* tree-scalar-evolution.c (scev_const_prop):
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a GIMPLE_MODIFY_STMT: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "ggc.h"
239 #include "tree.h"
240 #include "real.h"
241
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254 #include "params.h"
255
256 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257 static tree resolve_mixers (struct loop *, tree);
258
259 /* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
261
262 struct scev_info_str
263 {
264 tree var;
265 tree chrec;
266 };
267
268 /* Counters for the scev database. */
269 static unsigned nb_set_scev = 0;
270 static unsigned nb_get_scev = 0;
271
272 /* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
275
276 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277 tree chrec_not_analyzed_yet;
278
279 /* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281 tree chrec_dont_know;
282
283 /* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
285 tree chrec_known;
286
287 static bitmap already_instantiated;
288
289 static htab_t scalar_evolution_info;
290
291 \f
292 /* Constructs a new SCEV_INFO_STR structure. */
293
294 static inline struct scev_info_str *
295 new_scev_info_str (tree var)
296 {
297 struct scev_info_str *res;
298
299 res = XNEW (struct scev_info_str);
300 res->var = var;
301 res->chrec = chrec_not_analyzed_yet;
302
303 return res;
304 }
305
306 /* Computes a hash function for database element ELT. */
307
308 static hashval_t
309 hash_scev_info (const void *elt)
310 {
311 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
312 }
313
314 /* Compares database elements E1 and E2. */
315
316 static int
317 eq_scev_info (const void *e1, const void *e2)
318 {
319 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
320 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
321
322 return elt1->var == elt2->var;
323 }
324
325 /* Deletes database element E. */
326
327 static void
328 del_scev_info (void *e)
329 {
330 free (e);
331 }
332
333 /* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
335 chrec_not_analyzed_yet for this VAR and return its index. */
336
337 static tree *
338 find_var_scev_info (tree var)
339 {
340 struct scev_info_str *res;
341 struct scev_info_str tmp;
342 PTR *slot;
343
344 tmp.var = var;
345 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
346
347 if (!*slot)
348 *slot = new_scev_info_str (var);
349 res = (struct scev_info_str *) *slot;
350
351 return &res->chrec;
352 }
353
354 /* Return true when CHREC contains symbolic names defined in
355 LOOP_NB. */
356
357 bool
358 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
359 {
360 if (chrec == NULL_TREE)
361 return false;
362
363 if (TREE_INVARIANT (chrec))
364 return false;
365
366 if (TREE_CODE (chrec) == VAR_DECL
367 || TREE_CODE (chrec) == PARM_DECL
368 || TREE_CODE (chrec) == FUNCTION_DECL
369 || TREE_CODE (chrec) == LABEL_DECL
370 || TREE_CODE (chrec) == RESULT_DECL
371 || TREE_CODE (chrec) == FIELD_DECL)
372 return true;
373
374 if (TREE_CODE (chrec) == SSA_NAME)
375 {
376 tree def = SSA_NAME_DEF_STMT (chrec);
377 struct loop *def_loop = loop_containing_stmt (def);
378 struct loop *loop = get_loop (loop_nb);
379
380 if (def_loop == NULL)
381 return false;
382
383 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
384 return true;
385
386 return false;
387 }
388
389 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
390 {
391 case 3:
392 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
393 loop_nb))
394 return true;
395
396 case 2:
397 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
398 loop_nb))
399 return true;
400
401 case 1:
402 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
403 loop_nb))
404 return true;
405
406 default:
407 return false;
408 }
409 }
410
411 /* Return true when PHI is a loop-phi-node. */
412
413 static bool
414 loop_phi_node_p (tree phi)
415 {
416 /* The implementation of this function is based on the following
417 property: "all the loop-phi-nodes of a loop are contained in the
418 loop's header basic block". */
419
420 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
421 }
422
423 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424 In general, in the case of multivariate evolutions we want to get
425 the evolution in different loops. LOOP specifies the level for
426 which to get the evolution.
427
428 Example:
429
430 | for (j = 0; j < 100; j++)
431 | {
432 | for (k = 0; k < 100; k++)
433 | {
434 | i = k + j; - Here the value of i is a function of j, k.
435 | }
436 | ... = i - Here the value of i is a function of j.
437 | }
438 | ... = i - Here the value of i is a scalar.
439
440 Example:
441
442 | i_0 = ...
443 | loop_1 10 times
444 | i_1 = phi (i_0, i_2)
445 | i_2 = i_1 + 2
446 | endloop
447
448 This loop has the same effect as:
449 LOOP_1 has the same effect as:
450
451 | i_1 = i_0 + 20
452
453 The overall effect of the loop, "i_0 + 20" in the previous example,
454 is obtained by passing in the parameters: LOOP = 1,
455 EVOLUTION_FN = {i_0, +, 2}_1.
456 */
457
458 static tree
459 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
460 {
461 bool val = false;
462
463 if (evolution_fn == chrec_dont_know)
464 return chrec_dont_know;
465
466 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
467 {
468 if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
469 {
470 struct loop *inner_loop = get_chrec_loop (evolution_fn);
471 tree nb_iter = number_of_latch_executions (inner_loop);
472
473 if (nb_iter == chrec_dont_know)
474 return chrec_dont_know;
475 else
476 {
477 tree res;
478
479 /* evolution_fn is the evolution function in LOOP. Get
480 its value in the nb_iter-th iteration. */
481 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
482
483 /* Continue the computation until ending on a parent of LOOP. */
484 return compute_overall_effect_of_inner_loop (loop, res);
485 }
486 }
487 else
488 return evolution_fn;
489 }
490
491 /* If the evolution function is an invariant, there is nothing to do. */
492 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
493 return evolution_fn;
494
495 else
496 return chrec_dont_know;
497 }
498
499 /* Determine whether the CHREC is always positive/negative. If the expression
500 cannot be statically analyzed, return false, otherwise set the answer into
501 VALUE. */
502
503 bool
504 chrec_is_positive (tree chrec, bool *value)
505 {
506 bool value0, value1, value2;
507 tree end_value, nb_iter;
508
509 switch (TREE_CODE (chrec))
510 {
511 case POLYNOMIAL_CHREC:
512 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
513 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
514 return false;
515
516 /* FIXME -- overflows. */
517 if (value0 == value1)
518 {
519 *value = value0;
520 return true;
521 }
522
523 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
524 and the proof consists in showing that the sign never
525 changes during the execution of the loop, from 0 to
526 loop->nb_iterations. */
527 if (!evolution_function_is_affine_p (chrec))
528 return false;
529
530 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
531 if (chrec_contains_undetermined (nb_iter))
532 return false;
533
534 #if 0
535 /* TODO -- If the test is after the exit, we may decrease the number of
536 iterations by one. */
537 if (after_exit)
538 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
539 #endif
540
541 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
542
543 if (!chrec_is_positive (end_value, &value2))
544 return false;
545
546 *value = value0;
547 return value0 == value1;
548
549 case INTEGER_CST:
550 *value = (tree_int_cst_sgn (chrec) == 1);
551 return true;
552
553 default:
554 return false;
555 }
556 }
557
558 /* Associate CHREC to SCALAR. */
559
560 static void
561 set_scalar_evolution (tree scalar, tree chrec)
562 {
563 tree *scalar_info;
564
565 if (TREE_CODE (scalar) != SSA_NAME)
566 return;
567
568 scalar_info = find_var_scev_info (scalar);
569
570 if (dump_file)
571 {
572 if (dump_flags & TDF_DETAILS)
573 {
574 fprintf (dump_file, "(set_scalar_evolution \n");
575 fprintf (dump_file, " (scalar = ");
576 print_generic_expr (dump_file, scalar, 0);
577 fprintf (dump_file, ")\n (scalar_evolution = ");
578 print_generic_expr (dump_file, chrec, 0);
579 fprintf (dump_file, "))\n");
580 }
581 if (dump_flags & TDF_STATS)
582 nb_set_scev++;
583 }
584
585 *scalar_info = chrec;
586 }
587
588 /* Retrieve the chrec associated to SCALAR in the LOOP. */
589
590 static tree
591 get_scalar_evolution (tree scalar)
592 {
593 tree res;
594
595 if (dump_file)
596 {
597 if (dump_flags & TDF_DETAILS)
598 {
599 fprintf (dump_file, "(get_scalar_evolution \n");
600 fprintf (dump_file, " (scalar = ");
601 print_generic_expr (dump_file, scalar, 0);
602 fprintf (dump_file, ")\n");
603 }
604 if (dump_flags & TDF_STATS)
605 nb_get_scev++;
606 }
607
608 switch (TREE_CODE (scalar))
609 {
610 case SSA_NAME:
611 res = *find_var_scev_info (scalar);
612 break;
613
614 case REAL_CST:
615 case INTEGER_CST:
616 res = scalar;
617 break;
618
619 default:
620 res = chrec_not_analyzed_yet;
621 break;
622 }
623
624 if (dump_file && (dump_flags & TDF_DETAILS))
625 {
626 fprintf (dump_file, " (scalar_evolution = ");
627 print_generic_expr (dump_file, res, 0);
628 fprintf (dump_file, "))\n");
629 }
630
631 return res;
632 }
633
634 /* Helper function for add_to_evolution. Returns the evolution
635 function for an assignment of the form "a = b + c", where "a" and
636 "b" are on the strongly connected component. CHREC_BEFORE is the
637 information that we already have collected up to this point.
638 TO_ADD is the evolution of "c".
639
640 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
641 evolution the expression TO_ADD, otherwise construct an evolution
642 part for this loop. */
643
644 static tree
645 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
646 tree at_stmt)
647 {
648 tree type, left, right;
649
650 switch (TREE_CODE (chrec_before))
651 {
652 case POLYNOMIAL_CHREC:
653 if (CHREC_VARIABLE (chrec_before) <= loop_nb)
654 {
655 unsigned var;
656
657 type = chrec_type (chrec_before);
658
659 /* When there is no evolution part in this loop, build it. */
660 if (CHREC_VARIABLE (chrec_before) < loop_nb)
661 {
662 var = loop_nb;
663 left = chrec_before;
664 right = SCALAR_FLOAT_TYPE_P (type)
665 ? build_real (type, dconst0)
666 : build_int_cst (type, 0);
667 }
668 else
669 {
670 var = CHREC_VARIABLE (chrec_before);
671 left = CHREC_LEFT (chrec_before);
672 right = CHREC_RIGHT (chrec_before);
673 }
674
675 to_add = chrec_convert (type, to_add, at_stmt);
676 right = chrec_convert (type, right, at_stmt);
677 right = chrec_fold_plus (type, right, to_add);
678 return build_polynomial_chrec (var, left, right);
679 }
680 else
681 {
682 /* Search the evolution in LOOP_NB. */
683 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
684 to_add, at_stmt);
685 right = CHREC_RIGHT (chrec_before);
686 right = chrec_convert (chrec_type (left), right, at_stmt);
687 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
688 left, right);
689 }
690
691 default:
692 /* These nodes do not depend on a loop. */
693 if (chrec_before == chrec_dont_know)
694 return chrec_dont_know;
695
696 left = chrec_before;
697 right = chrec_convert (chrec_type (left), to_add, at_stmt);
698 return build_polynomial_chrec (loop_nb, left, right);
699 }
700 }
701
702 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
703 of LOOP_NB.
704
705 Description (provided for completeness, for those who read code in
706 a plane, and for my poor 62 bytes brain that would have forgotten
707 all this in the next two or three months):
708
709 The algorithm of translation of programs from the SSA representation
710 into the chrecs syntax is based on a pattern matching. After having
711 reconstructed the overall tree expression for a loop, there are only
712 two cases that can arise:
713
714 1. a = loop-phi (init, a + expr)
715 2. a = loop-phi (init, expr)
716
717 where EXPR is either a scalar constant with respect to the analyzed
718 loop (this is a degree 0 polynomial), or an expression containing
719 other loop-phi definitions (these are higher degree polynomials).
720
721 Examples:
722
723 1.
724 | init = ...
725 | loop_1
726 | a = phi (init, a + 5)
727 | endloop
728
729 2.
730 | inita = ...
731 | initb = ...
732 | loop_1
733 | a = phi (inita, 2 * b + 3)
734 | b = phi (initb, b + 1)
735 | endloop
736
737 For the first case, the semantics of the SSA representation is:
738
739 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
740
741 that is, there is a loop index "x" that determines the scalar value
742 of the variable during the loop execution. During the first
743 iteration, the value is that of the initial condition INIT, while
744 during the subsequent iterations, it is the sum of the initial
745 condition with the sum of all the values of EXPR from the initial
746 iteration to the before last considered iteration.
747
748 For the second case, the semantics of the SSA program is:
749
750 | a (x) = init, if x = 0;
751 | expr (x - 1), otherwise.
752
753 The second case corresponds to the PEELED_CHREC, whose syntax is
754 close to the syntax of a loop-phi-node:
755
756 | phi (init, expr) vs. (init, expr)_x
757
758 The proof of the translation algorithm for the first case is a
759 proof by structural induction based on the degree of EXPR.
760
761 Degree 0:
762 When EXPR is a constant with respect to the analyzed loop, or in
763 other words when EXPR is a polynomial of degree 0, the evolution of
764 the variable A in the loop is an affine function with an initial
765 condition INIT, and a step EXPR. In order to show this, we start
766 from the semantics of the SSA representation:
767
768 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
769
770 and since "expr (j)" is a constant with respect to "j",
771
772 f (x) = init + x * expr
773
774 Finally, based on the semantics of the pure sum chrecs, by
775 identification we get the corresponding chrecs syntax:
776
777 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
778 f (x) -> {init, +, expr}_x
779
780 Higher degree:
781 Suppose that EXPR is a polynomial of degree N with respect to the
782 analyzed loop_x for which we have already determined that it is
783 written under the chrecs syntax:
784
785 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
786
787 We start from the semantics of the SSA program:
788
789 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
790 |
791 | f (x) = init + \sum_{j = 0}^{x - 1}
792 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
793 |
794 | f (x) = init + \sum_{j = 0}^{x - 1}
795 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
796 |
797 | f (x) = init + \sum_{k = 0}^{n - 1}
798 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
799 |
800 | f (x) = init + \sum_{k = 0}^{n - 1}
801 | (b_k * \binom{x}{k + 1})
802 |
803 | f (x) = init + b_0 * \binom{x}{1} + ...
804 | + b_{n-1} * \binom{x}{n}
805 |
806 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
807 | + b_{n-1} * \binom{x}{n}
808 |
809
810 And finally from the definition of the chrecs syntax, we identify:
811 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
812
813 This shows the mechanism that stands behind the add_to_evolution
814 function. An important point is that the use of symbolic
815 parameters avoids the need of an analysis schedule.
816
817 Example:
818
819 | inita = ...
820 | initb = ...
821 | loop_1
822 | a = phi (inita, a + 2 + b)
823 | b = phi (initb, b + 1)
824 | endloop
825
826 When analyzing "a", the algorithm keeps "b" symbolically:
827
828 | a -> {inita, +, 2 + b}_1
829
830 Then, after instantiation, the analyzer ends on the evolution:
831
832 | a -> {inita, +, 2 + initb, +, 1}_1
833
834 */
835
836 static tree
837 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
838 tree to_add, tree at_stmt)
839 {
840 tree type = chrec_type (to_add);
841 tree res = NULL_TREE;
842
843 if (to_add == NULL_TREE)
844 return chrec_before;
845
846 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
847 instantiated at this point. */
848 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
849 /* This should not happen. */
850 return chrec_dont_know;
851
852 if (dump_file && (dump_flags & TDF_DETAILS))
853 {
854 fprintf (dump_file, "(add_to_evolution \n");
855 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
856 fprintf (dump_file, " (chrec_before = ");
857 print_generic_expr (dump_file, chrec_before, 0);
858 fprintf (dump_file, ")\n (to_add = ");
859 print_generic_expr (dump_file, to_add, 0);
860 fprintf (dump_file, ")\n");
861 }
862
863 if (code == MINUS_EXPR)
864 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
865 ? build_real (type, dconstm1)
866 : build_int_cst_type (type, -1));
867
868 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
869
870 if (dump_file && (dump_flags & TDF_DETAILS))
871 {
872 fprintf (dump_file, " (res = ");
873 print_generic_expr (dump_file, res, 0);
874 fprintf (dump_file, "))\n");
875 }
876
877 return res;
878 }
879
880 /* Helper function. */
881
882 static inline tree
883 set_nb_iterations_in_loop (struct loop *loop,
884 tree res)
885 {
886 if (dump_file && (dump_flags & TDF_DETAILS))
887 {
888 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
889 print_generic_expr (dump_file, res, 0);
890 fprintf (dump_file, "))\n");
891 }
892
893 loop->nb_iterations = res;
894 return res;
895 }
896
897 \f
898
899 /* This section selects the loops that will be good candidates for the
900 scalar evolution analysis. For the moment, greedily select all the
901 loop nests we could analyze. */
902
903 /* Return true when it is possible to analyze the condition expression
904 EXPR. */
905
906 static bool
907 analyzable_condition (tree expr)
908 {
909 tree condition;
910
911 if (TREE_CODE (expr) != COND_EXPR)
912 return false;
913
914 condition = TREE_OPERAND (expr, 0);
915
916 switch (TREE_CODE (condition))
917 {
918 case SSA_NAME:
919 return true;
920
921 case LT_EXPR:
922 case LE_EXPR:
923 case GT_EXPR:
924 case GE_EXPR:
925 case EQ_EXPR:
926 case NE_EXPR:
927 return true;
928
929 default:
930 return false;
931 }
932
933 return false;
934 }
935
936 /* For a loop with a single exit edge, return the COND_EXPR that
937 guards the exit edge. If the expression is too difficult to
938 analyze, then give up. */
939
940 tree
941 get_loop_exit_condition (struct loop *loop)
942 {
943 tree res = NULL_TREE;
944 edge exit_edge = single_exit (loop);
945
946 if (dump_file && (dump_flags & TDF_DETAILS))
947 fprintf (dump_file, "(get_loop_exit_condition \n ");
948
949 if (exit_edge)
950 {
951 tree expr;
952
953 expr = last_stmt (exit_edge->src);
954 if (analyzable_condition (expr))
955 res = expr;
956 }
957
958 if (dump_file && (dump_flags & TDF_DETAILS))
959 {
960 print_generic_expr (dump_file, res, 0);
961 fprintf (dump_file, ")\n");
962 }
963
964 return res;
965 }
966
967 /* Recursively determine and enqueue the exit conditions for a loop. */
968
969 static void
970 get_exit_conditions_rec (struct loop *loop,
971 VEC(tree,heap) **exit_conditions)
972 {
973 if (!loop)
974 return;
975
976 /* Recurse on the inner loops, then on the next (sibling) loops. */
977 get_exit_conditions_rec (loop->inner, exit_conditions);
978 get_exit_conditions_rec (loop->next, exit_conditions);
979
980 if (single_exit (loop))
981 {
982 tree loop_condition = get_loop_exit_condition (loop);
983
984 if (loop_condition)
985 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
986 }
987 }
988
989 /* Select the candidate loop nests for the analysis. This function
990 initializes the EXIT_CONDITIONS array. */
991
992 static void
993 select_loops_exit_conditions (VEC(tree,heap) **exit_conditions)
994 {
995 struct loop *function_body = current_loops->tree_root;
996
997 get_exit_conditions_rec (function_body->inner, exit_conditions);
998 }
999
1000 \f
1001 /* Depth first search algorithm. */
1002
1003 typedef enum t_bool {
1004 t_false,
1005 t_true,
1006 t_dont_know
1007 } t_bool;
1008
1009
1010 static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
1011
1012 /* Follow the ssa edge into the right hand side RHS of an assignment.
1013 Return true if the strongly connected component has been found. */
1014
1015 static t_bool
1016 follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1017 tree halting_phi, tree *evolution_of_loop, int limit)
1018 {
1019 t_bool res = t_false;
1020 tree rhs0, rhs1;
1021 tree type_rhs = TREE_TYPE (rhs);
1022 tree evol;
1023
1024 /* The RHS is one of the following cases:
1025 - an SSA_NAME,
1026 - an INTEGER_CST,
1027 - a PLUS_EXPR,
1028 - a MINUS_EXPR,
1029 - an ASSERT_EXPR,
1030 - other cases are not yet handled. */
1031 switch (TREE_CODE (rhs))
1032 {
1033 case NOP_EXPR:
1034 /* This assignment is under the form "a_1 = (cast) rhs. */
1035 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1036 halting_phi, evolution_of_loop, limit);
1037 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1038 *evolution_of_loop, at_stmt);
1039 break;
1040
1041 case INTEGER_CST:
1042 /* This assignment is under the form "a_1 = 7". */
1043 res = t_false;
1044 break;
1045
1046 case SSA_NAME:
1047 /* This assignment is under the form: "a_1 = b_2". */
1048 res = follow_ssa_edge
1049 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
1050 break;
1051
1052 case PLUS_EXPR:
1053 /* This case is under the form "rhs0 + rhs1". */
1054 rhs0 = TREE_OPERAND (rhs, 0);
1055 rhs1 = TREE_OPERAND (rhs, 1);
1056 STRIP_TYPE_NOPS (rhs0);
1057 STRIP_TYPE_NOPS (rhs1);
1058
1059 if (TREE_CODE (rhs0) == SSA_NAME)
1060 {
1061 if (TREE_CODE (rhs1) == SSA_NAME)
1062 {
1063 /* Match an assignment under the form:
1064 "a = b + c". */
1065 evol = *evolution_of_loop;
1066 res = follow_ssa_edge
1067 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1068 &evol, limit);
1069
1070 if (res == t_true)
1071 *evolution_of_loop = add_to_evolution
1072 (loop->num,
1073 chrec_convert (type_rhs, evol, at_stmt),
1074 PLUS_EXPR, rhs1, at_stmt);
1075
1076 else if (res == t_false)
1077 {
1078 res = follow_ssa_edge
1079 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1080 evolution_of_loop, limit);
1081
1082 if (res == t_true)
1083 *evolution_of_loop = add_to_evolution
1084 (loop->num,
1085 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1086 PLUS_EXPR, rhs0, at_stmt);
1087
1088 else if (res == t_dont_know)
1089 *evolution_of_loop = chrec_dont_know;
1090 }
1091
1092 else if (res == t_dont_know)
1093 *evolution_of_loop = chrec_dont_know;
1094 }
1095
1096 else
1097 {
1098 /* Match an assignment under the form:
1099 "a = b + ...". */
1100 res = follow_ssa_edge
1101 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1102 evolution_of_loop, limit);
1103 if (res == t_true)
1104 *evolution_of_loop = add_to_evolution
1105 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1106 at_stmt),
1107 PLUS_EXPR, rhs1, at_stmt);
1108
1109 else if (res == t_dont_know)
1110 *evolution_of_loop = chrec_dont_know;
1111 }
1112 }
1113
1114 else if (TREE_CODE (rhs1) == SSA_NAME)
1115 {
1116 /* Match an assignment under the form:
1117 "a = ... + c". */
1118 res = follow_ssa_edge
1119 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1120 evolution_of_loop, limit);
1121 if (res == t_true)
1122 *evolution_of_loop = add_to_evolution
1123 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1124 at_stmt),
1125 PLUS_EXPR, rhs0, at_stmt);
1126
1127 else if (res == t_dont_know)
1128 *evolution_of_loop = chrec_dont_know;
1129 }
1130
1131 else
1132 /* Otherwise, match an assignment under the form:
1133 "a = ... + ...". */
1134 /* And there is nothing to do. */
1135 res = t_false;
1136
1137 break;
1138
1139 case MINUS_EXPR:
1140 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1141 rhs0 = TREE_OPERAND (rhs, 0);
1142 rhs1 = TREE_OPERAND (rhs, 1);
1143 STRIP_TYPE_NOPS (rhs0);
1144 STRIP_TYPE_NOPS (rhs1);
1145
1146 if (TREE_CODE (rhs0) == SSA_NAME)
1147 {
1148 /* Match an assignment under the form:
1149 "a = b - ...". */
1150 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1151 evolution_of_loop, limit);
1152 if (res == t_true)
1153 *evolution_of_loop = add_to_evolution
1154 (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1155 MINUS_EXPR, rhs1, at_stmt);
1156
1157 else if (res == t_dont_know)
1158 *evolution_of_loop = chrec_dont_know;
1159 }
1160 else
1161 /* Otherwise, match an assignment under the form:
1162 "a = ... - ...". */
1163 /* And there is nothing to do. */
1164 res = t_false;
1165
1166 break;
1167
1168 case ASSERT_EXPR:
1169 {
1170 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1171 It must be handled as a copy assignment of the form a_1 = a_2. */
1172 tree op0 = ASSERT_EXPR_VAR (rhs);
1173 if (TREE_CODE (op0) == SSA_NAME)
1174 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1175 halting_phi, evolution_of_loop, limit);
1176 else
1177 res = t_false;
1178 break;
1179 }
1180
1181
1182 default:
1183 res = t_false;
1184 break;
1185 }
1186
1187 return res;
1188 }
1189
1190 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1191
1192 static bool
1193 backedge_phi_arg_p (tree phi, int i)
1194 {
1195 edge e = PHI_ARG_EDGE (phi, i);
1196
1197 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1198 about updating it anywhere, and this should work as well most of the
1199 time. */
1200 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1201 return true;
1202
1203 return false;
1204 }
1205
1206 /* Helper function for one branch of the condition-phi-node. Return
1207 true if the strongly connected component has been found following
1208 this path. */
1209
1210 static inline t_bool
1211 follow_ssa_edge_in_condition_phi_branch (int i,
1212 struct loop *loop,
1213 tree condition_phi,
1214 tree halting_phi,
1215 tree *evolution_of_branch,
1216 tree init_cond, int limit)
1217 {
1218 tree branch = PHI_ARG_DEF (condition_phi, i);
1219 *evolution_of_branch = chrec_dont_know;
1220
1221 /* Do not follow back edges (they must belong to an irreducible loop, which
1222 we really do not want to worry about). */
1223 if (backedge_phi_arg_p (condition_phi, i))
1224 return t_false;
1225
1226 if (TREE_CODE (branch) == SSA_NAME)
1227 {
1228 *evolution_of_branch = init_cond;
1229 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1230 evolution_of_branch, limit);
1231 }
1232
1233 /* This case occurs when one of the condition branches sets
1234 the variable to a constant: i.e. a phi-node like
1235 "a_2 = PHI <a_7(5), 2(6)>;".
1236
1237 FIXME: This case have to be refined correctly:
1238 in some cases it is possible to say something better than
1239 chrec_dont_know, for example using a wrap-around notation. */
1240 return t_false;
1241 }
1242
1243 /* This function merges the branches of a condition-phi-node in a
1244 loop. */
1245
1246 static t_bool
1247 follow_ssa_edge_in_condition_phi (struct loop *loop,
1248 tree condition_phi,
1249 tree halting_phi,
1250 tree *evolution_of_loop, int limit)
1251 {
1252 int i;
1253 tree init = *evolution_of_loop;
1254 tree evolution_of_branch;
1255 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1256 halting_phi,
1257 &evolution_of_branch,
1258 init, limit);
1259 if (res == t_false || res == t_dont_know)
1260 return res;
1261
1262 *evolution_of_loop = evolution_of_branch;
1263
1264 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1265 {
1266 /* Quickly give up when the evolution of one of the branches is
1267 not known. */
1268 if (*evolution_of_loop == chrec_dont_know)
1269 return t_true;
1270
1271 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1272 halting_phi,
1273 &evolution_of_branch,
1274 init, limit);
1275 if (res == t_false || res == t_dont_know)
1276 return res;
1277
1278 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1279 evolution_of_branch);
1280 }
1281
1282 return t_true;
1283 }
1284
1285 /* Follow an SSA edge in an inner loop. It computes the overall
1286 effect of the loop, and following the symbolic initial conditions,
1287 it follows the edges in the parent loop. The inner loop is
1288 considered as a single statement. */
1289
1290 static t_bool
1291 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1292 tree loop_phi_node,
1293 tree halting_phi,
1294 tree *evolution_of_loop, int limit)
1295 {
1296 struct loop *loop = loop_containing_stmt (loop_phi_node);
1297 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1298
1299 /* Sometimes, the inner loop is too difficult to analyze, and the
1300 result of the analysis is a symbolic parameter. */
1301 if (ev == PHI_RESULT (loop_phi_node))
1302 {
1303 t_bool res = t_false;
1304 int i;
1305
1306 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1307 {
1308 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1309 basic_block bb;
1310
1311 /* Follow the edges that exit the inner loop. */
1312 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1313 if (!flow_bb_inside_loop_p (loop, bb))
1314 res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1315 arg, halting_phi,
1316 evolution_of_loop, limit);
1317 if (res == t_true)
1318 break;
1319 }
1320
1321 /* If the path crosses this loop-phi, give up. */
1322 if (res == t_true)
1323 *evolution_of_loop = chrec_dont_know;
1324
1325 return res;
1326 }
1327
1328 /* Otherwise, compute the overall effect of the inner loop. */
1329 ev = compute_overall_effect_of_inner_loop (loop, ev);
1330 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1331 evolution_of_loop, limit);
1332 }
1333
1334 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1335 path that is analyzed on the return walk. */
1336
1337 static t_bool
1338 follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1339 tree *evolution_of_loop, int limit)
1340 {
1341 struct loop *def_loop;
1342
1343 if (TREE_CODE (def) == NOP_EXPR)
1344 return t_false;
1345
1346 /* Give up if the path is longer than the MAX that we allow. */
1347 if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1348 return t_dont_know;
1349
1350 def_loop = loop_containing_stmt (def);
1351
1352 switch (TREE_CODE (def))
1353 {
1354 case PHI_NODE:
1355 if (!loop_phi_node_p (def))
1356 /* DEF is a condition-phi-node. Follow the branches, and
1357 record their evolutions. Finally, merge the collected
1358 information and set the approximation to the main
1359 variable. */
1360 return follow_ssa_edge_in_condition_phi
1361 (loop, def, halting_phi, evolution_of_loop, limit);
1362
1363 /* When the analyzed phi is the halting_phi, the
1364 depth-first search is over: we have found a path from
1365 the halting_phi to itself in the loop. */
1366 if (def == halting_phi)
1367 return t_true;
1368
1369 /* Otherwise, the evolution of the HALTING_PHI depends
1370 on the evolution of another loop-phi-node, i.e. the
1371 evolution function is a higher degree polynomial. */
1372 if (def_loop == loop)
1373 return t_false;
1374
1375 /* Inner loop. */
1376 if (flow_loop_nested_p (loop, def_loop))
1377 return follow_ssa_edge_inner_loop_phi
1378 (loop, def, halting_phi, evolution_of_loop, limit);
1379
1380 /* Outer loop. */
1381 return t_false;
1382
1383 case GIMPLE_MODIFY_STMT:
1384 return follow_ssa_edge_in_rhs (loop, def,
1385 GIMPLE_STMT_OPERAND (def, 1),
1386 halting_phi,
1387 evolution_of_loop, limit);
1388
1389 default:
1390 /* At this level of abstraction, the program is just a set
1391 of GIMPLE_MODIFY_STMTs and PHI_NODEs. In principle there is no
1392 other node to be handled. */
1393 return t_false;
1394 }
1395 }
1396
1397 \f
1398
1399 /* Given a LOOP_PHI_NODE, this function determines the evolution
1400 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1401
1402 static tree
1403 analyze_evolution_in_loop (tree loop_phi_node,
1404 tree init_cond)
1405 {
1406 int i;
1407 tree evolution_function = chrec_not_analyzed_yet;
1408 struct loop *loop = loop_containing_stmt (loop_phi_node);
1409 basic_block bb;
1410
1411 if (dump_file && (dump_flags & TDF_DETAILS))
1412 {
1413 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1414 fprintf (dump_file, " (loop_phi_node = ");
1415 print_generic_expr (dump_file, loop_phi_node, 0);
1416 fprintf (dump_file, ")\n");
1417 }
1418
1419 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1420 {
1421 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1422 tree ssa_chain, ev_fn;
1423 t_bool res;
1424
1425 /* Select the edges that enter the loop body. */
1426 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1427 if (!flow_bb_inside_loop_p (loop, bb))
1428 continue;
1429
1430 if (TREE_CODE (arg) == SSA_NAME)
1431 {
1432 ssa_chain = SSA_NAME_DEF_STMT (arg);
1433
1434 /* Pass in the initial condition to the follow edge function. */
1435 ev_fn = init_cond;
1436 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1437 }
1438 else
1439 res = t_false;
1440
1441 /* When it is impossible to go back on the same
1442 loop_phi_node by following the ssa edges, the
1443 evolution is represented by a peeled chrec, i.e. the
1444 first iteration, EV_FN has the value INIT_COND, then
1445 all the other iterations it has the value of ARG.
1446 For the moment, PEELED_CHREC nodes are not built. */
1447 if (res != t_true)
1448 ev_fn = chrec_dont_know;
1449
1450 /* When there are multiple back edges of the loop (which in fact never
1451 happens currently, but nevertheless), merge their evolutions. */
1452 evolution_function = chrec_merge (evolution_function, ev_fn);
1453 }
1454
1455 if (dump_file && (dump_flags & TDF_DETAILS))
1456 {
1457 fprintf (dump_file, " (evolution_function = ");
1458 print_generic_expr (dump_file, evolution_function, 0);
1459 fprintf (dump_file, "))\n");
1460 }
1461
1462 return evolution_function;
1463 }
1464
1465 /* Given a loop-phi-node, return the initial conditions of the
1466 variable on entry of the loop. When the CCP has propagated
1467 constants into the loop-phi-node, the initial condition is
1468 instantiated, otherwise the initial condition is kept symbolic.
1469 This analyzer does not analyze the evolution outside the current
1470 loop, and leaves this task to the on-demand tree reconstructor. */
1471
1472 static tree
1473 analyze_initial_condition (tree loop_phi_node)
1474 {
1475 int i;
1476 tree init_cond = chrec_not_analyzed_yet;
1477 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1478
1479 if (dump_file && (dump_flags & TDF_DETAILS))
1480 {
1481 fprintf (dump_file, "(analyze_initial_condition \n");
1482 fprintf (dump_file, " (loop_phi_node = \n");
1483 print_generic_expr (dump_file, loop_phi_node, 0);
1484 fprintf (dump_file, ")\n");
1485 }
1486
1487 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1488 {
1489 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1490 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1491
1492 /* When the branch is oriented to the loop's body, it does
1493 not contribute to the initial condition. */
1494 if (flow_bb_inside_loop_p (loop, bb))
1495 continue;
1496
1497 if (init_cond == chrec_not_analyzed_yet)
1498 {
1499 init_cond = branch;
1500 continue;
1501 }
1502
1503 if (TREE_CODE (branch) == SSA_NAME)
1504 {
1505 init_cond = chrec_dont_know;
1506 break;
1507 }
1508
1509 init_cond = chrec_merge (init_cond, branch);
1510 }
1511
1512 /* Ooops -- a loop without an entry??? */
1513 if (init_cond == chrec_not_analyzed_yet)
1514 init_cond = chrec_dont_know;
1515
1516 if (dump_file && (dump_flags & TDF_DETAILS))
1517 {
1518 fprintf (dump_file, " (init_cond = ");
1519 print_generic_expr (dump_file, init_cond, 0);
1520 fprintf (dump_file, "))\n");
1521 }
1522
1523 return init_cond;
1524 }
1525
1526 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1527
1528 static tree
1529 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1530 {
1531 tree res;
1532 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1533 tree init_cond;
1534
1535 if (phi_loop != loop)
1536 {
1537 struct loop *subloop;
1538 tree evolution_fn = analyze_scalar_evolution
1539 (phi_loop, PHI_RESULT (loop_phi_node));
1540
1541 /* Dive one level deeper. */
1542 subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1543
1544 /* Interpret the subloop. */
1545 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1546 return res;
1547 }
1548
1549 /* Otherwise really interpret the loop phi. */
1550 init_cond = analyze_initial_condition (loop_phi_node);
1551 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1552
1553 return res;
1554 }
1555
1556 /* This function merges the branches of a condition-phi-node,
1557 contained in the outermost loop, and whose arguments are already
1558 analyzed. */
1559
1560 static tree
1561 interpret_condition_phi (struct loop *loop, tree condition_phi)
1562 {
1563 int i;
1564 tree res = chrec_not_analyzed_yet;
1565
1566 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1567 {
1568 tree branch_chrec;
1569
1570 if (backedge_phi_arg_p (condition_phi, i))
1571 {
1572 res = chrec_dont_know;
1573 break;
1574 }
1575
1576 branch_chrec = analyze_scalar_evolution
1577 (loop, PHI_ARG_DEF (condition_phi, i));
1578
1579 res = chrec_merge (res, branch_chrec);
1580 }
1581
1582 return res;
1583 }
1584
1585 /* Interpret the right hand side of a GIMPLE_MODIFY_STMT OPND1. If we didn't
1586 analyze this node before, follow the definitions until ending
1587 either on an analyzed GIMPLE_MODIFY_STMT, or on a loop-phi-node. On the
1588 return path, this function propagates evolutions (ala constant copy
1589 propagation). OPND1 is not a GIMPLE expression because we could
1590 analyze the effect of an inner loop: see interpret_loop_phi. */
1591
1592 static tree
1593 interpret_rhs_modify_stmt (struct loop *loop, tree at_stmt,
1594 tree opnd1, tree type)
1595 {
1596 tree res, opnd10, opnd11, chrec10, chrec11;
1597
1598 if (is_gimple_min_invariant (opnd1))
1599 return chrec_convert (type, opnd1, at_stmt);
1600
1601 switch (TREE_CODE (opnd1))
1602 {
1603 case PLUS_EXPR:
1604 opnd10 = TREE_OPERAND (opnd1, 0);
1605 opnd11 = TREE_OPERAND (opnd1, 1);
1606 chrec10 = analyze_scalar_evolution (loop, opnd10);
1607 chrec11 = analyze_scalar_evolution (loop, opnd11);
1608 chrec10 = chrec_convert (type, chrec10, at_stmt);
1609 chrec11 = chrec_convert (type, chrec11, at_stmt);
1610 res = chrec_fold_plus (type, chrec10, chrec11);
1611 break;
1612
1613 case MINUS_EXPR:
1614 opnd10 = TREE_OPERAND (opnd1, 0);
1615 opnd11 = TREE_OPERAND (opnd1, 1);
1616 chrec10 = analyze_scalar_evolution (loop, opnd10);
1617 chrec11 = analyze_scalar_evolution (loop, opnd11);
1618 chrec10 = chrec_convert (type, chrec10, at_stmt);
1619 chrec11 = chrec_convert (type, chrec11, at_stmt);
1620 res = chrec_fold_minus (type, chrec10, chrec11);
1621 break;
1622
1623 case NEGATE_EXPR:
1624 opnd10 = TREE_OPERAND (opnd1, 0);
1625 chrec10 = analyze_scalar_evolution (loop, opnd10);
1626 chrec10 = chrec_convert (type, chrec10, at_stmt);
1627 /* TYPE may be integer, real or complex, so use fold_convert. */
1628 res = chrec_fold_multiply (type, chrec10,
1629 fold_convert (type, integer_minus_one_node));
1630 break;
1631
1632 case MULT_EXPR:
1633 opnd10 = TREE_OPERAND (opnd1, 0);
1634 opnd11 = TREE_OPERAND (opnd1, 1);
1635 chrec10 = analyze_scalar_evolution (loop, opnd10);
1636 chrec11 = analyze_scalar_evolution (loop, opnd11);
1637 chrec10 = chrec_convert (type, chrec10, at_stmt);
1638 chrec11 = chrec_convert (type, chrec11, at_stmt);
1639 res = chrec_fold_multiply (type, chrec10, chrec11);
1640 break;
1641
1642 case SSA_NAME:
1643 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1644 at_stmt);
1645 break;
1646
1647 case ASSERT_EXPR:
1648 opnd10 = ASSERT_EXPR_VAR (opnd1);
1649 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1650 at_stmt);
1651 break;
1652
1653 case NOP_EXPR:
1654 case CONVERT_EXPR:
1655 opnd10 = TREE_OPERAND (opnd1, 0);
1656 chrec10 = analyze_scalar_evolution (loop, opnd10);
1657 res = chrec_convert (type, chrec10, at_stmt);
1658 break;
1659
1660 default:
1661 res = chrec_dont_know;
1662 break;
1663 }
1664
1665 return res;
1666 }
1667
1668 \f
1669
1670 /* This section contains all the entry points:
1671 - number_of_iterations_in_loop,
1672 - analyze_scalar_evolution,
1673 - instantiate_parameters.
1674 */
1675
1676 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1677 common ancestor of DEF_LOOP and USE_LOOP. */
1678
1679 static tree
1680 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1681 struct loop *def_loop,
1682 tree ev)
1683 {
1684 tree res;
1685 if (def_loop == wrto_loop)
1686 return ev;
1687
1688 def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1689 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1690
1691 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1692 }
1693
1694 /* Folds EXPR, if it is a cast to pointer, assuming that the created
1695 polynomial_chrec does not wrap. */
1696
1697 static tree
1698 fold_used_pointer_cast (tree expr)
1699 {
1700 tree op;
1701 tree type, inner_type;
1702
1703 if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
1704 return expr;
1705
1706 op = TREE_OPERAND (expr, 0);
1707 if (TREE_CODE (op) != POLYNOMIAL_CHREC)
1708 return expr;
1709
1710 type = TREE_TYPE (expr);
1711 inner_type = TREE_TYPE (op);
1712
1713 if (!INTEGRAL_TYPE_P (inner_type)
1714 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
1715 return expr;
1716
1717 return build_polynomial_chrec (CHREC_VARIABLE (op),
1718 chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
1719 chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
1720 }
1721
1722 /* Returns true if EXPR is an expression corresponding to offset of pointer
1723 in p + offset. */
1724
1725 static bool
1726 pointer_offset_p (tree expr)
1727 {
1728 if (TREE_CODE (expr) == INTEGER_CST)
1729 return true;
1730
1731 if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1732 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
1733 return true;
1734
1735 return false;
1736 }
1737
1738 /* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1739 comparison. This means that it must point to a part of some object in
1740 memory, which enables us to argue about overflows and possibly simplify
1741 the EXPR. AT_STMT is the statement in which this conversion has to be
1742 performed. Returns the simplified value.
1743
1744 Currently, for
1745
1746 int i, n;
1747 int *p;
1748
1749 for (i = -n; i < n; i++)
1750 *(p + i) = ...;
1751
1752 We generate the following code (assuming that size of int and size_t is
1753 4 bytes):
1754
1755 for (i = -n; i < n; i++)
1756 {
1757 size_t tmp1, tmp2;
1758 int *tmp3, *tmp4;
1759
1760 tmp1 = (size_t) i; (1)
1761 tmp2 = 4 * tmp1; (2)
1762 tmp3 = (int *) tmp2; (3)
1763 tmp4 = p + tmp3; (4)
1764
1765 *tmp4 = ...;
1766 }
1767
1768 We in general assume that pointer arithmetics does not overflow (since its
1769 behavior is undefined in that case). One of the problems is that our
1770 translation does not capture this property very well -- (int *) is
1771 considered unsigned, hence the computation in (4) does overflow if i is
1772 negative.
1773
1774 This impreciseness creates complications in scev analysis. The scalar
1775 evolution of i is [-n, +, 1]. Since int and size_t have the same precision
1776 (in this example), and size_t is unsigned (so we do not care about
1777 overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1778 and scev of tmp2 is [4 * (size_t) -n, +, 4]. With tmp3, we run into
1779 problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1780 places assume that this is not the case for scevs with pointer type, we
1781 cannot use this scev for tmp3; hence, its scev is
1782 (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1783 p + (int *) [(4 * (size_t) -n), +, 4]. Most of the optimizers are unable to
1784 work with scevs of this shape.
1785
1786 However, since tmp4 is dereferenced, all its values must belong to a single
1787 object, and taking into account that the precision of int * and size_t is
1788 the same, it is impossible for its scev to wrap. Hence, we can derive that
1789 its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1790 can work with.
1791
1792 ??? Maybe we should use different representation for pointer arithmetics,
1793 however that is a long-term project with a lot of potential for creating
1794 bugs. */
1795
1796 static tree
1797 fold_used_pointer (tree expr, tree at_stmt)
1798 {
1799 tree op0, op1, new0, new1;
1800 enum tree_code code = TREE_CODE (expr);
1801
1802 if (code == PLUS_EXPR
1803 || code == MINUS_EXPR)
1804 {
1805 op0 = TREE_OPERAND (expr, 0);
1806 op1 = TREE_OPERAND (expr, 1);
1807
1808 if (pointer_offset_p (op1))
1809 {
1810 new0 = fold_used_pointer (op0, at_stmt);
1811 new1 = fold_used_pointer_cast (op1);
1812 }
1813 else if (code == PLUS_EXPR && pointer_offset_p (op0))
1814 {
1815 new0 = fold_used_pointer_cast (op0);
1816 new1 = fold_used_pointer (op1, at_stmt);
1817 }
1818 else
1819 return expr;
1820
1821 if (new0 == op0 && new1 == op1)
1822 return expr;
1823
1824 new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
1825 new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
1826
1827 if (code == PLUS_EXPR)
1828 expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
1829 else
1830 expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
1831
1832 return expr;
1833 }
1834 else
1835 return fold_used_pointer_cast (expr);
1836 }
1837
1838 /* Returns true if PTR is dereferenced, or used in comparison. */
1839
1840 static bool
1841 pointer_used_p (tree ptr)
1842 {
1843 use_operand_p use_p;
1844 imm_use_iterator imm_iter;
1845 tree stmt, rhs;
1846 struct ptr_info_def *pi = get_ptr_info (ptr);
1847 var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
1848
1849 /* Check whether the pointer has a memory tag; if it does, it is
1850 (or at least used to be) dereferenced. */
1851 if ((pi != NULL && pi->name_mem_tag != NULL)
1852 || v_ann->symbol_mem_tag)
1853 return true;
1854
1855 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
1856 {
1857 stmt = USE_STMT (use_p);
1858 if (TREE_CODE (stmt) == COND_EXPR)
1859 return true;
1860
1861 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
1862 continue;
1863
1864 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1865 if (!COMPARISON_CLASS_P (rhs))
1866 continue;
1867
1868 if (GIMPLE_STMT_OPERAND (stmt, 0) == ptr
1869 || GIMPLE_STMT_OPERAND (stmt, 1) == ptr)
1870 return true;
1871 }
1872
1873 return false;
1874 }
1875
1876 /* Helper recursive function. */
1877
1878 static tree
1879 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1880 {
1881 tree def, type = TREE_TYPE (var);
1882 basic_block bb;
1883 struct loop *def_loop;
1884
1885 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1886 return chrec_dont_know;
1887
1888 if (TREE_CODE (var) != SSA_NAME)
1889 return interpret_rhs_modify_stmt (loop, NULL_TREE, var, type);
1890
1891 def = SSA_NAME_DEF_STMT (var);
1892 bb = bb_for_stmt (def);
1893 def_loop = bb ? bb->loop_father : NULL;
1894
1895 if (bb == NULL
1896 || !flow_bb_inside_loop_p (loop, bb))
1897 {
1898 /* Keep the symbolic form. */
1899 res = var;
1900 goto set_and_end;
1901 }
1902
1903 if (res != chrec_not_analyzed_yet)
1904 {
1905 if (loop != bb->loop_father)
1906 res = compute_scalar_evolution_in_loop
1907 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1908
1909 goto set_and_end;
1910 }
1911
1912 if (loop != def_loop)
1913 {
1914 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1915 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1916
1917 goto set_and_end;
1918 }
1919
1920 switch (TREE_CODE (def))
1921 {
1922 case GIMPLE_MODIFY_STMT:
1923 res = interpret_rhs_modify_stmt (loop, def,
1924 GIMPLE_STMT_OPERAND (def, 1), type);
1925
1926 if (POINTER_TYPE_P (type)
1927 && !automatically_generated_chrec_p (res)
1928 && pointer_used_p (var))
1929 res = fold_used_pointer (res, def);
1930 break;
1931
1932 case PHI_NODE:
1933 if (loop_phi_node_p (def))
1934 res = interpret_loop_phi (loop, def);
1935 else
1936 res = interpret_condition_phi (loop, def);
1937 break;
1938
1939 default:
1940 res = chrec_dont_know;
1941 break;
1942 }
1943
1944 set_and_end:
1945
1946 /* Keep the symbolic form. */
1947 if (res == chrec_dont_know)
1948 res = var;
1949
1950 if (loop == def_loop)
1951 set_scalar_evolution (var, res);
1952
1953 return res;
1954 }
1955
1956 /* Entry point for the scalar evolution analyzer.
1957 Analyzes and returns the scalar evolution of the ssa_name VAR.
1958 LOOP_NB is the identifier number of the loop in which the variable
1959 is used.
1960
1961 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1962 pointer to the statement that uses this variable, in order to
1963 determine the evolution function of the variable, use the following
1964 calls:
1965
1966 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1967 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1968 tree chrec_instantiated = instantiate_parameters
1969 (loop_nb, chrec_with_symbols);
1970 */
1971
1972 tree
1973 analyze_scalar_evolution (struct loop *loop, tree var)
1974 {
1975 tree res;
1976
1977 if (dump_file && (dump_flags & TDF_DETAILS))
1978 {
1979 fprintf (dump_file, "(analyze_scalar_evolution \n");
1980 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1981 fprintf (dump_file, " (scalar = ");
1982 print_generic_expr (dump_file, var, 0);
1983 fprintf (dump_file, ")\n");
1984 }
1985
1986 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1987
1988 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1989 res = var;
1990
1991 if (dump_file && (dump_flags & TDF_DETAILS))
1992 fprintf (dump_file, ")\n");
1993
1994 return res;
1995 }
1996
1997 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1998 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1999 of VERSION).
2000
2001 FOLDED_CASTS is set to true if resolve_mixers used
2002 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2003 at the moment in order to keep things simple). */
2004
2005 static tree
2006 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2007 tree version, bool *folded_casts)
2008 {
2009 bool val = false;
2010 tree ev = version, tmp;
2011
2012 if (folded_casts)
2013 *folded_casts = false;
2014 while (1)
2015 {
2016 tmp = analyze_scalar_evolution (use_loop, ev);
2017 ev = resolve_mixers (use_loop, tmp);
2018
2019 if (folded_casts && tmp != ev)
2020 *folded_casts = true;
2021
2022 if (use_loop == wrto_loop)
2023 return ev;
2024
2025 /* If the value of the use changes in the inner loop, we cannot express
2026 its value in the outer loop (we might try to return interval chrec,
2027 but we do not have a user for it anyway) */
2028 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2029 || !val)
2030 return chrec_dont_know;
2031
2032 use_loop = use_loop->outer;
2033 }
2034 }
2035
2036 /* Returns instantiated value for VERSION in CACHE. */
2037
2038 static tree
2039 get_instantiated_value (htab_t cache, tree version)
2040 {
2041 struct scev_info_str *info, pattern;
2042
2043 pattern.var = version;
2044 info = (struct scev_info_str *) htab_find (cache, &pattern);
2045
2046 if (info)
2047 return info->chrec;
2048 else
2049 return NULL_TREE;
2050 }
2051
2052 /* Sets instantiated value for VERSION to VAL in CACHE. */
2053
2054 static void
2055 set_instantiated_value (htab_t cache, tree version, tree val)
2056 {
2057 struct scev_info_str *info, pattern;
2058 PTR *slot;
2059
2060 pattern.var = version;
2061 slot = htab_find_slot (cache, &pattern, INSERT);
2062
2063 if (!*slot)
2064 *slot = new_scev_info_str (version);
2065 info = (struct scev_info_str *) *slot;
2066 info->chrec = val;
2067 }
2068
2069 /* Return the closed_loop_phi node for VAR. If there is none, return
2070 NULL_TREE. */
2071
2072 static tree
2073 loop_closed_phi_def (tree var)
2074 {
2075 struct loop *loop;
2076 edge exit;
2077 tree phi;
2078
2079 if (var == NULL_TREE
2080 || TREE_CODE (var) != SSA_NAME)
2081 return NULL_TREE;
2082
2083 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2084 exit = single_exit (loop);
2085 if (!exit)
2086 return NULL_TREE;
2087
2088 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
2089 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2090 return PHI_RESULT (phi);
2091
2092 return NULL_TREE;
2093 }
2094
2095 /* Analyze all the parameters of the chrec that were left under a symbolic form,
2096 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
2097 of already instantiated values. FLAGS modify the way chrecs are
2098 instantiated. SIZE_EXPR is used for computing the size of the expression to
2099 be instantiated, and to stop if it exceeds some limit. */
2100
2101 /* Values for FLAGS. */
2102 enum
2103 {
2104 INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
2105 in outer loops. */
2106 FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
2107 signed/pointer type are folded, as long as the
2108 value of the chrec is preserved. */
2109 };
2110
2111 static tree
2112 instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2113 int size_expr)
2114 {
2115 tree res, op0, op1, op2;
2116 basic_block def_bb;
2117 struct loop *def_loop;
2118 tree type = chrec_type (chrec);
2119
2120 /* Give up if the expression is larger than the MAX that we allow. */
2121 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2122 return chrec_dont_know;
2123
2124 if (automatically_generated_chrec_p (chrec)
2125 || is_gimple_min_invariant (chrec))
2126 return chrec;
2127
2128 switch (TREE_CODE (chrec))
2129 {
2130 case SSA_NAME:
2131 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2132
2133 /* A parameter (or loop invariant and we do not want to include
2134 evolutions in outer loops), nothing to do. */
2135 if (!def_bb
2136 || (!(flags & INSERT_SUPERLOOP_CHRECS)
2137 && !flow_bb_inside_loop_p (loop, def_bb)))
2138 return chrec;
2139
2140 /* We cache the value of instantiated variable to avoid exponential
2141 time complexity due to reevaluations. We also store the convenient
2142 value in the cache in order to prevent infinite recursion -- we do
2143 not want to instantiate the SSA_NAME if it is in a mixer
2144 structure. This is used for avoiding the instantiation of
2145 recursively defined functions, such as:
2146
2147 | a_2 -> {0, +, 1, +, a_2}_1 */
2148
2149 res = get_instantiated_value (cache, chrec);
2150 if (res)
2151 return res;
2152
2153 /* Store the convenient value for chrec in the structure. If it
2154 is defined outside of the loop, we may just leave it in symbolic
2155 form, otherwise we need to admit that we do not know its behavior
2156 inside the loop. */
2157 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2158 set_instantiated_value (cache, chrec, res);
2159
2160 /* To make things even more complicated, instantiate_parameters_1
2161 calls analyze_scalar_evolution that may call # of iterations
2162 analysis that may in turn call instantiate_parameters_1 again.
2163 To prevent the infinite recursion, keep also the bitmap of
2164 ssa names that are being instantiated globally. */
2165 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2166 return res;
2167
2168 def_loop = find_common_loop (loop, def_bb->loop_father);
2169
2170 /* If the analysis yields a parametric chrec, instantiate the
2171 result again. */
2172 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2173 res = analyze_scalar_evolution (def_loop, chrec);
2174
2175 /* Don't instantiate loop-closed-ssa phi nodes. */
2176 if (TREE_CODE (res) == SSA_NAME
2177 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2178 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2179 > def_loop->depth)))
2180 {
2181 if (res == chrec)
2182 res = loop_closed_phi_def (chrec);
2183 else
2184 res = chrec;
2185
2186 if (res == NULL_TREE)
2187 res = chrec_dont_know;
2188 }
2189
2190 else if (res != chrec_dont_know)
2191 res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
2192
2193 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2194
2195 /* Store the correct value to the cache. */
2196 set_instantiated_value (cache, chrec, res);
2197 return res;
2198
2199 case POLYNOMIAL_CHREC:
2200 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2201 flags, cache, size_expr);
2202 if (op0 == chrec_dont_know)
2203 return chrec_dont_know;
2204
2205 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2206 flags, cache, size_expr);
2207 if (op1 == chrec_dont_know)
2208 return chrec_dont_know;
2209
2210 if (CHREC_LEFT (chrec) != op0
2211 || CHREC_RIGHT (chrec) != op1)
2212 {
2213 op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2214 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2215 }
2216 return chrec;
2217
2218 case PLUS_EXPR:
2219 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2220 flags, cache, size_expr);
2221 if (op0 == chrec_dont_know)
2222 return chrec_dont_know;
2223
2224 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2225 flags, cache, size_expr);
2226 if (op1 == chrec_dont_know)
2227 return chrec_dont_know;
2228
2229 if (TREE_OPERAND (chrec, 0) != op0
2230 || TREE_OPERAND (chrec, 1) != op1)
2231 {
2232 op0 = chrec_convert (type, op0, NULL_TREE);
2233 op1 = chrec_convert (type, op1, NULL_TREE);
2234 chrec = chrec_fold_plus (type, op0, op1);
2235 }
2236 return chrec;
2237
2238 case MINUS_EXPR:
2239 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2240 flags, cache, size_expr);
2241 if (op0 == chrec_dont_know)
2242 return chrec_dont_know;
2243
2244 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2245 flags, cache, size_expr);
2246 if (op1 == chrec_dont_know)
2247 return chrec_dont_know;
2248
2249 if (TREE_OPERAND (chrec, 0) != op0
2250 || TREE_OPERAND (chrec, 1) != op1)
2251 {
2252 op0 = chrec_convert (type, op0, NULL_TREE);
2253 op1 = chrec_convert (type, op1, NULL_TREE);
2254 chrec = chrec_fold_minus (type, op0, op1);
2255 }
2256 return chrec;
2257
2258 case MULT_EXPR:
2259 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2260 flags, cache, size_expr);
2261 if (op0 == chrec_dont_know)
2262 return chrec_dont_know;
2263
2264 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2265 flags, cache, size_expr);
2266 if (op1 == chrec_dont_know)
2267 return chrec_dont_know;
2268
2269 if (TREE_OPERAND (chrec, 0) != op0
2270 || TREE_OPERAND (chrec, 1) != op1)
2271 {
2272 op0 = chrec_convert (type, op0, NULL_TREE);
2273 op1 = chrec_convert (type, op1, NULL_TREE);
2274 chrec = chrec_fold_multiply (type, op0, op1);
2275 }
2276 return chrec;
2277
2278 case NOP_EXPR:
2279 case CONVERT_EXPR:
2280 case NON_LVALUE_EXPR:
2281 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2282 flags, cache, size_expr);
2283 if (op0 == chrec_dont_know)
2284 return chrec_dont_know;
2285
2286 if (flags & FOLD_CONVERSIONS)
2287 {
2288 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2289 if (tmp)
2290 return tmp;
2291 }
2292
2293 if (op0 == TREE_OPERAND (chrec, 0))
2294 return chrec;
2295
2296 /* If we used chrec_convert_aggressive, we can no longer assume that
2297 signed chrecs do not overflow, as chrec_convert does, so avoid
2298 calling it in that case. */
2299 if (flags & FOLD_CONVERSIONS)
2300 return fold_convert (TREE_TYPE (chrec), op0);
2301
2302 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2303
2304 case SCEV_NOT_KNOWN:
2305 return chrec_dont_know;
2306
2307 case SCEV_KNOWN:
2308 return chrec_known;
2309
2310 default:
2311 break;
2312 }
2313
2314 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2315 {
2316 case 3:
2317 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2318 flags, cache, size_expr);
2319 if (op0 == chrec_dont_know)
2320 return chrec_dont_know;
2321
2322 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2323 flags, cache, size_expr);
2324 if (op1 == chrec_dont_know)
2325 return chrec_dont_know;
2326
2327 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2328 flags, cache, size_expr);
2329 if (op2 == chrec_dont_know)
2330 return chrec_dont_know;
2331
2332 if (op0 == TREE_OPERAND (chrec, 0)
2333 && op1 == TREE_OPERAND (chrec, 1)
2334 && op2 == TREE_OPERAND (chrec, 2))
2335 return chrec;
2336
2337 return fold_build3 (TREE_CODE (chrec),
2338 TREE_TYPE (chrec), op0, op1, op2);
2339
2340 case 2:
2341 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2342 flags, cache, size_expr);
2343 if (op0 == chrec_dont_know)
2344 return chrec_dont_know;
2345
2346 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2347 flags, cache, size_expr);
2348 if (op1 == chrec_dont_know)
2349 return chrec_dont_know;
2350
2351 if (op0 == TREE_OPERAND (chrec, 0)
2352 && op1 == TREE_OPERAND (chrec, 1))
2353 return chrec;
2354 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2355
2356 case 1:
2357 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2358 flags, cache, size_expr);
2359 if (op0 == chrec_dont_know)
2360 return chrec_dont_know;
2361 if (op0 == TREE_OPERAND (chrec, 0))
2362 return chrec;
2363 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2364
2365 case 0:
2366 return chrec;
2367
2368 default:
2369 break;
2370 }
2371
2372 /* Too complicated to handle. */
2373 return chrec_dont_know;
2374 }
2375
2376 /* Analyze all the parameters of the chrec that were left under a
2377 symbolic form. LOOP is the loop in which symbolic names have to
2378 be analyzed and instantiated. */
2379
2380 tree
2381 instantiate_parameters (struct loop *loop,
2382 tree chrec)
2383 {
2384 tree res;
2385 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2386
2387 if (dump_file && (dump_flags & TDF_DETAILS))
2388 {
2389 fprintf (dump_file, "(instantiate_parameters \n");
2390 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2391 fprintf (dump_file, " (chrec = ");
2392 print_generic_expr (dump_file, chrec, 0);
2393 fprintf (dump_file, ")\n");
2394 }
2395
2396 res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2397 0);
2398
2399 if (dump_file && (dump_flags & TDF_DETAILS))
2400 {
2401 fprintf (dump_file, " (res = ");
2402 print_generic_expr (dump_file, res, 0);
2403 fprintf (dump_file, "))\n");
2404 }
2405
2406 htab_delete (cache);
2407
2408 return res;
2409 }
2410
2411 /* Similar to instantiate_parameters, but does not introduce the
2412 evolutions in outer loops for LOOP invariants in CHREC, and does not
2413 care about causing overflows, as long as they do not affect value
2414 of an expression. */
2415
2416 static tree
2417 resolve_mixers (struct loop *loop, tree chrec)
2418 {
2419 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2420 tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
2421 htab_delete (cache);
2422 return ret;
2423 }
2424
2425 /* Entry point for the analysis of the number of iterations pass.
2426 This function tries to safely approximate the number of iterations
2427 the loop will run. When this property is not decidable at compile
2428 time, the result is chrec_dont_know. Otherwise the result is
2429 a scalar or a symbolic parameter.
2430
2431 Example of analysis: suppose that the loop has an exit condition:
2432
2433 "if (b > 49) goto end_loop;"
2434
2435 and that in a previous analysis we have determined that the
2436 variable 'b' has an evolution function:
2437
2438 "EF = {23, +, 5}_2".
2439
2440 When we evaluate the function at the point 5, i.e. the value of the
2441 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2442 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2443 the loop body has been executed 6 times. */
2444
2445 tree
2446 number_of_latch_executions (struct loop *loop)
2447 {
2448 tree res, type;
2449 edge exit;
2450 struct tree_niter_desc niter_desc;
2451
2452 /* Determine whether the number_of_iterations_in_loop has already
2453 been computed. */
2454 res = loop->nb_iterations;
2455 if (res)
2456 return res;
2457 res = chrec_dont_know;
2458
2459 if (dump_file && (dump_flags & TDF_DETAILS))
2460 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2461
2462 exit = single_exit (loop);
2463 if (!exit)
2464 goto end;
2465
2466 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2467 goto end;
2468
2469 type = TREE_TYPE (niter_desc.niter);
2470 if (integer_nonzerop (niter_desc.may_be_zero))
2471 res = build_int_cst (type, 0);
2472 else if (integer_zerop (niter_desc.may_be_zero))
2473 res = niter_desc.niter;
2474 else
2475 res = chrec_dont_know;
2476
2477 end:
2478 return set_nb_iterations_in_loop (loop, res);
2479 }
2480
2481 /* Returns the number of executions of the exit condition of LOOP,
2482 i.e., the number by one higher than number_of_latch_executions.
2483 Note that unline number_of_latch_executions, this number does
2484 not necessarily fit in the unsigned variant of the type of
2485 the control variable -- if the number of iterations is a constant,
2486 we return chrec_dont_know if adding one to number_of_latch_executions
2487 overflows; however, in case the number of iterations is symbolic
2488 expression, the caller is responsible for dealing with this
2489 the possible overflow. */
2490
2491 tree
2492 number_of_exit_cond_executions (struct loop *loop)
2493 {
2494 tree ret = number_of_latch_executions (loop);
2495 tree type = chrec_type (ret);
2496
2497 if (chrec_contains_undetermined (ret))
2498 return ret;
2499
2500 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2501 if (TREE_CODE (ret) == INTEGER_CST
2502 && TREE_OVERFLOW (ret))
2503 return chrec_dont_know;
2504
2505 return ret;
2506 }
2507
2508 /* One of the drivers for testing the scalar evolutions analysis.
2509 This function computes the number of iterations for all the loops
2510 from the EXIT_CONDITIONS array. */
2511
2512 static void
2513 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2514 {
2515 unsigned int i;
2516 unsigned nb_chrec_dont_know_loops = 0;
2517 unsigned nb_static_loops = 0;
2518 tree cond;
2519
2520 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2521 {
2522 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2523 if (chrec_contains_undetermined (res))
2524 nb_chrec_dont_know_loops++;
2525 else
2526 nb_static_loops++;
2527 }
2528
2529 if (dump_file)
2530 {
2531 fprintf (dump_file, "\n(\n");
2532 fprintf (dump_file, "-----------------------------------------\n");
2533 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2534 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2535 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2536 fprintf (dump_file, "-----------------------------------------\n");
2537 fprintf (dump_file, ")\n\n");
2538
2539 print_loop_ir (dump_file);
2540 }
2541 }
2542
2543 \f
2544
2545 /* Counters for the stats. */
2546
2547 struct chrec_stats
2548 {
2549 unsigned nb_chrecs;
2550 unsigned nb_affine;
2551 unsigned nb_affine_multivar;
2552 unsigned nb_higher_poly;
2553 unsigned nb_chrec_dont_know;
2554 unsigned nb_undetermined;
2555 };
2556
2557 /* Reset the counters. */
2558
2559 static inline void
2560 reset_chrecs_counters (struct chrec_stats *stats)
2561 {
2562 stats->nb_chrecs = 0;
2563 stats->nb_affine = 0;
2564 stats->nb_affine_multivar = 0;
2565 stats->nb_higher_poly = 0;
2566 stats->nb_chrec_dont_know = 0;
2567 stats->nb_undetermined = 0;
2568 }
2569
2570 /* Dump the contents of a CHREC_STATS structure. */
2571
2572 static void
2573 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2574 {
2575 fprintf (file, "\n(\n");
2576 fprintf (file, "-----------------------------------------\n");
2577 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2578 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2579 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2580 stats->nb_higher_poly);
2581 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2582 fprintf (file, "-----------------------------------------\n");
2583 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2584 fprintf (file, "%d\twith undetermined coefficients\n",
2585 stats->nb_undetermined);
2586 fprintf (file, "-----------------------------------------\n");
2587 fprintf (file, "%d\tchrecs in the scev database\n",
2588 (int) htab_elements (scalar_evolution_info));
2589 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2590 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2591 fprintf (file, "-----------------------------------------\n");
2592 fprintf (file, ")\n\n");
2593 }
2594
2595 /* Gather statistics about CHREC. */
2596
2597 static void
2598 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2599 {
2600 if (dump_file && (dump_flags & TDF_STATS))
2601 {
2602 fprintf (dump_file, "(classify_chrec ");
2603 print_generic_expr (dump_file, chrec, 0);
2604 fprintf (dump_file, "\n");
2605 }
2606
2607 stats->nb_chrecs++;
2608
2609 if (chrec == NULL_TREE)
2610 {
2611 stats->nb_undetermined++;
2612 return;
2613 }
2614
2615 switch (TREE_CODE (chrec))
2616 {
2617 case POLYNOMIAL_CHREC:
2618 if (evolution_function_is_affine_p (chrec))
2619 {
2620 if (dump_file && (dump_flags & TDF_STATS))
2621 fprintf (dump_file, " affine_univariate\n");
2622 stats->nb_affine++;
2623 }
2624 else if (evolution_function_is_affine_multivariate_p (chrec))
2625 {
2626 if (dump_file && (dump_flags & TDF_STATS))
2627 fprintf (dump_file, " affine_multivariate\n");
2628 stats->nb_affine_multivar++;
2629 }
2630 else
2631 {
2632 if (dump_file && (dump_flags & TDF_STATS))
2633 fprintf (dump_file, " higher_degree_polynomial\n");
2634 stats->nb_higher_poly++;
2635 }
2636
2637 break;
2638
2639 default:
2640 break;
2641 }
2642
2643 if (chrec_contains_undetermined (chrec))
2644 {
2645 if (dump_file && (dump_flags & TDF_STATS))
2646 fprintf (dump_file, " undetermined\n");
2647 stats->nb_undetermined++;
2648 }
2649
2650 if (dump_file && (dump_flags & TDF_STATS))
2651 fprintf (dump_file, ")\n");
2652 }
2653
2654 /* One of the drivers for testing the scalar evolutions analysis.
2655 This function analyzes the scalar evolution of all the scalars
2656 defined as loop phi nodes in one of the loops from the
2657 EXIT_CONDITIONS array.
2658
2659 TODO Optimization: A loop is in canonical form if it contains only
2660 a single scalar loop phi node. All the other scalars that have an
2661 evolution in the loop are rewritten in function of this single
2662 index. This allows the parallelization of the loop. */
2663
2664 static void
2665 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2666 {
2667 unsigned int i;
2668 struct chrec_stats stats;
2669 tree cond;
2670
2671 reset_chrecs_counters (&stats);
2672
2673 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2674 {
2675 struct loop *loop;
2676 basic_block bb;
2677 tree phi, chrec;
2678
2679 loop = loop_containing_stmt (cond);
2680 bb = loop->header;
2681
2682 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2683 if (is_gimple_reg (PHI_RESULT (phi)))
2684 {
2685 chrec = instantiate_parameters
2686 (loop,
2687 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2688
2689 if (dump_file && (dump_flags & TDF_STATS))
2690 gather_chrec_stats (chrec, &stats);
2691 }
2692 }
2693
2694 if (dump_file && (dump_flags & TDF_STATS))
2695 dump_chrecs_stats (dump_file, &stats);
2696 }
2697
2698 /* Callback for htab_traverse, gathers information on chrecs in the
2699 hashtable. */
2700
2701 static int
2702 gather_stats_on_scev_database_1 (void **slot, void *stats)
2703 {
2704 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2705
2706 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2707
2708 return 1;
2709 }
2710
2711 /* Classify the chrecs of the whole database. */
2712
2713 void
2714 gather_stats_on_scev_database (void)
2715 {
2716 struct chrec_stats stats;
2717
2718 if (!dump_file)
2719 return;
2720
2721 reset_chrecs_counters (&stats);
2722
2723 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2724 &stats);
2725
2726 dump_chrecs_stats (dump_file, &stats);
2727 }
2728
2729 \f
2730
2731 /* Initializer. */
2732
2733 static void
2734 initialize_scalar_evolutions_analyzer (void)
2735 {
2736 /* The elements below are unique. */
2737 if (chrec_dont_know == NULL_TREE)
2738 {
2739 chrec_not_analyzed_yet = NULL_TREE;
2740 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2741 chrec_known = make_node (SCEV_KNOWN);
2742 TREE_TYPE (chrec_dont_know) = void_type_node;
2743 TREE_TYPE (chrec_known) = void_type_node;
2744 }
2745 }
2746
2747 /* Initialize the analysis of scalar evolutions for LOOPS. */
2748
2749 void
2750 scev_initialize (void)
2751 {
2752 loop_iterator li;
2753 struct loop *loop;
2754
2755 scalar_evolution_info = htab_create (100, hash_scev_info,
2756 eq_scev_info, del_scev_info);
2757 already_instantiated = BITMAP_ALLOC (NULL);
2758
2759 initialize_scalar_evolutions_analyzer ();
2760
2761 FOR_EACH_LOOP (li, loop, 0)
2762 {
2763 loop->nb_iterations = NULL_TREE;
2764 }
2765 }
2766
2767 /* Cleans up the information cached by the scalar evolutions analysis. */
2768
2769 void
2770 scev_reset (void)
2771 {
2772 loop_iterator li;
2773 struct loop *loop;
2774
2775 if (!scalar_evolution_info || !current_loops)
2776 return;
2777
2778 htab_empty (scalar_evolution_info);
2779 FOR_EACH_LOOP (li, loop, 0)
2780 {
2781 loop->nb_iterations = NULL_TREE;
2782 }
2783 }
2784
2785 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2786 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2787 want step to be invariant in LOOP. Otherwise we require it to be an
2788 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2789 overflow (e.g. because it is computed in signed arithmetics). */
2790
2791 bool
2792 simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
2793 bool allow_nonconstant_step)
2794 {
2795 basic_block bb = bb_for_stmt (stmt);
2796 tree type, ev;
2797 bool folded_casts;
2798
2799 iv->base = NULL_TREE;
2800 iv->step = NULL_TREE;
2801 iv->no_overflow = false;
2802
2803 type = TREE_TYPE (op);
2804 if (TREE_CODE (type) != INTEGER_TYPE
2805 && TREE_CODE (type) != POINTER_TYPE)
2806 return false;
2807
2808 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2809 &folded_casts);
2810 if (chrec_contains_undetermined (ev))
2811 return false;
2812
2813 if (tree_does_not_contain_chrecs (ev)
2814 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2815 {
2816 iv->base = ev;
2817 iv->no_overflow = true;
2818 return true;
2819 }
2820
2821 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2822 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2823 return false;
2824
2825 iv->step = CHREC_RIGHT (ev);
2826 if (allow_nonconstant_step)
2827 {
2828 if (tree_contains_chrecs (iv->step, NULL)
2829 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2830 return false;
2831 }
2832 else if (TREE_CODE (iv->step) != INTEGER_CST)
2833 return false;
2834
2835 iv->base = CHREC_LEFT (ev);
2836 if (tree_contains_chrecs (iv->base, NULL)
2837 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2838 return false;
2839
2840 iv->no_overflow = (!folded_casts
2841 && !flag_wrapv
2842 && !TYPE_UNSIGNED (type));
2843 return true;
2844 }
2845
2846 /* Runs the analysis of scalar evolutions. */
2847
2848 void
2849 scev_analysis (void)
2850 {
2851 VEC(tree,heap) *exit_conditions;
2852
2853 exit_conditions = VEC_alloc (tree, heap, 37);
2854 select_loops_exit_conditions (&exit_conditions);
2855
2856 if (dump_file && (dump_flags & TDF_STATS))
2857 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2858
2859 number_of_iterations_for_all_loops (&exit_conditions);
2860 VEC_free (tree, heap, exit_conditions);
2861 }
2862
2863 /* Finalize the scalar evolution analysis. */
2864
2865 void
2866 scev_finalize (void)
2867 {
2868 htab_delete (scalar_evolution_info);
2869 BITMAP_FREE (already_instantiated);
2870 }
2871
2872 /* Returns true if EXPR looks expensive. */
2873
2874 static bool
2875 expression_expensive_p (tree expr)
2876 {
2877 return force_expr_to_var_cost (expr) >= target_spill_cost;
2878 }
2879
2880 /* Replace ssa names for that scev can prove they are constant by the
2881 appropriate constants. Also perform final value replacement in loops,
2882 in case the replacement expressions are cheap.
2883
2884 We only consider SSA names defined by phi nodes; rest is left to the
2885 ordinary constant propagation pass. */
2886
2887 unsigned int
2888 scev_const_prop (void)
2889 {
2890 basic_block bb;
2891 tree name, phi, next_phi, type, ev;
2892 struct loop *loop, *ex_loop;
2893 bitmap ssa_names_to_remove = NULL;
2894 unsigned i;
2895 loop_iterator li;
2896
2897 if (!current_loops)
2898 return 0;
2899
2900 FOR_EACH_BB (bb)
2901 {
2902 loop = bb->loop_father;
2903
2904 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2905 {
2906 name = PHI_RESULT (phi);
2907
2908 if (!is_gimple_reg (name))
2909 continue;
2910
2911 type = TREE_TYPE (name);
2912
2913 if (!POINTER_TYPE_P (type)
2914 && !INTEGRAL_TYPE_P (type))
2915 continue;
2916
2917 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2918 if (!is_gimple_min_invariant (ev)
2919 || !may_propagate_copy (name, ev))
2920 continue;
2921
2922 /* Replace the uses of the name. */
2923 if (name != ev)
2924 replace_uses_by (name, ev);
2925
2926 if (!ssa_names_to_remove)
2927 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2928 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2929 }
2930 }
2931
2932 /* Remove the ssa names that were replaced by constants. We do not
2933 remove them directly in the previous cycle, since this
2934 invalidates scev cache. */
2935 if (ssa_names_to_remove)
2936 {
2937 bitmap_iterator bi;
2938
2939 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2940 {
2941 name = ssa_name (i);
2942 phi = SSA_NAME_DEF_STMT (name);
2943
2944 gcc_assert (TREE_CODE (phi) == PHI_NODE);
2945 remove_phi_node (phi, NULL, true);
2946 }
2947
2948 BITMAP_FREE (ssa_names_to_remove);
2949 scev_reset ();
2950 }
2951
2952 /* Now the regular final value replacement. */
2953 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
2954 {
2955 edge exit;
2956 tree def, rslt, ass, niter;
2957 block_stmt_iterator bsi;
2958
2959 /* If we do not know exact number of iterations of the loop, we cannot
2960 replace the final value. */
2961 exit = single_exit (loop);
2962 if (!exit)
2963 continue;
2964
2965 niter = number_of_latch_executions (loop);
2966 if (niter == chrec_dont_know
2967 /* If computing the number of iterations is expensive, it may be
2968 better not to introduce computations involving it. */
2969 || expression_expensive_p (niter))
2970 continue;
2971
2972 /* Ensure that it is possible to insert new statements somewhere. */
2973 if (!single_pred_p (exit->dest))
2974 split_loop_exit_edge (exit);
2975 tree_block_label (exit->dest);
2976 bsi = bsi_after_labels (exit->dest);
2977
2978 ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
2979
2980 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2981 {
2982 next_phi = PHI_CHAIN (phi);
2983 rslt = PHI_RESULT (phi);
2984 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2985 if (!is_gimple_reg (def))
2986 continue;
2987
2988 if (!POINTER_TYPE_P (TREE_TYPE (def))
2989 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2990 continue;
2991
2992 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2993 def = compute_overall_effect_of_inner_loop (ex_loop, def);
2994 if (!tree_does_not_contain_chrecs (def)
2995 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2996 /* Moving the computation from the loop may prolong life range
2997 of some ssa names, which may cause problems if they appear
2998 on abnormal edges. */
2999 || contains_abnormal_ssa_name_p (def))
3000 continue;
3001
3002 /* Eliminate the PHI node and replace it by a computation outside
3003 the loop. */
3004 def = unshare_expr (def);
3005 remove_phi_node (phi, NULL_TREE, false);
3006
3007 ass = build2 (GIMPLE_MODIFY_STMT, void_type_node, rslt, NULL_TREE);
3008 SSA_NAME_DEF_STMT (rslt) = ass;
3009 {
3010 block_stmt_iterator dest = bsi;
3011 bsi_insert_before (&dest, ass, BSI_NEW_STMT);
3012 def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
3013 }
3014 GIMPLE_STMT_OPERAND (ass, 1) = def;
3015 update_stmt (ass);
3016 }
3017 }
3018 return 0;
3019 }