re PR middle-end/37375 ([graphite] Parameter detection and scev only take a surroundi...
[gcc.git] / gcc / tree-scalar-evolution.c
1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Free Software
3 Foundation, Inc.
4 Contributed by Sebastian Pop <s.pop@laposte.net>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /*
23 Description:
24
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
31
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
45
46 A short sketch of the algorithm is:
47
48 Given a scalar variable to be analyzed, follow the SSA edge to
49 its definition:
50
51 - When the definition is a GIMPLE_ASSIGN: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
58
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
62
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73
74 Examples:
75
76 Example 1: Illustration of the basic algorithm.
77
78 | a = 3
79 | loop_1
80 | b = phi (a, c)
81 | c = b + 1
82 | if (c > 10) exit_loop
83 | endloop
84
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters (loop_1, {a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
115
116 a -> 3
117 b -> {3, +, 1}_1
118 c -> {4, +, 1}_1
119
120 or in terms of a C program:
121
122 | a = 3
123 | for (x = 0; x <= 7; x++)
124 | {
125 | b = x + 3
126 | c = x + 4
127 | }
128
129 Example 2a: Illustration of the algorithm on nested loops.
130
131 | loop_1
132 | a = phi (1, b)
133 | c = a + 2
134 | loop_2 10 times
135 | b = phi (c, d)
136 | d = b + 3
137 | endloop
138 | endloop
139
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
143
144 b -> {c, +, 3}_2
145 d -> {c + 3, +, 3}_2
146
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
154
155 a -> {1, +, 32}_1
156 c -> {3, +, 32}_1
157
158 Example 2b: Multivariate chains of recurrences.
159
160 | loop_1
161 | k = phi (0, k + 1)
162 | loop_2 4 times
163 | j = phi (0, j + 1)
164 | loop_3 4 times
165 | i = phi (0, i + 1)
166 | A[j + k] = ...
167 | endloop
168 | endloop
169 | endloop
170
171 Analyzing the access function of array A with
172 instantiate_parameters (loop_1, "j + k"), we obtain the
173 instantiation and the analysis of the scalar variables "j" and "k"
174 in loop_1. This leads to the scalar evolution {4, +, 1}_1: the end
175 value of loop_2 for "j" is 4, and the evolution of "k" in loop_1 is
176 {0, +, 1}_1. To obtain the evolution function in loop_3 and
177 instantiate the scalar variables up to loop_1, one has to use:
178 instantiate_scev (block_before_loop (loop_1), loop_3, "j + k").
179 The result of this call is {{0, +, 1}_1, +, 1}_2.
180
181 Example 3: Higher degree polynomials.
182
183 | loop_1
184 | a = phi (2, b)
185 | c = phi (5, d)
186 | b = a + 1
187 | d = c + a
188 | endloop
189
190 a -> {2, +, 1}_1
191 b -> {3, +, 1}_1
192 c -> {5, +, a}_1
193 d -> {5 + a, +, a}_1
194
195 instantiate_parameters (loop_1, {5, +, a}_1) -> {5, +, 2, +, 1}_1
196 instantiate_parameters (loop_1, {5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
197
198 Example 4: Lucas, Fibonacci, or mixers in general.
199
200 | loop_1
201 | a = phi (1, b)
202 | c = phi (3, d)
203 | b = c
204 | d = c + a
205 | endloop
206
207 a -> (1, c)_1
208 c -> {3, +, a}_1
209
210 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
211 following semantics: during the first iteration of the loop_1, the
212 variable contains the value 1, and then it contains the value "c".
213 Note that this syntax is close to the syntax of the loop-phi-node:
214 "a -> (1, c)_1" vs. "a = phi (1, c)".
215
216 The symbolic chrec representation contains all the semantics of the
217 original code. What is more difficult is to use this information.
218
219 Example 5: Flip-flops, or exchangers.
220
221 | loop_1
222 | a = phi (1, b)
223 | c = phi (3, d)
224 | b = c
225 | d = a
226 | endloop
227
228 a -> (1, c)_1
229 c -> (3, a)_1
230
231 Based on these symbolic chrecs, it is possible to refine this
232 information into the more precise PERIODIC_CHRECs:
233
234 a -> |1, 3|_1
235 c -> |3, 1|_1
236
237 This transformation is not yet implemented.
238
239 Further readings:
240
241 You can find a more detailed description of the algorithm in:
242 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
243 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
244 this is a preliminary report and some of the details of the
245 algorithm have changed. I'm working on a research report that
246 updates the description of the algorithms to reflect the design
247 choices used in this implementation.
248
249 A set of slides show a high level overview of the algorithm and run
250 an example through the scalar evolution analyzer:
251 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
252
253 The slides that I have presented at the GCC Summit'04 are available
254 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
255 */
256
257 #include "config.h"
258 #include "system.h"
259 #include "coretypes.h"
260 #include "tm.h"
261 #include "ggc.h"
262 #include "tree.h"
263 #include "real.h"
264
265 /* These RTL headers are needed for basic-block.h. */
266 #include "rtl.h"
267 #include "basic-block.h"
268 #include "diagnostic.h"
269 #include "tree-flow.h"
270 #include "tree-dump.h"
271 #include "timevar.h"
272 #include "cfgloop.h"
273 #include "tree-chrec.h"
274 #include "tree-scalar-evolution.h"
275 #include "tree-pass.h"
276 #include "flags.h"
277 #include "params.h"
278
279 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
280
281 /* The cached information about an SSA name VAR, claiming that below
282 basic block INSTANTIATED_BELOW, the value of VAR can be expressed
283 as CHREC. */
284
285 struct scev_info_str GTY(())
286 {
287 basic_block instantiated_below;
288 tree var;
289 tree chrec;
290 };
291
292 /* Counters for the scev database. */
293 static unsigned nb_set_scev = 0;
294 static unsigned nb_get_scev = 0;
295
296 /* The following trees are unique elements. Thus the comparison of
297 another element to these elements should be done on the pointer to
298 these trees, and not on their value. */
299
300 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
301 tree chrec_not_analyzed_yet;
302
303 /* Reserved to the cases where the analyzer has detected an
304 undecidable property at compile time. */
305 tree chrec_dont_know;
306
307 /* When the analyzer has detected that a property will never
308 happen, then it qualifies it with chrec_known. */
309 tree chrec_known;
310
311 static GTY ((param_is (struct scev_info_str))) htab_t scalar_evolution_info;
312
313 \f
314 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
315
316 static inline struct scev_info_str *
317 new_scev_info_str (basic_block instantiated_below, tree var)
318 {
319 struct scev_info_str *res;
320
321 res = GGC_NEW (struct scev_info_str);
322 res->var = var;
323 res->chrec = chrec_not_analyzed_yet;
324 res->instantiated_below = instantiated_below;
325
326 return res;
327 }
328
329 /* Computes a hash function for database element ELT. */
330
331 static hashval_t
332 hash_scev_info (const void *elt)
333 {
334 return SSA_NAME_VERSION (((const struct scev_info_str *) elt)->var);
335 }
336
337 /* Compares database elements E1 and E2. */
338
339 static int
340 eq_scev_info (const void *e1, const void *e2)
341 {
342 const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
343 const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
344
345 return (elt1->var == elt2->var
346 && elt1->instantiated_below == elt2->instantiated_below);
347 }
348
349 /* Deletes database element E. */
350
351 static void
352 del_scev_info (void *e)
353 {
354 ggc_free (e);
355 }
356
357 /* Get the scalar evolution of VAR for INSTANTIATED_BELOW basic block.
358 A first query on VAR returns chrec_not_analyzed_yet. */
359
360 static tree *
361 find_var_scev_info (basic_block instantiated_below, tree var)
362 {
363 struct scev_info_str *res;
364 struct scev_info_str tmp;
365 PTR *slot;
366
367 tmp.var = var;
368 tmp.instantiated_below = instantiated_below;
369 slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
370
371 if (!*slot)
372 *slot = new_scev_info_str (instantiated_below, var);
373 res = (struct scev_info_str *) *slot;
374
375 return &res->chrec;
376 }
377
378 /* Return true when CHREC contains symbolic names defined in
379 LOOP_NB. */
380
381 bool
382 chrec_contains_symbols_defined_in_loop (const_tree chrec, unsigned loop_nb)
383 {
384 int i, n;
385
386 if (chrec == NULL_TREE)
387 return false;
388
389 if (is_gimple_min_invariant (chrec))
390 return false;
391
392 if (TREE_CODE (chrec) == VAR_DECL
393 || TREE_CODE (chrec) == PARM_DECL
394 || TREE_CODE (chrec) == FUNCTION_DECL
395 || TREE_CODE (chrec) == LABEL_DECL
396 || TREE_CODE (chrec) == RESULT_DECL
397 || TREE_CODE (chrec) == FIELD_DECL)
398 return true;
399
400 if (TREE_CODE (chrec) == SSA_NAME)
401 {
402 gimple def = SSA_NAME_DEF_STMT (chrec);
403 struct loop *def_loop = loop_containing_stmt (def);
404 struct loop *loop = get_loop (loop_nb);
405
406 if (def_loop == NULL)
407 return false;
408
409 if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
410 return true;
411
412 return false;
413 }
414
415 n = TREE_OPERAND_LENGTH (chrec);
416 for (i = 0; i < n; i++)
417 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, i),
418 loop_nb))
419 return true;
420 return false;
421 }
422
423 /* Return true when PHI is a loop-phi-node. */
424
425 static bool
426 loop_phi_node_p (gimple phi)
427 {
428 /* The implementation of this function is based on the following
429 property: "all the loop-phi-nodes of a loop are contained in the
430 loop's header basic block". */
431
432 return loop_containing_stmt (phi)->header == gimple_bb (phi);
433 }
434
435 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
436 In general, in the case of multivariate evolutions we want to get
437 the evolution in different loops. LOOP specifies the level for
438 which to get the evolution.
439
440 Example:
441
442 | for (j = 0; j < 100; j++)
443 | {
444 | for (k = 0; k < 100; k++)
445 | {
446 | i = k + j; - Here the value of i is a function of j, k.
447 | }
448 | ... = i - Here the value of i is a function of j.
449 | }
450 | ... = i - Here the value of i is a scalar.
451
452 Example:
453
454 | i_0 = ...
455 | loop_1 10 times
456 | i_1 = phi (i_0, i_2)
457 | i_2 = i_1 + 2
458 | endloop
459
460 This loop has the same effect as:
461 LOOP_1 has the same effect as:
462
463 | i_1 = i_0 + 20
464
465 The overall effect of the loop, "i_0 + 20" in the previous example,
466 is obtained by passing in the parameters: LOOP = 1,
467 EVOLUTION_FN = {i_0, +, 2}_1.
468 */
469
470 static tree
471 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
472 {
473 bool val = false;
474
475 if (evolution_fn == chrec_dont_know)
476 return chrec_dont_know;
477
478 else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
479 {
480 struct loop *inner_loop = get_chrec_loop (evolution_fn);
481
482 if (inner_loop == loop
483 || flow_loop_nested_p (loop, inner_loop))
484 {
485 tree nb_iter = number_of_latch_executions (inner_loop);
486
487 if (nb_iter == chrec_dont_know)
488 return chrec_dont_know;
489 else
490 {
491 tree res;
492
493 /* evolution_fn is the evolution function in LOOP. Get
494 its value in the nb_iter-th iteration. */
495 res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
496
497 /* Continue the computation until ending on a parent of LOOP. */
498 return compute_overall_effect_of_inner_loop (loop, res);
499 }
500 }
501 else
502 return evolution_fn;
503 }
504
505 /* If the evolution function is an invariant, there is nothing to do. */
506 else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
507 return evolution_fn;
508
509 else
510 return chrec_dont_know;
511 }
512
513 /* Determine whether the CHREC is always positive/negative. If the expression
514 cannot be statically analyzed, return false, otherwise set the answer into
515 VALUE. */
516
517 bool
518 chrec_is_positive (tree chrec, bool *value)
519 {
520 bool value0, value1, value2;
521 tree end_value, nb_iter;
522
523 switch (TREE_CODE (chrec))
524 {
525 case POLYNOMIAL_CHREC:
526 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
527 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
528 return false;
529
530 /* FIXME -- overflows. */
531 if (value0 == value1)
532 {
533 *value = value0;
534 return true;
535 }
536
537 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
538 and the proof consists in showing that the sign never
539 changes during the execution of the loop, from 0 to
540 loop->nb_iterations. */
541 if (!evolution_function_is_affine_p (chrec))
542 return false;
543
544 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
545 if (chrec_contains_undetermined (nb_iter))
546 return false;
547
548 #if 0
549 /* TODO -- If the test is after the exit, we may decrease the number of
550 iterations by one. */
551 if (after_exit)
552 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
553 #endif
554
555 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
556
557 if (!chrec_is_positive (end_value, &value2))
558 return false;
559
560 *value = value0;
561 return value0 == value1;
562
563 case INTEGER_CST:
564 *value = (tree_int_cst_sgn (chrec) == 1);
565 return true;
566
567 default:
568 return false;
569 }
570 }
571
572 /* Associate CHREC to SCALAR. */
573
574 static void
575 set_scalar_evolution (basic_block instantiated_below, tree scalar, tree chrec)
576 {
577 tree *scalar_info;
578
579 if (TREE_CODE (scalar) != SSA_NAME)
580 return;
581
582 scalar_info = find_var_scev_info (instantiated_below, scalar);
583
584 if (dump_file)
585 {
586 if (dump_flags & TDF_DETAILS)
587 {
588 fprintf (dump_file, "(set_scalar_evolution \n");
589 fprintf (dump_file, " instantiated_below = %d \n",
590 instantiated_below->index);
591 fprintf (dump_file, " (scalar = ");
592 print_generic_expr (dump_file, scalar, 0);
593 fprintf (dump_file, ")\n (scalar_evolution = ");
594 print_generic_expr (dump_file, chrec, 0);
595 fprintf (dump_file, "))\n");
596 }
597 if (dump_flags & TDF_STATS)
598 nb_set_scev++;
599 }
600
601 *scalar_info = chrec;
602 }
603
604 /* Retrieve the chrec associated to SCALAR instantiated below
605 INSTANTIATED_BELOW block. */
606
607 static tree
608 get_scalar_evolution (basic_block instantiated_below, tree scalar)
609 {
610 tree res;
611
612 if (dump_file)
613 {
614 if (dump_flags & TDF_DETAILS)
615 {
616 fprintf (dump_file, "(get_scalar_evolution \n");
617 fprintf (dump_file, " (scalar = ");
618 print_generic_expr (dump_file, scalar, 0);
619 fprintf (dump_file, ")\n");
620 }
621 if (dump_flags & TDF_STATS)
622 nb_get_scev++;
623 }
624
625 switch (TREE_CODE (scalar))
626 {
627 case SSA_NAME:
628 res = *find_var_scev_info (instantiated_below, scalar);
629 break;
630
631 case REAL_CST:
632 case FIXED_CST:
633 case INTEGER_CST:
634 res = scalar;
635 break;
636
637 default:
638 res = chrec_not_analyzed_yet;
639 break;
640 }
641
642 if (dump_file && (dump_flags & TDF_DETAILS))
643 {
644 fprintf (dump_file, " (scalar_evolution = ");
645 print_generic_expr (dump_file, res, 0);
646 fprintf (dump_file, "))\n");
647 }
648
649 return res;
650 }
651
652 /* Helper function for add_to_evolution. Returns the evolution
653 function for an assignment of the form "a = b + c", where "a" and
654 "b" are on the strongly connected component. CHREC_BEFORE is the
655 information that we already have collected up to this point.
656 TO_ADD is the evolution of "c".
657
658 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
659 evolution the expression TO_ADD, otherwise construct an evolution
660 part for this loop. */
661
662 static tree
663 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
664 gimple at_stmt)
665 {
666 tree type, left, right;
667 struct loop *loop = get_loop (loop_nb), *chloop;
668
669 switch (TREE_CODE (chrec_before))
670 {
671 case POLYNOMIAL_CHREC:
672 chloop = get_chrec_loop (chrec_before);
673 if (chloop == loop
674 || flow_loop_nested_p (chloop, loop))
675 {
676 unsigned var;
677
678 type = chrec_type (chrec_before);
679
680 /* When there is no evolution part in this loop, build it. */
681 if (chloop != loop)
682 {
683 var = loop_nb;
684 left = chrec_before;
685 right = SCALAR_FLOAT_TYPE_P (type)
686 ? build_real (type, dconst0)
687 : build_int_cst (type, 0);
688 }
689 else
690 {
691 var = CHREC_VARIABLE (chrec_before);
692 left = CHREC_LEFT (chrec_before);
693 right = CHREC_RIGHT (chrec_before);
694 }
695
696 to_add = chrec_convert (type, to_add, at_stmt);
697 right = chrec_convert_rhs (type, right, at_stmt);
698 right = chrec_fold_plus (chrec_type (right), right, to_add);
699 return build_polynomial_chrec (var, left, right);
700 }
701 else
702 {
703 gcc_assert (flow_loop_nested_p (loop, chloop));
704
705 /* Search the evolution in LOOP_NB. */
706 left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
707 to_add, at_stmt);
708 right = CHREC_RIGHT (chrec_before);
709 right = chrec_convert_rhs (chrec_type (left), right, at_stmt);
710 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
711 left, right);
712 }
713
714 default:
715 /* These nodes do not depend on a loop. */
716 if (chrec_before == chrec_dont_know)
717 return chrec_dont_know;
718
719 left = chrec_before;
720 right = chrec_convert_rhs (chrec_type (left), to_add, at_stmt);
721 return build_polynomial_chrec (loop_nb, left, right);
722 }
723 }
724
725 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
726 of LOOP_NB.
727
728 Description (provided for completeness, for those who read code in
729 a plane, and for my poor 62 bytes brain that would have forgotten
730 all this in the next two or three months):
731
732 The algorithm of translation of programs from the SSA representation
733 into the chrecs syntax is based on a pattern matching. After having
734 reconstructed the overall tree expression for a loop, there are only
735 two cases that can arise:
736
737 1. a = loop-phi (init, a + expr)
738 2. a = loop-phi (init, expr)
739
740 where EXPR is either a scalar constant with respect to the analyzed
741 loop (this is a degree 0 polynomial), or an expression containing
742 other loop-phi definitions (these are higher degree polynomials).
743
744 Examples:
745
746 1.
747 | init = ...
748 | loop_1
749 | a = phi (init, a + 5)
750 | endloop
751
752 2.
753 | inita = ...
754 | initb = ...
755 | loop_1
756 | a = phi (inita, 2 * b + 3)
757 | b = phi (initb, b + 1)
758 | endloop
759
760 For the first case, the semantics of the SSA representation is:
761
762 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
763
764 that is, there is a loop index "x" that determines the scalar value
765 of the variable during the loop execution. During the first
766 iteration, the value is that of the initial condition INIT, while
767 during the subsequent iterations, it is the sum of the initial
768 condition with the sum of all the values of EXPR from the initial
769 iteration to the before last considered iteration.
770
771 For the second case, the semantics of the SSA program is:
772
773 | a (x) = init, if x = 0;
774 | expr (x - 1), otherwise.
775
776 The second case corresponds to the PEELED_CHREC, whose syntax is
777 close to the syntax of a loop-phi-node:
778
779 | phi (init, expr) vs. (init, expr)_x
780
781 The proof of the translation algorithm for the first case is a
782 proof by structural induction based on the degree of EXPR.
783
784 Degree 0:
785 When EXPR is a constant with respect to the analyzed loop, or in
786 other words when EXPR is a polynomial of degree 0, the evolution of
787 the variable A in the loop is an affine function with an initial
788 condition INIT, and a step EXPR. In order to show this, we start
789 from the semantics of the SSA representation:
790
791 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
792
793 and since "expr (j)" is a constant with respect to "j",
794
795 f (x) = init + x * expr
796
797 Finally, based on the semantics of the pure sum chrecs, by
798 identification we get the corresponding chrecs syntax:
799
800 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
801 f (x) -> {init, +, expr}_x
802
803 Higher degree:
804 Suppose that EXPR is a polynomial of degree N with respect to the
805 analyzed loop_x for which we have already determined that it is
806 written under the chrecs syntax:
807
808 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
809
810 We start from the semantics of the SSA program:
811
812 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
813 |
814 | f (x) = init + \sum_{j = 0}^{x - 1}
815 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
816 |
817 | f (x) = init + \sum_{j = 0}^{x - 1}
818 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
819 |
820 | f (x) = init + \sum_{k = 0}^{n - 1}
821 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
822 |
823 | f (x) = init + \sum_{k = 0}^{n - 1}
824 | (b_k * \binom{x}{k + 1})
825 |
826 | f (x) = init + b_0 * \binom{x}{1} + ...
827 | + b_{n-1} * \binom{x}{n}
828 |
829 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
830 | + b_{n-1} * \binom{x}{n}
831 |
832
833 And finally from the definition of the chrecs syntax, we identify:
834 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
835
836 This shows the mechanism that stands behind the add_to_evolution
837 function. An important point is that the use of symbolic
838 parameters avoids the need of an analysis schedule.
839
840 Example:
841
842 | inita = ...
843 | initb = ...
844 | loop_1
845 | a = phi (inita, a + 2 + b)
846 | b = phi (initb, b + 1)
847 | endloop
848
849 When analyzing "a", the algorithm keeps "b" symbolically:
850
851 | a -> {inita, +, 2 + b}_1
852
853 Then, after instantiation, the analyzer ends on the evolution:
854
855 | a -> {inita, +, 2 + initb, +, 1}_1
856
857 */
858
859 static tree
860 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
861 tree to_add, gimple at_stmt)
862 {
863 tree type = chrec_type (to_add);
864 tree res = NULL_TREE;
865
866 if (to_add == NULL_TREE)
867 return chrec_before;
868
869 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
870 instantiated at this point. */
871 if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
872 /* This should not happen. */
873 return chrec_dont_know;
874
875 if (dump_file && (dump_flags & TDF_DETAILS))
876 {
877 fprintf (dump_file, "(add_to_evolution \n");
878 fprintf (dump_file, " (loop_nb = %d)\n", loop_nb);
879 fprintf (dump_file, " (chrec_before = ");
880 print_generic_expr (dump_file, chrec_before, 0);
881 fprintf (dump_file, ")\n (to_add = ");
882 print_generic_expr (dump_file, to_add, 0);
883 fprintf (dump_file, ")\n");
884 }
885
886 if (code == MINUS_EXPR)
887 to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
888 ? build_real (type, dconstm1)
889 : build_int_cst_type (type, -1));
890
891 res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
892
893 if (dump_file && (dump_flags & TDF_DETAILS))
894 {
895 fprintf (dump_file, " (res = ");
896 print_generic_expr (dump_file, res, 0);
897 fprintf (dump_file, "))\n");
898 }
899
900 return res;
901 }
902
903 /* Helper function. */
904
905 static inline tree
906 set_nb_iterations_in_loop (struct loop *loop,
907 tree res)
908 {
909 if (dump_file && (dump_flags & TDF_DETAILS))
910 {
911 fprintf (dump_file, " (set_nb_iterations_in_loop = ");
912 print_generic_expr (dump_file, res, 0);
913 fprintf (dump_file, "))\n");
914 }
915
916 loop->nb_iterations = res;
917 return res;
918 }
919
920 \f
921
922 /* This section selects the loops that will be good candidates for the
923 scalar evolution analysis. For the moment, greedily select all the
924 loop nests we could analyze. */
925
926 /* For a loop with a single exit edge, return the COND_EXPR that
927 guards the exit edge. If the expression is too difficult to
928 analyze, then give up. */
929
930 gimple
931 get_loop_exit_condition (const struct loop *loop)
932 {
933 gimple res = NULL;
934 edge exit_edge = single_exit (loop);
935
936 if (dump_file && (dump_flags & TDF_DETAILS))
937 fprintf (dump_file, "(get_loop_exit_condition \n ");
938
939 if (exit_edge)
940 {
941 gimple stmt;
942
943 stmt = last_stmt (exit_edge->src);
944 if (gimple_code (stmt) == GIMPLE_COND)
945 res = stmt;
946 }
947
948 if (dump_file && (dump_flags & TDF_DETAILS))
949 {
950 print_gimple_stmt (dump_file, res, 0, 0);
951 fprintf (dump_file, ")\n");
952 }
953
954 return res;
955 }
956
957 /* Recursively determine and enqueue the exit conditions for a loop. */
958
959 static void
960 get_exit_conditions_rec (struct loop *loop,
961 VEC(gimple,heap) **exit_conditions)
962 {
963 if (!loop)
964 return;
965
966 /* Recurse on the inner loops, then on the next (sibling) loops. */
967 get_exit_conditions_rec (loop->inner, exit_conditions);
968 get_exit_conditions_rec (loop->next, exit_conditions);
969
970 if (single_exit (loop))
971 {
972 gimple loop_condition = get_loop_exit_condition (loop);
973
974 if (loop_condition)
975 VEC_safe_push (gimple, heap, *exit_conditions, loop_condition);
976 }
977 }
978
979 /* Select the candidate loop nests for the analysis. This function
980 initializes the EXIT_CONDITIONS array. */
981
982 static void
983 select_loops_exit_conditions (VEC(gimple,heap) **exit_conditions)
984 {
985 struct loop *function_body = current_loops->tree_root;
986
987 get_exit_conditions_rec (function_body->inner, exit_conditions);
988 }
989
990 \f
991 /* Depth first search algorithm. */
992
993 typedef enum t_bool {
994 t_false,
995 t_true,
996 t_dont_know
997 } t_bool;
998
999
1000 static t_bool follow_ssa_edge (struct loop *loop, gimple, gimple, tree *, int);
1001
1002 /* Follow the ssa edge into the binary expression RHS0 CODE RHS1.
1003 Return true if the strongly connected component has been found. */
1004
1005 static t_bool
1006 follow_ssa_edge_binary (struct loop *loop, gimple at_stmt,
1007 tree type, tree rhs0, enum tree_code code, tree rhs1,
1008 gimple halting_phi, tree *evolution_of_loop, int limit)
1009 {
1010 t_bool res = t_false;
1011 tree evol;
1012
1013 switch (code)
1014 {
1015 case POINTER_PLUS_EXPR:
1016 case PLUS_EXPR:
1017 if (TREE_CODE (rhs0) == SSA_NAME)
1018 {
1019 if (TREE_CODE (rhs1) == SSA_NAME)
1020 {
1021 /* Match an assignment under the form:
1022 "a = b + c". */
1023
1024 /* We want only assignments of form "name + name" contribute to
1025 LIMIT, as the other cases do not necessarily contribute to
1026 the complexity of the expression. */
1027 limit++;
1028
1029 evol = *evolution_of_loop;
1030 res = follow_ssa_edge
1031 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi, &evol, limit);
1032
1033 if (res == t_true)
1034 *evolution_of_loop = add_to_evolution
1035 (loop->num,
1036 chrec_convert (type, evol, at_stmt),
1037 code, rhs1, at_stmt);
1038
1039 else if (res == t_false)
1040 {
1041 res = follow_ssa_edge
1042 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1043 evolution_of_loop, limit);
1044
1045 if (res == t_true)
1046 *evolution_of_loop = add_to_evolution
1047 (loop->num,
1048 chrec_convert (type, *evolution_of_loop, at_stmt),
1049 code, rhs0, at_stmt);
1050
1051 else if (res == t_dont_know)
1052 *evolution_of_loop = chrec_dont_know;
1053 }
1054
1055 else if (res == t_dont_know)
1056 *evolution_of_loop = chrec_dont_know;
1057 }
1058
1059 else
1060 {
1061 /* Match an assignment under the form:
1062 "a = b + ...". */
1063 res = follow_ssa_edge
1064 (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1065 evolution_of_loop, limit);
1066 if (res == t_true)
1067 *evolution_of_loop = add_to_evolution
1068 (loop->num, chrec_convert (type, *evolution_of_loop,
1069 at_stmt),
1070 code, rhs1, at_stmt);
1071
1072 else if (res == t_dont_know)
1073 *evolution_of_loop = chrec_dont_know;
1074 }
1075 }
1076
1077 else if (TREE_CODE (rhs1) == SSA_NAME)
1078 {
1079 /* Match an assignment under the form:
1080 "a = ... + c". */
1081 res = follow_ssa_edge
1082 (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1083 evolution_of_loop, limit);
1084 if (res == t_true)
1085 *evolution_of_loop = add_to_evolution
1086 (loop->num, chrec_convert (type, *evolution_of_loop,
1087 at_stmt),
1088 code, rhs0, at_stmt);
1089
1090 else if (res == t_dont_know)
1091 *evolution_of_loop = chrec_dont_know;
1092 }
1093
1094 else
1095 /* Otherwise, match an assignment under the form:
1096 "a = ... + ...". */
1097 /* And there is nothing to do. */
1098 res = t_false;
1099 break;
1100
1101 case MINUS_EXPR:
1102 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1103 if (TREE_CODE (rhs0) == SSA_NAME)
1104 {
1105 /* Match an assignment under the form:
1106 "a = b - ...". */
1107
1108 /* We want only assignments of form "name - name" contribute to
1109 LIMIT, as the other cases do not necessarily contribute to
1110 the complexity of the expression. */
1111 if (TREE_CODE (rhs1) == SSA_NAME)
1112 limit++;
1113
1114 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1115 evolution_of_loop, limit);
1116 if (res == t_true)
1117 *evolution_of_loop = add_to_evolution
1118 (loop->num, chrec_convert (type, *evolution_of_loop, at_stmt),
1119 MINUS_EXPR, rhs1, at_stmt);
1120
1121 else if (res == t_dont_know)
1122 *evolution_of_loop = chrec_dont_know;
1123 }
1124 else
1125 /* Otherwise, match an assignment under the form:
1126 "a = ... - ...". */
1127 /* And there is nothing to do. */
1128 res = t_false;
1129 break;
1130
1131 default:
1132 res = t_false;
1133 }
1134
1135 return res;
1136 }
1137
1138 /* Follow the ssa edge into the expression EXPR.
1139 Return true if the strongly connected component has been found. */
1140
1141 static t_bool
1142 follow_ssa_edge_expr (struct loop *loop, gimple at_stmt, tree expr,
1143 gimple halting_phi, tree *evolution_of_loop, int limit)
1144 {
1145 t_bool res = t_false;
1146 tree rhs0, rhs1;
1147 tree type = TREE_TYPE (expr);
1148 enum tree_code code;
1149
1150 /* The EXPR is one of the following cases:
1151 - an SSA_NAME,
1152 - an INTEGER_CST,
1153 - a PLUS_EXPR,
1154 - a POINTER_PLUS_EXPR,
1155 - a MINUS_EXPR,
1156 - an ASSERT_EXPR,
1157 - other cases are not yet handled. */
1158 code = TREE_CODE (expr);
1159 switch (code)
1160 {
1161 case NOP_EXPR:
1162 /* This assignment is under the form "a_1 = (cast) rhs. */
1163 res = follow_ssa_edge_expr (loop, at_stmt, TREE_OPERAND (expr, 0),
1164 halting_phi, evolution_of_loop, limit);
1165 *evolution_of_loop = chrec_convert (type, *evolution_of_loop, at_stmt);
1166 break;
1167
1168 case INTEGER_CST:
1169 /* This assignment is under the form "a_1 = 7". */
1170 res = t_false;
1171 break;
1172
1173 case SSA_NAME:
1174 /* This assignment is under the form: "a_1 = b_2". */
1175 res = follow_ssa_edge
1176 (loop, SSA_NAME_DEF_STMT (expr), halting_phi, evolution_of_loop, limit);
1177 break;
1178
1179 case POINTER_PLUS_EXPR:
1180 case PLUS_EXPR:
1181 case MINUS_EXPR:
1182 /* This case is under the form "rhs0 +- rhs1". */
1183 rhs0 = TREE_OPERAND (expr, 0);
1184 rhs1 = TREE_OPERAND (expr, 1);
1185 STRIP_TYPE_NOPS (rhs0);
1186 STRIP_TYPE_NOPS (rhs1);
1187 return follow_ssa_edge_binary (loop, at_stmt, type, rhs0, code, rhs1,
1188 halting_phi, evolution_of_loop, limit);
1189
1190 case ASSERT_EXPR:
1191 {
1192 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1193 It must be handled as a copy assignment of the form a_1 = a_2. */
1194 tree op0 = ASSERT_EXPR_VAR (expr);
1195 if (TREE_CODE (op0) == SSA_NAME)
1196 res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1197 halting_phi, evolution_of_loop, limit);
1198 else
1199 res = t_false;
1200 break;
1201 }
1202
1203
1204 default:
1205 res = t_false;
1206 break;
1207 }
1208
1209 return res;
1210 }
1211
1212 /* Follow the ssa edge into the right hand side of an assignment STMT.
1213 Return true if the strongly connected component has been found. */
1214
1215 static t_bool
1216 follow_ssa_edge_in_rhs (struct loop *loop, gimple stmt,
1217 gimple halting_phi, tree *evolution_of_loop, int limit)
1218 {
1219 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1220 enum tree_code code = gimple_assign_rhs_code (stmt);
1221
1222 switch (get_gimple_rhs_class (code))
1223 {
1224 case GIMPLE_BINARY_RHS:
1225 return follow_ssa_edge_binary (loop, stmt, type,
1226 gimple_assign_rhs1 (stmt), code,
1227 gimple_assign_rhs2 (stmt),
1228 halting_phi, evolution_of_loop, limit);
1229 case GIMPLE_SINGLE_RHS:
1230 return follow_ssa_edge_expr (loop, stmt, gimple_assign_rhs1 (stmt),
1231 halting_phi, evolution_of_loop, limit);
1232 default:
1233 return t_false;
1234 }
1235 }
1236
1237 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1238
1239 static bool
1240 backedge_phi_arg_p (gimple phi, int i)
1241 {
1242 const_edge e = gimple_phi_arg_edge (phi, i);
1243
1244 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1245 about updating it anywhere, and this should work as well most of the
1246 time. */
1247 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1248 return true;
1249
1250 return false;
1251 }
1252
1253 /* Helper function for one branch of the condition-phi-node. Return
1254 true if the strongly connected component has been found following
1255 this path. */
1256
1257 static inline t_bool
1258 follow_ssa_edge_in_condition_phi_branch (int i,
1259 struct loop *loop,
1260 gimple condition_phi,
1261 gimple halting_phi,
1262 tree *evolution_of_branch,
1263 tree init_cond, int limit)
1264 {
1265 tree branch = PHI_ARG_DEF (condition_phi, i);
1266 *evolution_of_branch = chrec_dont_know;
1267
1268 /* Do not follow back edges (they must belong to an irreducible loop, which
1269 we really do not want to worry about). */
1270 if (backedge_phi_arg_p (condition_phi, i))
1271 return t_false;
1272
1273 if (TREE_CODE (branch) == SSA_NAME)
1274 {
1275 *evolution_of_branch = init_cond;
1276 return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1277 evolution_of_branch, limit);
1278 }
1279
1280 /* This case occurs when one of the condition branches sets
1281 the variable to a constant: i.e. a phi-node like
1282 "a_2 = PHI <a_7(5), 2(6)>;".
1283
1284 FIXME: This case have to be refined correctly:
1285 in some cases it is possible to say something better than
1286 chrec_dont_know, for example using a wrap-around notation. */
1287 return t_false;
1288 }
1289
1290 /* This function merges the branches of a condition-phi-node in a
1291 loop. */
1292
1293 static t_bool
1294 follow_ssa_edge_in_condition_phi (struct loop *loop,
1295 gimple condition_phi,
1296 gimple halting_phi,
1297 tree *evolution_of_loop, int limit)
1298 {
1299 int i, n;
1300 tree init = *evolution_of_loop;
1301 tree evolution_of_branch;
1302 t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1303 halting_phi,
1304 &evolution_of_branch,
1305 init, limit);
1306 if (res == t_false || res == t_dont_know)
1307 return res;
1308
1309 *evolution_of_loop = evolution_of_branch;
1310
1311 /* If the phi node is just a copy, do not increase the limit. */
1312 n = gimple_phi_num_args (condition_phi);
1313 if (n > 1)
1314 limit++;
1315
1316 for (i = 1; i < n; i++)
1317 {
1318 /* Quickly give up when the evolution of one of the branches is
1319 not known. */
1320 if (*evolution_of_loop == chrec_dont_know)
1321 return t_true;
1322
1323 res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1324 halting_phi,
1325 &evolution_of_branch,
1326 init, limit);
1327 if (res == t_false || res == t_dont_know)
1328 return res;
1329
1330 *evolution_of_loop = chrec_merge (*evolution_of_loop,
1331 evolution_of_branch);
1332 }
1333
1334 return t_true;
1335 }
1336
1337 /* Follow an SSA edge in an inner loop. It computes the overall
1338 effect of the loop, and following the symbolic initial conditions,
1339 it follows the edges in the parent loop. The inner loop is
1340 considered as a single statement. */
1341
1342 static t_bool
1343 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1344 gimple loop_phi_node,
1345 gimple halting_phi,
1346 tree *evolution_of_loop, int limit)
1347 {
1348 struct loop *loop = loop_containing_stmt (loop_phi_node);
1349 tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1350
1351 /* Sometimes, the inner loop is too difficult to analyze, and the
1352 result of the analysis is a symbolic parameter. */
1353 if (ev == PHI_RESULT (loop_phi_node))
1354 {
1355 t_bool res = t_false;
1356 int i, n = gimple_phi_num_args (loop_phi_node);
1357
1358 for (i = 0; i < n; i++)
1359 {
1360 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1361 basic_block bb;
1362
1363 /* Follow the edges that exit the inner loop. */
1364 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1365 if (!flow_bb_inside_loop_p (loop, bb))
1366 res = follow_ssa_edge_expr (outer_loop, loop_phi_node,
1367 arg, halting_phi,
1368 evolution_of_loop, limit);
1369 if (res == t_true)
1370 break;
1371 }
1372
1373 /* If the path crosses this loop-phi, give up. */
1374 if (res == t_true)
1375 *evolution_of_loop = chrec_dont_know;
1376
1377 return res;
1378 }
1379
1380 /* Otherwise, compute the overall effect of the inner loop. */
1381 ev = compute_overall_effect_of_inner_loop (loop, ev);
1382 return follow_ssa_edge_expr (outer_loop, loop_phi_node, ev, halting_phi,
1383 evolution_of_loop, limit);
1384 }
1385
1386 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1387 path that is analyzed on the return walk. */
1388
1389 static t_bool
1390 follow_ssa_edge (struct loop *loop, gimple def, gimple halting_phi,
1391 tree *evolution_of_loop, int limit)
1392 {
1393 struct loop *def_loop;
1394
1395 if (gimple_nop_p (def))
1396 return t_false;
1397
1398 /* Give up if the path is longer than the MAX that we allow. */
1399 if (limit > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1400 return t_dont_know;
1401
1402 def_loop = loop_containing_stmt (def);
1403
1404 switch (gimple_code (def))
1405 {
1406 case GIMPLE_PHI:
1407 if (!loop_phi_node_p (def))
1408 /* DEF is a condition-phi-node. Follow the branches, and
1409 record their evolutions. Finally, merge the collected
1410 information and set the approximation to the main
1411 variable. */
1412 return follow_ssa_edge_in_condition_phi
1413 (loop, def, halting_phi, evolution_of_loop, limit);
1414
1415 /* When the analyzed phi is the halting_phi, the
1416 depth-first search is over: we have found a path from
1417 the halting_phi to itself in the loop. */
1418 if (def == halting_phi)
1419 return t_true;
1420
1421 /* Otherwise, the evolution of the HALTING_PHI depends
1422 on the evolution of another loop-phi-node, i.e. the
1423 evolution function is a higher degree polynomial. */
1424 if (def_loop == loop)
1425 return t_false;
1426
1427 /* Inner loop. */
1428 if (flow_loop_nested_p (loop, def_loop))
1429 return follow_ssa_edge_inner_loop_phi
1430 (loop, def, halting_phi, evolution_of_loop, limit + 1);
1431
1432 /* Outer loop. */
1433 return t_false;
1434
1435 case GIMPLE_ASSIGN:
1436 return follow_ssa_edge_in_rhs (loop, def, halting_phi,
1437 evolution_of_loop, limit);
1438
1439 default:
1440 /* At this level of abstraction, the program is just a set
1441 of GIMPLE_ASSIGNs and PHI_NODEs. In principle there is no
1442 other node to be handled. */
1443 return t_false;
1444 }
1445 }
1446
1447 \f
1448
1449 /* Given a LOOP_PHI_NODE, this function determines the evolution
1450 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1451
1452 static tree
1453 analyze_evolution_in_loop (gimple loop_phi_node,
1454 tree init_cond)
1455 {
1456 int i, n = gimple_phi_num_args (loop_phi_node);
1457 tree evolution_function = chrec_not_analyzed_yet;
1458 struct loop *loop = loop_containing_stmt (loop_phi_node);
1459 basic_block bb;
1460
1461 if (dump_file && (dump_flags & TDF_DETAILS))
1462 {
1463 fprintf (dump_file, "(analyze_evolution_in_loop \n");
1464 fprintf (dump_file, " (loop_phi_node = ");
1465 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1466 fprintf (dump_file, ")\n");
1467 }
1468
1469 for (i = 0; i < n; i++)
1470 {
1471 tree arg = PHI_ARG_DEF (loop_phi_node, i);
1472 gimple ssa_chain;
1473 tree ev_fn;
1474 t_bool res;
1475
1476 /* Select the edges that enter the loop body. */
1477 bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1478 if (!flow_bb_inside_loop_p (loop, bb))
1479 continue;
1480
1481 if (TREE_CODE (arg) == SSA_NAME)
1482 {
1483 ssa_chain = SSA_NAME_DEF_STMT (arg);
1484
1485 /* Pass in the initial condition to the follow edge function. */
1486 ev_fn = init_cond;
1487 res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1488 }
1489 else
1490 res = t_false;
1491
1492 /* When it is impossible to go back on the same
1493 loop_phi_node by following the ssa edges, the
1494 evolution is represented by a peeled chrec, i.e. the
1495 first iteration, EV_FN has the value INIT_COND, then
1496 all the other iterations it has the value of ARG.
1497 For the moment, PEELED_CHREC nodes are not built. */
1498 if (res != t_true)
1499 ev_fn = chrec_dont_know;
1500
1501 /* When there are multiple back edges of the loop (which in fact never
1502 happens currently, but nevertheless), merge their evolutions. */
1503 evolution_function = chrec_merge (evolution_function, ev_fn);
1504 }
1505
1506 if (dump_file && (dump_flags & TDF_DETAILS))
1507 {
1508 fprintf (dump_file, " (evolution_function = ");
1509 print_generic_expr (dump_file, evolution_function, 0);
1510 fprintf (dump_file, "))\n");
1511 }
1512
1513 return evolution_function;
1514 }
1515
1516 /* Given a loop-phi-node, return the initial conditions of the
1517 variable on entry of the loop. When the CCP has propagated
1518 constants into the loop-phi-node, the initial condition is
1519 instantiated, otherwise the initial condition is kept symbolic.
1520 This analyzer does not analyze the evolution outside the current
1521 loop, and leaves this task to the on-demand tree reconstructor. */
1522
1523 static tree
1524 analyze_initial_condition (gimple loop_phi_node)
1525 {
1526 int i, n;
1527 tree init_cond = chrec_not_analyzed_yet;
1528 struct loop *loop = loop_containing_stmt (loop_phi_node);
1529
1530 if (dump_file && (dump_flags & TDF_DETAILS))
1531 {
1532 fprintf (dump_file, "(analyze_initial_condition \n");
1533 fprintf (dump_file, " (loop_phi_node = \n");
1534 print_gimple_stmt (dump_file, loop_phi_node, 0, 0);
1535 fprintf (dump_file, ")\n");
1536 }
1537
1538 n = gimple_phi_num_args (loop_phi_node);
1539 for (i = 0; i < n; i++)
1540 {
1541 tree branch = PHI_ARG_DEF (loop_phi_node, i);
1542 basic_block bb = gimple_phi_arg_edge (loop_phi_node, i)->src;
1543
1544 /* When the branch is oriented to the loop's body, it does
1545 not contribute to the initial condition. */
1546 if (flow_bb_inside_loop_p (loop, bb))
1547 continue;
1548
1549 if (init_cond == chrec_not_analyzed_yet)
1550 {
1551 init_cond = branch;
1552 continue;
1553 }
1554
1555 if (TREE_CODE (branch) == SSA_NAME)
1556 {
1557 init_cond = chrec_dont_know;
1558 break;
1559 }
1560
1561 init_cond = chrec_merge (init_cond, branch);
1562 }
1563
1564 /* Ooops -- a loop without an entry??? */
1565 if (init_cond == chrec_not_analyzed_yet)
1566 init_cond = chrec_dont_know;
1567
1568 if (dump_file && (dump_flags & TDF_DETAILS))
1569 {
1570 fprintf (dump_file, " (init_cond = ");
1571 print_generic_expr (dump_file, init_cond, 0);
1572 fprintf (dump_file, "))\n");
1573 }
1574
1575 return init_cond;
1576 }
1577
1578 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1579
1580 static tree
1581 interpret_loop_phi (struct loop *loop, gimple loop_phi_node)
1582 {
1583 tree res;
1584 struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1585 tree init_cond;
1586
1587 if (phi_loop != loop)
1588 {
1589 struct loop *subloop;
1590 tree evolution_fn = analyze_scalar_evolution
1591 (phi_loop, PHI_RESULT (loop_phi_node));
1592
1593 /* Dive one level deeper. */
1594 subloop = superloop_at_depth (phi_loop, loop_depth (loop) + 1);
1595
1596 /* Interpret the subloop. */
1597 res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1598 return res;
1599 }
1600
1601 /* Otherwise really interpret the loop phi. */
1602 init_cond = analyze_initial_condition (loop_phi_node);
1603 res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1604
1605 return res;
1606 }
1607
1608 /* This function merges the branches of a condition-phi-node,
1609 contained in the outermost loop, and whose arguments are already
1610 analyzed. */
1611
1612 static tree
1613 interpret_condition_phi (struct loop *loop, gimple condition_phi)
1614 {
1615 int i, n = gimple_phi_num_args (condition_phi);
1616 tree res = chrec_not_analyzed_yet;
1617
1618 for (i = 0; i < n; i++)
1619 {
1620 tree branch_chrec;
1621
1622 if (backedge_phi_arg_p (condition_phi, i))
1623 {
1624 res = chrec_dont_know;
1625 break;
1626 }
1627
1628 branch_chrec = analyze_scalar_evolution
1629 (loop, PHI_ARG_DEF (condition_phi, i));
1630
1631 res = chrec_merge (res, branch_chrec);
1632 }
1633
1634 return res;
1635 }
1636
1637 /* Interpret the operation RHS1 OP RHS2. If we didn't
1638 analyze this node before, follow the definitions until ending
1639 either on an analyzed GIMPLE_ASSIGN, or on a loop-phi-node. On the
1640 return path, this function propagates evolutions (ala constant copy
1641 propagation). OPND1 is not a GIMPLE expression because we could
1642 analyze the effect of an inner loop: see interpret_loop_phi. */
1643
1644 static tree
1645 interpret_rhs_expr (struct loop *loop, gimple at_stmt,
1646 tree type, tree rhs1, enum tree_code code, tree rhs2)
1647 {
1648 tree res, chrec1, chrec2;
1649
1650 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1651 {
1652 if (is_gimple_min_invariant (rhs1))
1653 return chrec_convert (type, rhs1, at_stmt);
1654
1655 if (code == SSA_NAME)
1656 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1657 at_stmt);
1658
1659 if (code == ASSERT_EXPR)
1660 {
1661 rhs1 = ASSERT_EXPR_VAR (rhs1);
1662 return chrec_convert (type, analyze_scalar_evolution (loop, rhs1),
1663 at_stmt);
1664 }
1665
1666 return chrec_dont_know;
1667 }
1668
1669 switch (code)
1670 {
1671 case POINTER_PLUS_EXPR:
1672 chrec1 = analyze_scalar_evolution (loop, rhs1);
1673 chrec2 = analyze_scalar_evolution (loop, rhs2);
1674 chrec1 = chrec_convert (type, chrec1, at_stmt);
1675 chrec2 = chrec_convert (sizetype, chrec2, at_stmt);
1676 res = chrec_fold_plus (type, chrec1, chrec2);
1677 break;
1678
1679 case PLUS_EXPR:
1680 chrec1 = analyze_scalar_evolution (loop, rhs1);
1681 chrec2 = analyze_scalar_evolution (loop, rhs2);
1682 chrec1 = chrec_convert (type, chrec1, at_stmt);
1683 chrec2 = chrec_convert (type, chrec2, at_stmt);
1684 res = chrec_fold_plus (type, chrec1, chrec2);
1685 break;
1686
1687 case MINUS_EXPR:
1688 chrec1 = analyze_scalar_evolution (loop, rhs1);
1689 chrec2 = analyze_scalar_evolution (loop, rhs2);
1690 chrec1 = chrec_convert (type, chrec1, at_stmt);
1691 chrec2 = chrec_convert (type, chrec2, at_stmt);
1692 res = chrec_fold_minus (type, chrec1, chrec2);
1693 break;
1694
1695 case NEGATE_EXPR:
1696 chrec1 = analyze_scalar_evolution (loop, rhs1);
1697 chrec1 = chrec_convert (type, chrec1, at_stmt);
1698 /* TYPE may be integer, real or complex, so use fold_convert. */
1699 res = chrec_fold_multiply (type, chrec1,
1700 fold_convert (type, integer_minus_one_node));
1701 break;
1702
1703 case MULT_EXPR:
1704 chrec1 = analyze_scalar_evolution (loop, rhs1);
1705 chrec2 = analyze_scalar_evolution (loop, rhs2);
1706 chrec1 = chrec_convert (type, chrec1, at_stmt);
1707 chrec2 = chrec_convert (type, chrec2, at_stmt);
1708 res = chrec_fold_multiply (type, chrec1, chrec2);
1709 break;
1710
1711 CASE_CONVERT:
1712 chrec1 = analyze_scalar_evolution (loop, rhs1);
1713 res = chrec_convert (type, chrec1, at_stmt);
1714 break;
1715
1716 default:
1717 res = chrec_dont_know;
1718 break;
1719 }
1720
1721 return res;
1722 }
1723
1724 /* Interpret the expression EXPR. */
1725
1726 static tree
1727 interpret_expr (struct loop *loop, gimple at_stmt, tree expr)
1728 {
1729 enum tree_code code;
1730 tree type = TREE_TYPE (expr), op0, op1;
1731
1732 if (automatically_generated_chrec_p (expr))
1733 return expr;
1734
1735 if (TREE_CODE (expr) == POLYNOMIAL_CHREC)
1736 return chrec_dont_know;
1737
1738 extract_ops_from_tree (expr, &code, &op0, &op1);
1739
1740 return interpret_rhs_expr (loop, at_stmt, type,
1741 op0, code, op1);
1742 }
1743
1744 /* Interpret the rhs of the assignment STMT. */
1745
1746 static tree
1747 interpret_gimple_assign (struct loop *loop, gimple stmt)
1748 {
1749 tree type = TREE_TYPE (gimple_assign_lhs (stmt));
1750 enum tree_code code = gimple_assign_rhs_code (stmt);
1751
1752 return interpret_rhs_expr (loop, stmt, type,
1753 gimple_assign_rhs1 (stmt), code,
1754 gimple_assign_rhs2 (stmt));
1755 }
1756
1757 \f
1758
1759 /* This section contains all the entry points:
1760 - number_of_iterations_in_loop,
1761 - analyze_scalar_evolution,
1762 - instantiate_parameters.
1763 */
1764
1765 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1766 common ancestor of DEF_LOOP and USE_LOOP. */
1767
1768 static tree
1769 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1770 struct loop *def_loop,
1771 tree ev)
1772 {
1773 tree res;
1774 if (def_loop == wrto_loop)
1775 return ev;
1776
1777 def_loop = superloop_at_depth (def_loop, loop_depth (wrto_loop) + 1);
1778 res = compute_overall_effect_of_inner_loop (def_loop, ev);
1779
1780 return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1781 }
1782
1783 /* Helper recursive function. */
1784
1785 static tree
1786 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1787 {
1788 tree type = TREE_TYPE (var);
1789 gimple def;
1790 basic_block bb;
1791 struct loop *def_loop;
1792
1793 if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1794 return chrec_dont_know;
1795
1796 if (TREE_CODE (var) != SSA_NAME)
1797 return interpret_expr (loop, NULL, var);
1798
1799 def = SSA_NAME_DEF_STMT (var);
1800 bb = gimple_bb (def);
1801 def_loop = bb ? bb->loop_father : NULL;
1802
1803 if (bb == NULL
1804 || !flow_bb_inside_loop_p (loop, bb))
1805 {
1806 /* Keep the symbolic form. */
1807 res = var;
1808 goto set_and_end;
1809 }
1810
1811 if (res != chrec_not_analyzed_yet)
1812 {
1813 if (loop != bb->loop_father)
1814 res = compute_scalar_evolution_in_loop
1815 (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1816
1817 goto set_and_end;
1818 }
1819
1820 if (loop != def_loop)
1821 {
1822 res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1823 res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1824
1825 goto set_and_end;
1826 }
1827
1828 switch (gimple_code (def))
1829 {
1830 case GIMPLE_ASSIGN:
1831 res = interpret_gimple_assign (loop, def);
1832 break;
1833
1834 case GIMPLE_PHI:
1835 if (loop_phi_node_p (def))
1836 res = interpret_loop_phi (loop, def);
1837 else
1838 res = interpret_condition_phi (loop, def);
1839 break;
1840
1841 default:
1842 res = chrec_dont_know;
1843 break;
1844 }
1845
1846 set_and_end:
1847
1848 /* Keep the symbolic form. */
1849 if (res == chrec_dont_know)
1850 res = var;
1851
1852 if (loop == def_loop)
1853 set_scalar_evolution (block_before_loop (loop), var, res);
1854
1855 return res;
1856 }
1857
1858 /* Entry point for the scalar evolution analyzer.
1859 Analyzes and returns the scalar evolution of the ssa_name VAR.
1860 LOOP_NB is the identifier number of the loop in which the variable
1861 is used.
1862
1863 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1864 pointer to the statement that uses this variable, in order to
1865 determine the evolution function of the variable, use the following
1866 calls:
1867
1868 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1869 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1870 tree chrec_instantiated = instantiate_parameters (loop, chrec_with_symbols);
1871 */
1872
1873 tree
1874 analyze_scalar_evolution (struct loop *loop, tree var)
1875 {
1876 tree res;
1877
1878 if (dump_file && (dump_flags & TDF_DETAILS))
1879 {
1880 fprintf (dump_file, "(analyze_scalar_evolution \n");
1881 fprintf (dump_file, " (loop_nb = %d)\n", loop->num);
1882 fprintf (dump_file, " (scalar = ");
1883 print_generic_expr (dump_file, var, 0);
1884 fprintf (dump_file, ")\n");
1885 }
1886
1887 res = get_scalar_evolution (block_before_loop (loop), var);
1888 res = analyze_scalar_evolution_1 (loop, var, res);
1889
1890 if (dump_file && (dump_flags & TDF_DETAILS))
1891 fprintf (dump_file, ")\n");
1892
1893 return res;
1894 }
1895
1896 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
1897 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
1898 of VERSION).
1899
1900 FOLDED_CASTS is set to true if resolve_mixers used
1901 chrec_convert_aggressive (TODO -- not really, we are way too conservative
1902 at the moment in order to keep things simple). */
1903
1904 static tree
1905 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
1906 tree version, bool *folded_casts)
1907 {
1908 bool val = false;
1909 tree ev = version, tmp;
1910
1911 if (folded_casts)
1912 *folded_casts = false;
1913 while (1)
1914 {
1915 tmp = analyze_scalar_evolution (use_loop, ev);
1916 ev = resolve_mixers (use_loop, tmp);
1917
1918 if (folded_casts && tmp != ev)
1919 *folded_casts = true;
1920
1921 if (use_loop == wrto_loop)
1922 return ev;
1923
1924 /* If the value of the use changes in the inner loop, we cannot express
1925 its value in the outer loop (we might try to return interval chrec,
1926 but we do not have a user for it anyway) */
1927 if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
1928 || !val)
1929 return chrec_dont_know;
1930
1931 use_loop = loop_outer (use_loop);
1932 }
1933 }
1934
1935 /* Returns from CACHE the value for VERSION instantiated below
1936 INSTANTIATED_BELOW block. */
1937
1938 static tree
1939 get_instantiated_value (htab_t cache, basic_block instantiated_below,
1940 tree version)
1941 {
1942 struct scev_info_str *info, pattern;
1943
1944 pattern.var = version;
1945 pattern.instantiated_below = instantiated_below;
1946 info = (struct scev_info_str *) htab_find (cache, &pattern);
1947
1948 if (info)
1949 return info->chrec;
1950 else
1951 return NULL_TREE;
1952 }
1953
1954 /* Sets in CACHE the value of VERSION instantiated below basic block
1955 INSTANTIATED_BELOW to VAL. */
1956
1957 static void
1958 set_instantiated_value (htab_t cache, basic_block instantiated_below,
1959 tree version, tree val)
1960 {
1961 struct scev_info_str *info, pattern;
1962 PTR *slot;
1963
1964 pattern.var = version;
1965 slot = htab_find_slot (cache, &pattern, INSERT);
1966
1967 if (!*slot)
1968 *slot = new_scev_info_str (instantiated_below, version);
1969 info = (struct scev_info_str *) *slot;
1970 info->chrec = val;
1971 }
1972
1973 /* Return the closed_loop_phi node for VAR. If there is none, return
1974 NULL_TREE. */
1975
1976 static tree
1977 loop_closed_phi_def (tree var)
1978 {
1979 struct loop *loop;
1980 edge exit;
1981 gimple phi;
1982 gimple_stmt_iterator psi;
1983
1984 if (var == NULL_TREE
1985 || TREE_CODE (var) != SSA_NAME)
1986 return NULL_TREE;
1987
1988 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
1989 exit = single_exit (loop);
1990 if (!exit)
1991 return NULL_TREE;
1992
1993 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); gsi_next (&psi))
1994 {
1995 phi = gsi_stmt (psi);
1996 if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
1997 return PHI_RESULT (phi);
1998 }
1999
2000 return NULL_TREE;
2001 }
2002
2003 /* Analyze all the parameters of the chrec, between INSTANTIATE_BELOW
2004 and EVOLUTION_LOOP, that were left under a symbolic form.
2005
2006 CHREC is the scalar evolution to instantiate.
2007
2008 CACHE is the cache of already instantiated values.
2009
2010 FOLD_CONVERSIONS should be set to true when the conversions that
2011 may wrap in signed/pointer type are folded, as long as the value of
2012 the chrec is preserved.
2013
2014 SIZE_EXPR is used for computing the size of the expression to be
2015 instantiated, and to stop if it exceeds some limit. */
2016
2017 static tree
2018 instantiate_scev_1 (basic_block instantiate_below,
2019 struct loop *evolution_loop, tree chrec,
2020 bool fold_conversions, htab_t cache, int size_expr)
2021 {
2022 tree res, op0, op1, op2;
2023 basic_block def_bb;
2024 struct loop *def_loop;
2025 tree type = chrec_type (chrec);
2026
2027 /* Give up if the expression is larger than the MAX that we allow. */
2028 if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2029 return chrec_dont_know;
2030
2031 if (automatically_generated_chrec_p (chrec)
2032 || is_gimple_min_invariant (chrec))
2033 return chrec;
2034
2035 switch (TREE_CODE (chrec))
2036 {
2037 case SSA_NAME:
2038 def_bb = gimple_bb (SSA_NAME_DEF_STMT (chrec));
2039
2040 /* A parameter (or loop invariant and we do not want to include
2041 evolutions in outer loops), nothing to do. */
2042 if (!def_bb
2043 || loop_depth (def_bb->loop_father) == 0
2044 || dominated_by_p (CDI_DOMINATORS, instantiate_below, def_bb))
2045 return chrec;
2046
2047 /* We cache the value of instantiated variable to avoid exponential
2048 time complexity due to reevaluations. We also store the convenient
2049 value in the cache in order to prevent infinite recursion -- we do
2050 not want to instantiate the SSA_NAME if it is in a mixer
2051 structure. This is used for avoiding the instantiation of
2052 recursively defined functions, such as:
2053
2054 | a_2 -> {0, +, 1, +, a_2}_1 */
2055
2056 res = get_instantiated_value (cache, instantiate_below, chrec);
2057 if (res)
2058 return res;
2059
2060 res = chrec_dont_know;
2061 set_instantiated_value (cache, instantiate_below, chrec, res);
2062
2063 def_loop = find_common_loop (evolution_loop, def_bb->loop_father);
2064
2065 /* If the analysis yields a parametric chrec, instantiate the
2066 result again. */
2067 res = analyze_scalar_evolution (def_loop, chrec);
2068
2069 /* Don't instantiate loop-closed-ssa phi nodes. */
2070 if (TREE_CODE (res) == SSA_NAME
2071 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2072 || (loop_depth (loop_containing_stmt (SSA_NAME_DEF_STMT (res)))
2073 > loop_depth (def_loop))))
2074 {
2075 if (res == chrec)
2076 res = loop_closed_phi_def (chrec);
2077 else
2078 res = chrec;
2079
2080 if (res == NULL_TREE)
2081 res = chrec_dont_know;
2082 }
2083
2084 else if (res != chrec_dont_know)
2085 res = instantiate_scev_1 (instantiate_below, evolution_loop, res,
2086 fold_conversions, cache, size_expr);
2087
2088 /* Store the correct value to the cache. */
2089 set_instantiated_value (cache, instantiate_below, chrec, res);
2090 return res;
2091
2092 case POLYNOMIAL_CHREC:
2093 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2094 CHREC_LEFT (chrec), fold_conversions, cache,
2095 size_expr);
2096 if (op0 == chrec_dont_know)
2097 return chrec_dont_know;
2098
2099 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2100 CHREC_RIGHT (chrec), fold_conversions, cache,
2101 size_expr);
2102 if (op1 == chrec_dont_know)
2103 return chrec_dont_know;
2104
2105 if (CHREC_LEFT (chrec) != op0
2106 || CHREC_RIGHT (chrec) != op1)
2107 {
2108 op1 = chrec_convert_rhs (chrec_type (op0), op1, NULL);
2109 chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2110 }
2111 return chrec;
2112
2113 case POINTER_PLUS_EXPR:
2114 case PLUS_EXPR:
2115 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2116 TREE_OPERAND (chrec, 0), fold_conversions, cache,
2117 size_expr);
2118 if (op0 == chrec_dont_know)
2119 return chrec_dont_know;
2120
2121 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2122 TREE_OPERAND (chrec, 1), fold_conversions, cache,
2123 size_expr);
2124 if (op1 == chrec_dont_know)
2125 return chrec_dont_know;
2126
2127 if (TREE_OPERAND (chrec, 0) != op0
2128 || TREE_OPERAND (chrec, 1) != op1)
2129 {
2130 op0 = chrec_convert (type, op0, NULL);
2131 op1 = chrec_convert_rhs (type, op1, NULL);
2132 chrec = chrec_fold_plus (type, op0, op1);
2133 }
2134 return chrec;
2135
2136 case MINUS_EXPR:
2137 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2138 TREE_OPERAND (chrec, 0), fold_conversions, cache,
2139 size_expr);
2140 if (op0 == chrec_dont_know)
2141 return chrec_dont_know;
2142
2143 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2144 TREE_OPERAND (chrec, 1),
2145 fold_conversions, cache, size_expr);
2146 if (op1 == chrec_dont_know)
2147 return chrec_dont_know;
2148
2149 if (TREE_OPERAND (chrec, 0) != op0
2150 || TREE_OPERAND (chrec, 1) != op1)
2151 {
2152 op0 = chrec_convert (type, op0, NULL);
2153 op1 = chrec_convert (type, op1, NULL);
2154 chrec = chrec_fold_minus (type, op0, op1);
2155 }
2156 return chrec;
2157
2158 case MULT_EXPR:
2159 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2160 TREE_OPERAND (chrec, 0),
2161 fold_conversions, cache, size_expr);
2162 if (op0 == chrec_dont_know)
2163 return chrec_dont_know;
2164
2165 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2166 TREE_OPERAND (chrec, 1),
2167 fold_conversions, cache, size_expr);
2168 if (op1 == chrec_dont_know)
2169 return chrec_dont_know;
2170
2171 if (TREE_OPERAND (chrec, 0) != op0
2172 || TREE_OPERAND (chrec, 1) != op1)
2173 {
2174 op0 = chrec_convert (type, op0, NULL);
2175 op1 = chrec_convert (type, op1, NULL);
2176 chrec = chrec_fold_multiply (type, op0, op1);
2177 }
2178 return chrec;
2179
2180 CASE_CONVERT:
2181 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2182 TREE_OPERAND (chrec, 0),
2183 fold_conversions, cache, size_expr);
2184 if (op0 == chrec_dont_know)
2185 return chrec_dont_know;
2186
2187 if (fold_conversions)
2188 {
2189 tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2190 if (tmp)
2191 return tmp;
2192 }
2193
2194 if (op0 == TREE_OPERAND (chrec, 0))
2195 return chrec;
2196
2197 /* If we used chrec_convert_aggressive, we can no longer assume that
2198 signed chrecs do not overflow, as chrec_convert does, so avoid
2199 calling it in that case. */
2200 if (fold_conversions)
2201 return fold_convert (TREE_TYPE (chrec), op0);
2202
2203 return chrec_convert (TREE_TYPE (chrec), op0, NULL);
2204
2205 case SCEV_NOT_KNOWN:
2206 return chrec_dont_know;
2207
2208 case SCEV_KNOWN:
2209 return chrec_known;
2210
2211 default:
2212 break;
2213 }
2214
2215 gcc_assert (!VL_EXP_CLASS_P (chrec));
2216 switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2217 {
2218 case 3:
2219 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2220 TREE_OPERAND (chrec, 0),
2221 fold_conversions, cache, size_expr);
2222 if (op0 == chrec_dont_know)
2223 return chrec_dont_know;
2224
2225 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2226 TREE_OPERAND (chrec, 1),
2227 fold_conversions, cache, size_expr);
2228 if (op1 == chrec_dont_know)
2229 return chrec_dont_know;
2230
2231 op2 = instantiate_scev_1 (instantiate_below, evolution_loop,
2232 TREE_OPERAND (chrec, 2),
2233 fold_conversions, cache, size_expr);
2234 if (op2 == chrec_dont_know)
2235 return chrec_dont_know;
2236
2237 if (op0 == TREE_OPERAND (chrec, 0)
2238 && op1 == TREE_OPERAND (chrec, 1)
2239 && op2 == TREE_OPERAND (chrec, 2))
2240 return chrec;
2241
2242 return fold_build3 (TREE_CODE (chrec),
2243 TREE_TYPE (chrec), op0, op1, op2);
2244
2245 case 2:
2246 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2247 TREE_OPERAND (chrec, 0),
2248 fold_conversions, cache, size_expr);
2249 if (op0 == chrec_dont_know)
2250 return chrec_dont_know;
2251
2252 op1 = instantiate_scev_1 (instantiate_below, evolution_loop,
2253 TREE_OPERAND (chrec, 1),
2254 fold_conversions, cache, size_expr);
2255 if (op1 == chrec_dont_know)
2256 return chrec_dont_know;
2257
2258 if (op0 == TREE_OPERAND (chrec, 0)
2259 && op1 == TREE_OPERAND (chrec, 1))
2260 return chrec;
2261 return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2262
2263 case 1:
2264 op0 = instantiate_scev_1 (instantiate_below, evolution_loop,
2265 TREE_OPERAND (chrec, 0),
2266 fold_conversions, cache, size_expr);
2267 if (op0 == chrec_dont_know)
2268 return chrec_dont_know;
2269 if (op0 == TREE_OPERAND (chrec, 0))
2270 return chrec;
2271 return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2272
2273 case 0:
2274 return chrec;
2275
2276 default:
2277 break;
2278 }
2279
2280 /* Too complicated to handle. */
2281 return chrec_dont_know;
2282 }
2283
2284 /* Analyze all the parameters of the chrec that were left under a
2285 symbolic form. INSTANTIATE_BELOW is the basic block that stops the
2286 recursive instantiation of parameters: a parameter is a variable
2287 that is defined in a basic block that dominates INSTANTIATE_BELOW or
2288 a function parameter. */
2289
2290 tree
2291 instantiate_scev (basic_block instantiate_below, struct loop *evolution_loop,
2292 tree chrec)
2293 {
2294 tree res;
2295 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2296
2297 if (dump_file && (dump_flags & TDF_DETAILS))
2298 {
2299 fprintf (dump_file, "(instantiate_scev \n");
2300 fprintf (dump_file, " (instantiate_below = %d)\n", instantiate_below->index);
2301 fprintf (dump_file, " (evolution_loop = %d)\n", evolution_loop->num);
2302 fprintf (dump_file, " (chrec = ");
2303 print_generic_expr (dump_file, chrec, 0);
2304 fprintf (dump_file, ")\n");
2305 }
2306
2307 res = instantiate_scev_1 (instantiate_below, evolution_loop, chrec, false,
2308 cache, 0);
2309
2310 if (dump_file && (dump_flags & TDF_DETAILS))
2311 {
2312 fprintf (dump_file, " (res = ");
2313 print_generic_expr (dump_file, res, 0);
2314 fprintf (dump_file, "))\n");
2315 }
2316
2317 htab_delete (cache);
2318
2319 return res;
2320 }
2321
2322 /* Similar to instantiate_parameters, but does not introduce the
2323 evolutions in outer loops for LOOP invariants in CHREC, and does not
2324 care about causing overflows, as long as they do not affect value
2325 of an expression. */
2326
2327 tree
2328 resolve_mixers (struct loop *loop, tree chrec)
2329 {
2330 htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2331 tree ret = instantiate_scev_1 (block_before_loop (loop), loop, chrec, true,
2332 cache, 0);
2333 htab_delete (cache);
2334 return ret;
2335 }
2336
2337 /* Entry point for the analysis of the number of iterations pass.
2338 This function tries to safely approximate the number of iterations
2339 the loop will run. When this property is not decidable at compile
2340 time, the result is chrec_dont_know. Otherwise the result is
2341 a scalar or a symbolic parameter.
2342
2343 Example of analysis: suppose that the loop has an exit condition:
2344
2345 "if (b > 49) goto end_loop;"
2346
2347 and that in a previous analysis we have determined that the
2348 variable 'b' has an evolution function:
2349
2350 "EF = {23, +, 5}_2".
2351
2352 When we evaluate the function at the point 5, i.e. the value of the
2353 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2354 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2355 the loop body has been executed 6 times. */
2356
2357 tree
2358 number_of_latch_executions (struct loop *loop)
2359 {
2360 tree res, type;
2361 edge exit;
2362 struct tree_niter_desc niter_desc;
2363
2364 /* Determine whether the number_of_iterations_in_loop has already
2365 been computed. */
2366 res = loop->nb_iterations;
2367 if (res)
2368 return res;
2369 res = chrec_dont_know;
2370
2371 if (dump_file && (dump_flags & TDF_DETAILS))
2372 fprintf (dump_file, "(number_of_iterations_in_loop\n");
2373
2374 exit = single_exit (loop);
2375 if (!exit)
2376 goto end;
2377
2378 if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2379 goto end;
2380
2381 type = TREE_TYPE (niter_desc.niter);
2382 if (integer_nonzerop (niter_desc.may_be_zero))
2383 res = build_int_cst (type, 0);
2384 else if (integer_zerop (niter_desc.may_be_zero))
2385 res = niter_desc.niter;
2386 else
2387 res = chrec_dont_know;
2388
2389 end:
2390 return set_nb_iterations_in_loop (loop, res);
2391 }
2392
2393 /* Returns the number of executions of the exit condition of LOOP,
2394 i.e., the number by one higher than number_of_latch_executions.
2395 Note that unlike number_of_latch_executions, this number does
2396 not necessarily fit in the unsigned variant of the type of
2397 the control variable -- if the number of iterations is a constant,
2398 we return chrec_dont_know if adding one to number_of_latch_executions
2399 overflows; however, in case the number of iterations is symbolic
2400 expression, the caller is responsible for dealing with this
2401 the possible overflow. */
2402
2403 tree
2404 number_of_exit_cond_executions (struct loop *loop)
2405 {
2406 tree ret = number_of_latch_executions (loop);
2407 tree type = chrec_type (ret);
2408
2409 if (chrec_contains_undetermined (ret))
2410 return ret;
2411
2412 ret = chrec_fold_plus (type, ret, build_int_cst (type, 1));
2413 if (TREE_CODE (ret) == INTEGER_CST
2414 && TREE_OVERFLOW (ret))
2415 return chrec_dont_know;
2416
2417 return ret;
2418 }
2419
2420 /* One of the drivers for testing the scalar evolutions analysis.
2421 This function computes the number of iterations for all the loops
2422 from the EXIT_CONDITIONS array. */
2423
2424 static void
2425 number_of_iterations_for_all_loops (VEC(gimple,heap) **exit_conditions)
2426 {
2427 unsigned int i;
2428 unsigned nb_chrec_dont_know_loops = 0;
2429 unsigned nb_static_loops = 0;
2430 gimple cond;
2431
2432 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2433 {
2434 tree res = number_of_latch_executions (loop_containing_stmt (cond));
2435 if (chrec_contains_undetermined (res))
2436 nb_chrec_dont_know_loops++;
2437 else
2438 nb_static_loops++;
2439 }
2440
2441 if (dump_file)
2442 {
2443 fprintf (dump_file, "\n(\n");
2444 fprintf (dump_file, "-----------------------------------------\n");
2445 fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2446 fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2447 fprintf (dump_file, "%d\tnb_total_loops\n", number_of_loops ());
2448 fprintf (dump_file, "-----------------------------------------\n");
2449 fprintf (dump_file, ")\n\n");
2450
2451 print_loops (dump_file, 3);
2452 }
2453 }
2454
2455 \f
2456
2457 /* Counters for the stats. */
2458
2459 struct chrec_stats
2460 {
2461 unsigned nb_chrecs;
2462 unsigned nb_affine;
2463 unsigned nb_affine_multivar;
2464 unsigned nb_higher_poly;
2465 unsigned nb_chrec_dont_know;
2466 unsigned nb_undetermined;
2467 };
2468
2469 /* Reset the counters. */
2470
2471 static inline void
2472 reset_chrecs_counters (struct chrec_stats *stats)
2473 {
2474 stats->nb_chrecs = 0;
2475 stats->nb_affine = 0;
2476 stats->nb_affine_multivar = 0;
2477 stats->nb_higher_poly = 0;
2478 stats->nb_chrec_dont_know = 0;
2479 stats->nb_undetermined = 0;
2480 }
2481
2482 /* Dump the contents of a CHREC_STATS structure. */
2483
2484 static void
2485 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2486 {
2487 fprintf (file, "\n(\n");
2488 fprintf (file, "-----------------------------------------\n");
2489 fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2490 fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2491 fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2492 stats->nb_higher_poly);
2493 fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2494 fprintf (file, "-----------------------------------------\n");
2495 fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2496 fprintf (file, "%d\twith undetermined coefficients\n",
2497 stats->nb_undetermined);
2498 fprintf (file, "-----------------------------------------\n");
2499 fprintf (file, "%d\tchrecs in the scev database\n",
2500 (int) htab_elements (scalar_evolution_info));
2501 fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2502 fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2503 fprintf (file, "-----------------------------------------\n");
2504 fprintf (file, ")\n\n");
2505 }
2506
2507 /* Gather statistics about CHREC. */
2508
2509 static void
2510 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2511 {
2512 if (dump_file && (dump_flags & TDF_STATS))
2513 {
2514 fprintf (dump_file, "(classify_chrec ");
2515 print_generic_expr (dump_file, chrec, 0);
2516 fprintf (dump_file, "\n");
2517 }
2518
2519 stats->nb_chrecs++;
2520
2521 if (chrec == NULL_TREE)
2522 {
2523 stats->nb_undetermined++;
2524 return;
2525 }
2526
2527 switch (TREE_CODE (chrec))
2528 {
2529 case POLYNOMIAL_CHREC:
2530 if (evolution_function_is_affine_p (chrec))
2531 {
2532 if (dump_file && (dump_flags & TDF_STATS))
2533 fprintf (dump_file, " affine_univariate\n");
2534 stats->nb_affine++;
2535 }
2536 else if (evolution_function_is_affine_multivariate_p (chrec, 0))
2537 {
2538 if (dump_file && (dump_flags & TDF_STATS))
2539 fprintf (dump_file, " affine_multivariate\n");
2540 stats->nb_affine_multivar++;
2541 }
2542 else
2543 {
2544 if (dump_file && (dump_flags & TDF_STATS))
2545 fprintf (dump_file, " higher_degree_polynomial\n");
2546 stats->nb_higher_poly++;
2547 }
2548
2549 break;
2550
2551 default:
2552 break;
2553 }
2554
2555 if (chrec_contains_undetermined (chrec))
2556 {
2557 if (dump_file && (dump_flags & TDF_STATS))
2558 fprintf (dump_file, " undetermined\n");
2559 stats->nb_undetermined++;
2560 }
2561
2562 if (dump_file && (dump_flags & TDF_STATS))
2563 fprintf (dump_file, ")\n");
2564 }
2565
2566 /* One of the drivers for testing the scalar evolutions analysis.
2567 This function analyzes the scalar evolution of all the scalars
2568 defined as loop phi nodes in one of the loops from the
2569 EXIT_CONDITIONS array.
2570
2571 TODO Optimization: A loop is in canonical form if it contains only
2572 a single scalar loop phi node. All the other scalars that have an
2573 evolution in the loop are rewritten in function of this single
2574 index. This allows the parallelization of the loop. */
2575
2576 static void
2577 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(gimple,heap) **exit_conditions)
2578 {
2579 unsigned int i;
2580 struct chrec_stats stats;
2581 gimple cond, phi;
2582 gimple_stmt_iterator psi;
2583
2584 reset_chrecs_counters (&stats);
2585
2586 for (i = 0; VEC_iterate (gimple, *exit_conditions, i, cond); i++)
2587 {
2588 struct loop *loop;
2589 basic_block bb;
2590 tree chrec;
2591
2592 loop = loop_containing_stmt (cond);
2593 bb = loop->header;
2594
2595 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2596 {
2597 phi = gsi_stmt (psi);
2598 if (is_gimple_reg (PHI_RESULT (phi)))
2599 {
2600 chrec = instantiate_parameters
2601 (loop,
2602 analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2603
2604 if (dump_file && (dump_flags & TDF_STATS))
2605 gather_chrec_stats (chrec, &stats);
2606 }
2607 }
2608 }
2609
2610 if (dump_file && (dump_flags & TDF_STATS))
2611 dump_chrecs_stats (dump_file, &stats);
2612 }
2613
2614 /* Callback for htab_traverse, gathers information on chrecs in the
2615 hashtable. */
2616
2617 static int
2618 gather_stats_on_scev_database_1 (void **slot, void *stats)
2619 {
2620 struct scev_info_str *entry = (struct scev_info_str *) *slot;
2621
2622 gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2623
2624 return 1;
2625 }
2626
2627 /* Classify the chrecs of the whole database. */
2628
2629 void
2630 gather_stats_on_scev_database (void)
2631 {
2632 struct chrec_stats stats;
2633
2634 if (!dump_file)
2635 return;
2636
2637 reset_chrecs_counters (&stats);
2638
2639 htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2640 &stats);
2641
2642 dump_chrecs_stats (dump_file, &stats);
2643 }
2644
2645 \f
2646
2647 /* Initializer. */
2648
2649 static void
2650 initialize_scalar_evolutions_analyzer (void)
2651 {
2652 /* The elements below are unique. */
2653 if (chrec_dont_know == NULL_TREE)
2654 {
2655 chrec_not_analyzed_yet = NULL_TREE;
2656 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2657 chrec_known = make_node (SCEV_KNOWN);
2658 TREE_TYPE (chrec_dont_know) = void_type_node;
2659 TREE_TYPE (chrec_known) = void_type_node;
2660 }
2661 }
2662
2663 /* Initialize the analysis of scalar evolutions for LOOPS. */
2664
2665 void
2666 scev_initialize (void)
2667 {
2668 loop_iterator li;
2669 struct loop *loop;
2670
2671 scalar_evolution_info = htab_create_alloc (100,
2672 hash_scev_info,
2673 eq_scev_info,
2674 del_scev_info,
2675 ggc_calloc,
2676 ggc_free);
2677
2678 initialize_scalar_evolutions_analyzer ();
2679
2680 FOR_EACH_LOOP (li, loop, 0)
2681 {
2682 loop->nb_iterations = NULL_TREE;
2683 }
2684 }
2685
2686 /* Cleans up the information cached by the scalar evolutions analysis. */
2687
2688 void
2689 scev_reset (void)
2690 {
2691 loop_iterator li;
2692 struct loop *loop;
2693
2694 if (!scalar_evolution_info || !current_loops)
2695 return;
2696
2697 htab_empty (scalar_evolution_info);
2698 FOR_EACH_LOOP (li, loop, 0)
2699 {
2700 loop->nb_iterations = NULL_TREE;
2701 }
2702 }
2703
2704 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2705 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2706 want step to be invariant in LOOP. Otherwise we require it to be an
2707 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2708 overflow (e.g. because it is computed in signed arithmetics). */
2709
2710 bool
2711 simple_iv (struct loop *loop, gimple stmt, tree op, affine_iv *iv,
2712 bool allow_nonconstant_step)
2713 {
2714 basic_block bb = gimple_bb (stmt);
2715 tree type, ev;
2716 bool folded_casts;
2717
2718 iv->base = NULL_TREE;
2719 iv->step = NULL_TREE;
2720 iv->no_overflow = false;
2721
2722 type = TREE_TYPE (op);
2723 if (TREE_CODE (type) != INTEGER_TYPE
2724 && TREE_CODE (type) != POINTER_TYPE)
2725 return false;
2726
2727 ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2728 &folded_casts);
2729 if (chrec_contains_undetermined (ev))
2730 return false;
2731
2732 if (tree_does_not_contain_chrecs (ev)
2733 && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2734 {
2735 iv->base = ev;
2736 iv->step = build_int_cst (TREE_TYPE (ev), 0);
2737 iv->no_overflow = true;
2738 return true;
2739 }
2740
2741 if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2742 || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2743 return false;
2744
2745 iv->step = CHREC_RIGHT (ev);
2746 if (allow_nonconstant_step)
2747 {
2748 if (tree_contains_chrecs (iv->step, NULL)
2749 || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2750 return false;
2751 }
2752 else if (TREE_CODE (iv->step) != INTEGER_CST)
2753 return false;
2754
2755 iv->base = CHREC_LEFT (ev);
2756 if (tree_contains_chrecs (iv->base, NULL)
2757 || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2758 return false;
2759
2760 iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2761
2762 return true;
2763 }
2764
2765 /* Runs the analysis of scalar evolutions. */
2766
2767 void
2768 scev_analysis (void)
2769 {
2770 VEC(gimple,heap) *exit_conditions;
2771
2772 exit_conditions = VEC_alloc (gimple, heap, 37);
2773 select_loops_exit_conditions (&exit_conditions);
2774
2775 if (dump_file && (dump_flags & TDF_STATS))
2776 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2777
2778 number_of_iterations_for_all_loops (&exit_conditions);
2779 VEC_free (gimple, heap, exit_conditions);
2780 }
2781
2782 /* Finalize the scalar evolution analysis. */
2783
2784 void
2785 scev_finalize (void)
2786 {
2787 if (!scalar_evolution_info)
2788 return;
2789 htab_delete (scalar_evolution_info);
2790 scalar_evolution_info = NULL;
2791 }
2792
2793 /* Replace ssa names for that scev can prove they are constant by the
2794 appropriate constants. Also perform final value replacement in loops,
2795 in case the replacement expressions are cheap.
2796
2797 We only consider SSA names defined by phi nodes; rest is left to the
2798 ordinary constant propagation pass. */
2799
2800 unsigned int
2801 scev_const_prop (void)
2802 {
2803 basic_block bb;
2804 tree name, type, ev;
2805 gimple phi, ass;
2806 struct loop *loop, *ex_loop;
2807 bitmap ssa_names_to_remove = NULL;
2808 unsigned i;
2809 loop_iterator li;
2810 gimple_stmt_iterator psi;
2811
2812 if (number_of_loops () <= 1)
2813 return 0;
2814
2815 FOR_EACH_BB (bb)
2816 {
2817 loop = bb->loop_father;
2818
2819 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2820 {
2821 phi = gsi_stmt (psi);
2822 name = PHI_RESULT (phi);
2823
2824 if (!is_gimple_reg (name))
2825 continue;
2826
2827 type = TREE_TYPE (name);
2828
2829 if (!POINTER_TYPE_P (type)
2830 && !INTEGRAL_TYPE_P (type))
2831 continue;
2832
2833 ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2834 if (!is_gimple_min_invariant (ev)
2835 || !may_propagate_copy (name, ev))
2836 continue;
2837
2838 /* Replace the uses of the name. */
2839 if (name != ev)
2840 replace_uses_by (name, ev);
2841
2842 if (!ssa_names_to_remove)
2843 ssa_names_to_remove = BITMAP_ALLOC (NULL);
2844 bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2845 }
2846 }
2847
2848 /* Remove the ssa names that were replaced by constants. We do not
2849 remove them directly in the previous cycle, since this
2850 invalidates scev cache. */
2851 if (ssa_names_to_remove)
2852 {
2853 bitmap_iterator bi;
2854
2855 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2856 {
2857 gimple_stmt_iterator psi;
2858 name = ssa_name (i);
2859 phi = SSA_NAME_DEF_STMT (name);
2860
2861 gcc_assert (gimple_code (phi) == GIMPLE_PHI);
2862 psi = gsi_for_stmt (phi);
2863 remove_phi_node (&psi, true);
2864 }
2865
2866 BITMAP_FREE (ssa_names_to_remove);
2867 scev_reset ();
2868 }
2869
2870 /* Now the regular final value replacement. */
2871 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
2872 {
2873 edge exit;
2874 tree def, rslt, niter;
2875 gimple_stmt_iterator bsi;
2876
2877 /* If we do not know exact number of iterations of the loop, we cannot
2878 replace the final value. */
2879 exit = single_exit (loop);
2880 if (!exit)
2881 continue;
2882
2883 niter = number_of_latch_executions (loop);
2884 /* We used to check here whether the computation of NITER is expensive,
2885 and avoided final value elimination if that is the case. The problem
2886 is that it is hard to evaluate whether the expression is too
2887 expensive, as we do not know what optimization opportunities the
2888 elimination of the final value may reveal. Therefore, we now
2889 eliminate the final values of induction variables unconditionally. */
2890 if (niter == chrec_dont_know)
2891 continue;
2892
2893 /* Ensure that it is possible to insert new statements somewhere. */
2894 if (!single_pred_p (exit->dest))
2895 split_loop_exit_edge (exit);
2896 bsi = gsi_after_labels (exit->dest);
2897
2898 ex_loop = superloop_at_depth (loop,
2899 loop_depth (exit->dest->loop_father) + 1);
2900
2901 for (psi = gsi_start_phis (exit->dest); !gsi_end_p (psi); )
2902 {
2903 phi = gsi_stmt (psi);
2904 rslt = PHI_RESULT (phi);
2905 def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2906 if (!is_gimple_reg (def))
2907 {
2908 gsi_next (&psi);
2909 continue;
2910 }
2911
2912 if (!POINTER_TYPE_P (TREE_TYPE (def))
2913 && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2914 {
2915 gsi_next (&psi);
2916 continue;
2917 }
2918
2919 def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2920 def = compute_overall_effect_of_inner_loop (ex_loop, def);
2921 if (!tree_does_not_contain_chrecs (def)
2922 || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2923 /* Moving the computation from the loop may prolong life range
2924 of some ssa names, which may cause problems if they appear
2925 on abnormal edges. */
2926 || contains_abnormal_ssa_name_p (def))
2927 {
2928 gsi_next (&psi);
2929 continue;
2930 }
2931
2932 /* Eliminate the PHI node and replace it by a computation outside
2933 the loop. */
2934 def = unshare_expr (def);
2935 remove_phi_node (&psi, false);
2936
2937 def = force_gimple_operand_gsi (&bsi, def, false, NULL_TREE,
2938 true, GSI_SAME_STMT);
2939 ass = gimple_build_assign (rslt, def);
2940 gsi_insert_before (&bsi, ass, GSI_SAME_STMT);
2941 }
2942 }
2943 return 0;
2944 }
2945
2946 #include "gt-tree-scalar-evolution.h"