherwise construct an evolution
685 part for this loop. */
686
687 static tree
688 add_to_evolution_1 (unsigned loop_nb,
689 tree chrec_before,
690 tree to_add)
691 {
692 switch (TREE_CODE (chrec_before))
693 {
694 case POLYNOMIAL_CHREC:
695 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
696 {
697 unsigned var;
698 tree left, right;
699 tree type = chrec_type (chrec_before);
700
701 /* When there is no evolution part in this loop, build it. */
702 if (CHREC_VARIABLE (chrec_before) < loop_nb)
703 {
704 var = loop_nb;
705 left = chrec_before;
706 right = build_int_cst (type, 0);
707 }
708 else
709 {
710 var = CHREC_VARIABLE (chrec_before);
711 left = CHREC_LEFT (chrec_before);
712 right = CHREC_RIGHT (chrec_before);
713 }
714
715 return build_polynomial_chrec
716 (var, left, chrec_fold_plus (type, right, to_add));
717 }
718 else
719 /* Search the evolution in LOOP_NB. */
720 return build_polynomial_chrec
721 (CHREC_VARIABLE (chrec_before),
722 add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before), to_add),
723 CHREC_RIGHT (chrec_before));
724
725 default:
726 /* These nodes do not depend on a loop. */
727 if (chrec_before == chrec_dont_know)
728 return chrec_dont_know;
729 return build_polynomial_chrec (loop_nb, chrec_before, to_add);
730 }
731 }
732
733 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
734 of LOOP_NB.
735
736 Description (provided for completeness, for those who read code in
737 a plane, and for my poor 62 bytes brain that would have forgotten
738 all this in the next two or three months):
739
740 The algorithm of translation of programs from the SSA representation
741 into the chrecs syntax is based on a pattern matching. After having
742 reconstructed the overall tree expression for a loop, there are only
743 two cases that can arise:
744
745 1. a = loop-phi (init, a + expr)
746 2. a = loop-phi (init, expr)
747
748 where EXPR is either a scalar constant with respect to the analyzed
749 loop (this is a degree 0 polynomial), or an expression containing
750 other loop-phi definitions (these are higher degree polynomials).
751
752 Examples:
753
754 1.
755 | init = ...
756 | loop_1
757 | a = phi (init, a + 5)
758 | endloop
759
760 2.
761 | inita = ...
762 | initb = ...
763 | loop_1
764 | a = phi (inita, 2 * b + 3)
765 | b = phi (initb, b + 1)
766 | endloop
767
768 For the first case, the semantics of the SSA representation is:
769
770 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
771
772 that is, there is a loop index "x" that determines the scalar value
773 of the variable during the loop execution. During the first
774 iteration, the value is that of the initial condition INIT, while
775 during the subsequent iterations, it is the sum of the initial
776 condition with the sum of all the values of EXPR from the initial
777 iteration to the before last considered iteration.
778
779 For the second case, the semantics of the SSA program is:
780
781 | a (x) = init, if x = 0;
782 | expr (x - 1), otherwise.
783
784 The second case corresponds to the PEELED_CHREC, whose syntax is
785 close to the syntax of a loop-phi-node:
786
787 | phi (init, expr) vs. (init, expr)_x
788
789 The proof of the translation algorithm for the first case is a
790 proof by structural induction based on the degree of EXPR.
791
792 Degree 0:
793 When EXPR is a constant with respect to the analyzed loop, or in
794 other words when EXPR is a polynomial of degree 0, the evolution of
795 the variable A in the loop is an affine function with an initial
796 condition INIT, and a step EXPR. In order to show this, we start
797 from the semantics of the SSA representation:
798
799 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
800
801 and since "expr (j)" is a constant with respect to "j",
802
803 f (x) = init + x * expr
804
805 Finally, based on the semantics of the pure sum chrecs, by
806 identification we get the corresponding chrecs syntax:
807
808 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
809 f (x) -> {init, +, expr}_x
810
811 Higher degree:
812 Suppose that EXPR is a polynomial of degree N with respect to the
813 analyzed loop_x for which we have already determined that it is
814 written under the chrecs syntax:
815
816 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
817
818 We start from the semantics of the SSA program:
819
820 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
821 |
822 | f (x) = init + \sum_{j = 0}^{x - 1}
823 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
824 |
825 | f (x) = init + \sum_{j = 0}^{x - 1}
826 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
827 |
828 | f (x) = init + \sum_{k = 0}^{n - 1}
829 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
830 |
831 | f (x) = init + \sum_{k = 0}^{n - 1}
832 | (b_k * \binom{x}{k + 1})
833 |
834 | f (x) = init + b_0 * \binom{x}{1} + ...
835 | + b_{n-1} * \binom{x}{n}
836 |
837 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
838 | + b_{n-1} * \binom{x}{n}
839 |
840
841 And finally from the definition of the chrecs syntax, we identify:
842 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
843
844 This shows the mechanism that stands behind the add_to_evolution
845 function. An important point is that the use of symbolic
846 parameters avoids the need of an analysis schedule.
847
848 Example:
849
850 | inita = ...
851 | initb = ...
852 | loop_1
853 | a = phi (inita, a + 2 + b)
854 | b = phi (initb, b + 1)
855 | endloop
856
857 When analyzing "a", the algorithm keeps "b" symbolically:
858
859 | a -> {inita, +, 2 + b}_1
860
861 Then, after instantiation, the analyzer ends on the evolution:
862
863 | a -> {inita, +, 2 + initb, +, 1}_1
864
865 */
866
867 static tree
868 add_to_evolution (unsigned loop_nb,
869 tree chrec_before,
870 enum tree_code code,
871 tree to_add)
872 {
873 tree type = chrec_type (to_add);
874 tree res = NULL_TREE;
875
876 if (to_add == NULL_TREE)
877 return chrec_before;
878
879 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
880 instantiated at this point. */
881 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
882 /* This should not happen. */
883 return chrec_dont_know;
884
885 if (dump_file && (dump_flags & TDF_DETAILS))
886 {
887 fprintf (dump_file, "(add_to_evolution \n");
888 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
889 fprintf (dump_file, " (chrec_before = ");
890 print_generic_expr (dump_file, chrec_before, 0);
891 fprintf (dump_file, ")\n (to_add = ");
892 print_generic_expr (dump_file, to_add, 0);
893 fprintf (dump_file, ")\n");
894 }
895
896 if (code == MINUS_EXPR)
897 to_add = chrec_fold_multiply (type, to_add,
898 build_int_cst_type (type, -1));
899
900 res = add_to_evolution_1 (loop_nb, chrec_before, to_add);
901
902 if (dump_file && (dump_flags & TDF_DETAILS))
903 {
904 fprintf (dump_file, " (res = ");
905 print_generic_expr (dump_file, res, 0);
906 fprintf (dump_file, "))\n");
907 }
908
909 return res;
910 }
911
912 /* Helper function. */
913
914 static inline tree
915 set_nb_iterations_in_loop (struct loop *loop,
916 tree res)
917 {
918 res = chrec_fold_plus (chrec_type (res), res,
919 build_int_cst_type (chrec_type (res), 1));
920
921 /* FIXME HWI: However we want to store one iteration less than the
922 count of the loop in order to be compatible with the other
923 nb_iter computations in loop-iv. This also allows the
924 representation of nb_iters that are equal to MAX_INT. */
925 if (TREE_CODE (res) == INTEGER_CST
926 && (TREE_INT_CST_LOW (res) == 0
927 || TREE_OVERFLOW (res)))
928 res = chrec_dont_know;
929
930 if (dump_file && (dump_flags & TDF_DETAILS))
931 {
932 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
933 print_generic_expr (dump_file, res, 0);
934 fprintf (dump_file, "))\n");
935 }
936
937 loop->nb_iterations = res;
938 return res;
939 }
940
941 \f
942
943 /* This section selects the loops that will be good candidates for the
944 scalar evolution analysis. For the moment, greedily select all the
945 loop nests we could analyze. */
946
947 /* Return true when it is possible to analyze the condition expression
948 EXPR. */
949
950 static bool
951 analyzable_condition (tree expr)
952 {
953 tree condition;
954
955 if (TREE_CODE (expr) != COND_EXPR)
956 return false;
957
958 condition = TREE_OPERAND (expr, 0);
959
960 switch (TREE_CODE (condition))
961 {
962 case SSA_NAME:
963 return true;
964
965 case LT_EXPR:
966 case LE_EXPR:
967 case GT_EXPR:
968 case GE_EXPR:
969 case EQ_EXPR:
970 case NE_EXPR:
971 return true;
972
973 default:
974 return false;
975 }
976
977 return false;
978 }
979
980 /* For a loop with a single exit edge, return the COND_EXPR that
981 guards the exit edge. If the expression is too difficult to
982 analyze, then give up. */
983
984 tree
985 get_loop_exit_condition (struct loop *loop)
986 {
987 tree res = NULL_TREE;
988 edge exit_edge = loop->single_exit;
989
990
991 if (dump_file && (dump_flags & TDF_DETAILS))
992 fprintf (dump_file, "(get_loop_exit_condition \n ");
993
994 if (exit_edge)
995 {
996 tree expr;
997
998 expr = last_stmt (exit_edge->src);
999 if (analyzable_condition (expr))
1000 res = expr;
1001 }
1002
1003 if (dump_file && (dump_flags & TDF_DETAILS))
1004 {
1005 print_generic_expr (dump_file, res, 0);
1006 fprintf (dump_file, ")\n");
1007 }
1008
1009 return res;
1010 }
1011
1012 /* Recursively determine and enqueue the exit conditions for a loop. */
1013
1014 static void
1015 get_exit_conditions_rec (struct loop *loop,
1016 VEC(tree,heap) **exit_conditions)
1017 {
1018 if (!loop)
1019 return;
1020
1021 /* Recurse on the inner loops, then on the next (sibling) loops. */
1022 get_exit_conditions_rec (loop->inner, exit_conditions);
1023 get_exit_conditions_rec (loop->next, exit_conditions);
1024
1025 if (loop->single_exit)
1026 {
1027 tree loop_condition = get_loop_exit_condition (loop);
1028
1029 if (loop_condition)
1030 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
1031 }
1032 }
1033
1034 /* Select the candidate loop nests for the analysis. This function
1035 initializes the EXIT_CONDITIONS array. */
1036
1037 static void
1038 select_loops_exit_conditions (struct loops *loops,
1039 VEC(tree,heap) **exit_conditions)
1040 {
1041 struct loop *function_body = loops->parray[0];
1042
1043 get_exit_conditions_rec (function_body->inner, exit_conditions);
1044 }
1045
1046 \f
1047 /* Depth first search algorithm. */
1048
1049 static bool follow_ssa_edge (struct loop *loop, tree, tree, tree *);
1050
1051 /* Follow the ssa edge into the right hand side RHS of an assignment.
1052 Return true if the strongly connected component has been found. */
1053
1054 static bool
1055 follow_ssa_edge_in_rhs (struct loop *loop,
1056 tree rhs,
1057 tree halting_phi,
1058 tree *evolution_of_loop)
1059 {
1060 bool res = false;
1061 tree rhs0, rhs1;
1062 tree type_rhs = TREE_TYPE (rhs);
1063
1064 /* The RHS is one of the following cases:
1065 - an SSA_NAME,
1066 - an INTEGER_CST,
1067 - a PLUS_EXPR,
1068 - a MINUS_EXPR,
1069 - an ASSERT_EXPR,
1070 - other cases are not yet handled. */
1071 switch (TREE_CODE (rhs))
1072 {
1073 case NOP_EXPR:
1074 /* This assignment is under the form "a_1 = (cast) rhs. */
1075 res = follow_ssa_edge_in_rhs (loop, TREE_OPERAND (rhs, 0), halting_phi,
1076 evolution_of_loop);
1077 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs), *evolution_of_loop);
1078 break;
1079
1080 case INTEGER_CST:
1081 /* This assignment is under the form "a_1 = 7". */
1082 res = false;
1083 break;
1084
1085 case SSA_NAME:
1086 /* This assignment is under the form: "a_1 = b_2". */
1087 res = follow_ssa_edge
1088 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop);
1089 break;
1090
1091 case PLUS_EXPR:
1092 /* This case is under the form "rhs0 + rhs1". */
1093 rhs0 = TREE_OPERAND (rhs, 0);
1094 rhs1 = TREE_OPERAND (rhs, 1);
1095 STRIP_TYPE_NOPS (rhs0);
1096 STRIP_TYPE_NOPS (rhs1);
1097
1098 if (TREE_CODE (rhs0) == SSA_NAME)
1099 {
1100 if (TREE_CODE (rhs1) == SSA_NAME)
1101 {
1102 /* Match an assignment under the form:
1103 "a = b + c". */
1104 res = follow_ssa_edge
1105 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1106 evolution_of_loop);
1107
1108 if (res)
1109 *evolution_of_loop = add_to_evolution
1110 (loop->num,
1111 chrec_convert (type_rhs, *evolution_of_loop),
1112 PLUS_EXPR, rhs1);
1113
1114 else
1115 {
1116 res = follow_ssa_edge
1117 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1118 evolution_of_loop);
1119
1120 if (res)
1121 *evolution_of_loop = add_to_evolution
1122 (loop->num,
1123 chrec_convert (type_rhs, *evolution_of_loop),
1124 PLUS_EXPR, rhs0);
1125 }
1126 }
1127
1128 else
1129 {
1130 /* Match an assignment under the form:
1131 "a = b + ...". */
1132 res = follow_ssa_edge
1133 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1134 evolution_of_loop);
1135 if (res)
1136 *evolution_of_loop = add_to_evolution
1137 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1138 PLUS_EXPR, rhs1);
1139 }
1140 }
1141
1142 else if (TREE_CODE (rhs1) == SSA_NAME)
1143 {
1144 /* Match an assignment under the form:
1145 "a = ... + c". */
1146 res = follow_ssa_edge
1147 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1148 evolution_of_loop);
1149 if (res)
1150 *evolution_of_loop = add_to_evolution
1151 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1152 PLUS_EXPR, rhs0);
1153 }
1154
1155 else
1156 /* Otherwise, match an assignment under the form:
1157 "a = ... + ...". */
1158 /* And there is nothing to do. */
1159 res = false;
1160
1161 break;
1162
1163 case MINUS_EXPR:
1164 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1165 rhs0 = TREE_OPERAND (rhs, 0);
1166 rhs1 = TREE_OPERAND (rhs, 1);
1167 STRIP_TYPE_NOPS (rhs0);
1168 STRIP_TYPE_NOPS (rhs1);
1169
1170 if (TREE_CODE (rhs0) == SSA_NAME)
1171 {
1172 /* Match an assignment under the form:
1173 "a = b - ...". */
1174 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1175 evolution_of_loop);
1176 if (res)
1177 *evolution_of_loop = add_to_evolution
1178 (loop->num, chrec_convert (type_rhs, *evolution_of_loop),
1179 MINUS_EXPR, rhs1);
1180 }
1181 else
1182 /* Otherwise, match an assignment under the form:
1183 "a = ... - ...". */
1184 /* And there is nothing to do. */
1185 res = false;
1186
1187 break;
1188
1189 case MULT_EXPR:
1190 /* This case is under the form "opnd0 = rhs0 * rhs1". */
1191 rhs0 = TREE_OPERAND (rhs, 0);
1192 rhs1 = TREE_OPERAND (rhs, 1);
1193 STRIP_TYPE_NOPS (rhs0);
1194 STRIP_TYPE_NOPS (rhs1);
1195
1196 if (TREE_CODE (rhs0) == SSA_NAME)
1197 {
1198 if (TREE_CODE (rhs1) == SSA_NAME)
1199 {
1200 /* Match an assignment under the form:
1201 "a = b * c". */
1202 res = follow_ssa_edge
1203 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1204 evolution_of_loop);
1205
1206 if (res)
1207 *evolution_of_loop = chrec_dont_know;
1208
1209 else
1210 {
1211 res = follow_ssa_edge
1212 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1213 evolution_of_loop);
1214
1215 if (res)
1216 *evolution_of_loop = chrec_dont_know;
1217 }
1218 }
1219
1220 else
1221 {
1222 /* Match an assignment under the form:
1223 "a = b * ...". */
1224 res = follow_ssa_edge
1225 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1226 evolution_of_loop);
1227 if (res)
1228 *evolution_of_loop = chrec_dont_know;
1229 }
1230 }
1231
1232 else if (TREE_CODE (rhs1) == SSA_NAME)
1233 {
1234 /* Match an assignment under the form:
1235 "a = ... * c". */
1236 res = follow_ssa_edge
1237 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1238 evolution_of_loop);
1239 if (res)
1240 *evolution_of_loop = chrec_dont_know;
1241 }
1242
1243 else
1244 /* Otherwise, match an assignment under the form:
1245 "a = ... * ...". */
1246 /* And there is nothing to do. */
1247 res = false;
1248
1249 break;
1250
1251 case ASSERT_EXPR:
1252 {
1253 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1254 It must be handled as a copy assignment of the form a_1 = a_2. */
1255 tree op0 = ASSERT_EXPR_VAR (rhs);
1256 if (TREE_CODE (op0) == SSA_NAME)
1257 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1258 halting_phi, evolution_of_loop);
1259 else
1260 res = false;
1261 break;
1262 }
1263
1264
1265 default:
1266 res = false;
1267 break;
1268 }
1269
1270 return res;
1271 }
1272
1273 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1274
1275 static bool
1276 backedge_phi_arg_p (tree phi, int i)
1277 {
1278 edge e = PHI_ARG_EDGE (phi, i);
1279
1280 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1281 about updating it anywhere, and this should work as well most of the
1282 time. */
1283 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1284 return true;
1285
1286 return false;
1287 }
1288
1289 /* Helper function for one branch of the condition-phi-node. Return
1290 true if the strongly connected component has been found following
1291 this path. */
1292
1293 static inline bool
1294 follow_ssa_edge_in_condition_phi_branch (int i,
1295 struct loop *loop,
1296 tree condition_phi,
1297 tree halting_phi,
1298 tree *evolution_of_branch,
1299 tree init_cond)
1300 {
1301 tree branch = PHI_ARG_DEF (condition_phi, i);
1302 *evolution_of_branch = chrec_dont_know;
1303
1304 /* Do not follow back edges (they must belong to an irreducible loop, which
1305 we really do not want to worry about). */
1306 if (backedge_phi_arg_p (condition_phi, i))
1307 return false;
1308
1309 if (TREE_CODE (branch) == SSA_NAME)
1310 {
1311 *evolution_of_branch = init_cond;
1312 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1313 evolution_of_branch);
1314 }
1315
1316 /* This case occurs when one of the condition branches sets
1317 the variable to a constant: i.e. a phi-node like
1318 "a_2 = PHI <a_7(5), 2(6)>;".
1319
1320 FIXME: This case have to be refined correctly:
1321 in some cases it is possible to say something better than
1322 chrec_dont_know, for example using a wrap-around notation. */
1323 return false;
1324 }
1325
1326 /* This function merges the branches of a condition-phi-node in a
1327 loop. */
1328
1329 static bool
1330 follow_ssa_edge_in_condition_phi (struct loop *loop,
1331 tree condition_phi,
1332 tree halting_phi,
1333 tree *evolution_of_loop)
1334 {
1335 int i;
1336 tree init = *evolution_of_loop;
1337 tree evolution_of_branch;
1338
1339 if (!follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1340 halting_phi,
1341 &evolution_of_branch,
1342 init))
1343 return false;
1344 *evolution_of_loop = evolution_of_branch;
1345
1346 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1347 {
1348 /* Quickly give up when the evolution of one of the branches is
1349 not known. */
1350 if (*evolution_of_loop == chrec_dont_know)
1351 return true;
1352
1353 if (!follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1354 halting_phi,
1355 &evolution_of_branch,
1356 init))
1357 return false;
1358
1359 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1360 evolution_of_branch);
1361 }
1362
1363 return true;
1364 }
1365
1366 /* Follow an SSA edge in an inner loop. It computes the overall
1367 effect of the loop, and following the symbolic initial conditions,
1368 it follows the edges in the parent loop. The inner loop is
1369 considered as a single statement. */
1370
1371 static bool
1372 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1373 tree loop_phi_node,
1374 tree halting_phi,
1375 tree *evolution_of_loop)
1376 {
1377 struct loop *loop = loop_containing_stmt (loop_phi_node);
1378 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1379
1380 /* Sometimes, the inner loop is too difficult to analyze, and the
1381 result of the analysis is a symbolic parameter. */
1382 if (ev == PHI_RESULT (loop_phi_node))
1383 {
1384 bool res = false;
1385 int i;
1386
1387 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1388 {
1389 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1390 basic_block bb;
1391
1392 /* Follow the edges that exit the inner loop. */
1393 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1394 if (!flow_bb_inside_loop_p (loop, bb))
1395 res = res || follow_ssa_edge_in_rhs (outer_loop, arg, halting_phi,
1396 evolution_of_loop);
1397 }
1398
1399 /* If the path crosses this loop-phi, give up. */
1400 if (res == true)
1401 *evolution_of_loop = chrec_dont_know;
1402
1403 return res;
1404 }
1405
1406 /* Otherwise, compute the overall effect of the inner loop. */
1407 ev = compute_overall_effect_of_inner_loop (loop, ev);
1408 return follow_ssa_edge_in_rhs (outer_loop, ev, halting_phi,
1409 evolution_of_loop);
1410 }
1411
1412 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1413 path that is analyzed on the return walk. */
1414
1415 static bool
1416 follow_ssa_edge (struct loop *loop,
1417 tree def,
1418 tree halting_phi,
1419 tree *evolution_of_loop)
1420 {
1421 struct loop *def_loop;
1422
1423 if (TREE_CODE (def) == NOP_EXPR)
1424 return false;
1425
1426 def_loop = loop_containing_stmt (def);
1427
1428 switch (TREE_CODE (def))
1429 {
1430 case PHI_NODE:
1431 if (!loop_phi_node_p (def))
1432 /* DEF is a condition-phi-node. Follow the branches, and
1433 record their evolutions. Finally, merge the collected
1434 information and set the approximation to the main
1435 variable. */
1436 return follow_ssa_edge_in_condition_phi
1437 (loop, def, halting_phi, evolution_of_loop);
1438
1439 /* When the analyzed phi is the halting_phi, the
1440 depth-first search is over: we have found a path from
1441 the halting_phi to itself in the loop. */
1442 if (def == halting_phi)
1443 return true;
1444
1445 /* Otherwise, the evolution of the HALTING_PHI depends
1446 on the evolution of another loop-phi-node, i.e. the
1447 evolution function is a higher degree polynomial. */
1448 if (def_loop == loop)
1449 return false;
1450
1451 /* Inner loop. */
1452 if (flow_loop_nested_p (loop, def_loop))
1453 return follow_ssa_edge_inner_loop_phi
1454 (loop, def, halting_phi, evolution_of_loop);
1455
1456 /* Outer loop. */
1457 return false;
1458
1459 case MODIFY_EXPR:
1460 return follow_ssa_edge_in_rhs (loop,
1461 TREE_OPERAND (def, 1),
1462 halting_phi,
1463 evolution_of_loop);
1464
1465 default:
1466 /* At this level of abstraction, the program is just a set
1467 of MODIFY_EXPRs and PHI_NODEs. In principle there is no
1468 other node to be handled. */
1469 return false;
1470 }
1471 }
1472
1473 \f
1474
1475 /* Given a LOOP_PHI_NODE, this function determines the evolution
1476 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1477
1478 static tree
1479 analyze_evolution_in_loop (tree loop_phi_node,
1480 tree init_cond)
1481 {
1482 int i;
1483 tree evolution_function = chrec_not_analyzed_yet;
1484 struct loop *loop = loop_containing_stmt (loop_phi_node);
1485 basic_block bb;
1486
1487 if (dump_file && (dump_flags & TDF_DETAILS))
1488 {
1489 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1490 fprintf (dump_file, " (loop_phi_node = ");
1491 print_generic_expr (dump_file, loop_phi_node, 0);
1492 fprintf (dump_file, ")\n");
1493 }
1494
1495 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1496 {
1497 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1498 tree ssa_chain, ev_fn;
1499 bool res;
1500
1501 /* Select the edges that enter the loop body. */
1502 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1503 if (!flow_bb_inside_loop_p (loop, bb))
1504 continue;
1505
1506 if (TREE_CODE (arg) == SSA_NAME)
1507 {
1508 ssa_chain = SSA_NAME_DEF_STMT (arg);
1509
1510 /* Pass in the initial condition to the follow edge function. */
1511 ev_fn = init_cond;
1512 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn);
1513 }
1514 else
1515 res = false;
1516
1517 /* When it is impossible to go back on the same
1518 loop_phi_node by following the ssa edges, the
1519 evolution is represented by a peeled chrec, i.e. the
1520 first iteration, EV_FN has the value INIT_COND, then
1521 all the other iterations it has the value of ARG.
1522 For the moment, PEELED_CHREC nodes are not built. */
1523 if (!res)
1524 ev_fn = chrec_dont_know;
1525
1526 /* When there are multiple back edges of the loop (which in fact never
1527 happens currently, but nevertheless), merge their evolutions. */
1528 evolution_function = chrec_merge (evolution_function, ev_fn);
1529 }
1530
1531 if (dump_file && (dump_flags & TDF_DETAILS))
1532 {
1533 fprintf (dump_file, " (evolution_function = ");
1534 print_generic_expr (dump_file, evolution_function, 0);
1535 fprintf (dump_file, "))\n");
1536 }
1537
1538 return evolution_function;
1539 }
1540
1541 /* Given a loop-phi-node, return the initial conditions of the
1542 variable on entry of the loop. When the CCP has propagated
1543 constants into the loop-phi-node, the initial condition is
1544 instantiated, otherwise the initial condition is kept symbolic.
1545 This analyzer does not analyze the evolution outside the current
1546 loop, and leaves this task to the on-demand tree reconstructor. */
1547
1548 static tree
1549 analyze_initial_condition (tree loop_phi_node)
1550 {
1551 int i;
1552 tree init_cond = chrec_not_analyzed_yet;
1553 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1554
1555 if (dump_file && (dump_flags & TDF_DETAILS))
1556 {
1557 fprintf (dump_file, "(analyze_initial_condition \n");
1558 fprintf (dump_file, " (loop_phi_node = \n");
1559 print_generic_expr (dump_file, loop_phi_node, 0);
1560 fprintf (dump_file, ")\n");
1561 }
1562
1563 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1564 {
1565 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1566 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1567
1568 /* When the branch is oriented to the loop's body, it does
1569 not contribute to the initial condition. */
1570 if (flow_bb_inside_loop_p (loop, bb))
1571 continue;
1572
1573 if (init_cond == chrec_not_analyzed_yet)
1574 {
1575 init_cond = branch;
1576 continue;
1577 }
1578
1579 if (TREE_CODE (branch) == SSA_NAME)
1580 {
1581 init_cond = chrec_dont_know;
1582 break;
1583 }
1584
1585 init_cond = chrec_merge (init_cond, branch);
1586 }
1587
1588 /* Ooops -- a loop without an entry??? */
1589 if (init_cond == chrec_not_analyzed_yet)
1590 init_cond = chrec_dont_know;
1591
1592 if (dump_file && (dump_flags & TDF_DETAILS))
1593 {
1594 fprintf (dump_file, " (init_cond = ");
1595 print_generic_expr (dump_file, init_cond, 0);
1596 fprintf (dump_file, "))\n");
1597 }
1598
1599 return init_cond;
1600 }
1601
1602 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1603
1604 static tree
1605 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1606 {
1607 tree res;
1608 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1609 tree init_cond;
1610
1611 if (phi_loop != loop)
1612 {
1613 struct loop *subloop;
1614 tree evolution_fn = analyze_scalar_evolution
1615 (phi_loop, PHI_RESULT (loop_phi_node));
1616
1617 /* Dive one level deeper. */
1618 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1619
1620 /* Interpret the subloop. */
1621 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1622 return res;
1623 }
1624
1625 /* Otherwise really interpret the loop phi. */
1626 init_cond = analyze_initial_condition (loop_phi_node);
1627 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1628
1629 return res;
1630 }
1631
1632 /* This function merges the branches of a condition-phi-node,
1633 contained in the outermost loop, and whose arguments are already
1634 analyzed. */
1635
1636 static tree
1637 interpret_condition_phi (struct loop *loop, tree condition_phi)
1638 {
1639 int i;
1640 tree res = chrec_not_analyzed_yet;
1641
1642 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1643 {
1644 tree branch_chrec;
1645
1646 if (backedge_phi_arg_p (condition_phi, i))
1647 {
1648 res = chrec_dont_know;
1649 break;
1650 }
1651
1652 branch_chrec = analyze_scalar_evolution
1653 (loop, PHI_ARG_DEF (condition_phi, i));
1654
1655 res = chrec_merge (res, branch_chrec);
1656 }
1657
1658 return res;
1659 }
1660
1661 /* Interpret the right hand side of a modify_expr OPND1. If we didn't
1662 analyze this node before, follow the definitions until ending
1663 either on an analyzed modify_expr, or on a loop-phi-node. On the
1664 return path, this function propagates evolutions (ala constant copy
1665 propagation). OPND1 is not a GIMPLE expression because we could
1666 analyze the effect of an inner loop: see interpret_loop_phi. */
1667
1668 static tree
1669 interpret_rhs_modify_expr (struct loop *loop,
1670 tree opnd1, tree type)
1671 {
1672 tree res, opnd10, opnd11, chrec10, chrec11;
1673
1674 if (is_gimple_min_invariant (opnd1))
1675 return chrec_convert (type, opnd1);
1676
1677 switch (TREE_CODE (opnd1))
1678 {
1679 case PLUS_EXPR:
1680 opnd10 = TREE_OPERAND (opnd1, 0);
1681 opnd11 = TREE_OPERAND (opnd1, 1);
1682 chrec10 = analyze_scalar_evolution (loop, opnd10);
1683 chrec11 = analyze_scalar_evolution (loop, opnd11);
1684 chrec10 = chrec_convert (type, chrec10);
1685 chrec11 = chrec_convert (type, chrec11);
1686 res = chrec_fold_plus (type, chrec10, chrec11);
1687 break;
1688
1689 case MINUS_EXPR:
1690 opnd10 = TREE_OPERAND (opnd1, 0);
1691 opnd11 = TREE_OPERAND (opnd1, 1);
1692 chrec10 = analyze_scalar_evolution (loop, opnd10);
1693 chrec11 = analyze_scalar_evolution (loop, opnd11);
1694 chrec10 = chrec_convert (type, chrec10);
1695 chrec11 = chrec_convert (type, chrec11);
1696 res = chrec_fold_minus (type, chrec10, chrec11);
1697 break;
1698
1699 case NEGATE_EXPR:
1700 opnd10 = TREE_OPERAND (opnd1, 0);
1701 chrec10 = analyze_scalar_evolution (loop, opnd10);
1702 chrec10 = chrec_convert (type, chrec10);
1703 res = chrec_fold_minus (type, build_int_cst (type, 0), chrec10);
1704 break;
1705
1706 case MULT_EXPR:
1707 opnd10 = TREE_OPERAND (opnd1, 0);
1708 opnd11 = TREE_OPERAND (opnd1, 1);
1709 chrec10 = analyze_scalar_evolution (loop, opnd10);
1710 chrec11 = analyze_scalar_evolution (loop, opnd11);
1711 chrec10 = chrec_convert (type, chrec10);
1712 chrec11 = chrec_convert (type, chrec11);
1713 res = chrec_fold_multiply (type, chrec10, chrec11);
1714 break;
1715
1716 case SSA_NAME:
1717 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1));
1718 break;
1719
1720 case ASSERT_EXPR:
1721 opnd10 = ASSERT_EXPR_VAR (opnd1);
1722 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10));
1723 break;
1724
1725 case NOP_EXPR:
1726 case CONVERT_EXPR:
1727 opnd10 = TREE_OPERAND (opnd1, 0);
1728 chrec10 = analyze_scalar_evolution (loop, opnd10);
1729 res = chrec_convert (type, chrec10);
1730 break;
1731
1732 default:
1733 res = chrec_dont_know;
1734 break;
1735 }
1736
1737 return res;
1738 }
1739
1740 \f
1741
1742 /* This section contains all the entry points:
1743 - number_of_iterations_in_loop,
1744 - analyze_scalar_evolution,
1745 - instantiate_parameters.
1746 */
1747
1748 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1749 common ancestor of DEF_LOOP and USE_LOOP. */
1750
1751 static tree
1752 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1753 struct loop *def_loop,
1754 tree ev)
1755 {
1756 tree res;
1757 if (def_loop == wrto_loop)
1758 return ev;
1759
1760 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1761 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1762
1763 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1764 }
1765
1766 /* Helper recursive function. */
1767
1768 static tree
1769 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1770 {
1771 tree def, type = TREE_TYPE (var);
1772 basic_block bb;
1773 struct loop *def_loop;
1774
1775 if (loop == NULL)
1776 return chrec_dont_know;
1777
1778 if (TREE_CODE (var) != SSA_NAME)
1779 return interpret_rhs_modify_expr (loop, var, type);
1780
1781 def = SSA_NAME_DEF_STMT (var);
1782 bb = bb_for_stmt (def);
1783 def_loop = bb ? bb->loop_father : NULL;
1784
1785 if (bb == NULL
1786 || !flow_bb_inside_loop_p (loop, bb))
1787 {
1788 /* Keep the symbolic form. */
1789 res = var;
1790 goto set_and_end;
1791 }
1792
1793 if (res != chrec_not_analyzed_yet)
1794 {
1795 if (loop != bb->loop_father)
1796 res = compute_scalar_evolution_in_loop
1797 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1798
1799 goto set_and_end;
1800 }
1801
1802 if (loop != def_loop)
1803 {
1804 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1805 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1806
1807 goto set_and_end;
1808 }
1809
1810 switch (TREE_CODE (def))
1811 {
1812 case MODIFY_EXPR:
1813 res = interpret_rhs_modify_expr (loop, TREE_OPERAND (def, 1), type);
1814 break;
1815
1816 case PHI_NODE:
1817 if (loop_phi_node_p (def))
1818 res = interpret_loop_phi (loop, def);
1819 else
1820 res = interpret_condition_phi (loop, def);
1821 break;
1822
1823 default:
1824 res = chrec_dont_know;
1825 break;
1826 }
1827
1828 set_and_end:
1829
1830 /* Keep the symbolic form. */
1831 if (res == chrec_dont_know)
1832 res = var;
1833
1834 if (loop == def_loop)
1835 set_scalar_evolution (var, res);
1836
1837 return res;
1838 }
1839
1840 /* Entry point for the scalar evolution analyzer.
1841 Analyzes and returns the scalar evolution of the ssa_name VAR.
1842 LOOP_NB is the identifier number of the loop in which the variable
1843 is used.
1844
1845 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1846 pointer to the statement that uses this variable, in order to
1847 determine the evolution function of the variable, use the following
1848 calls:
1849
1850 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1851 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1852 tree chrec_instantiated = instantiate_parameters
1853 (loop_nb, chrec_with_symbols);
1854 */
1855
1856 tree
1857 analyze_scalar_evolution (struct loop *loop, tree var)
1858 {
1859 tree res;
1860
1861 if (dump_file && (dump_flags & TDF_DETAILS))
1862 {
1863 fprintf (dump_file, "(analyze_scalar_evolution \n");
1864 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1865 fprintf (dump_file, " (scalar = ");
1866 print_generic_expr (dump_file, var, 0);
1867 fprintf (dump_file, ")\n");
1868 }
1869
1870 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1871
1872 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1873 res = var;
1874
1875 if (dump_file && (dump_flags & TDF_DETAILS))
1876 fprintf (dump_file, ")\n");
1877
1878 return res;
1879 }
1880
1881 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1882 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1883 of VERSION). */
1884
1885 static tree
1886 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1887 tree version)
1888 {
1889 bool val = false;
1890 tree ev = version;
1891
1892 while (1)
1893 {
1894 ev = analyze_scalar_evolution (use_loop, ev);
1895 ev = resolve_mixers (use_loop, ev);
1896
1897 if (use_loop == wrto_loop)
1898 return ev;
1899
1900 /* If the value of the use changes in the inner loop, we cannot express
1901 its value in the outer loop (we might try to return interval chrec,
1902 but we do not have a user for it anyway) */
1903 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1904 || !val)
1905 return chrec_dont_know;
1906
1907 use_loop = use_loop->outer;
1908 }
1909 }
1910
1911 /* Returns instantiated value for VERSION in CACHE. */
1912
1913 static tree
1914 get_instantiated_value (htab_t cache, tree version)
1915 {
1916 struct scev_info_str *info, pattern;
1917
1918 pattern.var = version;
1919 info = htab_find (cache, &pattern);
1920
1921 if (info)
1922 return info->chrec;
1923 else
1924 return NULL_TREE;
1925 }
1926
1927 /* Sets instantiated value for VERSION to VAL in CACHE. */
1928
1929 static void
1930 set_instantiated_value (htab_t cache, tree version, tree val)
1931 {
1932 struct scev_info_str *info, pattern;
1933 PTR *slot;
1934
1935 pattern.var = version;
1936 slot = htab_find_slot (cache, &pattern, INSERT);
1937
1938 if (*slot)
1939 info = *slot;
1940 else
1941 info = *slot = new_scev_info_str (version);
1942 info->chrec = val;
1943 }
1944
1945 /* Analyze all the parameters of the chrec that were left under a symbolic form,
1946 with respect to LOOP. CHREC is the chrec to instantiate. If
1947 ALLOW_SUPERLOOP_CHRECS is true, replacing loop invariants with
1948 outer loop chrecs is done. CACHE is the cache of already instantiated
1949 values. */
1950
1951 static tree
1952 instantiate_parameters_1 (struct loop *loop, tree chrec,
1953 bool allow_superloop_chrecs,
1954 htab_t cache)
1955 {
1956 tree res, op0, op1, op2;
1957 basic_block def_bb;
1958 struct loop *def_loop;
1959
1960 if (chrec == NULL_TREE
1961 || automatically_generated_chrec_p (chrec))
1962 return chrec;
1963
1964 if (is_gimple_min_invariant (chrec))
1965 return chrec;
1966
1967 switch (TREE_CODE (chrec))
1968 {
1969 case SSA_NAME:
1970 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
1971
1972 /* A parameter (or loop invariant and we do not want to include
1973 evolutions in outer loops), nothing to do. */
1974 if (!def_bb
1975 || (!allow_superloop_chrecs
1976 && !flow_bb_inside_loop_p (loop, def_bb)))
1977 return chrec;
1978
1979 /* We cache the value of instantiated variable to avoid exponential
1980 time complexity due to reevaluations. We also store the convenient
1981 value in the cache in order to prevent infinite recursion -- we do
1982 not want to instantiate the SSA_NAME if it is in a mixer
1983 structure. This is used for avoiding the instantiation of
1984 recursively defined functions, such as:
1985
1986 | a_2 -> {0, +, 1, +, a_2}_1 */
1987
1988 res = get_instantiated_value (cache, chrec);
1989 if (res)
1990 return res;
1991
1992 /* Store the convenient value for chrec in the structure. If it
1993 is defined outside of the loop, we may just leave it in symbolic
1994 form, otherwise we need to admit that we do not know its behavior
1995 inside the loop. */
1996 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
1997 set_instantiated_value (cache, chrec, res);
1998
1999 /* To make things even more complicated, instantiate_parameters_1
2000 calls analyze_scalar_evolution that may call # of iterations
2001 analysis that may in turn call instantiate_parameters_1 again.
2002 To prevent the infinite recursion, keep also the bitmap of
2003 ssa names that are being instantiated globally. */
2004 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2005 return res;
2006
2007 def_loop = find_common_loop (loop, def_bb->loop_father);
2008
2009 /* If the analysis yields a parametric chrec, instantiate the
2010 result again. */
2011 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2012 res = analyze_scalar_evolution (def_loop, chrec);
2013 if (res != chrec_dont_know)
2014 res = instantiate_parameters_1 (loop, res, allow_superloop_chrecs,
2015 cache);
2016 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2017
2018 /* Store the correct value to the cache. */
2019 set_instantiated_value (cache, chrec, res);
2020 return res;
2021
2022 case POLYNOMIAL_CHREC:
2023 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2024 allow_superloop_chrecs, cache);
2025 if (op0 == chrec_dont_know)
2026 return chrec_dont_know;
2027
2028 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2029 allow_superloop_chrecs, cache);
2030 if (op1 == chrec_dont_know)
2031 return chrec_dont_know;
2032
2033 if (CHREC_LEFT (chrec) != op0
2034 || CHREC_RIGHT (chrec) != op1)
2035 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2036 return chrec;
2037
2038 case PLUS_EXPR:
2039 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2040 allow_superloop_chrecs, cache);
2041 if (op0 == chrec_dont_know)
2042 return chrec_dont_know;
2043
2044 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2045 allow_superloop_chrecs, cache);
2046 if (op1 == chrec_dont_know)
2047 return chrec_dont_know;
2048
2049 if (TREE_OPERAND (chrec, 0) != op0
2050 || TREE_OPERAND (chrec, 1) != op1)
2051 chrec = chrec_fold_plus (TREE_TYPE (chrec), op0, op1);
2052 return chrec;
2053
2054 case MINUS_EXPR:
2055 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2056 allow_superloop_chrecs, cache);
2057 if (op0 == chrec_dont_know)
2058 return chrec_dont_know;
2059
2060 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2061 allow_superloop_chrecs, cache);
2062 if (op1 == chrec_dont_know)
2063 return chrec_dont_know;
2064
2065 if (TREE_OPERAND (chrec, 0) != op0
2066 || TREE_OPERAND (chrec, 1) != op1)
2067 chrec = chrec_fold_minus (TREE_TYPE (chrec), op0, op1);
2068 return chrec;
2069
2070 case MULT_EXPR:
2071 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2072 allow_superloop_chrecs, cache);
2073 if (op0 == chrec_dont_know)
2074 return chrec_dont_know;
2075
2076 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2077 allow_superloop_chrecs, cache);
2078 if (op1 == chrec_dont_know)
2079 return chrec_dont_know;
2080
2081 if (TREE_OPERAND (chrec, 0) != op0
2082 || TREE_OPERAND (chrec, 1) != op1)
2083 chrec = chrec_fold_multiply (TREE_TYPE (chrec), op0, op1);
2084 return chrec;
2085
2086 case NOP_EXPR:
2087 case CONVERT_EXPR:
2088 case NON_LVALUE_EXPR:
2089 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2090 allow_superloop_chrecs, cache);
2091 if (op0 == chrec_dont_know)
2092 return chrec_dont_know;
2093
2094 if (op0 == TREE_OPERAND (chrec, 0))
2095 return chrec;
2096
2097 return chrec_convert (TREE_TYPE (chrec), op0);
2098
2099 case SCEV_NOT_KNOWN:
2100 return chrec_dont_know;
2101
2102 case SCEV_KNOWN:
2103 return chrec_known;
2104
2105 default:
2106 break;
2107 }
2108
2109 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2110 {
2111 case 3:
2112 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2113 allow_superloop_chrecs, cache);
2114 if (op0 == chrec_dont_know)
2115 return chrec_dont_know;
2116
2117 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2118 allow_superloop_chrecs, cache);
2119 if (op1 == chrec_dont_know)
2120 return chrec_dont_know;
2121
2122 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2123 allow_superloop_chrecs, cache);
2124 if (op2 == chrec_dont_know)
2125 return chrec_dont_know;
2126
2127 if (op0 == TREE_OPERAND (chrec, 0)
2128 && op1 == TREE_OPERAND (chrec, 1)
2129 && op2 == TREE_OPERAND (chrec, 2))
2130 return chrec;
2131
2132 return fold (build (TREE_CODE (chrec),
2133 TREE_TYPE (chrec), op0, op1, op2));
2134
2135 case 2:
2136 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2137 allow_superloop_chrecs, cache);
2138 if (op0 == chrec_dont_know)
2139 return chrec_dont_know;
2140
2141 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2142 allow_superloop_chrecs, cache);
2143 if (op1 == chrec_dont_know)
2144 return chrec_dont_know;
2145
2146 if (op0 == TREE_OPERAND (chrec, 0)
2147 && op1 == TREE_OPERAND (chrec, 1))
2148 return chrec;
2149 return fold (build (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1));
2150
2151 case 1:
2152 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2153 allow_superloop_chrecs, cache);
2154 if (op0 == chrec_dont_know)
2155 return chrec_dont_know;
2156 if (op0 == TREE_OPERAND (chrec, 0))
2157 return chrec;
2158 return fold (build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0));
2159
2160 case 0:
2161 return chrec;
2162
2163 default:
2164 break;
2165 }
2166
2167 /* Too complicated to handle. */
2168 return chrec_dont_know;
2169 }
2170
2171 /* Analyze all the parameters of the chrec that were left under a
2172 symbolic form. LOOP is the loop in which symbolic names have to
2173 be analyzed and instantiated. */
2174
2175 tree
2176 instantiate_parameters (struct loop *loop,
2177 tree chrec)
2178 {
2179 tree res;
2180 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2181
2182 if (dump_file && (dump_flags & TDF_DETAILS))
2183 {
2184 fprintf (dump_file, "(instantiate_parameters \n");
2185 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2186 fprintf (dump_file, " (chrec = ");
2187 print_generic_expr (dump_file, chrec, 0);
2188 fprintf (dump_file, ")\n");
2189 }
2190
2191 res = instantiate_parameters_1 (loop, chrec, true, cache);
2192
2193 if (dump_file && (dump_flags & TDF_DETAILS))
2194 {
2195 fprintf (dump_file, " (res = ");
2196 print_generic_expr (dump_file, res, 0);
2197 fprintf (dump_file, "))\n");
2198 }
2199
2200 htab_delete (cache);
2201
2202 return res;
2203 }
2204
2205 /* Similar to instantiate_parameters, but does not introduce the
2206 evolutions in outer loops for LOOP invariants in CHREC. */
2207
2208 static tree
2209 resolve_mixers (struct loop *loop, tree chrec)
2210 {
2211 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2212 tree ret = instantiate_parameters_1 (loop, chrec, false, cache);
2213 htab_delete (cache);
2214 return ret;
2215 }
2216
2217 /* Entry point for the analysis of the number of iterations pass.
2218 This function tries to safely approximate the number of iterations
2219 the loop will run. When this property is not decidable at compile
2220 time, the result is chrec_dont_know. Otherwise the result is
2221 a scalar or a symbolic parameter.
2222
2223 Example of analysis: suppose that the loop has an exit condition:
2224
2225 "if (b > 49) goto end_loop;"
2226
2227 and that in a previous analysis we have determined that the
2228 variable 'b' has an evolution function:
2229
2230 "EF = {23, +, 5}_2".
2231
2232 When we evaluate the function at the point 5, i.e. the value of the
2233 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2234 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2235 the loop body has been executed 6 times. */
2236
2237 tree
2238 number_of_iterations_in_loop (struct loop *loop)
2239 {
2240 tree res, type;
2241 edge exit;
2242 struct tree_niter_desc niter_desc;
2243
2244 /* Determine whether the number_of_iterations_in_loop has already
2245 been computed. */
2246 res = loop->nb_iterations;
2247 if (res)
2248 return res;
2249 res = chrec_dont_know;
2250
2251 if (dump_file && (dump_flags & TDF_DETAILS))
2252 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2253
2254 exit = loop->single_exit;
2255 if (!exit)
2256 goto end;
2257
2258 if (!number_of_iterations_exit (loop, exit, &niter_desc))
2259 goto end;
2260
2261 type = TREE_TYPE (niter_desc.niter);
2262 if (integer_nonzerop (niter_desc.may_be_zero))
2263 res = build_int_cst (type, 0);
2264 else if (integer_zerop (niter_desc.may_be_zero))
2265 res = niter_desc.niter;
2266 else
2267 res = chrec_dont_know;
2268
2269 end:
2270 return set_nb_iterations_in_loop (loop, res);
2271 }
2272
2273 /* One of the drivers for testing the scalar evolutions analysis.
2274 This function computes the number of iterations for all the loops
2275 from the EXIT_CONDITIONS array. */
2276
2277 static void
2278 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2279 {
2280 unsigned int i;
2281 unsigned nb_chrec_dont_know_loops = 0;
2282 unsigned nb_static_loops = 0;
2283 tree cond;
2284
2285 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2286 {
2287 tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
2288 if (chrec_contains_undetermined (res))
2289 nb_chrec_dont_know_loops++;
2290 else
2291 nb_static_loops++;
2292 }
2293
2294 if (dump_file)
2295 {
2296 fprintf (dump_file, "\n(\n");
2297 fprintf (dump_file, "-----------------------------------------\n");
2298 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2299 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2300 fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2301 fprintf (dump_file, "-----------------------------------------\n");
2302 fprintf (dump_file, ")\n\n");
2303
2304 print_loop_ir (dump_file);
2305 }
2306 }
2307
2308 \f
2309
2310 /* Counters for the stats. */
2311
2312 struct chrec_stats
2313 {
2314 unsigned nb_chrecs;
2315 unsigned nb_affine;
2316 unsigned nb_affine_multivar;
2317 unsigned nb_higher_poly;
2318 unsigned nb_chrec_dont_know;
2319 unsigned nb_undetermined;
2320 };
2321
2322 /* Reset the counters. */
2323
2324 static inline void
2325 reset_chrecs_counters (struct chrec_stats *stats)
2326 {
2327 stats->nb_chrecs = 0;
2328 stats->nb_affine = 0;
2329 stats->nb_affine_multivar = 0;
2330 stats->nb_higher_poly = 0;
2331 stats->nb_chrec_dont_know = 0;
2332 stats->nb_undetermined = 0;
2333 }
2334
2335 /* Dump the contents of a CHREC_STATS structure. */
2336
2337 static void
2338 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2339 {
2340 fprintf (file, "\n(\n");
2341 fprintf (file, "-----------------------------------------\n");
2342 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2343 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2344 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2345 stats->nb_higher_poly);
2346 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2347 fprintf (file, "-----------------------------------------\n");
2348 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2349 fprintf (file, "%d\twith undetermined coefficients\n",
2350 stats->nb_undetermined);
2351 fprintf (file, "-----------------------------------------\n");
2352 fprintf (file, "%d\tchrecs in the scev database\n",
2353 (int) htab_elements (scalar_evolution_info));
2354 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2355 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2356 fprintf (file, "-----------------------------------------\n");
2357 fprintf (file, ")\n\n");
2358 }
2359
2360 /* Gather statistics about CHREC. */
2361
2362 static void
2363 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2364 {
2365 if (dump_file && (dump_flags & TDF_STATS))
2366 {
2367 fprintf (dump_file, "(classify_chrec ");
2368 print_generic_expr (dump_file, chrec, 0);
2369 fprintf (dump_file, "\n");
2370 }
2371
2372 stats->nb_chrecs++;
2373
2374 if (chrec == NULL_TREE)
2375 {
2376 stats->nb_undetermined++;
2377 return;
2378 }
2379
2380 switch (TREE_CODE (chrec))
2381 {
2382 case POLYNOMIAL_CHREC:
2383 if (evolution_function_is_affine_p (chrec))
2384 {
2385 if (dump_file && (dump_flags & TDF_STATS))
2386 fprintf (dump_file, " affine_univariate\n");
2387 stats->nb_affine++;
2388 }
2389 else if (evolution_function_is_affine_multivariate_p (chrec))
2390 {
2391 if (dump_file && (dump_flags & TDF_STATS))
2392 fprintf (dump_file, " affine_multivariate\n");
2393 stats->nb_affine_multivar++;
2394 }
2395 else
2396 {
2397 if (dump_file && (dump_flags & TDF_STATS))
2398 fprintf (dump_file, " higher_degree_polynomial\n");
2399 stats->nb_higher_poly++;
2400 }
2401
2402 break;
2403
2404 default:
2405 break;
2406 }
2407
2408 if (chrec_contains_undetermined (chrec))
2409 {
2410 if (dump_file && (dump_flags & TDF_STATS))
2411 fprintf (dump_file, " undetermined\n");
2412 stats->nb_undetermined++;
2413 }
2414
2415 if (dump_file && (dump_flags & TDF_STATS))
2416 fprintf (dump_file, ")\n");
2417 }
2418
2419 /* One of the drivers for testing the scalar evolutions analysis.
2420 This function analyzes the scalar evolution of all the scalars
2421 defined as loop phi nodes in one of the loops from the
2422 EXIT_CONDITIONS array.
2423
2424 TODO Optimization: A loop is in canonical form if it contains only
2425 a single scalar loop phi node. All the other scalars that have an
2426 evolution in the loop are rewritten in function of this single
2427 index. This allows the parallelization of the loop. */
2428
2429 static void
2430 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2431 {
2432 unsigned int i;
2433 struct chrec_stats stats;
2434 tree cond;
2435
2436 reset_chrecs_counters (&stats);
2437
2438 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2439 {
2440 struct loop *loop;
2441 basic_block bb;
2442 tree phi, chrec;
2443
2444 loop = loop_containing_stmt (cond);
2445 bb = loop->header;
2446
2447 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2448 if (is_gimple_reg (PHI_RESULT (phi)))
2449 {
2450 chrec = instantiate_parameters
2451 (loop,
2452 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2453
2454 if (dump_file && (dump_flags & TDF_STATS))
2455 gather_chrec_stats (chrec, &stats);
2456 }
2457 }
2458
2459 if (dump_file && (dump_flags & TDF_STATS))
2460 dump_chrecs_stats (dump_file, &stats);
2461 }
2462
2463 /* Callback for htab_traverse, gathers information on chrecs in the
2464 hashtable. */
2465
2466 static int
2467 gather_stats_on_scev_database_1 (void **slot, void *stats)
2468 {
2469 struct scev_info_str *entry = *slot;
2470
2471 gather_chrec_stats (entry->chrec, stats);
2472
2473 return 1;
2474 }
2475
2476 /* Classify the chrecs of the whole database. */
2477
2478 void
2479 gather_stats_on_scev_database (void)
2480 {
2481 struct chrec_stats stats;
2482
2483 if (!dump_file)
2484 return;
2485
2486 reset_chrecs_counters (&stats);
2487
2488 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2489 &stats);
2490
2491 dump_chrecs_stats (dump_file, &stats);
2492 }
2493
2494 \f
2495
2496 /* Initializer. */
2497
2498 static void
2499 initialize_scalar_evolutions_analyzer (void)
2500 {
2501 /* The elements below are unique. */
2502 if (chrec_dont_know == NULL_TREE)
2503 {
2504 chrec_not_analyzed_yet = NULL_TREE;
2505 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2506 chrec_known = make_node (SCEV_KNOWN);
2507 TREE_TYPE (chrec_dont_know) = NULL_TREE;
2508 TREE_TYPE (chrec_known) = NULL_TREE;
2509 }
2510 }
2511
2512 /* Initialize the analysis of scalar evolutions for LOOPS. */
2513
2514 void
2515 scev_initialize (struct loops *loops)
2516 {
2517 unsigned i;
2518 current_loops = loops;
2519
2520 scalar_evolution_info = htab_create (100, hash_scev_info,
2521 eq_scev_info, del_scev_info);
2522 already_instantiated = BITMAP_ALLOC (NULL);
2523
2524 initialize_scalar_evolutions_analyzer ();
2525
2526 for (i = 1; i < loops->num; i++)
2527 if (loops->parray[i])
2528 loops->parray[i]->nb_iterations = NULL_TREE;
2529 }
2530
2531 /* Cleans up the information cached by the scalar evolutions analysis. */
2532
2533 void
2534 scev_reset (void)
2535 {
2536 unsigned i;
2537 struct loop *loop;
2538
2539 if (!scalar_evolution_info || !current_loops)
2540 return;
2541
2542 htab_empty (scalar_evolution_info);
2543 for (i = 1; i < current_loops->num; i++)
2544 {
2545 loop = current_loops->parray[i];
2546 if (loop)
2547 loop->nb_iterations = NULL_TREE;
2548 }
2549 }
2550
2551 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2552 its BASE and STEP if possible. If ALLOW_NONCONSTANT_STEP is true, we
2553 want STEP to be invariant in LOOP. Otherwise we require it to be an
2554 integer constant. */
2555
2556 bool
2557 simple_iv (struct loop *loop, tree stmt, tree op, tree *base, tree *step,
2558 bool allow_nonconstant_step)
2559 {
2560 basic_block bb = bb_for_stmt (stmt);
2561 tree type, ev;
2562
2563 *base = NULL_TREE;
2564 *step = NULL_TREE;
2565
2566 type = TREE_TYPE (op);
2567 if (TREE_CODE (type) != INTEGER_TYPE
2568 && TREE_CODE (type) != POINTER_TYPE)
2569 return false;
2570
2571 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op);
2572 if (chrec_contains_undetermined (ev))
2573 return false;
2574
2575 if (tree_does_not_contain_chrecs (ev)
2576 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2577 {
2578 *base = ev;
2579 return true;
2580 }
2581
2582 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2583 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2584 return false;
2585
2586 *step = CHREC_RIGHT (ev);
2587 if (allow_nonconstant_step)
2588 {
2589 if (tree_contains_chrecs (*step, NULL)
2590 || chrec_contains_symbols_defined_in_loop (*step, loop->num))
2591 return false;
2592 }
2593 else if (TREE_CODE (*step) != INTEGER_CST)
2594 return false;
2595
2596 *base = CHREC_LEFT (ev);
2597 if (tree_contains_chrecs (*base, NULL)
2598 || chrec_contains_symbols_defined_in_loop (*base, loop->num))
2599 return false;
2600
2601 return true;
2602 }
2603
2604 /* Runs the analysis of scalar evolutions. */
2605
2606 void
2607 scev_analysis (void)
2608 {
2609 VEC(tree,heap) *exit_conditions;
2610
2611 exit_conditions = VEC_alloc (tree, heap, 37);
2612 select_loops_exit_conditions (current_loops, &exit_conditions);
2613
2614 if (dump_file && (dump_flags & TDF_STATS))
2615 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2616
2617 number_of_iterations_for_all_loops (&exit_conditions);
2618 VEC_free (tree, heap, exit_conditions);
2619 }
2620
2621 /* Finalize the scalar evolution analysis. */
2622
2623 void
2624 scev_finalize (void)
2625 {
2626 htab_delete (scalar_evolution_info);
2627 BITMAP_FREE (already_instantiated);
2628 }
2629