tree-scalar-evolution.c (follow_ssa_edge_in_rhs, [...]): Keep more precise track...
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a GIMPLE_MODIFY_STMT: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 3: Higher degree polynomials.
159
160 | loop_1
161 | a = phi (2, b)
162 | c = phi (5, d)
163 | b = a + 1
164 | d = c + a
165 | endloop
166
167 a -> {2, +, 1}_1
168 b -> {3, +, 1}_1
169 c -> {5, +, a}_1
170 d -> {5 + a, +, a}_1
171
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174
175 Example 4: Lucas, Fibonacci, or mixers in general.
176
177 | loop_1
178 | a = phi (1, b)
179 | c = phi (3, d)
180 | b = c
181 | d = c + a
182 | endloop
183
184 a -> (1, c)_1
185 c -> {3, +, a}_1
186
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
192
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
195
196 Example 5: Flip-flops, or exchangers.
197
198 | loop_1
199 | a = phi (1, b)
200 | c = phi (3, d)
201 | b = c
202 | d = a
203 | endloop
204
205 a -> (1, c)_1
206 c -> (3, a)_1
207
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
210
211 a -> |1, 3|_1
212 c -> |3, 1|_1
213
214 This transformation is not yet implemented.
215
216 Further readings:
217
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
225
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "ggc.h"
239 #include "tree.h"
240 #include "real.h"
241
242 /* These RTL headers are needed for basic-block.h. */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254 #include "params.h"
255
256 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257
258 /* The cached information about a ssa name VAR, claiming that inside LOOP,
259 the value of VAR can be expressed as CHREC. */
260
261 struct scev_info_str GTY(())
262 {
263 tree var;
264 tree chrec;
265 };
266
267 /* Counters for the scev database. */
268 static unsigned nb_set_scev = 0;
269 static unsigned nb_get_scev = 0;
270
271 /* The following trees are unique elements. Thus the comparison of
272 another element to these elements should be done on the pointer to
273 these trees, and not on their value. */
274
275 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
276 tree chrec_not_analyzed_yet;
277
278 /* Reserved to the cases where the analyzer has detected an
279 undecidable property at compile time. */
280 tree chrec_dont_know;
281
282 /* When the analyzer has detected that a property will never
283 happen, then it qualifies it with chrec_known. */
284 tree chrec_known;
285
286 static bitmap already_instantiated;
287
288 static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
289
290 \f
291 /* Constructs a new SCEV_INFO_STR structure. */
292
293 static inline struct scev_info_str *
294 new_scev_info_str (tree var)
295 {
296 struct scev_info_str *res;
297
298 res = GGC_NEW (struct scev_info_str);
299 res->var = var;
300 res->chrec = chrec_not_analyzed_yet;
301
302 return res;
303 }
304
305 /* Computes a hash function for database element ELT. */
306
307 static hashval_t
308 hash_scev_info (const void *elt)
309 {
310 return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
311 }
312
313 /* Compares database elements E1 and E2. */
314
315 static int
316 eq_scev_info (const void *e1, const void *e2)
317 {
318 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
319 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
320
321 return elt1->var == elt2->var;
322 }
323
324 /* Deletes database element E. */
325
326 static void
327 del_scev_info (void *e)
328 {
329 ggc_free (e);
330 }
331
332 /* Get the index corresponding to VAR in the current LOOP. If
333 it's the first time we ask for this VAR, then we return
334 chrec_not_analyzed_yet for this VAR and return its index. */
335
336 static tree *
337 find_var_scev_info (tree var)
338 {
339 struct scev_info_str *res;
340 struct scev_info_str tmp;
341 PTR *slot;
342
343 tmp.var = var;
344 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
345
346 if (!*slot)
347 *slot = new_scev_info_str (var);
348 res = (struct scev_info_str *) *slot;
349
350 return &res->chrec;
351 }
352
353 /* Return true when CHREC contains symbolic names defined in
354 LOOP_NB. */
355
356 bool
357 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
358 {
359 int i, n;
360
361 if (chrec == NULL_TREE)
362 return false;
363
364 if (TREE_INVARIANT (chrec))
365 return false;
366
367 if (TREE_CODE (chrec) == VAR_DECL
368 || TREE_CODE (chrec) == PARM_DECL
369 || TREE_CODE (chrec) == FUNCTION_DECL
370 || TREE_CODE (chrec) == LABEL_DECL
371 || TREE_CODE (chrec) == RESULT_DECL
372 || TREE_CODE (chrec) == FIELD_DECL)
373 return true;
374
375 if (TREE_CODE (chrec) == SSA_NAME)
376 {
377 tree def = SSA_NAME_DEF_STMT (chrec);
378 struct loop *def_loop = loop_containing_stmt (def);
379 struct loop *loop = get_loop (loop_nb);
380
381 if (def_loop == NULL)
382 return false;
383
384 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
385 return true;
386
387 return false;
388 }
389
390 n = TREE_OPERAND_LENGTH (chrec);
391 for (i = 0; i < n; i++)
392 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
393 loop_nb))
394 return true;
395 return false;
396 }
397
398 /* Return true when PHI is a loop-phi-node. */
399
400 static bool
401 loop_phi_node_p (tree phi)
402 {
403 /* The implementation of this function is based on the following
404 property: "all the loop-phi-nodes of a loop are contained in the
405 loop's header basic block". */
406
407 return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
408 }
409
410 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
411 In general, in the case of multivariate evolutions we want to get
412 the evolution in different loops. LOOP specifies the level for
413 which to get the evolution.
414
415 Example:
416
417 | for (j = 0; j < 100; j++)
418 | {
419 | for (k = 0; k < 100; k++)
420 | {
421 | i = k + j; - Here the value of i is a function of j, k.
422 | }
423 | ... = i - Here the value of i is a function of j.
424 | }
425 | ... = i - Here the value of i is a scalar.
426
427 Example:
428
429 | i_0 = ...
430 | loop_1 10 times
431 | i_1 = phi (i_0, i_2)
432 | i_2 = i_1 + 2
433 | endloop
434
435 This loop has the same effect as:
436 LOOP_1 has the same effect as:
437
438 | i_1 = i_0 + 20
439
440 The overall effect of the loop, "i_0 + 20" in the previous example,
441 is obtained by passing in the parameters: LOOP = 1,
442 EVOLUTION_FN = {i_0, +, 2}_1.
443 */
444
445 static tree
446 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
447 {
448 bool val = false;
449
450 if (evolution_fn == chrec_dont_know)
451 return chrec_dont_know;
452
453 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
454 {
455 struct loop *inner_loop = get_chrec_loop (evolution_fn);
456
457 if (inner_loop == loop
458 || flow_loop_nested_p (loop, inner_loop))
459 {
460 tree nb_iter = number_of_latch_executions (inner_loop);
461
462 if (nb_iter == chrec_dont_know)
463 return chrec_dont_know;
464 else
465 {
466 tree res;
467
468 /* evolution_fn is the evolution function in LOOP. Get
469 its value in the nb_iter-th iteration. */
470 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
471
472 /* Continue the computation until ending on a parent of LOOP. */
473 return compute_overall_effect_of_inner_loop (loop, res);
474 }
475 }
476 else
477 return evolution_fn;
478 }
479
480 /* If the evolution function is an invariant, there is nothing to do. */
481 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
482 return evolution_fn;
483
484 else
485 return chrec_dont_know;
486 }
487
488 /* Determine whether the CHREC is always positive/negative. If the expression
489 cannot be statically analyzed, return false, otherwise set the answer into
490 VALUE. */
491
492 bool
493 chrec_is_positive (tree chrec, bool *value)
494 {
495 bool value0, value1, value2;
496 tree end_value, nb_iter;
497
498 switch (TREE_CODE (chrec))
499 {
500 case POLYNOMIAL_CHREC:
501 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
502 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
503 return false;
504
505 /* FIXME -- overflows. */
506 if (value0 == value1)
507 {
508 *value = value0;
509 return true;
510 }
511
512 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
513 and the proof consists in showing that the sign never
514 changes during the execution of the loop, from 0 to
515 loop->nb_iterations. */
516 if (!evolution_function_is_affine_p (chrec))
517 return false;
518
519 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
520 if (chrec_contains_undetermined (nb_iter))
521 return false;
522
523 #if 0
524 /* TODO -- If the test is after the exit, we may decrease the number of
525 iterations by one. */
526 if (after_exit)
527 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
528 #endif
529
530 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
531
532 if (!chrec_is_positive (end_value, &value2))
533 return false;
534
535 *value = value0;
536 return value0 == value1;
537
538 case INTEGER_CST:
539 *value = (tree_int_cst_sgn (chrec) == 1);
540 return true;
541
542 default:
543 return false;
544 }
545 }
546
547 /* Associate CHREC to SCALAR. */
548
549 static void
550 set_scalar_evolution (tree scalar, tree chrec)
551 {
552 tree *scalar_info;
553
554 if (TREE_CODE (scalar) != SSA_NAME)
555 return;
556
557 scalar_info = find_var_scev_info (scalar);
558
559 if (dump_file)
560 {
561 if (dump_flags & TDF_DETAILS)
562 {
563 fprintf (dump_file, "(set_scalar_evolution \n");
564 fprintf (dump_file, " (scalar = ");
565 print_generic_expr (dump_file, scalar, 0);
566 fprintf (dump_file, ")\n (scalar_evolution = ");
567 print_generic_expr (dump_file, chrec, 0);
568 fprintf (dump_file, "))\n");
569 }
570 if (dump_flags & TDF_STATS)
571 nb_set_scev++;
572 }
573
574 *scalar_info = chrec;
575 }
576
577 /* Retrieve the chrec associated to SCALAR in the LOOP. */
578
579 static tree
580 get_scalar_evolution (tree scalar)
581 {
582 tree res;
583
584 if (dump_file)
585 {
586 if (dump_flags & TDF_DETAILS)
587 {
588 fprintf (dump_file, "(get_scalar_evolution \n");
589 fprintf (dump_file, " (scalar = ");
590 print_generic_expr (dump_file, scalar, 0);
591 fprintf (dump_file, ")\n");
592 }
593 if (dump_flags & TDF_STATS)
594 nb_get_scev++;
595 }
596
597 switch (TREE_CODE (scalar))
598 {
599 case SSA_NAME:
600 res = *find_var_scev_info (scalar);
601 break;
602
603 case REAL_CST:
604 case INTEGER_CST:
605 res = scalar;
606 break;
607
608 default:
609 res = chrec_not_analyzed_yet;
610 break;
611 }
612
613 if (dump_file && (dump_flags & TDF_DETAILS))
614 {
615 fprintf (dump_file, " (scalar_evolution = ");
616 print_generic_expr (dump_file, res, 0);
617 fprintf (dump_file, "))\n");
618 }
619
620 return res;
621 }
622
623 /* Helper function for add_to_evolution. Returns the evolution
624 function for an assignment of the form "a = b + c", where "a" and
625 "b" are on the strongly connected component. CHREC_BEFORE is the
626 information that we already have collected up to this point.
627 TO_ADD is the evolution of "c".
628
629 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
630 evolution the expression TO_ADD, otherwise construct an evolution
631 part for this loop. */
632
633 static tree
634 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
635 tree at_stmt)
636 {
637 tree type, left, right;
638 struct loop *loop = get_loop (loop_nb), *chloop;
639
640 switch (TREE_CODE (chrec_before))
641 {
642 case POLYNOMIAL_CHREC:
643 chloop = get_chrec_loop (chrec_before);
644 if (chloop == loop
645 || flow_loop_nested_p (chloop, loop))
646 {
647 unsigned var;
648
649 type = chrec_type (chrec_before);
650
651 /* When there is no evolution part in this loop, build it. */
652 if (chloop != loop)
653 {
654 var = loop_nb;
655 left = chrec_before;
656 right = SCALAR_FLOAT_TYPE_P (type)
657 ? build_real (type, dconst0)
658 : build_int_cst (type, 0);
659 }
660 else
661 {
662 var = CHREC_VARIABLE (chrec_before);
663 left = CHREC_LEFT (chrec_before);
664 right = CHREC_RIGHT (chrec_before);
665 }
666
667 to_add = chrec_convert (type, to_add, at_stmt);
668 right = chrec_convert (type, right, at_stmt);
669 right = chrec_fold_plus (type, right, to_add);
670 return build_polynomial_chrec (var, left, right);
671 }
672 else
673 {
674 gcc_assert (flow_loop_nested_p (loop, chloop));
675
676 /* Search the evolution in LOOP_NB. */
677 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
678 to_add, at_stmt);
679 right = CHREC_RIGHT (chrec_before);
680 right = chrec_convert (chrec_type (left), right, at_stmt);
681 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
682 left, right);
683 }
684
685 default:
686 /* These nodes do not depend on a loop. */
687 if (chrec_before == chrec_dont_know)
688 return chrec_dont_know;
689
690 left = chrec_before;
691 right = chrec_convert (chrec_type (left), to_add, at_stmt);
692 return build_polynomial_chrec (loop_nb, left, right);
693 }
694 }
695
696 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
697 of LOOP_NB.
698
699 Description (provided for completeness, for those who read code in
700 a plane, and for my poor 62 bytes brain that would have forgotten
701 all this in the next two or three months):
702
703 The algorithm of translation of programs from the SSA representation
704 into the chrecs syntax is based on a pattern matching. After having
705 reconstructed the overall tree expression for a loop, there are only
706 two cases that can arise:
707
708 1. a = loop-phi (init, a + expr)
709 2. a = loop-phi (init, expr)
710
711 where EXPR is either a scalar constant with respect to the analyzed
712 loop (this is a degree 0 polynomial), or an expression containing
713 other loop-phi definitions (these are higher degree polynomials).
714
715 Examples:
716
717 1.
718 | init = ...
719 | loop_1
720 | a = phi (init, a + 5)
721 | endloop
722
723 2.
724 | inita = ...
725 | initb = ...
726 | loop_1
727 | a = phi (inita, 2 * b + 3)
728 | b = phi (initb, b + 1)
729 | endloop
730
731 For the first case, the semantics of the SSA representation is:
732
733 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
734
735 that is, there is a loop index "x" that determines the scalar value
736 of the variable during the loop execution. During the first
737 iteration, the value is that of the initial condition INIT, while
738 during the subsequent iterations, it is the sum of the initial
739 condition with the sum of all the values of EXPR from the initial
740 iteration to the before last considered iteration.
741
742 For the second case, the semantics of the SSA program is:
743
744 | a (x) = init, if x = 0;
745 | expr (x - 1), otherwise.
746
747 The second case corresponds to the PEELED_CHREC, whose syntax is
748 close to the syntax of a loop-phi-node:
749
750 | phi (init, expr) vs. (init, expr)_x
751
752 The proof of the translation algorithm for the first case is a
753 proof by structural induction based on the degree of EXPR.
754
755 Degree 0:
756 When EXPR is a constant with respect to the analyzed loop, or in
757 other words when EXPR is a polynomial of degree 0, the evolution of
758 the variable A in the loop is an affine function with an initial
759 condition INIT, and a step EXPR. In order to show this, we start
760 from the semantics of the SSA representation:
761
762 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
763
764 and since "expr (j)" is a constant with respect to "j",
765
766 f (x) = init + x * expr
767
768 Finally, based on the semantics of the pure sum chrecs, by
769 identification we get the corresponding chrecs syntax:
770
771 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
772 f (x) -> {init, +, expr}_x
773
774 Higher degree:
775 Suppose that EXPR is a polynomial of degree N with respect to the
776 analyzed loop_x for which we have already determined that it is
777 written under the chrecs syntax:
778
779 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
780
781 We start from the semantics of the SSA program:
782
783 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
784 |
785 | f (x) = init + \sum_{j = 0}^{x - 1}
786 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
787 |
788 | f (x) = init + \sum_{j = 0}^{x - 1}
789 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
790 |
791 | f (x) = init + \sum_{k = 0}^{n - 1}
792 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
793 |
794 | f (x) = init + \sum_{k = 0}^{n - 1}
795 | (b_k * \binom{x}{k + 1})
796 |
797 | f (x) = init + b_0 * \binom{x}{1} + ...
798 | + b_{n-1} * \binom{x}{n}
799 |
800 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
801 | + b_{n-1} * \binom{x}{n}
802 |
803
804 And finally from the definition of the chrecs syntax, we identify:
805 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
806
807 This shows the mechanism that stands behind the add_to_evolution
808 function. An important point is that the use of symbolic
809 parameters avoids the need of an analysis schedule.
810
811 Example:
812
813 | inita = ...
814 | initb = ...
815 | loop_1
816 | a = phi (inita, a + 2 + b)
817 | b = phi (initb, b + 1)
818 | endloop
819
820 When analyzing "a", the algorithm keeps "b" symbolically:
821
822 | a -> {inita, +, 2 + b}_1
823
824 Then, after instantiation, the analyzer ends on the evolution:
825
826 | a -> {inita, +, 2 + initb, +, 1}_1
827
828 */
829
830 static tree
831 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
832 tree to_add, tree at_stmt)
833 {
834 tree type = chrec_type (to_add);
835 tree res = NULL_TREE;
836
837 if (to_add == NULL_TREE)
838 return chrec_before;
839
840 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
841 instantiated at this point. */
842 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
843 /* This should not happen. */
844 return chrec_dont_know;
845
846 if (dump_file && (dump_flags & TDF_DETAILS))
847 {
848 fprintf (dump_file, "(add_to_evolution \n");
849 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
850 fprintf (dump_file, " (chrec_before = ");
851 print_generic_expr (dump_file, chrec_before, 0);
852 fprintf (dump_file, ")\n (to_add = ");
853 print_generic_expr (dump_file, to_add, 0);
854 fprintf (dump_file, ")\n");
855 }
856
857 if (code == MINUS_EXPR)
858 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
859 ? build_real (type, dconstm1)
860 : build_int_cst_type (type, -1));
861
862 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
863
864 if (dump_file && (dump_flags & TDF_DETAILS))
865 {
866 fprintf (dump_file, " (res = ");
867 print_generic_expr (dump_file, res, 0);
868 fprintf (dump_file, "))\n");
869 }
870
871 return res;
872 }
873
874 /* Helper function. */
875
876 static inline tree
877 set_nb_iterations_in_loop (struct loop *loop,
878 tree res)
879 {
880 if (dump_file && (dump_flags & TDF_DETAILS))
881 {
882 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
883 print_generic_expr (dump_file, res, 0);
884 fprintf (dump_file, "))\n");
885 }
886
887 loop->nb_iterations = res;
888 return res;
889 }
890
891 \f
892
893 /* This section selects the loops that will be good candidates for the
894 scalar evolution analysis. For the moment, greedily select all the
895 loop nests we could analyze. */
896
897 /* Return true when it is possible to analyze the condition expression
898 EXPR. */
899
900 static bool
901 analyzable_condition (tree expr)
902 {
903 tree condition;
904
905 if (TREE_CODE (expr) != COND_EXPR)
906 return false;
907
908 condition = TREE_OPERAND (expr, 0);
909
910 switch (TREE_CODE (condition))
911 {
912 case SSA_NAME:
913 return true;
914
915 case LT_EXPR:
916 case LE_EXPR:
917 case GT_EXPR:
918 case GE_EXPR:
919 case EQ_EXPR:
920 case NE_EXPR:
921 return true;
922
923 default:
924 return false;
925 }
926
927 return false;
928 }
929
930 /* For a loop with a single exit edge, return the COND_EXPR that
931 guards the exit edge. If the expression is too difficult to
932 analyze, then give up. */
933
934 tree
935 get_loop_exit_condition (struct loop *loop)
936 {
937 tree res = NULL_TREE;
938 edge exit_edge = single_exit (loop);
939
940 if (dump_file && (dump_flags & TDF_DETAILS))
941 fprintf (dump_file, "(get_loop_exit_condition \n ");
942
943 if (exit_edge)
944 {
945 tree expr;
946
947 expr = last_stmt (exit_edge->src);
948 if (analyzable_condition (expr))
949 res = expr;
950 }
951
952 if (dump_file && (dump_flags & TDF_DETAILS))
953 {
954 print_generic_expr (dump_file, res, 0);
955 fprintf (dump_file, ")\n");
956 }
957
958 return res;
959 }
960
961 /* Recursively determine and enqueue the exit conditions for a loop. */
962
963 static void
964 get_exit_conditions_rec (struct loop *loop,
965 VEC(tree,heap) **exit_conditions)
966 {
967 if (!loop)
968 return;
969
970 /* Recurse on the inner loops, then on the next (sibling) loops. */
971 get_exit_conditions_rec (loop->inner, exit_conditions);
972 get_exit_conditions_rec (loop->next, exit_conditions);
973
974 if (single_exit (loop))
975 {
976 tree loop_condition = get_loop_exit_condition (loop);
977
978 if (loop_condition)
979 VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
980 }
981 }
982
983 /* Select the candidate loop nests for the analysis. This function
984 initializes the EXIT_CONDITIONS array. */
985
986 static void
987 select_loops_exit_conditions (VEC(tree,heap) **exit_conditions)
988 {
989 struct loop *function_body = current_loops->tree_root;
990
991 get_exit_conditions_rec (function_body->inner, exit_conditions);
992 }
993
994 \f
995 /* Depth first search algorithm. */
996
997 typedef enum t_bool {
998 t_false,
999 t_true,
1000 t_dont_know
1001 } t_bool;
1002
1003
1004 static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
1005
1006 /* Follow the ssa edge into the right hand side RHS of an assignment.
1007 Return true if the strongly connected component has been found. */
1008
1009 static t_bool
1010 follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1011 tree halting_phi, tree *evolution_of_loop, int limit)
1012 {
1013 t_bool res = t_false;
1014 tree rhs0, rhs1;
1015 tree type_rhs = TREE_TYPE (rhs);
1016 tree evol;
1017
1018 /* The RHS is one of the following cases:
1019 - an SSA_NAME,
1020 - an INTEGER_CST,
1021 - a PLUS_EXPR,
1022 - a MINUS_EXPR,
1023 - an ASSERT_EXPR,
1024 - other cases are not yet handled. */
1025 switch (TREE_CODE (rhs))
1026 {
1027 case NOP_EXPR:
1028 /* This assignment is under the form "a_1 = (cast) rhs. */
1029 res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1030 halting_phi, evolution_of_loop, limit);
1031 *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1032 *evolution_of_loop, at_stmt);
1033 break;
1034
1035 case INTEGER_CST:
1036 /* This assignment is under the form "a_1 = 7". */
1037 res = t_false;
1038 break;
1039
1040 case SSA_NAME:
1041 /* This assignment is under the form: "a_1 = b_2". */
1042 res = follow_ssa_edge
1043 (loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
1044 break;
1045
1046 case PLUS_EXPR:
1047 /* This case is under the form "rhs0 + rhs1". */
1048 rhs0 = TREE_OPERAND (rhs, 0);
1049 rhs1 = TREE_OPERAND (rhs, 1);
1050 STRIP_TYPE_NOPS (rhs0);
1051 STRIP_TYPE_NOPS (rhs1);
1052
1053 if (TREE_CODE (rhs0) == SSA_NAME)
1054 {
1055 if (TREE_CODE (rhs1) == SSA_NAME)
1056 {
1057 /* Match an assignment under the form:
1058 "a = b + c". */
1059
1060 /* We want only assignments of form "name + name" contribute to
1061 LIMIT, as the other cases do not necessarily contribute to
1062 the complexity of the expression. */
1063 limit++;
1064
1065 evol = *evolution_of_loop;
1066 res = follow_ssa_edge
1067 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1068 &evol, limit);
1069
1070 if (res == t_true)
1071 *evolution_of_loop = add_to_evolution
1072 (loop->num,
1073 chrec_convert (type_rhs, evol, at_stmt),
1074 PLUS_EXPR, rhs1, at_stmt);
1075
1076 else if (res == t_false)
1077 {
1078 res = follow_ssa_edge
1079 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1080 evolution_of_loop, limit);
1081
1082 if (res == t_true)
1083 *evolution_of_loop = add_to_evolution
1084 (loop->num,
1085 chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1086 PLUS_EXPR, rhs0, at_stmt);
1087
1088 else if (res == t_dont_know)
1089 *evolution_of_loop = chrec_dont_know;
1090 }
1091
1092 else if (res == t_dont_know)
1093 *evolution_of_loop = chrec_dont_know;
1094 }
1095
1096 else
1097 {
1098 /* Match an assignment under the form:
1099 "a = b + ...". */
1100 res = follow_ssa_edge
1101 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1102 evolution_of_loop, limit);
1103 if (res == t_true)
1104 *evolution_of_loop = add_to_evolution
1105 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1106 at_stmt),
1107 PLUS_EXPR, rhs1, at_stmt);
1108
1109 else if (res == t_dont_know)
1110 *evolution_of_loop = chrec_dont_know;
1111 }
1112 }
1113
1114 else if (TREE_CODE (rhs1) == SSA_NAME)
1115 {
1116 /* Match an assignment under the form:
1117 "a = ... + c". */
1118 res = follow_ssa_edge
1119 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1120 evolution_of_loop, limit);
1121 if (res == t_true)
1122 *evolution_of_loop = add_to_evolution
1123 (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1124 at_stmt),
1125 PLUS_EXPR, rhs0, at_stmt);
1126
1127 else if (res == t_dont_know)
1128 *evolution_of_loop = chrec_dont_know;
1129 }
1130
1131 else
1132 /* Otherwise, match an assignment under the form:
1133 "a = ... + ...". */
1134 /* And there is nothing to do. */
1135 res = t_false;
1136
1137 break;
1138
1139 case MINUS_EXPR:
1140 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1141 rhs0 = TREE_OPERAND (rhs, 0);
1142 rhs1 = TREE_OPERAND (rhs, 1);
1143 STRIP_TYPE_NOPS (rhs0);
1144 STRIP_TYPE_NOPS (rhs1);
1145
1146 if (TREE_CODE (rhs0) == SSA_NAME)
1147 {
1148 /* Match an assignment under the form:
1149 "a = b - ...". */
1150
1151 /* We want only assignments of form "name - name" contribute to
1152 LIMIT, as the other cases do not necessarily contribute to
1153 the complexity of the expression. */
1154 if (TREE_CODE (rhs1) == SSA_NAME)
1155 limit++;
1156
1157 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1158 evolution_of_loop, limit);
1159 if (res == t_true)
1160 *evolution_of_loop = add_to_evolution
1161 (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1162 MINUS_EXPR, rhs1, at_stmt);
1163
1164 else if (res == t_dont_know)
1165 *evolution_of_loop = chrec_dont_know;
1166 }
1167 else
1168 /* Otherwise, match an assignment under the form:
1169 "a = ... - ...". */
1170 /* And there is nothing to do. */
1171 res = t_false;
1172
1173 break;
1174
1175 case ASSERT_EXPR:
1176 {
1177 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1178 It must be handled as a copy assignment of the form a_1 = a_2. */
1179 tree op0 = ASSERT_EXPR_VAR (rhs);
1180 if (TREE_CODE (op0) == SSA_NAME)
1181 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1182 halting_phi, evolution_of_loop, limit);
1183 else
1184 res = t_false;
1185 break;
1186 }
1187
1188
1189 default:
1190 res = t_false;
1191 break;
1192 }
1193
1194 return res;
1195 }
1196
1197 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1198
1199 static bool
1200 backedge_phi_arg_p (tree phi, int i)
1201 {
1202 edge e = PHI_ARG_EDGE (phi, i);
1203
1204 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1205 about updating it anywhere, and this should work as well most of the
1206 time. */
1207 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1208 return true;
1209
1210 return false;
1211 }
1212
1213 /* Helper function for one branch of the condition-phi-node. Return
1214 true if the strongly connected component has been found following
1215 this path. */
1216
1217 static inline t_bool
1218 follow_ssa_edge_in_condition_phi_branch (int i,
1219 struct loop *loop,
1220 tree condition_phi,
1221 tree halting_phi,
1222 tree *evolution_of_branch,
1223 tree init_cond, int limit)
1224 {
1225 tree branch = PHI_ARG_DEF (condition_phi, i);
1226 *evolution_of_branch = chrec_dont_know;
1227
1228 /* Do not follow back edges (they must belong to an irreducible loop, which
1229 we really do not want to worry about). */
1230 if (backedge_phi_arg_p (condition_phi, i))
1231 return t_false;
1232
1233 if (TREE_CODE (branch) == SSA_NAME)
1234 {
1235 *evolution_of_branch = init_cond;
1236 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1237 evolution_of_branch, limit);
1238 }
1239
1240 /* This case occurs when one of the condition branches sets
1241 the variable to a constant: i.e. a phi-node like
1242 "a_2 = PHI <a_7(5), 2(6)>;".
1243
1244 FIXME: This case have to be refined correctly:
1245 in some cases it is possible to say something better than
1246 chrec_dont_know, for example using a wrap-around notation. */
1247 return t_false;
1248 }
1249
1250 /* This function merges the branches of a condition-phi-node in a
1251 loop. */
1252
1253 static t_bool
1254 follow_ssa_edge_in_condition_phi (struct loop *loop,
1255 tree condition_phi,
1256 tree halting_phi,
1257 tree *evolution_of_loop, int limit)
1258 {
1259 int i;
1260 tree init = *evolution_of_loop;
1261 tree evolution_of_branch;
1262 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1263 halting_phi,
1264 &evolution_of_branch,
1265 init, limit);
1266 if (res == t_false || res == t_dont_know)
1267 return res;
1268
1269 *evolution_of_loop = evolution_of_branch;
1270
1271 /* If the phi node is just a copy, do not increase the limit. */
1272 if (PHI_NUM_ARGS (condition_phi) > 1)
1273 limit++;
1274
1275 for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1276 {
1277 /* Quickly give up when the evolution of one of the branches is
1278 not known. */
1279 if (*evolution_of_loop == chrec_dont_know)
1280 return t_true;
1281
1282 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1283 halting_phi,
1284 &evolution_of_branch,
1285 init, limit);
1286 if (res == t_false || res == t_dont_know)
1287 return res;
1288
1289 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1290 evolution_of_branch);
1291 }
1292
1293 return t_true;
1294 }
1295
1296 /* Follow an SSA edge in an inner loop. It computes the overall
1297 effect of the loop, and following the symbolic initial conditions,
1298 it follows the edges in the parent loop. The inner loop is
1299 considered as a single statement. */
1300
1301 static t_bool
1302 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1303 tree loop_phi_node,
1304 tree halting_phi,
1305 tree *evolution_of_loop, int limit)
1306 {
1307 struct loop *loop = loop_containing_stmt (loop_phi_node);
1308 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1309
1310 /* Sometimes, the inner loop is too difficult to analyze, and the
1311 result of the analysis is a symbolic parameter. */
1312 if (ev == PHI_RESULT (loop_phi_node))
1313 {
1314 t_bool res = t_false;
1315 int i;
1316
1317 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1318 {
1319 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1320 basic_block bb;
1321
1322 /* Follow the edges that exit the inner loop. */
1323 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1324 if (!flow_bb_inside_loop_p (loop, bb))
1325 res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1326 arg, halting_phi,
1327 evolution_of_loop, limit);
1328 if (res == t_true)
1329 break;
1330 }
1331
1332 /* If the path crosses this loop-phi, give up. */
1333 if (res == t_true)
1334 *evolution_of_loop = chrec_dont_know;
1335
1336 return res;
1337 }
1338
1339 /* Otherwise, compute the overall effect of the inner loop. */
1340 ev = compute_overall_effect_of_inner_loop (loop, ev);
1341 return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1342 evolution_of_loop, limit);
1343 }
1344
1345 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1346 path that is analyzed on the return walk. */
1347
1348 static t_bool
1349 follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1350 tree *evolution_of_loop, int limit)
1351 {
1352 struct loop *def_loop;
1353
1354 if (TREE_CODE (def) == NOP_EXPR)
1355 return t_false;
1356
1357 /* Give up if the path is longer than the MAX that we allow. */
1358 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1359 return t_dont_know;
1360
1361 def_loop = loop_containing_stmt (def);
1362
1363 switch (TREE_CODE (def))
1364 {
1365 case PHI_NODE:
1366 if (!loop_phi_node_p (def))
1367 /* DEF is a condition-phi-node. Follow the branches, and
1368 record their evolutions. Finally, merge the collected
1369 information and set the approximation to the main
1370 variable. */
1371 return follow_ssa_edge_in_condition_phi
1372 (loop, def, halting_phi, evolution_of_loop, limit);
1373
1374 /* When the analyzed phi is the halting_phi, the
1375 depth-first search is over: we have found a path from
1376 the halting_phi to itself in the loop. */
1377 if (def == halting_phi)
1378 return t_true;
1379
1380 /* Otherwise, the evolution of the HALTING_PHI depends
1381 on the evolution of another loop-phi-node, i.e. the
1382 evolution function is a higher degree polynomial. */
1383 if (def_loop == loop)
1384 return t_false;
1385
1386 /* Inner loop. */
1387 if (flow_loop_nested_p (loop, def_loop))
1388 return follow_ssa_edge_inner_loop_phi
1389 (loop, def, halting_phi, evolution_of_loop, limit + 1);
1390
1391 /* Outer loop. */
1392 return t_false;
1393
1394 case GIMPLE_MODIFY_STMT:
1395 return follow_ssa_edge_in_rhs (loop, def,
1396 GIMPLE_STMT_OPERAND (def, 1),
1397 halting_phi,
1398 evolution_of_loop, limit);
1399
1400 default:
1401 /* At this level of abstraction, the program is just a set
1402 of GIMPLE_MODIFY_STMTs and PHI_NODEs. In principle there is no
1403 other node to be handled. */
1404 return t_false;
1405 }
1406 }
1407
1408 \f
1409
1410 /* Given a LOOP_PHI_NODE, this function determines the evolution
1411 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1412
1413 static tree
1414 analyze_evolution_in_loop (tree loop_phi_node,
1415 tree init_cond)
1416 {
1417 int i;
1418 tree evolution_function = chrec_not_analyzed_yet;
1419 struct loop *loop = loop_containing_stmt (loop_phi_node);
1420 basic_block bb;
1421
1422 if (dump_file && (dump_flags & TDF_DETAILS))
1423 {
1424 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1425 fprintf (dump_file, " (loop_phi_node = ");
1426 print_generic_expr (dump_file, loop_phi_node, 0);
1427 fprintf (dump_file, ")\n");
1428 }
1429
1430 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1431 {
1432 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1433 tree ssa_chain, ev_fn;
1434 t_bool res;
1435
1436 /* Select the edges that enter the loop body. */
1437 bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1438 if (!flow_bb_inside_loop_p (loop, bb))
1439 continue;
1440
1441 if (TREE_CODE (arg) == SSA_NAME)
1442 {
1443 ssa_chain = SSA_NAME_DEF_STMT (arg);
1444
1445 /* Pass in the initial condition to the follow edge function. */
1446 ev_fn = init_cond;
1447 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1448 }
1449 else
1450 res = t_false;
1451
1452 /* When it is impossible to go back on the same
1453 loop_phi_node by following the ssa edges, the
1454 evolution is represented by a peeled chrec, i.e. the
1455 first iteration, EV_FN has the value INIT_COND, then
1456 all the other iterations it has the value of ARG.
1457 For the moment, PEELED_CHREC nodes are not built. */
1458 if (res != t_true)
1459 ev_fn = chrec_dont_know;
1460
1461 /* When there are multiple back edges of the loop (which in fact never
1462 happens currently, but nevertheless), merge their evolutions. */
1463 evolution_function = chrec_merge (evolution_function, ev_fn);
1464 }
1465
1466 if (dump_file && (dump_flags & TDF_DETAILS))
1467 {
1468 fprintf (dump_file, " (evolution_function = ");
1469 print_generic_expr (dump_file, evolution_function, 0);
1470 fprintf (dump_file, "))\n");
1471 }
1472
1473 return evolution_function;
1474 }
1475
1476 /* Given a loop-phi-node, return the initial conditions of the
1477 variable on entry of the loop. When the CCP has propagated
1478 constants into the loop-phi-node, the initial condition is
1479 instantiated, otherwise the initial condition is kept symbolic.
1480 This analyzer does not analyze the evolution outside the current
1481 loop, and leaves this task to the on-demand tree reconstructor. */
1482
1483 static tree
1484 analyze_initial_condition (tree loop_phi_node)
1485 {
1486 int i;
1487 tree init_cond = chrec_not_analyzed_yet;
1488 struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1489
1490 if (dump_file && (dump_flags & TDF_DETAILS))
1491 {
1492 fprintf (dump_file, "(analyze_initial_condition \n");
1493 fprintf (dump_file, " (loop_phi_node = \n");
1494 print_generic_expr (dump_file, loop_phi_node, 0);
1495 fprintf (dump_file, ")\n");
1496 }
1497
1498 for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1499 {
1500 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1501 basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1502
1503 /* When the branch is oriented to the loop's body, it does
1504 not contribute to the initial condition. */
1505 if (flow_bb_inside_loop_p (loop, bb))
1506 continue;
1507
1508 if (init_cond == chrec_not_analyzed_yet)
1509 {
1510 init_cond = branch;
1511 continue;
1512 }
1513
1514 if (TREE_CODE (branch) == SSA_NAME)
1515 {
1516 init_cond = chrec_dont_know;
1517 break;
1518 }
1519
1520 init_cond = chrec_merge (init_cond, branch);
1521 }
1522
1523 /* Ooops -- a loop without an entry??? */
1524 if (init_cond == chrec_not_analyzed_yet)
1525 init_cond = chrec_dont_know;
1526
1527 if (dump_file && (dump_flags & TDF_DETAILS))
1528 {
1529 fprintf (dump_file, " (init_cond = ");
1530 print_generic_expr (dump_file, init_cond, 0);
1531 fprintf (dump_file, "))\n");
1532 }
1533
1534 return init_cond;
1535 }
1536
1537 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1538
1539 static tree
1540 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1541 {
1542 tree res;
1543 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1544 tree init_cond;
1545
1546 if (phi_loop != loop)
1547 {
1548 struct loop *subloop;
1549 tree evolution_fn = analyze_scalar_evolution
1550 (phi_loop, PHI_RESULT (loop_phi_node));
1551
1552 /* Dive one level deeper. */
1553 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1554
1555 /* Interpret the subloop. */
1556 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1557 return res;
1558 }
1559
1560 /* Otherwise really interpret the loop phi. */
1561 init_cond = analyze_initial_condition (loop_phi_node);
1562 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1563
1564 return res;
1565 }
1566
1567 /* This function merges the branches of a condition-phi-node,
1568 contained in the outermost loop, and whose arguments are already
1569 analyzed. */
1570
1571 static tree
1572 interpret_condition_phi (struct loop *loop, tree condition_phi)
1573 {
1574 int i;
1575 tree res = chrec_not_analyzed_yet;
1576
1577 for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1578 {
1579 tree branch_chrec;
1580
1581 if (backedge_phi_arg_p (condition_phi, i))
1582 {
1583 res = chrec_dont_know;
1584 break;
1585 }
1586
1587 branch_chrec = analyze_scalar_evolution
1588 (loop, PHI_ARG_DEF (condition_phi, i));
1589
1590 res = chrec_merge (res, branch_chrec);
1591 }
1592
1593 return res;
1594 }
1595
1596 /* Interpret the right hand side of a GIMPLE_MODIFY_STMT OPND1. If we didn't
1597 analyze this node before, follow the definitions until ending
1598 either on an analyzed GIMPLE_MODIFY_STMT, or on a loop-phi-node. On the
1599 return path, this function propagates evolutions (ala constant copy
1600 propagation). OPND1 is not a GIMPLE expression because we could
1601 analyze the effect of an inner loop: see interpret_loop_phi. */
1602
1603 static tree
1604 interpret_rhs_modify_stmt (struct loop *loop, tree at_stmt,
1605 tree opnd1, tree type)
1606 {
1607 tree res, opnd10, opnd11, chrec10, chrec11;
1608
1609 if (is_gimple_min_invariant (opnd1))
1610 return chrec_convert (type, opnd1, at_stmt);
1611
1612 switch (TREE_CODE (opnd1))
1613 {
1614 case PLUS_EXPR:
1615 opnd10 = TREE_OPERAND (opnd1, 0);
1616 opnd11 = TREE_OPERAND (opnd1, 1);
1617 chrec10 = analyze_scalar_evolution (loop, opnd10);
1618 chrec11 = analyze_scalar_evolution (loop, opnd11);
1619 chrec10 = chrec_convert (type, chrec10, at_stmt);
1620 chrec11 = chrec_convert (type, chrec11, at_stmt);
1621 res = chrec_fold_plus (type, chrec10, chrec11);
1622 break;
1623
1624 case MINUS_EXPR:
1625 opnd10 = TREE_OPERAND (opnd1, 0);
1626 opnd11 = TREE_OPERAND (opnd1, 1);
1627 chrec10 = analyze_scalar_evolution (loop, opnd10);
1628 chrec11 = analyze_scalar_evolution (loop, opnd11);
1629 chrec10 = chrec_convert (type, chrec10, at_stmt);
1630 chrec11 = chrec_convert (type, chrec11, at_stmt);
1631 res = chrec_fold_minus (type, chrec10, chrec11);
1632 break;
1633
1634 case NEGATE_EXPR:
1635 opnd10 = TREE_OPERAND (opnd1, 0);
1636 chrec10 = analyze_scalar_evolution (loop, opnd10);
1637 chrec10 = chrec_convert (type, chrec10, at_stmt);
1638 /* TYPE may be integer, real or complex, so use fold_convert. */
1639 res = chrec_fold_multiply (type, chrec10,
1640 fold_convert (type, integer_minus_one_node));
1641 break;
1642
1643 case MULT_EXPR:
1644 opnd10 = TREE_OPERAND (opnd1, 0);
1645 opnd11 = TREE_OPERAND (opnd1, 1);
1646 chrec10 = analyze_scalar_evolution (loop, opnd10);
1647 chrec11 = analyze_scalar_evolution (loop, opnd11);
1648 chrec10 = chrec_convert (type, chrec10, at_stmt);
1649 chrec11 = chrec_convert (type, chrec11, at_stmt);
1650 res = chrec_fold_multiply (type, chrec10, chrec11);
1651 break;
1652
1653 case SSA_NAME:
1654 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1655 at_stmt);
1656 break;
1657
1658 case ASSERT_EXPR:
1659 opnd10 = ASSERT_EXPR_VAR (opnd1);
1660 res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1661 at_stmt);
1662 break;
1663
1664 case NOP_EXPR:
1665 case CONVERT_EXPR:
1666 opnd10 = TREE_OPERAND (opnd1, 0);
1667 chrec10 = analyze_scalar_evolution (loop, opnd10);
1668 res = chrec_convert (type, chrec10, at_stmt);
1669 break;
1670
1671 default:
1672 res = chrec_dont_know;
1673 break;
1674 }
1675
1676 return res;
1677 }
1678
1679 \f
1680
1681 /* This section contains all the entry points:
1682 - number_of_iterations_in_loop,
1683 - analyze_scalar_evolution,
1684 - instantiate_parameters.
1685 */
1686
1687 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1688 common ancestor of DEF_LOOP and USE_LOOP. */
1689
1690 static tree
1691 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1692 struct loop *def_loop,
1693 tree ev)
1694 {
1695 tree res;
1696 if (def_loop == wrto_loop)
1697 return ev;
1698
1699 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
1700 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1701
1702 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1703 }
1704
1705 /* Folds EXPR, if it is a cast to pointer, assuming that the created
1706 polynomial_chrec does not wrap. */
1707
1708 static tree
1709 fold_used_pointer_cast (tree expr)
1710 {
1711 tree op;
1712 tree type, inner_type;
1713
1714 if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
1715 return expr;
1716
1717 op = TREE_OPERAND (expr, 0);
1718 if (TREE_CODE (op) != POLYNOMIAL_CHREC)
1719 return expr;
1720
1721 type = TREE_TYPE (expr);
1722 inner_type = TREE_TYPE (op);
1723
1724 if (!INTEGRAL_TYPE_P (inner_type)
1725 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
1726 return expr;
1727
1728 return build_polynomial_chrec (CHREC_VARIABLE (op),
1729 chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
1730 chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
1731 }
1732
1733 /* Returns true if EXPR is an expression corresponding to offset of pointer
1734 in p + offset. */
1735
1736 static bool
1737 pointer_offset_p (tree expr)
1738 {
1739 if (TREE_CODE (expr) == INTEGER_CST)
1740 return true;
1741
1742 if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1743 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
1744 return true;
1745
1746 return false;
1747 }
1748
1749 /* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1750 comparison. This means that it must point to a part of some object in
1751 memory, which enables us to argue about overflows and possibly simplify
1752 the EXPR. AT_STMT is the statement in which this conversion has to be
1753 performed. Returns the simplified value.
1754
1755 Currently, for
1756
1757 int i, n;
1758 int *p;
1759
1760 for (i = -n; i < n; i++)
1761 *(p + i) = ...;
1762
1763 We generate the following code (assuming that size of int and size_t is
1764 4 bytes):
1765
1766 for (i = -n; i < n; i++)
1767 {
1768 size_t tmp1, tmp2;
1769 int *tmp3, *tmp4;
1770
1771 tmp1 = (size_t) i; (1)
1772 tmp2 = 4 * tmp1; (2)
1773 tmp3 = (int *) tmp2; (3)
1774 tmp4 = p + tmp3; (4)
1775
1776 *tmp4 = ...;
1777 }
1778
1779 We in general assume that pointer arithmetics does not overflow (since its
1780 behavior is undefined in that case). One of the problems is that our
1781 translation does not capture this property very well -- (int *) is
1782 considered unsigned, hence the computation in (4) does overflow if i is
1783 negative.
1784
1785 This impreciseness creates complications in scev analysis. The scalar
1786 evolution of i is [-n, +, 1]. Since int and size_t have the same precision
1787 (in this example), and size_t is unsigned (so we do not care about
1788 overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1789 and scev of tmp2 is [4 * (size_t) -n, +, 4]. With tmp3, we run into
1790 problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1791 places assume that this is not the case for scevs with pointer type, we
1792 cannot use this scev for tmp3; hence, its scev is
1793 (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1794 p + (int *) [(4 * (size_t) -n), +, 4]. Most of the optimizers are unable to
1795 work with scevs of this shape.
1796
1797 However, since tmp4 is dereferenced, all its values must belong to a single
1798 object, and taking into account that the precision of int * and size_t is
1799 the same, it is impossible for its scev to wrap. Hence, we can derive that
1800 its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1801 can work with.
1802
1803 ??? Maybe we should use different representation for pointer arithmetics,
1804 however that is a long-term project with a lot of potential for creating
1805 bugs. */
1806
1807 static tree
1808 fold_used_pointer (tree expr, tree at_stmt)
1809 {
1810 tree op0, op1, new0, new1;
1811 enum tree_code code = TREE_CODE (expr);
1812
1813 if (code == PLUS_EXPR
1814 || code == MINUS_EXPR)
1815 {
1816 op0 = TREE_OPERAND (expr, 0);
1817 op1 = TREE_OPERAND (expr, 1);
1818
1819 if (pointer_offset_p (op1))
1820 {
1821 new0 = fold_used_pointer (op0, at_stmt);
1822 new1 = fold_used_pointer_cast (op1);
1823 }
1824 else if (code == PLUS_EXPR && pointer_offset_p (op0))
1825 {
1826 new0 = fold_used_pointer_cast (op0);
1827 new1 = fold_used_pointer (op1, at_stmt);
1828 }
1829 else
1830 return expr;
1831
1832 if (new0 == op0 && new1 == op1)
1833 return expr;
1834
1835 new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
1836 new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
1837
1838 if (code == PLUS_EXPR)
1839 expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
1840 else
1841 expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
1842
1843 return expr;
1844 }
1845 else
1846 return fold_used_pointer_cast (expr);
1847 }
1848
1849 /* Returns true if PTR is dereferenced, or used in comparison. */
1850
1851 static bool
1852 pointer_used_p (tree ptr)
1853 {
1854 use_operand_p use_p;
1855 imm_use_iterator imm_iter;
1856 tree stmt, rhs;
1857 struct ptr_info_def *pi = get_ptr_info (ptr);
1858
1859 /* Check whether the pointer has a memory tag; if it does, it is
1860 (or at least used to be) dereferenced. */
1861 if ((pi != NULL && pi->name_mem_tag != NULL)
1862 || symbol_mem_tag (SSA_NAME_VAR (ptr)))
1863 return true;
1864
1865 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
1866 {
1867 stmt = USE_STMT (use_p);
1868 if (TREE_CODE (stmt) == COND_EXPR)
1869 return true;
1870
1871 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
1872 continue;
1873
1874 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
1875 if (!COMPARISON_CLASS_P (rhs))
1876 continue;
1877
1878 if (GIMPLE_STMT_OPERAND (stmt, 0) == ptr
1879 || GIMPLE_STMT_OPERAND (stmt, 1) == ptr)
1880 return true;
1881 }
1882
1883 return false;
1884 }
1885
1886 /* Helper recursive function. */
1887
1888 static tree
1889 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1890 {
1891 tree def, type = TREE_TYPE (var);
1892 basic_block bb;
1893 struct loop *def_loop;
1894
1895 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1896 return chrec_dont_know;
1897
1898 if (TREE_CODE (var) != SSA_NAME)
1899 return interpret_rhs_modify_stmt (loop, NULL_TREE, var, type);
1900
1901 def = SSA_NAME_DEF_STMT (var);
1902 bb = bb_for_stmt (def);
1903 def_loop = bb ? bb->loop_father : NULL;
1904
1905 if (bb == NULL
1906 || !flow_bb_inside_loop_p (loop, bb))
1907 {
1908 /* Keep the symbolic form. */
1909 res = var;
1910 goto set_and_end;
1911 }
1912
1913 if (res != chrec_not_analyzed_yet)
1914 {
1915 if (loop != bb->loop_father)
1916 res = compute_scalar_evolution_in_loop
1917 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1918
1919 goto set_and_end;
1920 }
1921
1922 if (loop != def_loop)
1923 {
1924 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1925 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1926
1927 goto set_and_end;
1928 }
1929
1930 switch (TREE_CODE (def))
1931 {
1932 case GIMPLE_MODIFY_STMT:
1933 res = interpret_rhs_modify_stmt (loop, def,
1934 GIMPLE_STMT_OPERAND (def, 1), type);
1935
1936 if (POINTER_TYPE_P (type)
1937 && !automatically_generated_chrec_p (res)
1938 && pointer_used_p (var))
1939 res = fold_used_pointer (res, def);
1940 break;
1941
1942 case PHI_NODE:
1943 if (loop_phi_node_p (def))
1944 res = interpret_loop_phi (loop, def);
1945 else
1946 res = interpret_condition_phi (loop, def);
1947 break;
1948
1949 default:
1950 res = chrec_dont_know;
1951 break;
1952 }
1953
1954 set_and_end:
1955
1956 /* Keep the symbolic form. */
1957 if (res == chrec_dont_know)
1958 res = var;
1959
1960 if (loop == def_loop)
1961 set_scalar_evolution (var, res);
1962
1963 return res;
1964 }
1965
1966 /* Entry point for the scalar evolution analyzer.
1967 Analyzes and returns the scalar evolution of the ssa_name VAR.
1968 LOOP_NB is the identifier number of the loop in which the variable
1969 is used.
1970
1971 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1972 pointer to the statement that uses this variable, in order to
1973 determine the evolution function of the variable, use the following
1974 calls:
1975
1976 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1977 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1978 tree chrec_instantiated = instantiate_parameters
1979 (loop_nb, chrec_with_symbols);
1980 */
1981
1982 tree
1983 analyze_scalar_evolution (struct loop *loop, tree var)
1984 {
1985 tree res;
1986
1987 if (dump_file && (dump_flags & TDF_DETAILS))
1988 {
1989 fprintf (dump_file, "(analyze_scalar_evolution \n");
1990 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1991 fprintf (dump_file, " (scalar = ");
1992 print_generic_expr (dump_file, var, 0);
1993 fprintf (dump_file, ")\n");
1994 }
1995
1996 res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
1997
1998 if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
1999 res = var;
2000
2001 if (dump_file && (dump_flags & TDF_DETAILS))
2002 fprintf (dump_file, ")\n");
2003
2004 return res;
2005 }
2006
2007 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2008 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
2009 of VERSION).
2010
2011 FOLDED_CASTS is set to true if resolve_mixers used
2012 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2013 at the moment in order to keep things simple). */
2014
2015 static tree
2016 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2017 tree version, bool *folded_casts)
2018 {
2019 bool val = false;
2020 tree ev = version, tmp;
2021
2022 if (folded_casts)
2023 *folded_casts = false;
2024 while (1)
2025 {
2026 tmp = analyze_scalar_evolution (use_loop, ev);
2027 ev = resolve_mixers (use_loop, tmp);
2028
2029 if (folded_casts && tmp != ev)
2030 *folded_casts = true;
2031
2032 if (use_loop == wrto_loop)
2033 return ev;
2034
2035 /* If the value of the use changes in the inner loop, we cannot express
2036 its value in the outer loop (we might try to return interval chrec,
2037 but we do not have a user for it anyway) */
2038 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2039 || !val)
2040 return chrec_dont_know;
2041
2042 use_loop = loop_outer (use_loop);
2043 }
2044 }
2045
2046 /* Returns instantiated value for VERSION in CACHE. */
2047
2048 static tree
2049 get_instantiated_value (htab_t cache, tree version)
2050 {
2051 struct scev_info_str *info, pattern;
2052
2053 pattern.var = version;
2054 info = (struct scev_info_str *) htab_find (cache, &pattern);
2055
2056 if (info)
2057 return info->chrec;
2058 else
2059 return NULL_TREE;
2060 }
2061
2062 /* Sets instantiated value for VERSION to VAL in CACHE. */
2063
2064 static void
2065 set_instantiated_value (htab_t cache, tree version, tree val)
2066 {
2067 struct scev_info_str *info, pattern;
2068 PTR *slot;
2069
2070 pattern.var = version;
2071 slot = htab_find_slot (cache, &pattern, INSERT);
2072
2073 if (!*slot)
2074 *slot = new_scev_info_str (version);
2075 info = (struct scev_info_str *) *slot;
2076 info->chrec = val;
2077 }
2078
2079 /* Return the closed_loop_phi node for VAR. If there is none, return
2080 NULL_TREE. */
2081
2082 static tree
2083 loop_closed_phi_def (tree var)
2084 {
2085 struct loop *loop;
2086 edge exit;
2087 tree phi;
2088
2089 if (var == NULL_TREE
2090 || TREE_CODE (var) != SSA_NAME)
2091 return NULL_TREE;
2092
2093 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2094 exit = single_exit (loop);
2095 if (!exit)
2096 return NULL_TREE;
2097
2098 for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
2099 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2100 return PHI_RESULT (phi);
2101
2102 return NULL_TREE;
2103 }
2104
2105 /* Analyze all the parameters of the chrec that were left under a symbolic form,
2106 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
2107 of already instantiated values. FLAGS modify the way chrecs are
2108 instantiated. SIZE_EXPR is used for computing the size of the expression to
2109 be instantiated, and to stop if it exceeds some limit. */
2110
2111 /* Values for FLAGS. */
2112 enum
2113 {
2114 INSERT_SUPERLOOP_CHRECS = 1, /* Loop invariants are replaced with chrecs
2115 in outer loops. */
2116 FOLD_CONVERSIONS = 2 /* The conversions that may wrap in
2117 signed/pointer type are folded, as long as the
2118 value of the chrec is preserved. */
2119 };
2120
2121 static tree
2122 instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2123 int size_expr)
2124 {
2125 tree res, op0, op1, op2;
2126 basic_block def_bb;
2127 struct loop *def_loop;
2128 tree type = chrec_type (chrec);
2129
2130 /* Give up if the expression is larger than the MAX that we allow. */
2131 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2132 return chrec_dont_know;
2133
2134 if (automatically_generated_chrec_p (chrec)
2135 || is_gimple_min_invariant (chrec))
2136 return chrec;
2137
2138 switch (TREE_CODE (chrec))
2139 {
2140 case SSA_NAME:
2141 def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2142
2143 /* A parameter (or loop invariant and we do not want to include
2144 evolutions in outer loops), nothing to do. */
2145 if (!def_bb
2146 || (!(flags & INSERT_SUPERLOOP_CHRECS)
2147 && !flow_bb_inside_loop_p (loop, def_bb)))
2148 return chrec;
2149
2150 /* We cache the value of instantiated variable to avoid exponential
2151 time complexity due to reevaluations. We also store the convenient
2152 value in the cache in order to prevent infinite recursion -- we do
2153 not want to instantiate the SSA_NAME if it is in a mixer
2154 structure. This is used for avoiding the instantiation of
2155 recursively defined functions, such as:
2156
2157 | a_2 -> {0, +, 1, +, a_2}_1 */
2158
2159 res = get_instantiated_value (cache, chrec);
2160 if (res)
2161 return res;
2162
2163 /* Store the convenient value for chrec in the structure. If it
2164 is defined outside of the loop, we may just leave it in symbolic
2165 form, otherwise we need to admit that we do not know its behavior
2166 inside the loop. */
2167 res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2168 set_instantiated_value (cache, chrec, res);
2169
2170 /* To make things even more complicated, instantiate_parameters_1
2171 calls analyze_scalar_evolution that may call # of iterations
2172 analysis that may in turn call instantiate_parameters_1 again.
2173 To prevent the infinite recursion, keep also the bitmap of
2174 ssa names that are being instantiated globally. */
2175 if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2176 return res;
2177
2178 def_loop = find_common_loop (loop, def_bb->loop_father);
2179
2180 /* If the analysis yields a parametric chrec, instantiate the
2181 result again. */
2182 bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2183 res = analyze_scalar_evolution (def_loop, chrec);
2184
2185 /* Don't instantiate loop-closed-ssa phi nodes. */
2186 if (TREE_CODE (res) == SSA_NAME
2187 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2188 || (loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2189 > loop_depth (def_loop))))
2190 {
2191 if (res == chrec)
2192 res = loop_closed_phi_def (chrec);
2193 else
2194 res = chrec;
2195
2196 if (res == NULL_TREE)
2197 res = chrec_dont_know;
2198 }
2199
2200 else if (res != chrec_dont_know)
2201 res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
2202
2203 bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2204
2205 /* Store the correct value to the cache. */
2206 set_instantiated_value (cache, chrec, res);
2207 return res;
2208
2209 case POLYNOMIAL_CHREC:
2210 op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2211 flags, cache, size_expr);
2212 if (op0 == chrec_dont_know)
2213 return chrec_dont_know;
2214
2215 op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2216 flags, cache, size_expr);
2217 if (op1 == chrec_dont_know)
2218 return chrec_dont_know;
2219
2220 if (CHREC_LEFT (chrec) != op0
2221 || CHREC_RIGHT (chrec) != op1)
2222 {
2223 op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2224 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2225 }
2226 return chrec;
2227
2228 case PLUS_EXPR:
2229 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2230 flags, cache, size_expr);
2231 if (op0 == chrec_dont_know)
2232 return chrec_dont_know;
2233
2234 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2235 flags, cache, size_expr);
2236 if (op1 == chrec_dont_know)
2237 return chrec_dont_know;
2238
2239 if (TREE_OPERAND (chrec, 0) != op0
2240 || TREE_OPERAND (chrec, 1) != op1)
2241 {
2242 op0 = chrec_convert (type, op0, NULL_TREE);
2243 op1 = chrec_convert (type, op1, NULL_TREE);
2244 chrec = chrec_fold_plus (type, op0, op1);
2245 }
2246 return chrec;
2247
2248 case MINUS_EXPR:
2249 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2250 flags, cache, size_expr);
2251 if (op0 == chrec_dont_know)
2252 return chrec_dont_know;
2253
2254 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2255 flags, cache, size_expr);
2256 if (op1 == chrec_dont_know)
2257 return chrec_dont_know;
2258
2259 if (TREE_OPERAND (chrec, 0) != op0
2260 || TREE_OPERAND (chrec, 1) != op1)
2261 {
2262 op0 = chrec_convert (type, op0, NULL_TREE);
2263 op1 = chrec_convert (type, op1, NULL_TREE);
2264 chrec = chrec_fold_minus (type, op0, op1);
2265 }
2266 return chrec;
2267
2268 case MULT_EXPR:
2269 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2270 flags, cache, size_expr);
2271 if (op0 == chrec_dont_know)
2272 return chrec_dont_know;
2273
2274 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2275 flags, cache, size_expr);
2276 if (op1 == chrec_dont_know)
2277 return chrec_dont_know;
2278
2279 if (TREE_OPERAND (chrec, 0) != op0
2280 || TREE_OPERAND (chrec, 1) != op1)
2281 {
2282 op0 = chrec_convert (type, op0, NULL_TREE);
2283 op1 = chrec_convert (type, op1, NULL_TREE);
2284 chrec = chrec_fold_multiply (type, op0, op1);
2285 }
2286 return chrec;
2287
2288 case NOP_EXPR:
2289 case CONVERT_EXPR:
2290 case NON_LVALUE_EXPR:
2291 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2292 flags, cache, size_expr);
2293 if (op0 == chrec_dont_know)
2294 return chrec_dont_know;
2295
2296 if (flags & FOLD_CONVERSIONS)
2297 {
2298 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2299 if (tmp)
2300 return tmp;
2301 }
2302
2303 if (op0 == TREE_OPERAND (chrec, 0))
2304 return chrec;
2305
2306 /* If we used chrec_convert_aggressive, we can no longer assume that
2307 signed chrecs do not overflow, as chrec_convert does, so avoid
2308 calling it in that case. */
2309 if (flags & FOLD_CONVERSIONS)
2310 return fold_convert (TREE_TYPE (chrec), op0);
2311
2312 return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2313
2314 case SCEV_NOT_KNOWN:
2315 return chrec_dont_know;
2316
2317 case SCEV_KNOWN:
2318 return chrec_known;
2319
2320 default:
2321 break;
2322 }
2323
2324 gcc_assert (!VL_EXP_CLASS_P (chrec));
2325 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2326 {
2327 case 3:
2328 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2329 flags, cache, size_expr);
2330 if (op0 == chrec_dont_know)
2331 return chrec_dont_know;
2332
2333 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2334 flags, cache, size_expr);
2335 if (op1 == chrec_dont_know)
2336 return chrec_dont_know;
2337
2338 op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2339 flags, cache, size_expr);
2340 if (op2 == chrec_dont_know)
2341 return chrec_dont_know;
2342
2343 if (op0 == TREE_OPERAND (chrec, 0)
2344 && op1 == TREE_OPERAND (chrec, 1)
2345 && op2 == TREE_OPERAND (chrec, 2))
2346 return chrec;
2347
2348 return fold_build3 (TREE_CODE (chrec),
2349 TREE_TYPE (chrec), op0, op1, op2);
2350
2351 case 2:
2352 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2353 flags, cache, size_expr);
2354 if (op0 == chrec_dont_know)
2355 return chrec_dont_know;
2356
2357 op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2358 flags, cache, size_expr);
2359 if (op1 == chrec_dont_know)
2360 return chrec_dont_know;
2361
2362 if (op0 == TREE_OPERAND (chrec, 0)
2363 && op1 == TREE_OPERAND (chrec, 1))
2364 return chrec;
2365 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2366
2367 case 1:
2368 op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2369 flags, cache, size_expr);
2370 if (op0 == chrec_dont_know)
2371 return chrec_dont_know;
2372 if (op0 == TREE_OPERAND (chrec, 0))
2373 return chrec;
2374 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2375
2376 case 0:
2377 return chrec;
2378
2379 default:
2380 break;
2381 }
2382
2383 /* Too complicated to handle. */
2384 return chrec_dont_know;
2385 }
2386
2387 /* Analyze all the parameters of the chrec that were left under a
2388 symbolic form. LOOP is the loop in which symbolic names have to
2389 be analyzed and instantiated. */
2390
2391 tree
2392 instantiate_parameters (struct loop *loop,
2393 tree chrec)
2394 {
2395 tree res;
2396 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2397
2398 if (dump_file && (dump_flags & TDF_DETAILS))
2399 {
2400 fprintf (dump_file, "(instantiate_parameters \n");
2401 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
2402 fprintf (dump_file, " (chrec = ");
2403 print_generic_expr (dump_file, chrec, 0);
2404 fprintf (dump_file, ")\n");
2405 }
2406
2407 res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2408 0);
2409
2410 if (dump_file && (dump_flags & TDF_DETAILS))
2411 {
2412 fprintf (dump_file, " (res = ");
2413 print_generic_expr (dump_file, res, 0);
2414 fprintf (dump_file, "))\n");
2415 }
2416
2417 htab_delete (cache);
2418
2419 return res;
2420 }
2421
2422 /* Similar to instantiate_parameters, but does not introduce the
2423 evolutions in outer loops for LOOP invariants in CHREC, and does not
2424 care about causing overflows, as long as they do not affect value
2425 of an expression. */
2426
2427 tree
2428 resolve_mixers (struct loop *loop, tree chrec)
2429 {
2430 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2431 tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
2432 htab_delete (cache);
2433 return ret;
2434 }
2435
2436 /* Entry point for the analysis of the number of iterations pass.
2437 This function tries to safely approximate the number of iterations
2438 the loop will run. When this property is not decidable at compile
2439 time, the result is chrec_dont_know. Otherwise the result is
2440 a scalar or a symbolic parameter.
2441
2442 Example of analysis: suppose that the loop has an exit condition:
2443
2444 "if (b > 49) goto end_loop;"
2445
2446 and that in a previous analysis we have determined that the
2447 variable 'b' has an evolution function:
2448
2449 "EF = {23, +, 5}_2".
2450
2451 When we evaluate the function at the point 5, i.e. the value of the
2452 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2453 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2454 the loop body has been executed 6 times. */
2455
2456 tree
2457 number_of_latch_executions (struct loop *loop)
2458 {
2459 tree res, type;
2460 edge exit;
2461 struct tree_niter_desc niter_desc;
2462
2463 /* Determine whether the number_of_iterations_in_loop has already
2464 been computed. */
2465 res = loop->nb_iterations;
2466 if (res)
2467 return res;
2468 res = chrec_dont_know;
2469
2470 if (dump_file && (dump_flags & TDF_DETAILS))
2471 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2472
2473 exit = single_exit (loop);
2474 if (!exit)
2475 goto end;
2476
2477 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2478 goto end;
2479
2480 type = TREE_TYPE (niter_desc.niter);
2481 if (integer_nonzerop (niter_desc.may_be_zero))
2482 res = build_int_cst (type, 0);
2483 else if (integer_zerop (niter_desc.may_be_zero))
2484 res = niter_desc.niter;
2485 else
2486 res = chrec_dont_know;
2487
2488 end:
2489 return set_nb_iterations_in_loop (loop, res);
2490 }
2491
2492 /* Returns the number of executions of the exit condition of LOOP,
2493 i.e., the number by one higher than number_of_latch_executions.
2494 Note that unline number_of_latch_executions, this number does
2495 not necessarily fit in the unsigned variant of the type of
2496 the control variable -- if the number of iterations is a constant,
2497 we return chrec_dont_know if adding one to number_of_latch_executions
2498 overflows; however, in case the number of iterations is symbolic
2499 expression, the caller is responsible for dealing with this
2500 the possible overflow. */
2501
2502 tree
2503 number_of_exit_cond_executions (struct loop *loop)
2504 {
2505 tree ret = number_of_latch_executions (loop);
2506 tree type = chrec_type (ret);
2507
2508 if (chrec_contains_undetermined (ret))
2509 return ret;
2510
2511 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2512 if (TREE_CODE (ret) == INTEGER_CST
2513 && TREE_OVERFLOW (ret))
2514 return chrec_dont_know;
2515
2516 return ret;
2517 }
2518
2519 /* One of the drivers for testing the scalar evolutions analysis.
2520 This function computes the number of iterations for all the loops
2521 from the EXIT_CONDITIONS array. */
2522
2523 static void
2524 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2525 {
2526 unsigned int i;
2527 unsigned nb_chrec_dont_know_loops = 0;
2528 unsigned nb_static_loops = 0;
2529 tree cond;
2530
2531 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2532 {
2533 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2534 if (chrec_contains_undetermined (res))
2535 nb_chrec_dont_know_loops++;
2536 else
2537 nb_static_loops++;
2538 }
2539
2540 if (dump_file)
2541 {
2542 fprintf (dump_file, "\n(\n");
2543 fprintf (dump_file, "-----------------------------------------\n");
2544 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2545 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2546 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2547 fprintf (dump_file, "-----------------------------------------\n");
2548 fprintf (dump_file, ")\n\n");
2549
2550 print_loop_ir (dump_file);
2551 }
2552 }
2553
2554 \f
2555
2556 /* Counters for the stats. */
2557
2558 struct chrec_stats
2559 {
2560 unsigned nb_chrecs;
2561 unsigned nb_affine;
2562 unsigned nb_affine_multivar;
2563 unsigned nb_higher_poly;
2564 unsigned nb_chrec_dont_know;
2565 unsigned nb_undetermined;
2566 };
2567
2568 /* Reset the counters. */
2569
2570 static inline void
2571 reset_chrecs_counters (struct chrec_stats *stats)
2572 {
2573 stats->nb_chrecs = 0;
2574 stats->nb_affine = 0;
2575 stats->nb_affine_multivar = 0;
2576 stats->nb_higher_poly = 0;
2577 stats->nb_chrec_dont_know = 0;
2578 stats->nb_undetermined = 0;
2579 }
2580
2581 /* Dump the contents of a CHREC_STATS structure. */
2582
2583 static void
2584 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2585 {
2586 fprintf (file, "\n(\n");
2587 fprintf (file, "-----------------------------------------\n");
2588 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2589 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2590 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2591 stats->nb_higher_poly);
2592 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2593 fprintf (file, "-----------------------------------------\n");
2594 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2595 fprintf (file, "%d\twith undetermined coefficients\n",
2596 stats->nb_undetermined);
2597 fprintf (file, "-----------------------------------------\n");
2598 fprintf (file, "%d\tchrecs in the scev database\n",
2599 (int) htab_elements (scalar_evolution_info));
2600 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2601 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2602 fprintf (file, "-----------------------------------------\n");
2603 fprintf (file, ")\n\n");
2604 }
2605
2606 /* Gather statistics about CHREC. */
2607
2608 static void
2609 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2610 {
2611 if (dump_file && (dump_flags & TDF_STATS))
2612 {
2613 fprintf (dump_file, "(classify_chrec ");
2614 print_generic_expr (dump_file, chrec, 0);
2615 fprintf (dump_file, "\n");
2616 }
2617
2618 stats->nb_chrecs++;
2619
2620 if (chrec == NULL_TREE)
2621 {
2622 stats->nb_undetermined++;
2623 return;
2624 }
2625
2626 switch (TREE_CODE (chrec))
2627 {
2628 case POLYNOMIAL_CHREC:
2629 if (evolution_function_is_affine_p (chrec))
2630 {
2631 if (dump_file && (dump_flags & TDF_STATS))
2632 fprintf (dump_file, " affine_univariate\n");
2633 stats->nb_affine++;
2634 }
2635 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2636 {
2637 if (dump_file && (dump_flags & TDF_STATS))
2638 fprintf (dump_file, " affine_multivariate\n");
2639 stats->nb_affine_multivar++;
2640 }
2641 else
2642 {
2643 if (dump_file && (dump_flags & TDF_STATS))
2644 fprintf (dump_file, " higher_degree_polynomial\n");
2645 stats->nb_higher_poly++;
2646 }
2647
2648 break;
2649
2650 default:
2651 break;
2652 }
2653
2654 if (chrec_contains_undetermined (chrec))
2655 {
2656 if (dump_file && (dump_flags & TDF_STATS))
2657 fprintf (dump_file, " undetermined\n");
2658 stats->nb_undetermined++;
2659 }
2660
2661 if (dump_file && (dump_flags & TDF_STATS))
2662 fprintf (dump_file, ")\n");
2663 }
2664
2665 /* One of the drivers for testing the scalar evolutions analysis.
2666 This function analyzes the scalar evolution of all the scalars
2667 defined as loop phi nodes in one of the loops from the
2668 EXIT_CONDITIONS array.
2669
2670 TODO Optimization: A loop is in canonical form if it contains only
2671 a single scalar loop phi node. All the other scalars that have an
2672 evolution in the loop are rewritten in function of this single
2673 index. This allows the parallelization of the loop. */
2674
2675 static void
2676 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2677 {
2678 unsigned int i;
2679 struct chrec_stats stats;
2680 tree cond;
2681
2682 reset_chrecs_counters (&stats);
2683
2684 for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2685 {
2686 struct loop *loop;
2687 basic_block bb;
2688 tree phi, chrec;
2689
2690 loop = loop_containing_stmt (cond);
2691 bb = loop->header;
2692
2693 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2694 if (is_gimple_reg (PHI_RESULT (phi)))
2695 {
2696 chrec = instantiate_parameters
2697 (loop,
2698 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2699
2700 if (dump_file && (dump_flags & TDF_STATS))
2701 gather_chrec_stats (chrec, &stats);
2702 }
2703 }
2704
2705 if (dump_file && (dump_flags & TDF_STATS))
2706 dump_chrecs_stats (dump_file, &stats);
2707 }
2708
2709 /* Callback for htab_traverse, gathers information on chrecs in the
2710 hashtable. */
2711
2712 static int
2713 gather_stats_on_scev_database_1 (void **slot, void *stats)
2714 {
2715 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2716
2717 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2718
2719 return 1;
2720 }
2721
2722 /* Classify the chrecs of the whole database. */
2723
2724 void
2725 gather_stats_on_scev_database (void)
2726 {
2727 struct chrec_stats stats;
2728
2729 if (!dump_file)
2730 return;
2731
2732 reset_chrecs_counters (&stats);
2733
2734 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2735 &stats);
2736
2737 dump_chrecs_stats (dump_file, &stats);
2738 }
2739
2740 \f
2741
2742 /* Initializer. */
2743
2744 static void
2745 initialize_scalar_evolutions_analyzer (void)
2746 {
2747 /* The elements below are unique. */
2748 if (chrec_dont_know == NULL_TREE)
2749 {
2750 chrec_not_analyzed_yet = NULL_TREE;
2751 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2752 chrec_known = make_node (SCEV_KNOWN);
2753 TREE_TYPE (chrec_dont_know) = void_type_node;
2754 TREE_TYPE (chrec_known) = void_type_node;
2755 }
2756 }
2757
2758 /* Initialize the analysis of scalar evolutions for LOOPS. */
2759
2760 void
2761 scev_initialize (void)
2762 {
2763 loop_iterator li;
2764 struct loop *loop;
2765
2766 scalar_evolution_info = htab_create_alloc (100,
2767 hash_scev_info,
2768 eq_scev_info,
2769 del_scev_info,
2770 ggc_calloc,
2771 ggc_free);
2772 already_instantiated = BITMAP_ALLOC (NULL);
2773
2774 initialize_scalar_evolutions_analyzer ();
2775
2776 FOR_EACH_LOOP (li, loop, 0)
2777 {
2778 loop->nb_iterations = NULL_TREE;
2779 }
2780 }
2781
2782 /* Cleans up the information cached by the scalar evolutions analysis. */
2783
2784 void
2785 scev_reset (void)
2786 {
2787 loop_iterator li;
2788 struct loop *loop;
2789
2790 if (!scalar_evolution_info || !current_loops)
2791 return;
2792
2793 htab_empty (scalar_evolution_info);
2794 FOR_EACH_LOOP (li, loop, 0)
2795 {
2796 loop->nb_iterations = NULL_TREE;
2797 }
2798 }
2799
2800 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2801 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2802 want step to be invariant in LOOP. Otherwise we require it to be an
2803 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2804 overflow (e.g. because it is computed in signed arithmetics). */
2805
2806 bool
2807 simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
2808 bool allow_nonconstant_step)
2809 {
2810 basic_block bb = bb_for_stmt (stmt);
2811 tree type, ev;
2812 bool folded_casts;
2813
2814 iv->base = NULL_TREE;
2815 iv->step = NULL_TREE;
2816 iv->no_overflow = false;
2817
2818 type = TREE_TYPE (op);
2819 if (TREE_CODE (type) != INTEGER_TYPE
2820 && TREE_CODE (type) != POINTER_TYPE)
2821 return false;
2822
2823 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2824 &folded_casts);
2825 if (chrec_contains_undetermined (ev))
2826 return false;
2827
2828 if (tree_does_not_contain_chrecs (ev)
2829 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2830 {
2831 iv->base = ev;
2832 iv->step = build_int_cst (TREE_TYPE (ev), 0);
2833 iv->no_overflow = true;
2834 return true;
2835 }
2836
2837 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2838 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2839 return false;
2840
2841 iv->step = CHREC_RIGHT (ev);
2842 if (allow_nonconstant_step)
2843 {
2844 if (tree_contains_chrecs (iv->step, NULL)
2845 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2846 return false;
2847 }
2848 else if (TREE_CODE (iv->step) != INTEGER_CST)
2849 return false;
2850
2851 iv->base = CHREC_LEFT (ev);
2852 if (tree_contains_chrecs (iv->base, NULL)
2853 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2854 return false;
2855
2856 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2857
2858 return true;
2859 }
2860
2861 /* Runs the analysis of scalar evolutions. */
2862
2863 void
2864 scev_analysis (void)
2865 {
2866 VEC(tree,heap) *exit_conditions;
2867
2868 exit_conditions = VEC_alloc (tree, heap, 37);
2869 select_loops_exit_conditions (&exit_conditions);
2870
2871 if (dump_file && (dump_flags & TDF_STATS))
2872 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2873
2874 number_of_iterations_for_all_loops (&exit_conditions);
2875 VEC_free (tree, heap, exit_conditions);
2876 }
2877
2878 /* Finalize the scalar evolution analysis. */
2879
2880 void
2881 scev_finalize (void)
2882 {
2883 if (!scalar_evolution_info)
2884 return;
2885 htab_delete (scalar_evolution_info);
2886 BITMAP_FREE (already_instantiated);
2887 scalar_evolution_info = NULL;
2888 }
2889
2890 /* Replace ssa names for that scev can prove they are constant by the
2891 appropriate constants. Also perform final value replacement in loops,
2892 in case the replacement expressions are cheap.
2893
2894 We only consider SSA names defined by phi nodes; rest is left to the
2895 ordinary constant propagation pass. */
2896
2897 unsigned int
2898 scev_const_prop (void)
2899 {
2900 basic_block bb;
2901 tree name, phi, next_phi, type, ev;
2902 struct loop *loop, *ex_loop;
2903 bitmap ssa_names_to_remove = NULL;
2904 unsigned i;
2905 loop_iterator li;
2906
2907 if (number_of_loops () <= 1)
2908 return 0;
2909
2910 FOR_EACH_BB (bb)
2911 {
2912 loop = bb->loop_father;
2913
2914 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2915 {
2916 name = PHI_RESULT (phi);
2917
2918 if (!is_gimple_reg (name))
2919 continue;
2920
2921 type = TREE_TYPE (name);
2922
2923 if (!POINTER_TYPE_P (type)
2924 && !INTEGRAL_TYPE_P (type))
2925 continue;
2926
2927 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2928 if (!is_gimple_min_invariant (ev)
2929 || !may_propagate_copy (name, ev))
2930 continue;
2931
2932 /* Replace the uses of the name. */
2933 if (name != ev)
2934 replace_uses_by (name, ev);
2935
2936 if (!ssa_names_to_remove)
2937 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2938 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2939 }
2940 }
2941
2942 /* Remove the ssa names that were replaced by constants. We do not
2943 remove them directly in the previous cycle, since this
2944 invalidates scev cache. */
2945 if (ssa_names_to_remove)
2946 {
2947 bitmap_iterator bi;
2948
2949 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2950 {
2951 name = ssa_name (i);
2952 phi = SSA_NAME_DEF_STMT (name);
2953
2954 gcc_assert (TREE_CODE (phi) == PHI_NODE);
2955 remove_phi_node (phi, NULL, true);
2956 }
2957
2958 BITMAP_FREE (ssa_names_to_remove);
2959 scev_reset ();
2960 }
2961
2962 /* Now the regular final value replacement. */
2963 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
2964 {
2965 edge exit;
2966 tree def, rslt, ass, niter;
2967 block_stmt_iterator bsi;
2968
2969 /* If we do not know exact number of iterations of the loop, we cannot
2970 replace the final value. */
2971 exit = single_exit (loop);
2972 if (!exit)
2973 continue;
2974
2975 niter = number_of_latch_executions (loop);
2976 /* We used to check here whether the computation of NITER is expensive,
2977 and avoided final value elimination if that is the case. The problem
2978 is that it is hard to evaluate whether the expression is too
2979 expensive, as we do not know what optimization opportunities the
2980 the elimination of the final value may reveal. Therefore, we now
2981 eliminate the final values of induction variables unconditionally. */
2982 if (niter == chrec_dont_know)
2983 continue;
2984
2985 /* Ensure that it is possible to insert new statements somewhere. */
2986 if (!single_pred_p (exit->dest))
2987 split_loop_exit_edge (exit);
2988 bsi = bsi_after_labels (exit->dest);
2989
2990 ex_loop = superloop_at_depth (loop,
2991 loop_depth (exit->dest->loop_father) + 1);
2992
2993 for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2994 {
2995 next_phi = PHI_CHAIN (phi);
2996 rslt = PHI_RESULT (phi);
2997 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2998 if (!is_gimple_reg (def))
2999 continue;
3000
3001 if (!POINTER_TYPE_P (TREE_TYPE (def))
3002 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
3003 continue;
3004
3005 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
3006 def = compute_overall_effect_of_inner_loop (ex_loop, def);
3007 if (!tree_does_not_contain_chrecs (def)
3008 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
3009 /* Moving the computation from the loop may prolong life range
3010 of some ssa names, which may cause problems if they appear
3011 on abnormal edges. */
3012 || contains_abnormal_ssa_name_p (def))
3013 continue;
3014
3015 /* Eliminate the PHI node and replace it by a computation outside
3016 the loop. */
3017 def = unshare_expr (def);
3018 remove_phi_node (phi, NULL_TREE, false);
3019
3020 ass = build_gimple_modify_stmt (rslt, NULL_TREE);
3021 SSA_NAME_DEF_STMT (rslt) = ass;
3022 {
3023 block_stmt_iterator dest = bsi;
3024 bsi_insert_before (&dest, ass, BSI_NEW_STMT);
3025 def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
3026 }
3027 GIMPLE_STMT_OPERAND (ass, 1) = def;
3028 update_stmt (ass);
3029 }
3030 }
3031 return 0;
3032 }
3033
3034 #include "gt-tree-scalar-evolution.h"