re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6 Contributed by Diego Novillo <dnovillo@redhat.com>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30
31 /* These RTL headers are needed for basic-block.h. */
32 #include "rtl.h"
33 #include "tm_p.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "diagnostic.h"
37 #include "langhooks.h"
38 #include "tree-inline.h"
39 #include "tree-flow.h"
40 #include "gimple.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "timevar.h"
44 #include "flags.h"
45 #include "bitmap.h"
46 #include "obstack.h"
47 #include "target.h"
48 /* expr.h is needed for MOVE_RATIO. */
49 #include "expr.h"
50 #include "params.h"
51
52
53 /* This object of this pass is to replace a non-addressable aggregate with a
54 set of independent variables. Most of the time, all of these variables
55 will be scalars. But a secondary objective is to break up larger
56 aggregates into smaller aggregates. In the process we may find that some
57 bits of the larger aggregate can be deleted as unreferenced.
58
59 This substitution is done globally. More localized substitutions would
60 be the purvey of a load-store motion pass.
61
62 The optimization proceeds in phases:
63
64 (1) Identify variables that have types that are candidates for
65 decomposition.
66
67 (2) Scan the function looking for the ways these variables are used.
68 In particular we're interested in the number of times a variable
69 (or member) is needed as a complete unit, and the number of times
70 a variable (or member) is copied.
71
72 (3) Based on the usage profile, instantiate substitution variables.
73
74 (4) Scan the function making replacements.
75 */
76
77
78 /* True if this is the "early" pass, before inlining. */
79 static bool early_sra;
80
81 /* The set of aggregate variables that are candidates for scalarization. */
82 static bitmap sra_candidates;
83
84 /* Set of scalarizable PARM_DECLs that need copy-in operations at the
85 beginning of the function. */
86 static bitmap needs_copy_in;
87
88 /* Sets of bit pairs that cache type decomposition and instantiation. */
89 static bitmap sra_type_decomp_cache;
90 static bitmap sra_type_inst_cache;
91
92 /* One of these structures is created for each candidate aggregate and
93 each (accessed) member or group of members of such an aggregate. */
94 struct sra_elt
95 {
96 /* A tree of the elements. Used when we want to traverse everything. */
97 struct sra_elt *parent;
98 struct sra_elt *groups;
99 struct sra_elt *children;
100 struct sra_elt *sibling;
101
102 /* If this element is a root, then this is the VAR_DECL. If this is
103 a sub-element, this is some token used to identify the reference.
104 In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
105 of an ARRAY_REF, this is the (constant) index. In the case of an
106 ARRAY_RANGE_REF, this is the (constant) RANGE_EXPR. In the case
107 of a complex number, this is a zero or one. */
108 tree element;
109
110 /* The type of the element. */
111 tree type;
112
113 /* A VAR_DECL, for any sub-element we've decided to replace. */
114 tree replacement;
115
116 /* The number of times the element is referenced as a whole. I.e.
117 given "a.b.c", this would be incremented for C, but not for A or B. */
118 unsigned int n_uses;
119
120 /* The number of times the element is copied to or from another
121 scalarizable element. */
122 unsigned int n_copies;
123
124 /* True if TYPE is scalar. */
125 bool is_scalar;
126
127 /* True if this element is a group of members of its parent. */
128 bool is_group;
129
130 /* True if we saw something about this element that prevents scalarization,
131 such as non-constant indexing. */
132 bool cannot_scalarize;
133
134 /* True if we've decided that structure-to-structure assignment
135 should happen via memcpy and not per-element. */
136 bool use_block_copy;
137
138 /* True if everything under this element has been marked TREE_NO_WARNING. */
139 bool all_no_warning;
140
141 /* A flag for use with/after random access traversals. */
142 bool visited;
143
144 /* True if there is BIT_FIELD_REF on the lhs with a vector. */
145 bool is_vector_lhs;
146
147 /* 1 if the element is a field that is part of a block, 2 if the field
148 is the block itself, 0 if it's neither. */
149 char in_bitfld_block;
150 };
151
152 #define IS_ELEMENT_FOR_GROUP(ELEMENT) (TREE_CODE (ELEMENT) == RANGE_EXPR)
153
154 #define FOR_EACH_ACTUAL_CHILD(CHILD, ELT) \
155 for ((CHILD) = (ELT)->is_group \
156 ? next_child_for_group (NULL, (ELT)) \
157 : (ELT)->children; \
158 (CHILD); \
159 (CHILD) = (ELT)->is_group \
160 ? next_child_for_group ((CHILD), (ELT)) \
161 : (CHILD)->sibling)
162
163 /* Helper function for above macro. Return next child in group. */
164 static struct sra_elt *
165 next_child_for_group (struct sra_elt *child, struct sra_elt *group)
166 {
167 gcc_assert (group->is_group);
168
169 /* Find the next child in the parent. */
170 if (child)
171 child = child->sibling;
172 else
173 child = group->parent->children;
174
175 /* Skip siblings that do not belong to the group. */
176 while (child)
177 {
178 tree g_elt = group->element;
179 if (TREE_CODE (g_elt) == RANGE_EXPR)
180 {
181 if (!tree_int_cst_lt (child->element, TREE_OPERAND (g_elt, 0))
182 && !tree_int_cst_lt (TREE_OPERAND (g_elt, 1), child->element))
183 break;
184 }
185 else
186 gcc_unreachable ();
187
188 child = child->sibling;
189 }
190
191 return child;
192 }
193
194 /* Random access to the child of a parent is performed by hashing.
195 This prevents quadratic behavior, and allows SRA to function
196 reasonably on larger records. */
197 static htab_t sra_map;
198
199 /* All structures are allocated out of the following obstack. */
200 static struct obstack sra_obstack;
201
202 /* Debugging functions. */
203 static void dump_sra_elt_name (FILE *, struct sra_elt *);
204 extern void debug_sra_elt_name (struct sra_elt *);
205
206 /* Forward declarations. */
207 static tree generate_element_ref (struct sra_elt *);
208 static gimple_seq sra_build_assignment (tree dst, tree src);
209 static void mark_all_v_defs_seq (gimple_seq);
210
211 \f
212 /* Return true if DECL is an SRA candidate. */
213
214 static bool
215 is_sra_candidate_decl (tree decl)
216 {
217 return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
218 }
219
220 /* Return true if TYPE is a scalar type. */
221
222 static bool
223 is_sra_scalar_type (tree type)
224 {
225 enum tree_code code = TREE_CODE (type);
226 return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
227 || code == FIXED_POINT_TYPE
228 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
229 || code == POINTER_TYPE || code == OFFSET_TYPE
230 || code == REFERENCE_TYPE);
231 }
232
233 /* Return true if TYPE can be decomposed into a set of independent variables.
234
235 Note that this doesn't imply that all elements of TYPE can be
236 instantiated, just that if we decide to break up the type into
237 separate pieces that it can be done. */
238
239 bool
240 sra_type_can_be_decomposed_p (tree type)
241 {
242 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
243 tree t;
244
245 /* Avoid searching the same type twice. */
246 if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
247 return true;
248 if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
249 return false;
250
251 /* The type must have a definite nonzero size. */
252 if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
253 || integer_zerop (TYPE_SIZE (type)))
254 goto fail;
255
256 /* The type must be a non-union aggregate. */
257 switch (TREE_CODE (type))
258 {
259 case RECORD_TYPE:
260 {
261 bool saw_one_field = false;
262
263 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
264 if (TREE_CODE (t) == FIELD_DECL)
265 {
266 /* Reject incorrectly represented bit fields. */
267 if (DECL_BIT_FIELD (t)
268 && INTEGRAL_TYPE_P (TREE_TYPE (t))
269 && (tree_low_cst (DECL_SIZE (t), 1)
270 != TYPE_PRECISION (TREE_TYPE (t))))
271 goto fail;
272
273 /* And volatile fields. */
274 if (TREE_THIS_VOLATILE (t))
275 goto fail;
276
277 saw_one_field = true;
278 }
279
280 /* Record types must have at least one field. */
281 if (!saw_one_field)
282 goto fail;
283 }
284 break;
285
286 case ARRAY_TYPE:
287 /* Array types must have a fixed lower and upper bound. */
288 t = TYPE_DOMAIN (type);
289 if (t == NULL)
290 goto fail;
291 if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
292 goto fail;
293 if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
294 goto fail;
295 break;
296
297 case COMPLEX_TYPE:
298 break;
299
300 default:
301 goto fail;
302 }
303
304 bitmap_set_bit (sra_type_decomp_cache, cache+0);
305 return true;
306
307 fail:
308 bitmap_set_bit (sra_type_decomp_cache, cache+1);
309 return false;
310 }
311
312 /* Returns true if the TYPE is one of the available va_list types.
313 Otherwise it returns false.
314 Note, that for multiple calling conventions there can be more
315 than just one va_list type present. */
316
317 static bool
318 is_va_list_type (tree type)
319 {
320 tree h;
321
322 if (type == NULL_TREE)
323 return false;
324 h = targetm.canonical_va_list_type (type);
325 if (h == NULL_TREE)
326 return false;
327 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (h))
328 return true;
329 return false;
330 }
331
332 /* Return true if DECL can be decomposed into a set of independent
333 (though not necessarily scalar) variables. */
334
335 static bool
336 decl_can_be_decomposed_p (tree var)
337 {
338 /* Early out for scalars. */
339 if (is_sra_scalar_type (TREE_TYPE (var)))
340 return false;
341
342 /* The variable must not be aliased. */
343 if (!is_gimple_non_addressable (var))
344 {
345 if (dump_file && (dump_flags & TDF_DETAILS))
346 {
347 fprintf (dump_file, "Cannot scalarize variable ");
348 print_generic_expr (dump_file, var, dump_flags);
349 fprintf (dump_file, " because it must live in memory\n");
350 }
351 return false;
352 }
353
354 /* The variable must not be volatile. */
355 if (TREE_THIS_VOLATILE (var))
356 {
357 if (dump_file && (dump_flags & TDF_DETAILS))
358 {
359 fprintf (dump_file, "Cannot scalarize variable ");
360 print_generic_expr (dump_file, var, dump_flags);
361 fprintf (dump_file, " because it is declared volatile\n");
362 }
363 return false;
364 }
365
366 /* We must be able to decompose the variable's type. */
367 if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
368 {
369 if (dump_file && (dump_flags & TDF_DETAILS))
370 {
371 fprintf (dump_file, "Cannot scalarize variable ");
372 print_generic_expr (dump_file, var, dump_flags);
373 fprintf (dump_file, " because its type cannot be decomposed\n");
374 }
375 return false;
376 }
377
378 /* HACK: if we decompose a va_list_type_node before inlining, then we'll
379 confuse tree-stdarg.c, and we won't be able to figure out which and
380 how many arguments are accessed. This really should be improved in
381 tree-stdarg.c, as the decomposition is truly a win. This could also
382 be fixed if the stdarg pass ran early, but this can't be done until
383 we've aliasing information early too. See PR 30791. */
384 if (early_sra && is_va_list_type (TREE_TYPE (var)))
385 return false;
386
387 return true;
388 }
389
390 /* Return true if TYPE can be *completely* decomposed into scalars. */
391
392 static bool
393 type_can_instantiate_all_elements (tree type)
394 {
395 if (is_sra_scalar_type (type))
396 return true;
397 if (!sra_type_can_be_decomposed_p (type))
398 return false;
399
400 switch (TREE_CODE (type))
401 {
402 case RECORD_TYPE:
403 {
404 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
405 tree f;
406
407 if (bitmap_bit_p (sra_type_inst_cache, cache+0))
408 return true;
409 if (bitmap_bit_p (sra_type_inst_cache, cache+1))
410 return false;
411
412 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
413 if (TREE_CODE (f) == FIELD_DECL)
414 {
415 if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
416 {
417 bitmap_set_bit (sra_type_inst_cache, cache+1);
418 return false;
419 }
420 }
421
422 bitmap_set_bit (sra_type_inst_cache, cache+0);
423 return true;
424 }
425
426 case ARRAY_TYPE:
427 return type_can_instantiate_all_elements (TREE_TYPE (type));
428
429 case COMPLEX_TYPE:
430 return true;
431
432 default:
433 gcc_unreachable ();
434 }
435 }
436
437 /* Test whether ELT or some sub-element cannot be scalarized. */
438
439 static bool
440 can_completely_scalarize_p (struct sra_elt *elt)
441 {
442 struct sra_elt *c;
443
444 if (elt->cannot_scalarize)
445 return false;
446
447 for (c = elt->children; c; c = c->sibling)
448 if (!can_completely_scalarize_p (c))
449 return false;
450
451 for (c = elt->groups; c; c = c->sibling)
452 if (!can_completely_scalarize_p (c))
453 return false;
454
455 return true;
456 }
457
458 \f
459 /* A simplified tree hashing algorithm that only handles the types of
460 trees we expect to find in sra_elt->element. */
461
462 static hashval_t
463 sra_hash_tree (tree t)
464 {
465 hashval_t h;
466
467 switch (TREE_CODE (t))
468 {
469 case VAR_DECL:
470 case PARM_DECL:
471 case RESULT_DECL:
472 h = DECL_UID (t);
473 break;
474
475 case INTEGER_CST:
476 h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
477 break;
478
479 case RANGE_EXPR:
480 h = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
481 h = iterative_hash_expr (TREE_OPERAND (t, 1), h);
482 break;
483
484 case FIELD_DECL:
485 /* We can have types that are compatible, but have different member
486 lists, so we can't hash fields by ID. Use offsets instead. */
487 h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
488 h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
489 break;
490
491 case BIT_FIELD_REF:
492 /* Don't take operand 0 into account, that's our parent. */
493 h = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
494 h = iterative_hash_expr (TREE_OPERAND (t, 2), h);
495 break;
496
497 default:
498 gcc_unreachable ();
499 }
500
501 return h;
502 }
503
504 /* Hash function for type SRA_PAIR. */
505
506 static hashval_t
507 sra_elt_hash (const void *x)
508 {
509 const struct sra_elt *const e = (const struct sra_elt *) x;
510 const struct sra_elt *p;
511 hashval_t h;
512
513 h = sra_hash_tree (e->element);
514
515 /* Take into account everything except bitfield blocks back up the
516 chain. Given that chain lengths are rarely very long, this
517 should be acceptable. If we truly identify this as a performance
518 problem, it should work to hash the pointer value
519 "e->parent". */
520 for (p = e->parent; p ; p = p->parent)
521 if (!p->in_bitfld_block)
522 h = (h * 65521) ^ sra_hash_tree (p->element);
523
524 return h;
525 }
526
527 /* Equality function for type SRA_PAIR. */
528
529 static int
530 sra_elt_eq (const void *x, const void *y)
531 {
532 const struct sra_elt *const a = (const struct sra_elt *) x;
533 const struct sra_elt *const b = (const struct sra_elt *) y;
534 tree ae, be;
535 const struct sra_elt *ap = a->parent;
536 const struct sra_elt *bp = b->parent;
537
538 if (ap)
539 while (ap->in_bitfld_block)
540 ap = ap->parent;
541 if (bp)
542 while (bp->in_bitfld_block)
543 bp = bp->parent;
544
545 if (ap != bp)
546 return false;
547
548 ae = a->element;
549 be = b->element;
550
551 if (ae == be)
552 return true;
553 if (TREE_CODE (ae) != TREE_CODE (be))
554 return false;
555
556 switch (TREE_CODE (ae))
557 {
558 case VAR_DECL:
559 case PARM_DECL:
560 case RESULT_DECL:
561 /* These are all pointer unique. */
562 return false;
563
564 case INTEGER_CST:
565 /* Integers are not pointer unique, so compare their values. */
566 return tree_int_cst_equal (ae, be);
567
568 case RANGE_EXPR:
569 return
570 tree_int_cst_equal (TREE_OPERAND (ae, 0), TREE_OPERAND (be, 0))
571 && tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1));
572
573 case FIELD_DECL:
574 /* Fields are unique within a record, but not between
575 compatible records. */
576 if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
577 return false;
578 return fields_compatible_p (ae, be);
579
580 case BIT_FIELD_REF:
581 return
582 tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1))
583 && tree_int_cst_equal (TREE_OPERAND (ae, 2), TREE_OPERAND (be, 2));
584
585 default:
586 gcc_unreachable ();
587 }
588 }
589
590 /* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
591 may be null, in which case CHILD must be a DECL. */
592
593 static struct sra_elt *
594 lookup_element (struct sra_elt *parent, tree child, tree type,
595 enum insert_option insert)
596 {
597 struct sra_elt dummy;
598 struct sra_elt **slot;
599 struct sra_elt *elt;
600
601 if (parent)
602 dummy.parent = parent->is_group ? parent->parent : parent;
603 else
604 dummy.parent = NULL;
605 dummy.element = child;
606
607 slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
608 if (!slot && insert == NO_INSERT)
609 return NULL;
610
611 elt = *slot;
612 if (!elt && insert == INSERT)
613 {
614 *slot = elt = XOBNEW (&sra_obstack, struct sra_elt);
615 memset (elt, 0, sizeof (*elt));
616
617 elt->parent = parent;
618 elt->element = child;
619 elt->type = type;
620 elt->is_scalar = is_sra_scalar_type (type);
621
622 if (parent)
623 {
624 if (IS_ELEMENT_FOR_GROUP (elt->element))
625 {
626 elt->is_group = true;
627 elt->sibling = parent->groups;
628 parent->groups = elt;
629 }
630 else
631 {
632 elt->sibling = parent->children;
633 parent->children = elt;
634 }
635 }
636
637 /* If this is a parameter, then if we want to scalarize, we have
638 one copy from the true function parameter. Count it now. */
639 if (TREE_CODE (child) == PARM_DECL)
640 {
641 elt->n_copies = 1;
642 bitmap_set_bit (needs_copy_in, DECL_UID (child));
643 }
644 }
645
646 return elt;
647 }
648
649 /* Create or return the SRA_ELT structure for EXPR if the expression
650 refers to a scalarizable variable. */
651
652 static struct sra_elt *
653 maybe_lookup_element_for_expr (tree expr)
654 {
655 struct sra_elt *elt;
656 tree child;
657
658 switch (TREE_CODE (expr))
659 {
660 case VAR_DECL:
661 case PARM_DECL:
662 case RESULT_DECL:
663 if (is_sra_candidate_decl (expr))
664 return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
665 return NULL;
666
667 case ARRAY_REF:
668 /* We can't scalarize variable array indices. */
669 if (in_array_bounds_p (expr))
670 child = TREE_OPERAND (expr, 1);
671 else
672 return NULL;
673 break;
674
675 case ARRAY_RANGE_REF:
676 /* We can't scalarize variable array indices. */
677 if (range_in_array_bounds_p (expr))
678 {
679 tree domain = TYPE_DOMAIN (TREE_TYPE (expr));
680 child = build2 (RANGE_EXPR, integer_type_node,
681 TYPE_MIN_VALUE (domain), TYPE_MAX_VALUE (domain));
682 }
683 else
684 return NULL;
685 break;
686
687 case COMPONENT_REF:
688 {
689 tree type = TREE_TYPE (TREE_OPERAND (expr, 0));
690 /* Don't look through unions. */
691 if (TREE_CODE (type) != RECORD_TYPE)
692 return NULL;
693 /* Neither through variable-sized records. */
694 if (TYPE_SIZE (type) == NULL_TREE
695 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
696 return NULL;
697 child = TREE_OPERAND (expr, 1);
698 }
699 break;
700
701 case REALPART_EXPR:
702 child = integer_zero_node;
703 break;
704 case IMAGPART_EXPR:
705 child = integer_one_node;
706 break;
707
708 default:
709 return NULL;
710 }
711
712 elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
713 if (elt)
714 return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
715 return NULL;
716 }
717
718 \f
719 /* Functions to walk just enough of the tree to see all scalarizable
720 references, and categorize them. */
721
722 /* A set of callbacks for phases 2 and 4. They'll be invoked for the
723 various kinds of references seen. In all cases, *GSI is an iterator
724 pointing to the statement being processed. */
725 struct sra_walk_fns
726 {
727 /* Invoked when ELT is required as a unit. Note that ELT might refer to
728 a leaf node, in which case this is a simple scalar reference. *EXPR_P
729 points to the location of the expression. IS_OUTPUT is true if this
730 is a left-hand-side reference. USE_ALL is true if we saw something we
731 couldn't quite identify and had to force the use of the entire object. */
732 void (*use) (struct sra_elt *elt, tree *expr_p,
733 gimple_stmt_iterator *gsi, bool is_output, bool use_all);
734
735 /* Invoked when we have a copy between two scalarizable references. */
736 void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
737 gimple_stmt_iterator *gsi);
738
739 /* Invoked when ELT is initialized from a constant. VALUE may be NULL,
740 in which case it should be treated as an empty CONSTRUCTOR. */
741 void (*init) (struct sra_elt *elt, tree value, gimple_stmt_iterator *gsi);
742
743 /* Invoked when we have a copy between one scalarizable reference ELT
744 and one non-scalarizable reference OTHER without side-effects.
745 IS_OUTPUT is true if ELT is on the left-hand side. */
746 void (*ldst) (struct sra_elt *elt, tree other,
747 gimple_stmt_iterator *gsi, bool is_output);
748
749 /* True during phase 2, false during phase 4. */
750 /* ??? This is a hack. */
751 bool initial_scan;
752 };
753
754 #ifdef ENABLE_CHECKING
755 /* Invoked via walk_tree, if *TP contains a candidate decl, return it. */
756
757 static tree
758 sra_find_candidate_decl (tree *tp, int *walk_subtrees,
759 void *data ATTRIBUTE_UNUSED)
760 {
761 tree t = *tp;
762 enum tree_code code = TREE_CODE (t);
763
764 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
765 {
766 *walk_subtrees = 0;
767 if (is_sra_candidate_decl (t))
768 return t;
769 }
770 else if (TYPE_P (t))
771 *walk_subtrees = 0;
772
773 return NULL;
774 }
775 #endif
776
777 /* Walk most expressions looking for a scalarizable aggregate.
778 If we find one, invoke FNS->USE. */
779
780 static void
781 sra_walk_expr (tree *expr_p, gimple_stmt_iterator *gsi, bool is_output,
782 const struct sra_walk_fns *fns)
783 {
784 tree expr = *expr_p;
785 tree inner = expr;
786 bool disable_scalarization = false;
787 bool use_all_p = false;
788
789 /* We're looking to collect a reference expression between EXPR and INNER,
790 such that INNER is a scalarizable decl and all other nodes through EXPR
791 are references that we can scalarize. If we come across something that
792 we can't scalarize, we reset EXPR. This has the effect of making it
793 appear that we're referring to the larger expression as a whole. */
794
795 while (1)
796 switch (TREE_CODE (inner))
797 {
798 case VAR_DECL:
799 case PARM_DECL:
800 case RESULT_DECL:
801 /* If there is a scalarizable decl at the bottom, then process it. */
802 if (is_sra_candidate_decl (inner))
803 {
804 struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
805 if (disable_scalarization)
806 elt->cannot_scalarize = true;
807 else
808 fns->use (elt, expr_p, gsi, is_output, use_all_p);
809 }
810 return;
811
812 case ARRAY_REF:
813 /* Non-constant index means any member may be accessed. Prevent the
814 expression from being scalarized. If we were to treat this as a
815 reference to the whole array, we can wind up with a single dynamic
816 index reference inside a loop being overridden by several constant
817 index references during loop setup. It's possible that this could
818 be avoided by using dynamic usage counts based on BB trip counts
819 (based on loop analysis or profiling), but that hardly seems worth
820 the effort. */
821 /* ??? Hack. Figure out how to push this into the scan routines
822 without duplicating too much code. */
823 if (!in_array_bounds_p (inner))
824 {
825 disable_scalarization = true;
826 goto use_all;
827 }
828 /* ??? Are we assured that non-constant bounds and stride will have
829 the same value everywhere? I don't think Fortran will... */
830 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
831 goto use_all;
832 inner = TREE_OPERAND (inner, 0);
833 break;
834
835 case ARRAY_RANGE_REF:
836 if (!range_in_array_bounds_p (inner))
837 {
838 disable_scalarization = true;
839 goto use_all;
840 }
841 /* ??? See above non-constant bounds and stride . */
842 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
843 goto use_all;
844 inner = TREE_OPERAND (inner, 0);
845 break;
846
847 case COMPONENT_REF:
848 {
849 tree type = TREE_TYPE (TREE_OPERAND (inner, 0));
850 /* Don't look through unions. */
851 if (TREE_CODE (type) != RECORD_TYPE)
852 goto use_all;
853 /* Neither through variable-sized records. */
854 if (TYPE_SIZE (type) == NULL_TREE
855 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
856 goto use_all;
857 inner = TREE_OPERAND (inner, 0);
858 }
859 break;
860
861 case REALPART_EXPR:
862 case IMAGPART_EXPR:
863 inner = TREE_OPERAND (inner, 0);
864 break;
865
866 case BIT_FIELD_REF:
867 /* A bit field reference to a specific vector is scalarized but for
868 ones for inputs need to be marked as used on the left hand size so
869 when we scalarize it, we can mark that variable as non renamable. */
870 if (is_output
871 && TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) == VECTOR_TYPE)
872 {
873 struct sra_elt *elt
874 = maybe_lookup_element_for_expr (TREE_OPERAND (inner, 0));
875 if (elt)
876 elt->is_vector_lhs = true;
877 }
878
879 /* A bit field reference (access to *multiple* fields simultaneously)
880 is not currently scalarized. Consider this an access to the full
881 outer element, to which walk_tree will bring us next. */
882 goto use_all;
883
884 CASE_CONVERT:
885 /* Similarly, a nop explicitly wants to look at an object in a
886 type other than the one we've scalarized. */
887 goto use_all;
888
889 case VIEW_CONVERT_EXPR:
890 /* Likewise for a view conversion, but with an additional twist:
891 it can be on the LHS and, in this case, an access to the full
892 outer element would mean a killing def. So we need to punt
893 if we haven't already a full access to the current element,
894 because we cannot pretend to have a killing def if we only
895 have a partial access at some level. */
896 if (is_output && !use_all_p && inner != expr)
897 disable_scalarization = true;
898 goto use_all;
899
900 case WITH_SIZE_EXPR:
901 /* This is a transparent wrapper. The entire inner expression really
902 is being used. */
903 goto use_all;
904
905 use_all:
906 expr_p = &TREE_OPERAND (inner, 0);
907 inner = expr = *expr_p;
908 use_all_p = true;
909 break;
910
911 default:
912 #ifdef ENABLE_CHECKING
913 /* Validate that we're not missing any references. */
914 gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
915 #endif
916 return;
917 }
918 }
919
920 /* Walk the arguments of a GIMPLE_CALL looking for scalarizable aggregates.
921 If we find one, invoke FNS->USE. */
922
923 static void
924 sra_walk_gimple_call (gimple stmt, gimple_stmt_iterator *gsi,
925 const struct sra_walk_fns *fns)
926 {
927 int i;
928 int nargs = gimple_call_num_args (stmt);
929
930 for (i = 0; i < nargs; i++)
931 sra_walk_expr (gimple_call_arg_ptr (stmt, i), gsi, false, fns);
932
933 if (gimple_call_lhs (stmt))
934 sra_walk_expr (gimple_call_lhs_ptr (stmt), gsi, true, fns);
935 }
936
937 /* Walk the inputs and outputs of a GIMPLE_ASM looking for scalarizable
938 aggregates. If we find one, invoke FNS->USE. */
939
940 static void
941 sra_walk_gimple_asm (gimple stmt, gimple_stmt_iterator *gsi,
942 const struct sra_walk_fns *fns)
943 {
944 size_t i;
945 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
946 sra_walk_expr (&TREE_VALUE (gimple_asm_input_op (stmt, i)), gsi, false, fns);
947 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
948 sra_walk_expr (&TREE_VALUE (gimple_asm_output_op (stmt, i)), gsi, true, fns);
949 }
950
951 /* Walk a GIMPLE_ASSIGN and categorize the assignment appropriately. */
952
953 static void
954 sra_walk_gimple_assign (gimple stmt, gimple_stmt_iterator *gsi,
955 const struct sra_walk_fns *fns)
956 {
957 struct sra_elt *lhs_elt = NULL, *rhs_elt = NULL;
958 tree lhs, rhs;
959
960 /* If there is more than 1 element on the RHS, only walk the lhs. */
961 if (!gimple_assign_single_p (stmt))
962 {
963 sra_walk_expr (gimple_assign_lhs_ptr (stmt), gsi, true, fns);
964 return;
965 }
966
967 lhs = gimple_assign_lhs (stmt);
968 rhs = gimple_assign_rhs1 (stmt);
969 lhs_elt = maybe_lookup_element_for_expr (lhs);
970 rhs_elt = maybe_lookup_element_for_expr (rhs);
971
972 /* If both sides are scalarizable, this is a COPY operation. */
973 if (lhs_elt && rhs_elt)
974 {
975 fns->copy (lhs_elt, rhs_elt, gsi);
976 return;
977 }
978
979 /* If the RHS is scalarizable, handle it. There are only two cases. */
980 if (rhs_elt)
981 {
982 if (!rhs_elt->is_scalar && !TREE_SIDE_EFFECTS (lhs))
983 fns->ldst (rhs_elt, lhs, gsi, false);
984 else
985 fns->use (rhs_elt, gimple_assign_rhs1_ptr (stmt), gsi, false, false);
986 }
987
988 /* If it isn't scalarizable, there may be scalarizable variables within, so
989 check for a call or else walk the RHS to see if we need to do any
990 copy-in operations. We need to do it before the LHS is scalarized so
991 that the statements get inserted in the proper place, before any
992 copy-out operations. */
993 else
994 sra_walk_expr (gimple_assign_rhs1_ptr (stmt), gsi, false, fns);
995
996 /* Likewise, handle the LHS being scalarizable. We have cases similar
997 to those above, but also want to handle RHS being constant. */
998 if (lhs_elt)
999 {
1000 /* If this is an assignment from a constant, or constructor, then
1001 we have access to all of the elements individually. Invoke INIT. */
1002 if (TREE_CODE (rhs) == COMPLEX_EXPR
1003 || TREE_CODE (rhs) == COMPLEX_CST
1004 || TREE_CODE (rhs) == CONSTRUCTOR)
1005 fns->init (lhs_elt, rhs, gsi);
1006
1007 /* If this is an assignment from read-only memory, treat this as if
1008 we'd been passed the constructor directly. Invoke INIT. */
1009 else if (TREE_CODE (rhs) == VAR_DECL
1010 && TREE_STATIC (rhs)
1011 && !DECL_EXTERNAL (rhs)
1012 && TREE_READONLY (rhs)
1013 && targetm.binds_local_p (rhs))
1014 fns->init (lhs_elt, DECL_INITIAL (rhs), gsi);
1015
1016 /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
1017 The lvalue requirement prevents us from trying to directly scalarize
1018 the result of a function call. Which would result in trying to call
1019 the function multiple times, and other evil things. */
1020 else if (!lhs_elt->is_scalar
1021 && !TREE_SIDE_EFFECTS (rhs) && is_gimple_addressable (rhs))
1022 fns->ldst (lhs_elt, rhs, gsi, true);
1023
1024 /* Otherwise we're being used in some context that requires the
1025 aggregate to be seen as a whole. Invoke USE. */
1026 else
1027 fns->use (lhs_elt, gimple_assign_lhs_ptr (stmt), gsi, true, false);
1028 }
1029
1030 /* Similarly to above, LHS_ELT being null only means that the LHS as a
1031 whole is not a scalarizable reference. There may be occurrences of
1032 scalarizable variables within, which implies a USE. */
1033 else
1034 sra_walk_expr (gimple_assign_lhs_ptr (stmt), gsi, true, fns);
1035 }
1036
1037 /* Entry point to the walk functions. Search the entire function,
1038 invoking the callbacks in FNS on each of the references to
1039 scalarizable variables. */
1040
1041 static void
1042 sra_walk_function (const struct sra_walk_fns *fns)
1043 {
1044 basic_block bb;
1045 gimple_stmt_iterator si, ni;
1046
1047 /* ??? Phase 4 could derive some benefit to walking the function in
1048 dominator tree order. */
1049
1050 FOR_EACH_BB (bb)
1051 for (si = gsi_start_bb (bb); !gsi_end_p (si); si = ni)
1052 {
1053 gimple stmt;
1054
1055 stmt = gsi_stmt (si);
1056
1057 ni = si;
1058 gsi_next (&ni);
1059
1060 /* If the statement does not reference memory, then it doesn't
1061 make any structure references that we care about. */
1062 if (!gimple_references_memory_p (stmt))
1063 continue;
1064
1065 switch (gimple_code (stmt))
1066 {
1067 case GIMPLE_RETURN:
1068 /* If we have "return <retval>" then the return value is
1069 already exposed for our pleasure. Walk it as a USE to
1070 force all the components back in place for the return.
1071 */
1072 if (gimple_return_retval (stmt) == NULL_TREE)
1073 ;
1074 else
1075 sra_walk_expr (gimple_return_retval_ptr (stmt), &si, false,
1076 fns);
1077 break;
1078
1079 case GIMPLE_ASSIGN:
1080 sra_walk_gimple_assign (stmt, &si, fns);
1081 break;
1082 case GIMPLE_CALL:
1083 sra_walk_gimple_call (stmt, &si, fns);
1084 break;
1085 case GIMPLE_ASM:
1086 sra_walk_gimple_asm (stmt, &si, fns);
1087 break;
1088
1089 default:
1090 break;
1091 }
1092 }
1093 }
1094 \f
1095 /* Phase One: Scan all referenced variables in the program looking for
1096 structures that could be decomposed. */
1097
1098 static bool
1099 find_candidates_for_sra (void)
1100 {
1101 bool any_set = false;
1102 tree var;
1103 referenced_var_iterator rvi;
1104
1105 FOR_EACH_REFERENCED_VAR (var, rvi)
1106 {
1107 if (decl_can_be_decomposed_p (var))
1108 {
1109 bitmap_set_bit (sra_candidates, DECL_UID (var));
1110 any_set = true;
1111 }
1112 }
1113
1114 return any_set;
1115 }
1116
1117 \f
1118 /* Phase Two: Scan all references to scalarizable variables. Count the
1119 number of times they are used or copied respectively. */
1120
1121 /* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
1122 considered a copy, because we can decompose the reference such that
1123 the sub-elements needn't be contiguous. */
1124
1125 static void
1126 scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
1127 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
1128 bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
1129 {
1130 elt->n_uses += 1;
1131 }
1132
1133 static void
1134 scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1135 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED)
1136 {
1137 lhs_elt->n_copies += 1;
1138 rhs_elt->n_copies += 1;
1139 }
1140
1141 static void
1142 scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
1143 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED)
1144 {
1145 lhs_elt->n_copies += 1;
1146 }
1147
1148 static void
1149 scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
1150 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
1151 bool is_output ATTRIBUTE_UNUSED)
1152 {
1153 elt->n_copies += 1;
1154 }
1155
1156 /* Dump the values we collected during the scanning phase. */
1157
1158 static void
1159 scan_dump (struct sra_elt *elt)
1160 {
1161 struct sra_elt *c;
1162
1163 dump_sra_elt_name (dump_file, elt);
1164 fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1165
1166 for (c = elt->children; c ; c = c->sibling)
1167 scan_dump (c);
1168
1169 for (c = elt->groups; c ; c = c->sibling)
1170 scan_dump (c);
1171 }
1172
1173 /* Entry point to phase 2. Scan the entire function, building up
1174 scalarization data structures, recording copies and uses. */
1175
1176 static void
1177 scan_function (void)
1178 {
1179 static const struct sra_walk_fns fns = {
1180 scan_use, scan_copy, scan_init, scan_ldst, true
1181 };
1182 bitmap_iterator bi;
1183
1184 sra_walk_function (&fns);
1185
1186 if (dump_file && (dump_flags & TDF_DETAILS))
1187 {
1188 unsigned i;
1189
1190 fputs ("\nScan results:\n", dump_file);
1191 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1192 {
1193 tree var = referenced_var (i);
1194 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1195 if (elt)
1196 scan_dump (elt);
1197 }
1198 fputc ('\n', dump_file);
1199 }
1200 }
1201 \f
1202 /* Phase Three: Make decisions about which variables to scalarize, if any.
1203 All elements to be scalarized have replacement variables made for them. */
1204
1205 /* A subroutine of build_element_name. Recursively build the element
1206 name on the obstack. */
1207
1208 static void
1209 build_element_name_1 (struct sra_elt *elt)
1210 {
1211 tree t;
1212 char buffer[32];
1213
1214 if (elt->parent)
1215 {
1216 build_element_name_1 (elt->parent);
1217 obstack_1grow (&sra_obstack, '$');
1218
1219 if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1220 {
1221 if (elt->element == integer_zero_node)
1222 obstack_grow (&sra_obstack, "real", 4);
1223 else
1224 obstack_grow (&sra_obstack, "imag", 4);
1225 return;
1226 }
1227 }
1228
1229 t = elt->element;
1230 if (TREE_CODE (t) == INTEGER_CST)
1231 {
1232 /* ??? Eh. Don't bother doing double-wide printing. */
1233 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1234 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1235 }
1236 else if (TREE_CODE (t) == BIT_FIELD_REF)
1237 {
1238 sprintf (buffer, "B" HOST_WIDE_INT_PRINT_DEC,
1239 tree_low_cst (TREE_OPERAND (t, 2), 1));
1240 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1241 sprintf (buffer, "F" HOST_WIDE_INT_PRINT_DEC,
1242 tree_low_cst (TREE_OPERAND (t, 1), 1));
1243 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1244 }
1245 else
1246 {
1247 tree name = DECL_NAME (t);
1248 if (name)
1249 obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1250 IDENTIFIER_LENGTH (name));
1251 else
1252 {
1253 sprintf (buffer, "D%u", DECL_UID (t));
1254 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1255 }
1256 }
1257 }
1258
1259 /* Construct a pretty variable name for an element's replacement variable.
1260 The name is built on the obstack. */
1261
1262 static char *
1263 build_element_name (struct sra_elt *elt)
1264 {
1265 build_element_name_1 (elt);
1266 obstack_1grow (&sra_obstack, '\0');
1267 return XOBFINISH (&sra_obstack, char *);
1268 }
1269
1270 /* Instantiate an element as an independent variable. */
1271
1272 static void
1273 instantiate_element (struct sra_elt *elt)
1274 {
1275 struct sra_elt *base_elt;
1276 tree var, base;
1277 bool nowarn = TREE_NO_WARNING (elt->element);
1278
1279 for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1280 if (!nowarn)
1281 nowarn = TREE_NO_WARNING (base_elt->parent->element);
1282 base = base_elt->element;
1283
1284 elt->replacement = var = make_rename_temp (elt->type, "SR");
1285
1286 if (DECL_P (elt->element)
1287 && !tree_int_cst_equal (DECL_SIZE (var), DECL_SIZE (elt->element)))
1288 {
1289 DECL_SIZE (var) = DECL_SIZE (elt->element);
1290 DECL_SIZE_UNIT (var) = DECL_SIZE_UNIT (elt->element);
1291
1292 elt->in_bitfld_block = 1;
1293 elt->replacement = fold_build3 (BIT_FIELD_REF, elt->type, var,
1294 DECL_SIZE (var),
1295 BYTES_BIG_ENDIAN
1296 ? size_binop (MINUS_EXPR,
1297 TYPE_SIZE (elt->type),
1298 DECL_SIZE (var))
1299 : bitsize_int (0));
1300 }
1301
1302 /* For vectors, if used on the left hand side with BIT_FIELD_REF,
1303 they are not a gimple register. */
1304 if (TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE && elt->is_vector_lhs)
1305 DECL_GIMPLE_REG_P (var) = 0;
1306
1307 DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1308 DECL_ARTIFICIAL (var) = 1;
1309
1310 if (TREE_THIS_VOLATILE (elt->type))
1311 {
1312 TREE_THIS_VOLATILE (var) = 1;
1313 TREE_SIDE_EFFECTS (var) = 1;
1314 }
1315
1316 if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1317 {
1318 char *pretty_name = build_element_name (elt);
1319 DECL_NAME (var) = get_identifier (pretty_name);
1320 obstack_free (&sra_obstack, pretty_name);
1321
1322 SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
1323 DECL_DEBUG_EXPR_IS_FROM (var) = 1;
1324
1325 DECL_IGNORED_P (var) = 0;
1326 TREE_NO_WARNING (var) = nowarn;
1327 }
1328 else
1329 {
1330 DECL_IGNORED_P (var) = 1;
1331 /* ??? We can't generate any warning that would be meaningful. */
1332 TREE_NO_WARNING (var) = 1;
1333 }
1334
1335 /* Zero-initialize bit-field scalarization variables, to avoid
1336 triggering undefined behavior. */
1337 if (TREE_CODE (elt->element) == BIT_FIELD_REF
1338 || (var != elt->replacement
1339 && TREE_CODE (elt->replacement) == BIT_FIELD_REF))
1340 {
1341 gimple_seq init = sra_build_assignment (var,
1342 fold_convert (TREE_TYPE (var),
1343 integer_zero_node)
1344 );
1345 insert_edge_copies_seq (init, ENTRY_BLOCK_PTR);
1346 mark_all_v_defs_seq (init);
1347 }
1348
1349 if (dump_file)
1350 {
1351 fputs (" ", dump_file);
1352 dump_sra_elt_name (dump_file, elt);
1353 fputs (" -> ", dump_file);
1354 print_generic_expr (dump_file, var, dump_flags);
1355 fputc ('\n', dump_file);
1356 }
1357 }
1358
1359 /* Make one pass across an element tree deciding whether or not it's
1360 profitable to instantiate individual leaf scalars.
1361
1362 PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1363 fields all the way up the tree. */
1364
1365 static void
1366 decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1367 unsigned int parent_copies)
1368 {
1369 if (dump_file && !elt->parent)
1370 {
1371 fputs ("Initial instantiation for ", dump_file);
1372 dump_sra_elt_name (dump_file, elt);
1373 fputc ('\n', dump_file);
1374 }
1375
1376 if (elt->cannot_scalarize)
1377 return;
1378
1379 if (elt->is_scalar)
1380 {
1381 /* The decision is simple: instantiate if we're used more frequently
1382 than the parent needs to be seen as a complete unit. */
1383 if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1384 instantiate_element (elt);
1385 }
1386 else
1387 {
1388 struct sra_elt *c, *group;
1389 unsigned int this_uses = elt->n_uses + parent_uses;
1390 unsigned int this_copies = elt->n_copies + parent_copies;
1391
1392 /* Consider groups of sub-elements as weighing in favour of
1393 instantiation whatever their size. */
1394 for (group = elt->groups; group ; group = group->sibling)
1395 FOR_EACH_ACTUAL_CHILD (c, group)
1396 {
1397 c->n_uses += group->n_uses;
1398 c->n_copies += group->n_copies;
1399 }
1400
1401 for (c = elt->children; c ; c = c->sibling)
1402 decide_instantiation_1 (c, this_uses, this_copies);
1403 }
1404 }
1405
1406 /* Compute the size and number of all instantiated elements below ELT.
1407 We will only care about this if the size of the complete structure
1408 fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
1409
1410 static unsigned int
1411 sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1412 {
1413 if (elt->replacement)
1414 {
1415 *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1416 return 1;
1417 }
1418 else
1419 {
1420 struct sra_elt *c;
1421 unsigned int count = 0;
1422
1423 for (c = elt->children; c ; c = c->sibling)
1424 count += sum_instantiated_sizes (c, sizep);
1425
1426 return count;
1427 }
1428 }
1429
1430 /* Instantiate fields in ELT->TYPE that are not currently present as
1431 children of ELT. */
1432
1433 static void instantiate_missing_elements (struct sra_elt *elt);
1434
1435 static struct sra_elt *
1436 instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1437 {
1438 struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1439 if (sub->is_scalar)
1440 {
1441 if (sub->replacement == NULL)
1442 instantiate_element (sub);
1443 }
1444 else
1445 instantiate_missing_elements (sub);
1446 return sub;
1447 }
1448
1449 /* Obtain the canonical type for field F of ELEMENT. */
1450
1451 static tree
1452 canon_type_for_field (tree f, tree element)
1453 {
1454 tree field_type = TREE_TYPE (f);
1455
1456 /* canonicalize_component_ref() unwidens some bit-field types (not
1457 marked as DECL_BIT_FIELD in C++), so we must do the same, lest we
1458 may introduce type mismatches. */
1459 if (INTEGRAL_TYPE_P (field_type)
1460 && DECL_MODE (f) != TYPE_MODE (field_type))
1461 field_type = TREE_TYPE (get_unwidened (build3 (COMPONENT_REF,
1462 field_type,
1463 element,
1464 f, NULL_TREE),
1465 NULL_TREE));
1466
1467 return field_type;
1468 }
1469
1470 /* Look for adjacent fields of ELT starting at F that we'd like to
1471 scalarize as a single variable. Return the last field of the
1472 group. */
1473
1474 static tree
1475 try_instantiate_multiple_fields (struct sra_elt *elt, tree f)
1476 {
1477 int count;
1478 unsigned HOST_WIDE_INT align, bit, size, alchk;
1479 enum machine_mode mode;
1480 tree first = f, prev;
1481 tree type, var;
1482 struct sra_elt *block;
1483
1484 /* Point fields are typically best handled as standalone entities. */
1485 if (POINTER_TYPE_P (TREE_TYPE (f)))
1486 return f;
1487
1488 if (!is_sra_scalar_type (TREE_TYPE (f))
1489 || !host_integerp (DECL_FIELD_OFFSET (f), 1)
1490 || !host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1491 || !host_integerp (DECL_SIZE (f), 1)
1492 || lookup_element (elt, f, NULL, NO_INSERT))
1493 return f;
1494
1495 block = elt;
1496
1497 /* For complex and array objects, there are going to be integer
1498 literals as child elements. In this case, we can't just take the
1499 alignment and mode of the decl, so we instead rely on the element
1500 type.
1501
1502 ??? We could try to infer additional alignment from the full
1503 object declaration and the location of the sub-elements we're
1504 accessing. */
1505 for (count = 0; !DECL_P (block->element); count++)
1506 block = block->parent;
1507
1508 align = DECL_ALIGN (block->element);
1509 alchk = GET_MODE_BITSIZE (DECL_MODE (block->element));
1510
1511 if (count)
1512 {
1513 type = TREE_TYPE (block->element);
1514 while (count--)
1515 type = TREE_TYPE (type);
1516
1517 align = TYPE_ALIGN (type);
1518 alchk = GET_MODE_BITSIZE (TYPE_MODE (type));
1519 }
1520
1521 if (align < alchk)
1522 align = alchk;
1523
1524 /* Coalescing wider fields is probably pointless and
1525 inefficient. */
1526 if (align > BITS_PER_WORD)
1527 align = BITS_PER_WORD;
1528
1529 bit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1530 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1531 size = tree_low_cst (DECL_SIZE (f), 1);
1532
1533 alchk = align - 1;
1534 alchk = ~alchk;
1535
1536 if ((bit & alchk) != ((bit + size - 1) & alchk))
1537 return f;
1538
1539 /* Find adjacent fields in the same alignment word. */
1540
1541 for (prev = f, f = TREE_CHAIN (f);
1542 f && TREE_CODE (f) == FIELD_DECL
1543 && is_sra_scalar_type (TREE_TYPE (f))
1544 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1545 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1546 && host_integerp (DECL_SIZE (f), 1)
1547 && !lookup_element (elt, f, NULL, NO_INSERT);
1548 prev = f, f = TREE_CHAIN (f))
1549 {
1550 unsigned HOST_WIDE_INT nbit, nsize;
1551
1552 nbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1553 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1554 nsize = tree_low_cst (DECL_SIZE (f), 1);
1555
1556 if (bit + size == nbit)
1557 {
1558 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1559 {
1560 /* If we're at an alignment boundary, don't bother
1561 growing alignment such that we can include this next
1562 field. */
1563 if ((nbit & alchk)
1564 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1565 break;
1566
1567 align = GET_MODE_BITSIZE (DECL_MODE (f));
1568 alchk = align - 1;
1569 alchk = ~alchk;
1570
1571 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1572 break;
1573 }
1574 size += nsize;
1575 }
1576 else if (nbit + nsize == bit)
1577 {
1578 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1579 {
1580 if ((bit & alchk)
1581 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1582 break;
1583
1584 align = GET_MODE_BITSIZE (DECL_MODE (f));
1585 alchk = align - 1;
1586 alchk = ~alchk;
1587
1588 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1589 break;
1590 }
1591 bit = nbit;
1592 size += nsize;
1593 }
1594 else
1595 break;
1596 }
1597
1598 f = prev;
1599
1600 if (f == first)
1601 return f;
1602
1603 gcc_assert ((bit & alchk) == ((bit + size - 1) & alchk));
1604
1605 /* Try to widen the bit range so as to cover padding bits as well. */
1606
1607 if ((bit & ~alchk) || size != align)
1608 {
1609 unsigned HOST_WIDE_INT mbit = bit & alchk;
1610 unsigned HOST_WIDE_INT msize = align;
1611
1612 for (f = TYPE_FIELDS (elt->type);
1613 f; f = TREE_CHAIN (f))
1614 {
1615 unsigned HOST_WIDE_INT fbit, fsize;
1616
1617 /* Skip the fields from first to prev. */
1618 if (f == first)
1619 {
1620 f = prev;
1621 continue;
1622 }
1623
1624 if (!(TREE_CODE (f) == FIELD_DECL
1625 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1626 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)))
1627 continue;
1628
1629 fbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1630 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1631
1632 /* If we're past the selected word, we're fine. */
1633 if ((bit & alchk) < (fbit & alchk))
1634 continue;
1635
1636 if (host_integerp (DECL_SIZE (f), 1))
1637 fsize = tree_low_cst (DECL_SIZE (f), 1);
1638 else
1639 /* Assume a variable-sized field takes up all space till
1640 the end of the word. ??? Endianness issues? */
1641 fsize = align - (fbit & alchk);
1642
1643 if ((fbit & alchk) < (bit & alchk))
1644 {
1645 /* A large field might start at a previous word and
1646 extend into the selected word. Exclude those
1647 bits. ??? Endianness issues? */
1648 HOST_WIDE_INT diff = fbit + fsize - mbit;
1649
1650 if (diff <= 0)
1651 continue;
1652
1653 mbit += diff;
1654 msize -= diff;
1655 }
1656 else
1657 {
1658 /* Non-overlapping, great. */
1659 if (fbit + fsize <= mbit
1660 || mbit + msize <= fbit)
1661 continue;
1662
1663 if (fbit <= mbit)
1664 {
1665 unsigned HOST_WIDE_INT diff = fbit + fsize - mbit;
1666 mbit += diff;
1667 msize -= diff;
1668 }
1669 else if (fbit > mbit)
1670 msize -= (mbit + msize - fbit);
1671 else
1672 gcc_unreachable ();
1673 }
1674 }
1675
1676 bit = mbit;
1677 size = msize;
1678 }
1679
1680 /* Now we know the bit range we're interested in. Find the smallest
1681 machine mode we can use to access it. */
1682
1683 for (mode = smallest_mode_for_size (size, MODE_INT);
1684 ;
1685 mode = GET_MODE_WIDER_MODE (mode))
1686 {
1687 gcc_assert (mode != VOIDmode);
1688
1689 alchk = GET_MODE_PRECISION (mode) - 1;
1690 alchk = ~alchk;
1691
1692 if ((bit & alchk) == ((bit + size - 1) & alchk))
1693 break;
1694 }
1695
1696 gcc_assert (~alchk < align);
1697
1698 /* Create the field group as a single variable. */
1699
1700 /* We used to create a type for the mode above, but size turns
1701 to be out not of mode-size. As we need a matching type
1702 to build a BIT_FIELD_REF, use a nonstandard integer type as
1703 fallback. */
1704 type = lang_hooks.types.type_for_size (size, 1);
1705 if (!type || TYPE_PRECISION (type) != size)
1706 type = build_nonstandard_integer_type (size, 1);
1707 gcc_assert (type);
1708 var = build3 (BIT_FIELD_REF, type, NULL_TREE,
1709 bitsize_int (size), bitsize_int (bit));
1710
1711 block = instantiate_missing_elements_1 (elt, var, type);
1712 gcc_assert (block && block->is_scalar);
1713
1714 var = block->replacement;
1715 block->in_bitfld_block = 2;
1716
1717 /* Add the member fields to the group, such that they access
1718 portions of the group variable. */
1719
1720 for (f = first; f != TREE_CHAIN (prev); f = TREE_CHAIN (f))
1721 {
1722 tree field_type = canon_type_for_field (f, elt->element);
1723 struct sra_elt *fld = lookup_element (block, f, field_type, INSERT);
1724
1725 gcc_assert (fld && fld->is_scalar && !fld->replacement);
1726
1727 fld->replacement = fold_build3 (BIT_FIELD_REF, field_type, var,
1728 bitsize_int (TYPE_PRECISION (field_type)),
1729 bitsize_int
1730 ((TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f))
1731 * BITS_PER_UNIT
1732 + (TREE_INT_CST_LOW
1733 (DECL_FIELD_BIT_OFFSET (f)))
1734 - (TREE_INT_CST_LOW
1735 (TREE_OPERAND (block->element, 2))))
1736 & ~alchk));
1737 fld->in_bitfld_block = 1;
1738 }
1739
1740 return prev;
1741 }
1742
1743 static void
1744 instantiate_missing_elements (struct sra_elt *elt)
1745 {
1746 tree type = elt->type;
1747
1748 switch (TREE_CODE (type))
1749 {
1750 case RECORD_TYPE:
1751 {
1752 tree f;
1753 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1754 if (TREE_CODE (f) == FIELD_DECL)
1755 {
1756 tree last = try_instantiate_multiple_fields (elt, f);
1757
1758 if (last != f)
1759 {
1760 f = last;
1761 continue;
1762 }
1763
1764 instantiate_missing_elements_1 (elt, f,
1765 canon_type_for_field
1766 (f, elt->element));
1767 }
1768 break;
1769 }
1770
1771 case ARRAY_TYPE:
1772 {
1773 tree i, max, subtype;
1774
1775 i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1776 max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1777 subtype = TREE_TYPE (type);
1778
1779 while (1)
1780 {
1781 instantiate_missing_elements_1 (elt, i, subtype);
1782 if (tree_int_cst_equal (i, max))
1783 break;
1784 i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1785 }
1786
1787 break;
1788 }
1789
1790 case COMPLEX_TYPE:
1791 type = TREE_TYPE (type);
1792 instantiate_missing_elements_1 (elt, integer_zero_node, type);
1793 instantiate_missing_elements_1 (elt, integer_one_node, type);
1794 break;
1795
1796 default:
1797 gcc_unreachable ();
1798 }
1799 }
1800
1801 /* Return true if there is only one non aggregate field in the record, TYPE.
1802 Return false otherwise. */
1803
1804 static bool
1805 single_scalar_field_in_record_p (tree type)
1806 {
1807 int num_fields = 0;
1808 tree field;
1809 if (TREE_CODE (type) != RECORD_TYPE)
1810 return false;
1811
1812 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1813 if (TREE_CODE (field) == FIELD_DECL)
1814 {
1815 num_fields++;
1816
1817 if (num_fields == 2)
1818 return false;
1819
1820 if (AGGREGATE_TYPE_P (TREE_TYPE (field)))
1821 return false;
1822 }
1823
1824 return true;
1825 }
1826
1827 /* Make one pass across an element tree deciding whether to perform block
1828 or element copies. If we decide on element copies, instantiate all
1829 elements. Return true if there are any instantiated sub-elements. */
1830
1831 static bool
1832 decide_block_copy (struct sra_elt *elt)
1833 {
1834 struct sra_elt *c;
1835 bool any_inst;
1836
1837 /* We shouldn't be invoked on groups of sub-elements as they must
1838 behave like their parent as far as block copy is concerned. */
1839 gcc_assert (!elt->is_group);
1840
1841 /* If scalarization is disabled, respect it. */
1842 if (elt->cannot_scalarize)
1843 {
1844 elt->use_block_copy = 1;
1845
1846 if (dump_file)
1847 {
1848 fputs ("Scalarization disabled for ", dump_file);
1849 dump_sra_elt_name (dump_file, elt);
1850 fputc ('\n', dump_file);
1851 }
1852
1853 /* Disable scalarization of sub-elements */
1854 for (c = elt->children; c; c = c->sibling)
1855 {
1856 c->cannot_scalarize = 1;
1857 decide_block_copy (c);
1858 }
1859
1860 /* Groups behave like their parent. */
1861 for (c = elt->groups; c; c = c->sibling)
1862 {
1863 c->cannot_scalarize = 1;
1864 c->use_block_copy = 1;
1865 }
1866
1867 return false;
1868 }
1869
1870 /* Don't decide if we've no uses and no groups. */
1871 if (elt->n_uses == 0 && elt->n_copies == 0 && elt->groups == NULL)
1872 ;
1873
1874 else if (!elt->is_scalar)
1875 {
1876 tree size_tree = TYPE_SIZE_UNIT (elt->type);
1877 bool use_block_copy = true;
1878
1879 /* Tradeoffs for COMPLEX types pretty much always make it better
1880 to go ahead and split the components. */
1881 if (TREE_CODE (elt->type) == COMPLEX_TYPE)
1882 use_block_copy = false;
1883
1884 /* Don't bother trying to figure out the rest if the structure is
1885 so large we can't do easy arithmetic. This also forces block
1886 copies for variable sized structures. */
1887 else if (host_integerp (size_tree, 1))
1888 {
1889 unsigned HOST_WIDE_INT full_size, inst_size = 0;
1890 unsigned int max_size, max_count, inst_count, full_count;
1891
1892 /* If the sra-max-structure-size parameter is 0, then the
1893 user has not overridden the parameter and we can choose a
1894 sensible default. */
1895 max_size = SRA_MAX_STRUCTURE_SIZE
1896 ? SRA_MAX_STRUCTURE_SIZE
1897 : MOVE_RATIO (optimize_function_for_speed_p (cfun)) * UNITS_PER_WORD;
1898 max_count = SRA_MAX_STRUCTURE_COUNT
1899 ? SRA_MAX_STRUCTURE_COUNT
1900 : MOVE_RATIO (optimize_function_for_speed_p (cfun));
1901
1902 full_size = tree_low_cst (size_tree, 1);
1903 full_count = count_type_elements (elt->type, false);
1904 inst_count = sum_instantiated_sizes (elt, &inst_size);
1905
1906 /* If there is only one scalar field in the record, don't block copy. */
1907 if (single_scalar_field_in_record_p (elt->type))
1908 use_block_copy = false;
1909
1910 /* ??? What to do here. If there are two fields, and we've only
1911 instantiated one, then instantiating the other is clearly a win.
1912 If there are a large number of fields then the size of the copy
1913 is much more of a factor. */
1914
1915 /* If the structure is small, and we've made copies, go ahead
1916 and instantiate, hoping that the copies will go away. */
1917 if (full_size <= max_size
1918 && (full_count - inst_count) <= max_count
1919 && elt->n_copies > elt->n_uses)
1920 use_block_copy = false;
1921 else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
1922 && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
1923 use_block_copy = false;
1924
1925 /* In order to avoid block copy, we have to be able to instantiate
1926 all elements of the type. See if this is possible. */
1927 if (!use_block_copy
1928 && (!can_completely_scalarize_p (elt)
1929 || !type_can_instantiate_all_elements (elt->type)))
1930 use_block_copy = true;
1931 }
1932
1933 elt->use_block_copy = use_block_copy;
1934
1935 /* Groups behave like their parent. */
1936 for (c = elt->groups; c; c = c->sibling)
1937 c->use_block_copy = use_block_copy;
1938
1939 if (dump_file)
1940 {
1941 fprintf (dump_file, "Using %s for ",
1942 use_block_copy ? "block-copy" : "element-copy");
1943 dump_sra_elt_name (dump_file, elt);
1944 fputc ('\n', dump_file);
1945 }
1946
1947 if (!use_block_copy)
1948 {
1949 instantiate_missing_elements (elt);
1950 return true;
1951 }
1952 }
1953
1954 any_inst = elt->replacement != NULL;
1955
1956 for (c = elt->children; c ; c = c->sibling)
1957 any_inst |= decide_block_copy (c);
1958
1959 return any_inst;
1960 }
1961
1962 /* Entry point to phase 3. Instantiate scalar replacement variables. */
1963
1964 static void
1965 decide_instantiations (void)
1966 {
1967 unsigned int i;
1968 bool cleared_any;
1969 bitmap_head done_head;
1970 bitmap_iterator bi;
1971
1972 /* We cannot clear bits from a bitmap we're iterating over,
1973 so save up all the bits to clear until the end. */
1974 bitmap_initialize (&done_head, &bitmap_default_obstack);
1975 cleared_any = false;
1976
1977 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1978 {
1979 tree var = referenced_var (i);
1980 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1981 if (elt)
1982 {
1983 decide_instantiation_1 (elt, 0, 0);
1984 if (!decide_block_copy (elt))
1985 elt = NULL;
1986 }
1987 if (!elt)
1988 {
1989 bitmap_set_bit (&done_head, i);
1990 cleared_any = true;
1991 }
1992 }
1993
1994 if (cleared_any)
1995 {
1996 bitmap_and_compl_into (sra_candidates, &done_head);
1997 bitmap_and_compl_into (needs_copy_in, &done_head);
1998 }
1999 bitmap_clear (&done_head);
2000
2001 mark_set_for_renaming (sra_candidates);
2002
2003 if (dump_file)
2004 fputc ('\n', dump_file);
2005 }
2006
2007 \f
2008 /* Phase Four: Update the function to match the replacements created. */
2009
2010 /* Mark all the variables in virtual operands in all the statements in
2011 LIST for renaming. */
2012
2013 static void
2014 mark_all_v_defs_seq (gimple_seq seq)
2015 {
2016 gimple_stmt_iterator gsi;
2017
2018 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2019 update_stmt_if_modified (gsi_stmt (gsi));
2020 }
2021
2022 /* Mark every replacement under ELT with TREE_NO_WARNING. */
2023
2024 static void
2025 mark_no_warning (struct sra_elt *elt)
2026 {
2027 if (!elt->all_no_warning)
2028 {
2029 if (elt->replacement)
2030 TREE_NO_WARNING (elt->replacement) = 1;
2031 else
2032 {
2033 struct sra_elt *c;
2034 FOR_EACH_ACTUAL_CHILD (c, elt)
2035 mark_no_warning (c);
2036 }
2037 elt->all_no_warning = true;
2038 }
2039 }
2040
2041 /* Build a single level component reference to ELT rooted at BASE. */
2042
2043 static tree
2044 generate_one_element_ref (struct sra_elt *elt, tree base)
2045 {
2046 switch (TREE_CODE (TREE_TYPE (base)))
2047 {
2048 case RECORD_TYPE:
2049 {
2050 tree field = elt->element;
2051
2052 /* We can't test elt->in_bitfld_block here because, when this is
2053 called from instantiate_element, we haven't set this field
2054 yet. */
2055 if (TREE_CODE (field) == BIT_FIELD_REF)
2056 {
2057 tree ret = unshare_expr (field);
2058 TREE_OPERAND (ret, 0) = base;
2059 return ret;
2060 }
2061
2062 /* Watch out for compatible records with differing field lists. */
2063 if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
2064 field = find_compatible_field (TREE_TYPE (base), field);
2065
2066 return build3 (COMPONENT_REF, elt->type, base, field, NULL);
2067 }
2068
2069 case ARRAY_TYPE:
2070 if (TREE_CODE (elt->element) == RANGE_EXPR)
2071 return build4 (ARRAY_RANGE_REF, elt->type, base,
2072 TREE_OPERAND (elt->element, 0), NULL, NULL);
2073 else
2074 return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
2075
2076 case COMPLEX_TYPE:
2077 if (elt->element == integer_zero_node)
2078 return build1 (REALPART_EXPR, elt->type, base);
2079 else
2080 return build1 (IMAGPART_EXPR, elt->type, base);
2081
2082 default:
2083 gcc_unreachable ();
2084 }
2085 }
2086
2087 /* Build a full component reference to ELT rooted at its native variable. */
2088
2089 static tree
2090 generate_element_ref (struct sra_elt *elt)
2091 {
2092 if (elt->parent)
2093 return generate_one_element_ref (elt, generate_element_ref (elt->parent));
2094 else
2095 return elt->element;
2096 }
2097
2098 /* Return true if BF is a bit-field that we can handle like a scalar. */
2099
2100 static bool
2101 scalar_bitfield_p (tree bf)
2102 {
2103 return (TREE_CODE (bf) == BIT_FIELD_REF
2104 && (is_gimple_reg (TREE_OPERAND (bf, 0))
2105 || (TYPE_MODE (TREE_TYPE (TREE_OPERAND (bf, 0))) != BLKmode
2106 && (!TREE_SIDE_EFFECTS (TREE_OPERAND (bf, 0))
2107 || (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE
2108 (TREE_OPERAND (bf, 0))))
2109 <= BITS_PER_WORD)))));
2110 }
2111
2112 /* Create an assignment statement from SRC to DST. */
2113
2114 static gimple_seq
2115 sra_build_assignment (tree dst, tree src)
2116 {
2117 gimple stmt;
2118 gimple_seq seq = NULL, seq2 = NULL;
2119 /* Turning BIT_FIELD_REFs into bit operations enables other passes
2120 to do a much better job at optimizing the code.
2121 From dst = BIT_FIELD_REF <var, sz, off> we produce
2122
2123 SR.1 = (scalar type) var;
2124 SR.2 = SR.1 >> off;
2125 SR.3 = SR.2 & ((1 << sz) - 1);
2126 ... possible sign extension of SR.3 ...
2127 dst = (destination type) SR.3;
2128 */
2129 if (scalar_bitfield_p (src))
2130 {
2131 tree var, shift, width;
2132 tree utype, stype;
2133 bool unsignedp = (INTEGRAL_TYPE_P (TREE_TYPE (src))
2134 ? TYPE_UNSIGNED (TREE_TYPE (src)) : true);
2135 struct gimplify_ctx gctx;
2136
2137 var = TREE_OPERAND (src, 0);
2138 width = TREE_OPERAND (src, 1);
2139 /* The offset needs to be adjusted to a right shift quantity
2140 depending on the endianness. */
2141 if (BYTES_BIG_ENDIAN)
2142 {
2143 tree tmp = size_binop (PLUS_EXPR, width, TREE_OPERAND (src, 2));
2144 shift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), tmp);
2145 }
2146 else
2147 shift = TREE_OPERAND (src, 2);
2148
2149 /* In weird cases we have non-integral types for the source or
2150 destination object.
2151 ??? For unknown reasons we also want an unsigned scalar type. */
2152 stype = TREE_TYPE (var);
2153 if (!INTEGRAL_TYPE_P (stype))
2154 stype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2155 (TYPE_SIZE (stype)), 1);
2156 else if (!TYPE_UNSIGNED (stype))
2157 stype = unsigned_type_for (stype);
2158
2159 utype = TREE_TYPE (dst);
2160 if (!INTEGRAL_TYPE_P (utype))
2161 utype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2162 (TYPE_SIZE (utype)), 1);
2163 else if (!TYPE_UNSIGNED (utype))
2164 utype = unsigned_type_for (utype);
2165
2166 /* Convert the base var of the BIT_FIELD_REF to the scalar type
2167 we use for computation if we cannot use it directly. */
2168 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2169 var = fold_convert (stype, var);
2170 else
2171 var = fold_build1 (VIEW_CONVERT_EXPR, stype, var);
2172
2173 if (!integer_zerop (shift))
2174 var = fold_build2 (RSHIFT_EXPR, stype, var, shift);
2175
2176 /* If we need a masking operation, produce one. */
2177 if (TREE_INT_CST_LOW (width) == TYPE_PRECISION (stype))
2178 unsignedp = true;
2179 else
2180 {
2181 tree one = build_int_cst_wide (stype, 1, 0);
2182 tree mask = int_const_binop (LSHIFT_EXPR, one, width, 0);
2183 mask = int_const_binop (MINUS_EXPR, mask, one, 0);
2184 var = fold_build2 (BIT_AND_EXPR, stype, var, mask);
2185 }
2186
2187 /* After shifting and masking, convert to the target type. */
2188 var = fold_convert (utype, var);
2189
2190 /* Perform sign extension, if required.
2191 ??? This should never be necessary. */
2192 if (!unsignedp)
2193 {
2194 tree signbit = int_const_binop (LSHIFT_EXPR,
2195 build_int_cst_wide (utype, 1, 0),
2196 size_binop (MINUS_EXPR, width,
2197 bitsize_int (1)), 0);
2198
2199 var = fold_build2 (BIT_XOR_EXPR, utype, var, signbit);
2200 var = fold_build2 (MINUS_EXPR, utype, var, signbit);
2201 }
2202
2203 /* fold_build3 (BIT_FIELD_REF, ...) sometimes returns a cast. */
2204 STRIP_NOPS (dst);
2205
2206 /* Finally, move and convert to the destination. */
2207 if (INTEGRAL_TYPE_P (TREE_TYPE (dst)))
2208 var = fold_convert (TREE_TYPE (dst), var);
2209 else
2210 var = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (dst), var);
2211
2212 push_gimplify_context (&gctx);
2213 gctx.allow_rhs_cond_expr = true;
2214
2215 gimplify_assign (dst, var, &seq);
2216
2217 if (gimple_referenced_vars (cfun))
2218 for (var = gctx.temps; var; var = TREE_CHAIN (var))
2219 {
2220 add_referenced_var (var);
2221 mark_sym_for_renaming (var);
2222 }
2223 pop_gimplify_context (NULL);
2224
2225 return seq;
2226 }
2227
2228 /* fold_build3 (BIT_FIELD_REF, ...) sometimes returns a cast. */
2229 if (CONVERT_EXPR_P (dst))
2230 {
2231 STRIP_NOPS (dst);
2232 src = fold_convert (TREE_TYPE (dst), src);
2233 }
2234 /* It was hoped that we could perform some type sanity checking
2235 here, but since front-ends can emit accesses of fields in types
2236 different from their nominal types and copy structures containing
2237 them as a whole, we'd have to handle such differences here.
2238 Since such accesses under different types require compatibility
2239 anyway, there's little point in making tests and/or adding
2240 conversions to ensure the types of src and dst are the same.
2241 So we just assume type differences at this point are ok.
2242 The only exception we make here are pointer types, which can be different
2243 in e.g. structurally equal, but non-identical RECORD_TYPEs. */
2244 else if (POINTER_TYPE_P (TREE_TYPE (dst))
2245 && !useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (src)))
2246 src = fold_convert (TREE_TYPE (dst), src);
2247
2248 /* ??? Only call the gimplifier if we need to. Otherwise we may
2249 end up substituting with DECL_VALUE_EXPR - see PR37380. */
2250 if (!handled_component_p (src)
2251 && !SSA_VAR_P (src))
2252 {
2253 src = force_gimple_operand (src, &seq2, false, NULL_TREE);
2254 gimple_seq_add_seq (&seq, seq2);
2255 }
2256 stmt = gimple_build_assign (dst, src);
2257 gimple_seq_add_stmt (&seq, stmt);
2258 return seq;
2259 }
2260
2261 /* BIT_FIELD_REFs must not be shared. sra_build_elt_assignment()
2262 takes care of assignments, but we must create copies for uses. */
2263 #define REPLDUP(t) (TREE_CODE (t) != BIT_FIELD_REF ? (t) : unshare_expr (t))
2264
2265 /* Emit an assignment from SRC to DST, but if DST is a scalarizable
2266 BIT_FIELD_REF, turn it into bit operations. */
2267
2268 static gimple_seq
2269 sra_build_bf_assignment (tree dst, tree src)
2270 {
2271 tree var, type, utype, tmp, tmp2, tmp3;
2272 gimple_seq seq;
2273 gimple stmt;
2274 tree cst, cst2, mask;
2275 tree minshift, maxshift;
2276
2277 if (TREE_CODE (dst) != BIT_FIELD_REF)
2278 return sra_build_assignment (dst, src);
2279
2280 var = TREE_OPERAND (dst, 0);
2281
2282 if (!scalar_bitfield_p (dst))
2283 return sra_build_assignment (REPLDUP (dst), src);
2284
2285 seq = NULL;
2286
2287 cst = fold_convert (bitsizetype, TREE_OPERAND (dst, 2));
2288 cst2 = size_binop (PLUS_EXPR,
2289 fold_convert (bitsizetype, TREE_OPERAND (dst, 1)),
2290 cst);
2291
2292 if (BYTES_BIG_ENDIAN)
2293 {
2294 maxshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst);
2295 minshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst2);
2296 }
2297 else
2298 {
2299 maxshift = cst2;
2300 minshift = cst;
2301 }
2302
2303 type = TREE_TYPE (var);
2304 if (!INTEGRAL_TYPE_P (type))
2305 type = lang_hooks.types.type_for_size
2306 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (var))), 1);
2307 if (TYPE_UNSIGNED (type))
2308 utype = type;
2309 else
2310 utype = unsigned_type_for (type);
2311
2312 mask = build_int_cst_wide (utype, 1, 0);
2313 if (TREE_INT_CST_LOW (maxshift) == TYPE_PRECISION (utype))
2314 cst = build_int_cst_wide (utype, 0, 0);
2315 else
2316 cst = int_const_binop (LSHIFT_EXPR, mask, maxshift, true);
2317 if (integer_zerop (minshift))
2318 cst2 = mask;
2319 else
2320 cst2 = int_const_binop (LSHIFT_EXPR, mask, minshift, true);
2321 mask = int_const_binop (MINUS_EXPR, cst, cst2, true);
2322 mask = fold_build1 (BIT_NOT_EXPR, utype, mask);
2323
2324 if (TYPE_MAIN_VARIANT (utype) != TYPE_MAIN_VARIANT (TREE_TYPE (var))
2325 && !integer_zerop (mask))
2326 {
2327 tmp = var;
2328 if (!is_gimple_variable (tmp))
2329 tmp = unshare_expr (var);
2330 else
2331 TREE_NO_WARNING (var) = true;
2332
2333 tmp2 = make_rename_temp (utype, "SR");
2334
2335 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2336 tmp = fold_convert (utype, tmp);
2337 else
2338 tmp = fold_build1 (VIEW_CONVERT_EXPR, utype, tmp);
2339
2340 stmt = gimple_build_assign (tmp2, tmp);
2341 gimple_seq_add_stmt (&seq, stmt);
2342 }
2343 else
2344 tmp2 = var;
2345
2346 if (!integer_zerop (mask))
2347 {
2348 tmp = make_rename_temp (utype, "SR");
2349 stmt = gimple_build_assign (tmp, fold_build2 (BIT_AND_EXPR, utype,
2350 tmp2, mask));
2351 gimple_seq_add_stmt (&seq, stmt);
2352 }
2353 else
2354 tmp = mask;
2355
2356 if (is_gimple_reg (src) && INTEGRAL_TYPE_P (TREE_TYPE (src)))
2357 tmp2 = src;
2358 else if (INTEGRAL_TYPE_P (TREE_TYPE (src)))
2359 {
2360 gimple_seq tmp_seq;
2361 tmp2 = make_rename_temp (TREE_TYPE (src), "SR");
2362 tmp_seq = sra_build_assignment (tmp2, src);
2363 gimple_seq_add_seq (&seq, tmp_seq);
2364 }
2365 else
2366 {
2367 gimple_seq tmp_seq;
2368 tmp2 = make_rename_temp
2369 (lang_hooks.types.type_for_size
2370 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (src))),
2371 1), "SR");
2372 tmp_seq = sra_build_assignment (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
2373 TREE_TYPE (tmp2), src));
2374 gimple_seq_add_seq (&seq, tmp_seq);
2375 }
2376
2377 if (!TYPE_UNSIGNED (TREE_TYPE (tmp2)))
2378 {
2379 gimple_seq tmp_seq;
2380 tree ut = unsigned_type_for (TREE_TYPE (tmp2));
2381 tmp3 = make_rename_temp (ut, "SR");
2382 tmp2 = fold_convert (ut, tmp2);
2383 tmp_seq = sra_build_assignment (tmp3, tmp2);
2384 gimple_seq_add_seq (&seq, tmp_seq);
2385
2386 tmp2 = fold_build1 (BIT_NOT_EXPR, utype, mask);
2387 tmp2 = int_const_binop (RSHIFT_EXPR, tmp2, minshift, true);
2388 tmp2 = fold_convert (ut, tmp2);
2389 tmp2 = fold_build2 (BIT_AND_EXPR, ut, tmp3, tmp2);
2390
2391 if (tmp3 != tmp2)
2392 {
2393 tmp3 = make_rename_temp (ut, "SR");
2394 tmp_seq = sra_build_assignment (tmp3, tmp2);
2395 gimple_seq_add_seq (&seq, tmp_seq);
2396 }
2397
2398 tmp2 = tmp3;
2399 }
2400
2401 if (TYPE_MAIN_VARIANT (TREE_TYPE (tmp2)) != TYPE_MAIN_VARIANT (utype))
2402 {
2403 gimple_seq tmp_seq;
2404 tmp3 = make_rename_temp (utype, "SR");
2405 tmp2 = fold_convert (utype, tmp2);
2406 tmp_seq = sra_build_assignment (tmp3, tmp2);
2407 gimple_seq_add_seq (&seq, tmp_seq);
2408 tmp2 = tmp3;
2409 }
2410
2411 if (!integer_zerop (minshift))
2412 {
2413 tmp3 = make_rename_temp (utype, "SR");
2414 stmt = gimple_build_assign (tmp3, fold_build2 (LSHIFT_EXPR, utype,
2415 tmp2, minshift));
2416 gimple_seq_add_stmt (&seq, stmt);
2417 tmp2 = tmp3;
2418 }
2419
2420 if (utype != TREE_TYPE (var))
2421 tmp3 = make_rename_temp (utype, "SR");
2422 else
2423 tmp3 = var;
2424 stmt = gimple_build_assign (tmp3, fold_build2 (BIT_IOR_EXPR, utype,
2425 tmp, tmp2));
2426 gimple_seq_add_stmt (&seq, stmt);
2427
2428 if (tmp3 != var)
2429 {
2430 if (TREE_TYPE (var) == type)
2431 stmt = gimple_build_assign (var, fold_convert (type, tmp3));
2432 else
2433 stmt = gimple_build_assign (var, fold_build1 (VIEW_CONVERT_EXPR,
2434 TREE_TYPE (var), tmp3));
2435 gimple_seq_add_stmt (&seq, stmt);
2436 }
2437
2438 return seq;
2439 }
2440
2441 /* Expand an assignment of SRC to the scalarized representation of
2442 ELT. If it is a field group, try to widen the assignment to cover
2443 the full variable. */
2444
2445 static gimple_seq
2446 sra_build_elt_assignment (struct sra_elt *elt, tree src)
2447 {
2448 tree dst = elt->replacement;
2449 tree var, tmp, cst, cst2;
2450 gimple stmt;
2451 gimple_seq seq;
2452
2453 if (TREE_CODE (dst) != BIT_FIELD_REF
2454 || !elt->in_bitfld_block)
2455 return sra_build_assignment (REPLDUP (dst), src);
2456
2457 var = TREE_OPERAND (dst, 0);
2458
2459 /* Try to widen the assignment to the entire variable.
2460 We need the source to be a BIT_FIELD_REF as well, such that, for
2461 BIT_FIELD_REF<d,sz,dp> = BIT_FIELD_REF<s,sz,sp>,
2462 by design, conditions are met such that we can turn it into
2463 d = BIT_FIELD_REF<s,dw,sp-dp>. */
2464 if (elt->in_bitfld_block == 2
2465 && TREE_CODE (src) == BIT_FIELD_REF)
2466 {
2467 tmp = src;
2468 cst = TYPE_SIZE (TREE_TYPE (var));
2469 cst2 = size_binop (MINUS_EXPR, TREE_OPERAND (src, 2),
2470 TREE_OPERAND (dst, 2));
2471
2472 src = TREE_OPERAND (src, 0);
2473
2474 /* Avoid full-width bit-fields. */
2475 if (integer_zerop (cst2)
2476 && tree_int_cst_equal (cst, TYPE_SIZE (TREE_TYPE (src))))
2477 {
2478 if (INTEGRAL_TYPE_P (TREE_TYPE (src))
2479 && !TYPE_UNSIGNED (TREE_TYPE (src)))
2480 src = fold_convert (unsigned_type_for (TREE_TYPE (src)), src);
2481
2482 /* If a single conversion won't do, we'll need a statement
2483 list. */
2484 if (TYPE_MAIN_VARIANT (TREE_TYPE (var))
2485 != TYPE_MAIN_VARIANT (TREE_TYPE (src)))
2486 {
2487 gimple_seq tmp_seq;
2488 seq = NULL;
2489
2490 if (!INTEGRAL_TYPE_P (TREE_TYPE (src)))
2491 src = fold_build1 (VIEW_CONVERT_EXPR,
2492 lang_hooks.types.type_for_size
2493 (TREE_INT_CST_LOW
2494 (TYPE_SIZE (TREE_TYPE (src))),
2495 1), src);
2496 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (src)));
2497
2498 tmp = make_rename_temp (TREE_TYPE (src), "SR");
2499 stmt = gimple_build_assign (tmp, src);
2500 gimple_seq_add_stmt (&seq, stmt);
2501
2502 tmp_seq = sra_build_assignment (var,
2503 fold_convert (TREE_TYPE (var),
2504 tmp));
2505 gimple_seq_add_seq (&seq, tmp_seq);
2506
2507 return seq;
2508 }
2509
2510 src = fold_convert (TREE_TYPE (var), src);
2511 }
2512 else
2513 {
2514 src = fold_convert (TREE_TYPE (var), tmp);
2515 }
2516
2517 return sra_build_assignment (var, src);
2518 }
2519
2520 return sra_build_bf_assignment (dst, src);
2521 }
2522
2523 /* Generate a set of assignment statements in *LIST_P to copy all
2524 instantiated elements under ELT to or from the equivalent structure
2525 rooted at EXPR. COPY_OUT controls the direction of the copy, with
2526 true meaning to copy out of EXPR into ELT. */
2527
2528 static void
2529 generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
2530 gimple_seq *seq_p)
2531 {
2532 struct sra_elt *c;
2533 gimple_seq tmp_seq;
2534 tree t;
2535
2536 if (!copy_out && TREE_CODE (expr) == SSA_NAME
2537 && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
2538 {
2539 tree r, i;
2540
2541 c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
2542 r = c->replacement;
2543 c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
2544 i = c->replacement;
2545
2546 t = build2 (COMPLEX_EXPR, elt->type, r, i);
2547 tmp_seq = sra_build_bf_assignment (expr, t);
2548 SSA_NAME_DEF_STMT (expr) = gimple_seq_last_stmt (tmp_seq);
2549 gimple_seq_add_seq (seq_p, tmp_seq);
2550 }
2551 else if (elt->replacement)
2552 {
2553 if (copy_out)
2554 tmp_seq = sra_build_elt_assignment (elt, expr);
2555 else
2556 tmp_seq = sra_build_bf_assignment (expr, REPLDUP (elt->replacement));
2557 gimple_seq_add_seq (seq_p, tmp_seq);
2558 }
2559 else
2560 {
2561 FOR_EACH_ACTUAL_CHILD (c, elt)
2562 {
2563 t = generate_one_element_ref (c, unshare_expr (expr));
2564 generate_copy_inout (c, copy_out, t, seq_p);
2565 }
2566 }
2567 }
2568
2569 /* Generate a set of assignment statements in *LIST_P to copy all instantiated
2570 elements under SRC to their counterparts under DST. There must be a 1-1
2571 correspondence of instantiated elements. */
2572
2573 static void
2574 generate_element_copy (struct sra_elt *dst, struct sra_elt *src, gimple_seq *seq_p)
2575 {
2576 struct sra_elt *dc, *sc;
2577
2578 FOR_EACH_ACTUAL_CHILD (dc, dst)
2579 {
2580 sc = lookup_element (src, dc->element, NULL, NO_INSERT);
2581 if (!sc && dc->in_bitfld_block == 2)
2582 {
2583 struct sra_elt *dcs;
2584
2585 FOR_EACH_ACTUAL_CHILD (dcs, dc)
2586 {
2587 sc = lookup_element (src, dcs->element, NULL, NO_INSERT);
2588 gcc_assert (sc);
2589 generate_element_copy (dcs, sc, seq_p);
2590 }
2591
2592 continue;
2593 }
2594
2595 /* If DST and SRC are structs with the same elements, but do not have
2596 the same TYPE_MAIN_VARIANT, then lookup of DST FIELD_DECL in SRC
2597 will fail. Try harder by finding the corresponding FIELD_DECL
2598 in SRC. */
2599 if (!sc)
2600 {
2601 tree f;
2602
2603 gcc_assert (useless_type_conversion_p (dst->type, src->type));
2604 gcc_assert (TREE_CODE (dc->element) == FIELD_DECL);
2605 for (f = TYPE_FIELDS (src->type); f ; f = TREE_CHAIN (f))
2606 if (simple_cst_equal (DECL_FIELD_OFFSET (f),
2607 DECL_FIELD_OFFSET (dc->element)) > 0
2608 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (f),
2609 DECL_FIELD_BIT_OFFSET (dc->element)) > 0
2610 && simple_cst_equal (DECL_SIZE (f),
2611 DECL_SIZE (dc->element)) > 0
2612 && (useless_type_conversion_p (TREE_TYPE (dc->element),
2613 TREE_TYPE (f))
2614 || (POINTER_TYPE_P (TREE_TYPE (dc->element))
2615 && POINTER_TYPE_P (TREE_TYPE (f)))))
2616 break;
2617 gcc_assert (f != NULL_TREE);
2618 sc = lookup_element (src, f, NULL, NO_INSERT);
2619 }
2620
2621 generate_element_copy (dc, sc, seq_p);
2622 }
2623
2624 if (dst->replacement)
2625 {
2626 gimple_seq tmp_seq;
2627
2628 gcc_assert (src->replacement);
2629
2630 tmp_seq = sra_build_elt_assignment (dst, REPLDUP (src->replacement));
2631 gimple_seq_add_seq (seq_p, tmp_seq);
2632 }
2633 }
2634
2635 /* Generate a set of assignment statements in *LIST_P to zero all instantiated
2636 elements under ELT. In addition, do not assign to elements that have been
2637 marked VISITED but do reset the visited flag; this allows easy coordination
2638 with generate_element_init. */
2639
2640 static void
2641 generate_element_zero (struct sra_elt *elt, gimple_seq *seq_p)
2642 {
2643 struct sra_elt *c;
2644
2645 if (elt->visited)
2646 {
2647 elt->visited = false;
2648 return;
2649 }
2650
2651 if (!elt->in_bitfld_block)
2652 FOR_EACH_ACTUAL_CHILD (c, elt)
2653 generate_element_zero (c, seq_p);
2654
2655 if (elt->replacement)
2656 {
2657 tree t;
2658 gimple_seq tmp_seq;
2659
2660 gcc_assert (elt->is_scalar);
2661 t = fold_convert (elt->type, integer_zero_node);
2662
2663 tmp_seq = sra_build_elt_assignment (elt, t);
2664 gimple_seq_add_seq (seq_p, tmp_seq);
2665 }
2666 }
2667
2668 /* Generate an assignment VAR = INIT, where INIT may need gimplification.
2669 Add the result to *LIST_P. */
2670
2671 static void
2672 generate_one_element_init (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2673 {
2674 gimple_seq tmp_seq = sra_build_elt_assignment (elt, init);
2675 gimple_seq_add_seq (seq_p, tmp_seq);
2676 }
2677
2678 /* Generate a set of assignment statements in *LIST_P to set all instantiated
2679 elements under ELT with the contents of the initializer INIT. In addition,
2680 mark all assigned elements VISITED; this allows easy coordination with
2681 generate_element_zero. Return false if we found a case we couldn't
2682 handle. */
2683
2684 static bool
2685 generate_element_init_1 (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2686 {
2687 bool result = true;
2688 enum tree_code init_code;
2689 struct sra_elt *sub;
2690 tree t;
2691 unsigned HOST_WIDE_INT idx;
2692 tree value, purpose;
2693
2694 /* We can be passed DECL_INITIAL of a static variable. It might have a
2695 conversion, which we strip off here. */
2696 STRIP_USELESS_TYPE_CONVERSION (init);
2697 init_code = TREE_CODE (init);
2698
2699 if (elt->is_scalar)
2700 {
2701 if (elt->replacement)
2702 {
2703 generate_one_element_init (elt, init, seq_p);
2704 elt->visited = true;
2705 }
2706 return result;
2707 }
2708
2709 switch (init_code)
2710 {
2711 case COMPLEX_CST:
2712 case COMPLEX_EXPR:
2713 FOR_EACH_ACTUAL_CHILD (sub, elt)
2714 {
2715 if (sub->element == integer_zero_node)
2716 t = (init_code == COMPLEX_EXPR
2717 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
2718 else
2719 t = (init_code == COMPLEX_EXPR
2720 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
2721 result &= generate_element_init_1 (sub, t, seq_p);
2722 }
2723 break;
2724
2725 case CONSTRUCTOR:
2726 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
2727 {
2728 /* Array constructors are routinely created with NULL indices. */
2729 if (purpose == NULL_TREE)
2730 {
2731 result = false;
2732 break;
2733 }
2734 if (TREE_CODE (purpose) == RANGE_EXPR)
2735 {
2736 tree lower = TREE_OPERAND (purpose, 0);
2737 tree upper = TREE_OPERAND (purpose, 1);
2738
2739 while (1)
2740 {
2741 sub = lookup_element (elt, lower, NULL, NO_INSERT);
2742 if (sub != NULL)
2743 result &= generate_element_init_1 (sub, value, seq_p);
2744 if (tree_int_cst_equal (lower, upper))
2745 break;
2746 lower = int_const_binop (PLUS_EXPR, lower,
2747 integer_one_node, true);
2748 }
2749 }
2750 else
2751 {
2752 sub = lookup_element (elt, purpose, NULL, NO_INSERT);
2753 if (sub != NULL)
2754 result &= generate_element_init_1 (sub, value, seq_p);
2755 }
2756 }
2757 break;
2758
2759 default:
2760 elt->visited = true;
2761 result = false;
2762 }
2763
2764 return result;
2765 }
2766
2767 /* A wrapper function for generate_element_init_1 that handles cleanup after
2768 gimplification. */
2769
2770 static bool
2771 generate_element_init (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2772 {
2773 bool ret;
2774 struct gimplify_ctx gctx;
2775
2776 push_gimplify_context (&gctx);
2777 ret = generate_element_init_1 (elt, init, seq_p);
2778 pop_gimplify_context (NULL);
2779
2780 /* The replacement can expose previously unreferenced variables. */
2781 if (ret && *seq_p)
2782 {
2783 gimple_stmt_iterator i;
2784
2785 for (i = gsi_start (*seq_p); !gsi_end_p (i); gsi_next (&i))
2786 find_new_referenced_vars (gsi_stmt (i));
2787 }
2788
2789 return ret;
2790 }
2791
2792 /* Insert a gimple_seq SEQ on all the outgoing edges out of BB. Note that
2793 if BB has more than one edge, STMT will be replicated for each edge.
2794 Also, abnormal edges will be ignored. */
2795
2796 void
2797 insert_edge_copies_seq (gimple_seq seq, basic_block bb)
2798 {
2799 edge e;
2800 edge_iterator ei;
2801 unsigned n_copies = -1;
2802
2803 FOR_EACH_EDGE (e, ei, bb->succs)
2804 if (!(e->flags & EDGE_ABNORMAL))
2805 n_copies++;
2806
2807 FOR_EACH_EDGE (e, ei, bb->succs)
2808 if (!(e->flags & EDGE_ABNORMAL))
2809 gsi_insert_seq_on_edge (e, n_copies-- > 0 ? gimple_seq_copy (seq) : seq);
2810 }
2811
2812 /* Helper function to insert LIST before GSI, and set up line number info. */
2813
2814 void
2815 sra_insert_before (gimple_stmt_iterator *gsi, gimple_seq seq)
2816 {
2817 gimple stmt = gsi_stmt (*gsi);
2818
2819 if (gimple_has_location (stmt))
2820 annotate_all_with_location (seq, gimple_location (stmt));
2821 gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
2822 }
2823
2824 /* Similarly, but insert after GSI. Handles insertion onto edges as well. */
2825
2826 void
2827 sra_insert_after (gimple_stmt_iterator *gsi, gimple_seq seq)
2828 {
2829 gimple stmt = gsi_stmt (*gsi);
2830
2831 if (gimple_has_location (stmt))
2832 annotate_all_with_location (seq, gimple_location (stmt));
2833
2834 if (stmt_ends_bb_p (stmt))
2835 insert_edge_copies_seq (seq, gsi_bb (*gsi));
2836 else
2837 gsi_insert_seq_after (gsi, seq, GSI_SAME_STMT);
2838 }
2839
2840 /* Similarly, but replace the statement at GSI. */
2841
2842 static void
2843 sra_replace (gimple_stmt_iterator *gsi, gimple_seq seq)
2844 {
2845 sra_insert_before (gsi, seq);
2846 unlink_stmt_vdef (gsi_stmt (*gsi));
2847 gsi_remove (gsi, false);
2848 if (gsi_end_p (*gsi))
2849 *gsi = gsi_last (gsi_seq (*gsi));
2850 else
2851 gsi_prev (gsi);
2852 }
2853
2854 /* Data structure that bitfield_overlaps_p fills in with information
2855 about the element passed in and how much of it overlaps with the
2856 bit-range passed it to. */
2857
2858 struct bitfield_overlap_info
2859 {
2860 /* The bit-length of an element. */
2861 tree field_len;
2862
2863 /* The bit-position of the element in its parent. */
2864 tree field_pos;
2865
2866 /* The number of bits of the element that overlap with the incoming
2867 bit range. */
2868 tree overlap_len;
2869
2870 /* The first bit of the element that overlaps with the incoming bit
2871 range. */
2872 tree overlap_pos;
2873 };
2874
2875 /* Return true if a BIT_FIELD_REF<(FLD->parent), BLEN, BPOS>
2876 expression (referenced as BF below) accesses any of the bits in FLD,
2877 false if it doesn't. If DATA is non-null, its field_len and
2878 field_pos are filled in such that BIT_FIELD_REF<(FLD->parent),
2879 field_len, field_pos> (referenced as BFLD below) represents the
2880 entire field FLD->element, and BIT_FIELD_REF<BFLD, overlap_len,
2881 overlap_pos> represents the portion of the entire field that
2882 overlaps with BF. */
2883
2884 static bool
2885 bitfield_overlaps_p (tree blen, tree bpos, struct sra_elt *fld,
2886 struct bitfield_overlap_info *data)
2887 {
2888 tree flen, fpos;
2889 bool ret;
2890
2891 if (TREE_CODE (fld->element) == FIELD_DECL)
2892 {
2893 flen = fold_convert (bitsizetype, DECL_SIZE (fld->element));
2894 fpos = fold_convert (bitsizetype, DECL_FIELD_OFFSET (fld->element));
2895 fpos = size_binop (MULT_EXPR, fpos, bitsize_int (BITS_PER_UNIT));
2896 fpos = size_binop (PLUS_EXPR, fpos, DECL_FIELD_BIT_OFFSET (fld->element));
2897 }
2898 else if (TREE_CODE (fld->element) == BIT_FIELD_REF)
2899 {
2900 flen = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 1));
2901 fpos = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 2));
2902 }
2903 else if (TREE_CODE (fld->element) == INTEGER_CST)
2904 {
2905 tree domain_type = TYPE_DOMAIN (TREE_TYPE (fld->parent->element));
2906 flen = fold_convert (bitsizetype, TYPE_SIZE (fld->type));
2907 fpos = fold_convert (bitsizetype, fld->element);
2908 if (domain_type && TYPE_MIN_VALUE (domain_type))
2909 fpos = size_binop (MINUS_EXPR, fpos,
2910 fold_convert (bitsizetype,
2911 TYPE_MIN_VALUE (domain_type)));
2912 fpos = size_binop (MULT_EXPR, flen, fpos);
2913 }
2914 else
2915 gcc_unreachable ();
2916
2917 gcc_assert (host_integerp (blen, 1)
2918 && host_integerp (bpos, 1)
2919 && host_integerp (flen, 1)
2920 && host_integerp (fpos, 1));
2921
2922 ret = ((!tree_int_cst_lt (fpos, bpos)
2923 && tree_int_cst_lt (size_binop (MINUS_EXPR, fpos, bpos),
2924 blen))
2925 || (!tree_int_cst_lt (bpos, fpos)
2926 && tree_int_cst_lt (size_binop (MINUS_EXPR, bpos, fpos),
2927 flen)));
2928
2929 if (!ret)
2930 return ret;
2931
2932 if (data)
2933 {
2934 tree bend, fend;
2935
2936 data->field_len = flen;
2937 data->field_pos = fpos;
2938
2939 fend = size_binop (PLUS_EXPR, fpos, flen);
2940 bend = size_binop (PLUS_EXPR, bpos, blen);
2941
2942 if (tree_int_cst_lt (bend, fend))
2943 data->overlap_len = size_binop (MINUS_EXPR, bend, fpos);
2944 else
2945 data->overlap_len = NULL;
2946
2947 if (tree_int_cst_lt (fpos, bpos))
2948 {
2949 data->overlap_pos = size_binop (MINUS_EXPR, bpos, fpos);
2950 data->overlap_len = size_binop (MINUS_EXPR,
2951 data->overlap_len
2952 ? data->overlap_len
2953 : data->field_len,
2954 data->overlap_pos);
2955 }
2956 else
2957 data->overlap_pos = NULL;
2958 }
2959
2960 return ret;
2961 }
2962
2963 /* Add to LISTP a sequence of statements that copies BLEN bits between
2964 VAR and the scalarized elements of ELT, starting a bit VPOS of VAR
2965 and at bit BPOS of ELT. The direction of the copy is given by
2966 TO_VAR. */
2967
2968 static void
2969 sra_explode_bitfield_assignment (tree var, tree vpos, bool to_var,
2970 gimple_seq *seq_p, tree blen, tree bpos,
2971 struct sra_elt *elt)
2972 {
2973 struct sra_elt *fld;
2974 struct bitfield_overlap_info flp;
2975
2976 FOR_EACH_ACTUAL_CHILD (fld, elt)
2977 {
2978 tree flen, fpos;
2979
2980 if (!bitfield_overlaps_p (blen, bpos, fld, &flp))
2981 continue;
2982
2983 flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
2984 fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
2985
2986 if (fld->replacement)
2987 {
2988 tree infld, invar, type;
2989 gimple_seq st;
2990
2991 infld = fld->replacement;
2992
2993 type = unsigned_type_for (TREE_TYPE (infld));
2994 if (TYPE_PRECISION (type) != TREE_INT_CST_LOW (flen))
2995 type = build_nonstandard_integer_type (TREE_INT_CST_LOW (flen), 1);
2996
2997 if (TREE_CODE (infld) == BIT_FIELD_REF)
2998 {
2999 fpos = size_binop (PLUS_EXPR, fpos, TREE_OPERAND (infld, 2));
3000 infld = TREE_OPERAND (infld, 0);
3001 }
3002 else if (BYTES_BIG_ENDIAN && DECL_P (fld->element)
3003 && !tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (infld)),
3004 DECL_SIZE (fld->element)))
3005 {
3006 fpos = size_binop (PLUS_EXPR, fpos,
3007 TYPE_SIZE (TREE_TYPE (infld)));
3008 fpos = size_binop (MINUS_EXPR, fpos,
3009 DECL_SIZE (fld->element));
3010 }
3011
3012 infld = fold_build3 (BIT_FIELD_REF, type, infld, flen, fpos);
3013
3014 invar = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3015 if (flp.overlap_pos)
3016 invar = size_binop (PLUS_EXPR, invar, flp.overlap_pos);
3017 invar = size_binop (PLUS_EXPR, invar, vpos);
3018
3019 invar = fold_build3 (BIT_FIELD_REF, type, var, flen, invar);
3020
3021 if (to_var)
3022 st = sra_build_bf_assignment (invar, infld);
3023 else
3024 st = sra_build_bf_assignment (infld, invar);
3025
3026 gimple_seq_add_seq (seq_p, st);
3027 }
3028 else
3029 {
3030 tree sub = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3031 sub = size_binop (PLUS_EXPR, vpos, sub);
3032 if (flp.overlap_pos)
3033 sub = size_binop (PLUS_EXPR, sub, flp.overlap_pos);
3034
3035 sra_explode_bitfield_assignment (var, sub, to_var, seq_p,
3036 flen, fpos, fld);
3037 }
3038 }
3039 }
3040
3041 /* Add to LISTBEFOREP statements that copy scalarized members of ELT
3042 that overlap with BIT_FIELD_REF<(ELT->element), BLEN, BPOS> back
3043 into the full variable, and to LISTAFTERP, if non-NULL, statements
3044 that copy the (presumably modified) overlapping portions of the
3045 full variable back to the scalarized variables. */
3046
3047 static void
3048 sra_sync_for_bitfield_assignment (gimple_seq *seq_before_p,
3049 gimple_seq *seq_after_p,
3050 tree blen, tree bpos,
3051 struct sra_elt *elt)
3052 {
3053 struct sra_elt *fld;
3054 struct bitfield_overlap_info flp;
3055
3056 FOR_EACH_ACTUAL_CHILD (fld, elt)
3057 if (bitfield_overlaps_p (blen, bpos, fld, &flp))
3058 {
3059 if (fld->replacement || (!flp.overlap_len && !flp.overlap_pos))
3060 {
3061 generate_copy_inout (fld, false, generate_element_ref (fld),
3062 seq_before_p);
3063 mark_no_warning (fld);
3064 if (seq_after_p)
3065 generate_copy_inout (fld, true, generate_element_ref (fld),
3066 seq_after_p);
3067 }
3068 else
3069 {
3070 tree flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3071 tree fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3072
3073 sra_sync_for_bitfield_assignment (seq_before_p, seq_after_p,
3074 flen, fpos, fld);
3075 }
3076 }
3077 }
3078
3079 /* Scalarize a USE. To recap, this is either a simple reference to ELT,
3080 if elt is scalar, or some occurrence of ELT that requires a complete
3081 aggregate. IS_OUTPUT is true if ELT is being modified. */
3082
3083 static void
3084 scalarize_use (struct sra_elt *elt, tree *expr_p, gimple_stmt_iterator *gsi,
3085 bool is_output, bool use_all)
3086 {
3087 gimple stmt = gsi_stmt (*gsi);
3088 tree bfexpr;
3089
3090 if (elt->replacement)
3091 {
3092 tree replacement = elt->replacement;
3093
3094 /* If we have a replacement, then updating the reference is as
3095 simple as modifying the existing statement in place. */
3096 if (is_output
3097 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3098 && is_gimple_reg (TREE_OPERAND (elt->replacement, 0))
3099 && is_gimple_assign (stmt)
3100 && gimple_assign_lhs_ptr (stmt) == expr_p)
3101 {
3102 gimple_seq newseq;
3103 /* RHS must be a single operand. */
3104 gcc_assert (gimple_assign_single_p (stmt));
3105 newseq = sra_build_elt_assignment (elt, gimple_assign_rhs1 (stmt));
3106 sra_replace (gsi, newseq);
3107 return;
3108 }
3109 else if (!is_output
3110 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3111 && is_gimple_assign (stmt)
3112 && gimple_assign_rhs1_ptr (stmt) == expr_p)
3113 {
3114 tree tmp = make_rename_temp
3115 (TREE_TYPE (gimple_assign_lhs (stmt)), "SR");
3116 gimple_seq newseq = sra_build_assignment (tmp, REPLDUP (elt->replacement));
3117
3118 sra_insert_before (gsi, newseq);
3119 replacement = tmp;
3120 }
3121 if (is_output)
3122 update_stmt_if_modified (stmt);
3123 *expr_p = REPLDUP (replacement);
3124 update_stmt (stmt);
3125 }
3126 else if (use_all && is_output
3127 && is_gimple_assign (stmt)
3128 && TREE_CODE (bfexpr
3129 = gimple_assign_lhs (stmt)) == BIT_FIELD_REF
3130 && &TREE_OPERAND (bfexpr, 0) == expr_p
3131 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3132 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3133 {
3134 gimple_seq seq_before = NULL;
3135 gimple_seq seq_after = NULL;
3136 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3137 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3138 bool update = false;
3139
3140 if (!elt->use_block_copy)
3141 {
3142 tree type = TREE_TYPE (bfexpr);
3143 tree var = make_rename_temp (type, "SR"), tmp, vpos;
3144 gimple st;
3145
3146 gimple_assign_set_lhs (stmt, var);
3147 update = true;
3148
3149 if (!TYPE_UNSIGNED (type))
3150 {
3151 type = unsigned_type_for (type);
3152 tmp = make_rename_temp (type, "SR");
3153 st = gimple_build_assign (tmp, fold_convert (type, var));
3154 gimple_seq_add_stmt (&seq_after, st);
3155 var = tmp;
3156 }
3157
3158 /* If VAR is wider than BLEN bits, it is padded at the
3159 most-significant end. We want to set VPOS such that
3160 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3161 least-significant BLEN bits of VAR. */
3162 if (BYTES_BIG_ENDIAN)
3163 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3164 else
3165 vpos = bitsize_int (0);
3166 sra_explode_bitfield_assignment
3167 (var, vpos, false, &seq_after, blen, bpos, elt);
3168 }
3169 else
3170 sra_sync_for_bitfield_assignment
3171 (&seq_before, &seq_after, blen, bpos, elt);
3172
3173 if (seq_before)
3174 {
3175 mark_all_v_defs_seq (seq_before);
3176 sra_insert_before (gsi, seq_before);
3177 }
3178 if (seq_after)
3179 {
3180 mark_all_v_defs_seq (seq_after);
3181 sra_insert_after (gsi, seq_after);
3182 }
3183
3184 if (update)
3185 update_stmt (stmt);
3186 }
3187 else if (use_all && !is_output
3188 && is_gimple_assign (stmt)
3189 && TREE_CODE (bfexpr
3190 = gimple_assign_rhs1 (stmt)) == BIT_FIELD_REF
3191 && &TREE_OPERAND (gimple_assign_rhs1 (stmt), 0) == expr_p
3192 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3193 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3194 {
3195 gimple_seq seq = NULL;
3196 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3197 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3198 bool update = false;
3199
3200 if (!elt->use_block_copy)
3201 {
3202 tree type = TREE_TYPE (bfexpr);
3203 tree var = make_rename_temp (type, "SR"), tmp, vpos;
3204 gimple st = NULL;
3205
3206 gimple_assign_set_rhs1 (stmt, var);
3207 update = true;
3208
3209 if (!TYPE_UNSIGNED (type))
3210 {
3211 type = unsigned_type_for (type);
3212 tmp = make_rename_temp (type, "SR");
3213 st = gimple_build_assign (var,
3214 fold_convert (TREE_TYPE (var), tmp));
3215 var = tmp;
3216 }
3217
3218 gimple_seq_add_stmt (&seq,
3219 gimple_build_assign
3220 (var, build_int_cst_wide (type, 0, 0)));
3221
3222 /* If VAR is wider than BLEN bits, it is padded at the
3223 most-significant end. We want to set VPOS such that
3224 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3225 least-significant BLEN bits of VAR. */
3226 if (BYTES_BIG_ENDIAN)
3227 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3228 else
3229 vpos = bitsize_int (0);
3230 sra_explode_bitfield_assignment
3231 (var, vpos, true, &seq, blen, bpos, elt);
3232
3233 if (st)
3234 gimple_seq_add_stmt (&seq, st);
3235 }
3236 else
3237 sra_sync_for_bitfield_assignment
3238 (&seq, NULL, blen, bpos, elt);
3239
3240 if (seq)
3241 {
3242 mark_all_v_defs_seq (seq);
3243 sra_insert_before (gsi, seq);
3244 }
3245
3246 if (update)
3247 update_stmt (stmt);
3248 }
3249 else
3250 {
3251 gimple_seq seq = NULL;
3252
3253 /* Otherwise we need some copies. If ELT is being read, then we
3254 want to store all (modified) sub-elements back into the
3255 structure before the reference takes place. If ELT is being
3256 written, then we want to load the changed values back into
3257 our shadow variables. */
3258 /* ??? We don't check modified for reads, we just always write all of
3259 the values. We should be able to record the SSA number of the VOP
3260 for which the values were last read. If that number matches the
3261 SSA number of the VOP in the current statement, then we needn't
3262 emit an assignment. This would also eliminate double writes when
3263 a structure is passed as more than one argument to a function call.
3264 This optimization would be most effective if sra_walk_function
3265 processed the blocks in dominator order. */
3266
3267 generate_copy_inout (elt, is_output, generate_element_ref (elt), &seq);
3268 if (seq == NULL)
3269 return;
3270 mark_all_v_defs_seq (seq);
3271 if (is_output)
3272 sra_insert_after (gsi, seq);
3273 else
3274 {
3275 sra_insert_before (gsi, seq);
3276 if (use_all)
3277 mark_no_warning (elt);
3278 }
3279 }
3280 }
3281
3282 /* Scalarize a COPY. To recap, this is an assignment statement between
3283 two scalarizable references, LHS_ELT and RHS_ELT. */
3284
3285 static void
3286 scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
3287 gimple_stmt_iterator *gsi)
3288 {
3289 gimple_seq seq;
3290 gimple stmt;
3291
3292 if (lhs_elt->replacement && rhs_elt->replacement)
3293 {
3294 /* If we have two scalar operands, modify the existing statement. */
3295 stmt = gsi_stmt (*gsi);
3296
3297 /* See the commentary in sra_walk_function concerning
3298 RETURN_EXPR, and why we should never see one here. */
3299 gcc_assert (is_gimple_assign (stmt));
3300 gcc_assert (gimple_assign_copy_p (stmt));
3301
3302
3303 gimple_assign_set_lhs (stmt, lhs_elt->replacement);
3304 gimple_assign_set_rhs1 (stmt, REPLDUP (rhs_elt->replacement));
3305 update_stmt (stmt);
3306 }
3307 else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
3308 {
3309 /* If either side requires a block copy, then sync the RHS back
3310 to the original structure, leave the original assignment
3311 statement (which will perform the block copy), then load the
3312 LHS values out of its now-updated original structure. */
3313 /* ??? Could perform a modified pair-wise element copy. That
3314 would at least allow those elements that are instantiated in
3315 both structures to be optimized well. */
3316
3317 seq = NULL;
3318 generate_copy_inout (rhs_elt, false,
3319 generate_element_ref (rhs_elt), &seq);
3320 if (seq)
3321 {
3322 mark_all_v_defs_seq (seq);
3323 sra_insert_before (gsi, seq);
3324 }
3325
3326 seq = NULL;
3327 generate_copy_inout (lhs_elt, true,
3328 generate_element_ref (lhs_elt), &seq);
3329 if (seq)
3330 {
3331 mark_all_v_defs_seq (seq);
3332 sra_insert_after (gsi, seq);
3333 }
3334 }
3335 else
3336 {
3337 /* Otherwise both sides must be fully instantiated. In which
3338 case perform pair-wise element assignments and replace the
3339 original block copy statement. */
3340
3341 stmt = gsi_stmt (*gsi);
3342 update_stmt_if_modified (stmt);
3343
3344 seq = NULL;
3345 generate_element_copy (lhs_elt, rhs_elt, &seq);
3346 gcc_assert (seq);
3347 mark_all_v_defs_seq (seq);
3348 sra_replace (gsi, seq);
3349 }
3350 }
3351
3352 /* Scalarize an INIT. To recap, this is an assignment to a scalarizable
3353 reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
3354 COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
3355 CONSTRUCTOR. */
3356
3357 static void
3358 scalarize_init (struct sra_elt *lhs_elt, tree rhs, gimple_stmt_iterator *gsi)
3359 {
3360 bool result = true;
3361 gimple_seq seq = NULL, init_seq = NULL;
3362
3363 /* Generate initialization statements for all members extant in the RHS. */
3364 if (rhs)
3365 {
3366 /* Unshare the expression just in case this is from a decl's initial. */
3367 rhs = unshare_expr (rhs);
3368 result = generate_element_init (lhs_elt, rhs, &init_seq);
3369 }
3370
3371 if (!result)
3372 {
3373 /* If we failed to convert the entire initializer, then we must
3374 leave the structure assignment in place and must load values
3375 from the structure into the slots for which we did not find
3376 constants. The easiest way to do this is to generate a complete
3377 copy-out, and then follow that with the constant assignments
3378 that we were able to build. DCE will clean things up. */
3379 gimple_seq seq0 = NULL;
3380 generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
3381 &seq0);
3382 gimple_seq_add_seq (&seq0, seq);
3383 seq = seq0;
3384 }
3385 else
3386 {
3387 /* CONSTRUCTOR is defined such that any member not mentioned is assigned
3388 a zero value. Initialize the rest of the instantiated elements. */
3389 generate_element_zero (lhs_elt, &seq);
3390 gimple_seq_add_seq (&seq, init_seq);
3391 }
3392
3393 if (lhs_elt->use_block_copy || !result)
3394 {
3395 /* Since LHS is not fully instantiated, we must leave the structure
3396 assignment in place. Treating this case differently from a USE
3397 exposes constants to later optimizations. */
3398 if (seq)
3399 {
3400 mark_all_v_defs_seq (seq);
3401 sra_insert_after (gsi, seq);
3402 }
3403 }
3404 else
3405 {
3406 /* The LHS is fully instantiated. The list of initializations
3407 replaces the original structure assignment. */
3408 gcc_assert (seq);
3409 update_stmt_if_modified (gsi_stmt (*gsi));
3410 mark_all_v_defs_seq (seq);
3411 sra_replace (gsi, seq);
3412 }
3413 }
3414
3415 /* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
3416 on all INDIRECT_REFs. */
3417
3418 static tree
3419 mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3420 {
3421 tree t = *tp;
3422
3423 if (TREE_CODE (t) == INDIRECT_REF)
3424 {
3425 TREE_THIS_NOTRAP (t) = 1;
3426 *walk_subtrees = 0;
3427 }
3428 else if (IS_TYPE_OR_DECL_P (t))
3429 *walk_subtrees = 0;
3430
3431 return NULL;
3432 }
3433
3434 /* Scalarize a LDST. To recap, this is an assignment between one scalarizable
3435 reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
3436 if ELT is on the left-hand side. */
3437
3438 static void
3439 scalarize_ldst (struct sra_elt *elt, tree other,
3440 gimple_stmt_iterator *gsi, bool is_output)
3441 {
3442 /* Shouldn't have gotten called for a scalar. */
3443 gcc_assert (!elt->replacement);
3444
3445 if (elt->use_block_copy)
3446 {
3447 /* Since ELT is not fully instantiated, we have to leave the
3448 block copy in place. Treat this as a USE. */
3449 scalarize_use (elt, NULL, gsi, is_output, false);
3450 }
3451 else
3452 {
3453 /* The interesting case is when ELT is fully instantiated. In this
3454 case we can have each element stored/loaded directly to/from the
3455 corresponding slot in OTHER. This avoids a block copy. */
3456
3457 gimple_seq seq = NULL;
3458 gimple stmt = gsi_stmt (*gsi);
3459
3460 update_stmt_if_modified (stmt);
3461 generate_copy_inout (elt, is_output, other, &seq);
3462 gcc_assert (seq);
3463 mark_all_v_defs_seq (seq);
3464
3465 /* Preserve EH semantics. */
3466 if (stmt_ends_bb_p (stmt))
3467 {
3468 gimple_stmt_iterator si;
3469 gimple first;
3470 gimple_seq blist = NULL;
3471 bool thr = stmt_could_throw_p (stmt);
3472
3473 /* If the last statement of this BB created an EH edge
3474 before scalarization, we have to locate the first
3475 statement that can throw in the new statement list and
3476 use that as the last statement of this BB, such that EH
3477 semantics is preserved. All statements up to this one
3478 are added to the same BB. All other statements in the
3479 list will be added to normal outgoing edges of the same
3480 BB. If they access any memory, it's the same memory, so
3481 we can assume they won't throw. */
3482 si = gsi_start (seq);
3483 for (first = gsi_stmt (si);
3484 thr && !gsi_end_p (si) && !stmt_could_throw_p (first);
3485 first = gsi_stmt (si))
3486 {
3487 gsi_remove (&si, false);
3488 gimple_seq_add_stmt (&blist, first);
3489 }
3490
3491 /* Extract the first remaining statement from LIST, this is
3492 the EH statement if there is one. */
3493 gsi_remove (&si, false);
3494
3495 if (blist)
3496 sra_insert_before (gsi, blist);
3497
3498 /* Replace the old statement with this new representative. */
3499 gsi_replace (gsi, first, true);
3500
3501 if (!gsi_end_p (si))
3502 {
3503 /* If any reference would trap, then they all would. And more
3504 to the point, the first would. Therefore none of the rest
3505 will trap since the first didn't. Indicate this by
3506 iterating over the remaining statements and set
3507 TREE_THIS_NOTRAP in all INDIRECT_REFs. */
3508 do
3509 {
3510 walk_gimple_stmt (&si, NULL, mark_notrap, NULL);
3511 gsi_next (&si);
3512 }
3513 while (!gsi_end_p (si));
3514
3515 insert_edge_copies_seq (seq, gsi_bb (*gsi));
3516 }
3517 }
3518 else
3519 sra_replace (gsi, seq);
3520 }
3521 }
3522
3523 /* Generate initializations for all scalarizable parameters. */
3524
3525 static void
3526 scalarize_parms (void)
3527 {
3528 gimple_seq seq = NULL;
3529 unsigned i;
3530 bitmap_iterator bi;
3531
3532 EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
3533 {
3534 tree var = referenced_var (i);
3535 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
3536 generate_copy_inout (elt, true, var, &seq);
3537 }
3538
3539 if (seq)
3540 {
3541 insert_edge_copies_seq (seq, ENTRY_BLOCK_PTR);
3542 mark_all_v_defs_seq (seq);
3543 }
3544 }
3545
3546 /* Entry point to phase 4. Update the function to match replacements. */
3547
3548 static void
3549 scalarize_function (void)
3550 {
3551 static const struct sra_walk_fns fns = {
3552 scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
3553 };
3554
3555 sra_walk_function (&fns);
3556 scalarize_parms ();
3557 gsi_commit_edge_inserts ();
3558 }
3559
3560 \f
3561 /* Debug helper function. Print ELT in a nice human-readable format. */
3562
3563 static void
3564 dump_sra_elt_name (FILE *f, struct sra_elt *elt)
3565 {
3566 if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
3567 {
3568 fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
3569 dump_sra_elt_name (f, elt->parent);
3570 }
3571 else
3572 {
3573 if (elt->parent)
3574 dump_sra_elt_name (f, elt->parent);
3575 if (DECL_P (elt->element))
3576 {
3577 if (TREE_CODE (elt->element) == FIELD_DECL)
3578 fputc ('.', f);
3579 print_generic_expr (f, elt->element, dump_flags);
3580 }
3581 else if (TREE_CODE (elt->element) == BIT_FIELD_REF)
3582 fprintf (f, "$B" HOST_WIDE_INT_PRINT_DEC "F" HOST_WIDE_INT_PRINT_DEC,
3583 tree_low_cst (TREE_OPERAND (elt->element, 2), 1),
3584 tree_low_cst (TREE_OPERAND (elt->element, 1), 1));
3585 else if (TREE_CODE (elt->element) == RANGE_EXPR)
3586 fprintf (f, "["HOST_WIDE_INT_PRINT_DEC".."HOST_WIDE_INT_PRINT_DEC"]",
3587 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 0)),
3588 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 1)));
3589 else
3590 fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
3591 TREE_INT_CST_LOW (elt->element));
3592 }
3593 }
3594
3595 /* Likewise, but callable from the debugger. */
3596
3597 void
3598 debug_sra_elt_name (struct sra_elt *elt)
3599 {
3600 dump_sra_elt_name (stderr, elt);
3601 fputc ('\n', stderr);
3602 }
3603
3604 void
3605 sra_init_cache (void)
3606 {
3607 if (sra_type_decomp_cache)
3608 return;
3609
3610 sra_type_decomp_cache = BITMAP_ALLOC (NULL);
3611 sra_type_inst_cache = BITMAP_ALLOC (NULL);
3612 }
3613
3614
3615 /* Main entry point. */
3616
3617 static unsigned int
3618 tree_sra (void)
3619 {
3620 /* Initialize local variables. */
3621 gcc_obstack_init (&sra_obstack);
3622 sra_candidates = BITMAP_ALLOC (NULL);
3623 needs_copy_in = BITMAP_ALLOC (NULL);
3624 sra_init_cache ();
3625 sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
3626
3627 /* Scan. If we find anything, instantiate and scalarize. */
3628 if (find_candidates_for_sra ())
3629 {
3630 scan_function ();
3631 decide_instantiations ();
3632 scalarize_function ();
3633 }
3634
3635 /* Free allocated memory. */
3636 htab_delete (sra_map);
3637 sra_map = NULL;
3638 BITMAP_FREE (sra_candidates);
3639 BITMAP_FREE (needs_copy_in);
3640 BITMAP_FREE (sra_type_decomp_cache);
3641 BITMAP_FREE (sra_type_inst_cache);
3642 obstack_free (&sra_obstack, NULL);
3643 return 0;
3644 }
3645
3646 static unsigned int
3647 tree_sra_early (void)
3648 {
3649 unsigned int ret;
3650
3651 early_sra = true;
3652 ret = tree_sra ();
3653 early_sra = false;
3654
3655 return ret;
3656 }
3657
3658 static bool
3659 gate_sra (void)
3660 {
3661 return flag_tree_sra != 0;
3662 }
3663
3664 struct gimple_opt_pass pass_sra_early =
3665 {
3666 {
3667 GIMPLE_PASS,
3668 "esra", /* name */
3669 gate_sra, /* gate */
3670 tree_sra_early, /* execute */
3671 NULL, /* sub */
3672 NULL, /* next */
3673 0, /* static_pass_number */
3674 TV_TREE_SRA, /* tv_id */
3675 PROP_cfg | PROP_ssa, /* properties_required */
3676 0, /* properties_provided */
3677 0, /* properties_destroyed */
3678 0, /* todo_flags_start */
3679 TODO_dump_func
3680 | TODO_update_ssa
3681 | TODO_ggc_collect
3682 | TODO_verify_ssa /* todo_flags_finish */
3683 }
3684 };
3685
3686 struct gimple_opt_pass pass_sra =
3687 {
3688 {
3689 GIMPLE_PASS,
3690 "sra", /* name */
3691 gate_sra, /* gate */
3692 tree_sra, /* execute */
3693 NULL, /* sub */
3694 NULL, /* next */
3695 0, /* static_pass_number */
3696 TV_TREE_SRA, /* tv_id */
3697 PROP_cfg | PROP_ssa, /* properties_required */
3698 0, /* properties_provided */
3699 0, /* properties_destroyed */
3700 TODO_update_address_taken, /* todo_flags_start */
3701 TODO_dump_func
3702 | TODO_update_ssa
3703 | TODO_ggc_collect
3704 | TODO_verify_ssa /* todo_flags_finish */
3705 }
3706 };