cp-tree.def (UNARY_PLUS_EXPR): New C++ unary tree code.
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Diego Novillo <dnovillo@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "errors.h"
29 #include "ggc.h"
30 #include "tree.h"
31
32 /* These RTL headers are needed for basic-block.h. */
33 #include "rtl.h"
34 #include "tm_p.h"
35 #include "hard-reg-set.h"
36 #include "basic-block.h"
37 #include "diagnostic.h"
38 #include "langhooks.h"
39 #include "tree-inline.h"
40 #include "tree-flow.h"
41 #include "tree-gimple.h"
42 #include "tree-dump.h"
43 #include "tree-pass.h"
44 #include "timevar.h"
45 #include "flags.h"
46 #include "bitmap.h"
47 #include "obstack.h"
48 #include "target.h"
49 /* expr.h is needed for MOVE_RATIO. */
50 #include "expr.h"
51 #include "params.h"
52
53
54 /* This object of this pass is to replace a non-addressable aggregate with a
55 set of independent variables. Most of the time, all of these variables
56 will be scalars. But a secondary objective is to break up larger
57 aggregates into smaller aggregates. In the process we may find that some
58 bits of the larger aggregate can be deleted as unreferenced.
59
60 This substitution is done globally. More localized substitutions would
61 be the purvey of a load-store motion pass.
62
63 The optimization proceeds in phases:
64
65 (1) Identify variables that have types that are candidates for
66 decomposition.
67
68 (2) Scan the function looking for the ways these variables are used.
69 In particular we're interested in the number of times a variable
70 (or member) is needed as a complete unit, and the number of times
71 a variable (or member) is copied.
72
73 (3) Based on the usage profile, instantiate substitution variables.
74
75 (4) Scan the function making replacements.
76 */
77
78
79 /* The set of aggregate variables that are candidates for scalarization. */
80 static bitmap sra_candidates;
81
82 /* Set of scalarizable PARM_DECLs that need copy-in operations at the
83 beginning of the function. */
84 static bitmap needs_copy_in;
85
86 /* Sets of bit pairs that cache type decomposition and instantiation. */
87 static bitmap sra_type_decomp_cache;
88 static bitmap sra_type_inst_cache;
89
90 /* One of these structures is created for each candidate aggregate
91 and each (accessed) member of such an aggregate. */
92 struct sra_elt
93 {
94 /* A tree of the elements. Used when we want to traverse everything. */
95 struct sra_elt *parent;
96 struct sra_elt *children;
97 struct sra_elt *sibling;
98
99 /* If this element is a root, then this is the VAR_DECL. If this is
100 a sub-element, this is some token used to identify the reference.
101 In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
102 of an ARRAY_REF, this is the (constant) index. In the case of a
103 complex number, this is a zero or one. */
104 tree element;
105
106 /* The type of the element. */
107 tree type;
108
109 /* A VAR_DECL, for any sub-element we've decided to replace. */
110 tree replacement;
111
112 /* The number of times the element is referenced as a whole. I.e.
113 given "a.b.c", this would be incremented for C, but not for A or B. */
114 unsigned int n_uses;
115
116 /* The number of times the element is copied to or from another
117 scalarizable element. */
118 unsigned int n_copies;
119
120 /* True if TYPE is scalar. */
121 bool is_scalar;
122
123 /* True if we saw something about this element that prevents scalarization,
124 such as non-constant indexing. */
125 bool cannot_scalarize;
126
127 /* True if we've decided that structure-to-structure assignment
128 should happen via memcpy and not per-element. */
129 bool use_block_copy;
130
131 /* A flag for use with/after random access traversals. */
132 bool visited;
133 };
134
135 /* Random access to the child of a parent is performed by hashing.
136 This prevents quadratic behavior, and allows SRA to function
137 reasonably on larger records. */
138 static htab_t sra_map;
139
140 /* All structures are allocated out of the following obstack. */
141 static struct obstack sra_obstack;
142
143 /* Debugging functions. */
144 static void dump_sra_elt_name (FILE *, struct sra_elt *);
145 extern void debug_sra_elt_name (struct sra_elt *);
146
147 /* Forward declarations. */
148 static tree generate_element_ref (struct sra_elt *);
149 \f
150 /* Return true if DECL is an SRA candidate. */
151
152 static bool
153 is_sra_candidate_decl (tree decl)
154 {
155 return DECL_P (decl) && bitmap_bit_p (sra_candidates, var_ann (decl)->uid);
156 }
157
158 /* Return true if TYPE is a scalar type. */
159
160 static bool
161 is_sra_scalar_type (tree type)
162 {
163 enum tree_code code = TREE_CODE (type);
164 return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
165 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
166 || code == CHAR_TYPE || code == POINTER_TYPE || code == OFFSET_TYPE
167 || code == REFERENCE_TYPE);
168 }
169
170 /* Return true if TYPE can be decomposed into a set of independent variables.
171
172 Note that this doesn't imply that all elements of TYPE can be
173 instantiated, just that if we decide to break up the type into
174 separate pieces that it can be done. */
175
176 static bool
177 type_can_be_decomposed_p (tree type)
178 {
179 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
180 tree t;
181
182 /* Avoid searching the same type twice. */
183 if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
184 return true;
185 if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
186 return false;
187
188 /* The type must have a definite nonzero size. */
189 if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
190 || integer_zerop (TYPE_SIZE (type)))
191 goto fail;
192
193 /* The type must be a non-union aggregate. */
194 switch (TREE_CODE (type))
195 {
196 case RECORD_TYPE:
197 {
198 bool saw_one_field = false;
199
200 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
201 if (TREE_CODE (t) == FIELD_DECL)
202 {
203 /* Reject incorrectly represented bit fields. */
204 if (DECL_BIT_FIELD (t)
205 && (tree_low_cst (DECL_SIZE (t), 1)
206 != TYPE_PRECISION (TREE_TYPE (t))))
207 goto fail;
208
209 saw_one_field = true;
210 }
211
212 /* Record types must have at least one field. */
213 if (!saw_one_field)
214 goto fail;
215 }
216 break;
217
218 case ARRAY_TYPE:
219 /* Array types must have a fixed lower and upper bound. */
220 t = TYPE_DOMAIN (type);
221 if (t == NULL)
222 goto fail;
223 if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
224 goto fail;
225 if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
226 goto fail;
227 break;
228
229 case COMPLEX_TYPE:
230 break;
231
232 default:
233 goto fail;
234 }
235
236 bitmap_set_bit (sra_type_decomp_cache, cache+0);
237 return true;
238
239 fail:
240 bitmap_set_bit (sra_type_decomp_cache, cache+1);
241 return false;
242 }
243
244 /* Return true if DECL can be decomposed into a set of independent
245 (though not necessarily scalar) variables. */
246
247 static bool
248 decl_can_be_decomposed_p (tree var)
249 {
250 /* Early out for scalars. */
251 if (is_sra_scalar_type (TREE_TYPE (var)))
252 return false;
253
254 /* The variable must not be aliased. */
255 if (!is_gimple_non_addressable (var))
256 {
257 if (dump_file && (dump_flags & TDF_DETAILS))
258 {
259 fprintf (dump_file, "Cannot scalarize variable ");
260 print_generic_expr (dump_file, var, dump_flags);
261 fprintf (dump_file, " because it must live in memory\n");
262 }
263 return false;
264 }
265
266 /* The variable must not be volatile. */
267 if (TREE_THIS_VOLATILE (var))
268 {
269 if (dump_file && (dump_flags & TDF_DETAILS))
270 {
271 fprintf (dump_file, "Cannot scalarize variable ");
272 print_generic_expr (dump_file, var, dump_flags);
273 fprintf (dump_file, " because it is declared volatile\n");
274 }
275 return false;
276 }
277
278 /* We must be able to decompose the variable's type. */
279 if (!type_can_be_decomposed_p (TREE_TYPE (var)))
280 {
281 if (dump_file && (dump_flags & TDF_DETAILS))
282 {
283 fprintf (dump_file, "Cannot scalarize variable ");
284 print_generic_expr (dump_file, var, dump_flags);
285 fprintf (dump_file, " because its type cannot be decomposed\n");
286 }
287 return false;
288 }
289
290 return true;
291 }
292
293 /* Return true if TYPE can be *completely* decomposed into scalars. */
294
295 static bool
296 type_can_instantiate_all_elements (tree type)
297 {
298 if (is_sra_scalar_type (type))
299 return true;
300 if (!type_can_be_decomposed_p (type))
301 return false;
302
303 switch (TREE_CODE (type))
304 {
305 case RECORD_TYPE:
306 {
307 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
308 tree f;
309
310 if (bitmap_bit_p (sra_type_inst_cache, cache+0))
311 return true;
312 if (bitmap_bit_p (sra_type_inst_cache, cache+1))
313 return false;
314
315 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
316 if (TREE_CODE (f) == FIELD_DECL)
317 {
318 if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
319 {
320 bitmap_set_bit (sra_type_inst_cache, cache+1);
321 return false;
322 }
323 }
324
325 bitmap_set_bit (sra_type_inst_cache, cache+0);
326 return true;
327 }
328
329 case ARRAY_TYPE:
330 return type_can_instantiate_all_elements (TREE_TYPE (type));
331
332 case COMPLEX_TYPE:
333 return true;
334
335 default:
336 gcc_unreachable ();
337 }
338 }
339
340 /* Test whether ELT or some sub-element cannot be scalarized. */
341
342 static bool
343 can_completely_scalarize_p (struct sra_elt *elt)
344 {
345 struct sra_elt *c;
346
347 if (elt->cannot_scalarize)
348 return false;
349
350 for (c = elt->children; c ; c = c->sibling)
351 if (!can_completely_scalarize_p (c))
352 return false;
353
354 return true;
355 }
356
357 \f
358 /* A simplified tree hashing algorithm that only handles the types of
359 trees we expect to find in sra_elt->element. */
360
361 static hashval_t
362 sra_hash_tree (tree t)
363 {
364 hashval_t h;
365
366 switch (TREE_CODE (t))
367 {
368 case VAR_DECL:
369 case PARM_DECL:
370 case RESULT_DECL:
371 h = DECL_UID (t);
372 break;
373
374 case INTEGER_CST:
375 h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
376 break;
377
378 case FIELD_DECL:
379 /* We can have types that are compatible, but have different member
380 lists, so we can't hash fields by ID. Use offsets instead. */
381 h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
382 h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
383 break;
384
385 default:
386 gcc_unreachable ();
387 }
388
389 return h;
390 }
391
392 /* Hash function for type SRA_PAIR. */
393
394 static hashval_t
395 sra_elt_hash (const void *x)
396 {
397 const struct sra_elt *e = x;
398 const struct sra_elt *p;
399 hashval_t h;
400
401 h = sra_hash_tree (e->element);
402
403 /* Take into account everything back up the chain. Given that chain
404 lengths are rarely very long, this should be acceptable. If we
405 truly identify this as a performance problem, it should work to
406 hash the pointer value "e->parent". */
407 for (p = e->parent; p ; p = p->parent)
408 h = (h * 65521) ^ sra_hash_tree (p->element);
409
410 return h;
411 }
412
413 /* Equality function for type SRA_PAIR. */
414
415 static int
416 sra_elt_eq (const void *x, const void *y)
417 {
418 const struct sra_elt *a = x;
419 const struct sra_elt *b = y;
420 tree ae, be;
421
422 if (a->parent != b->parent)
423 return false;
424
425 ae = a->element;
426 be = b->element;
427
428 if (ae == be)
429 return true;
430 if (TREE_CODE (ae) != TREE_CODE (be))
431 return false;
432
433 switch (TREE_CODE (ae))
434 {
435 case VAR_DECL:
436 case PARM_DECL:
437 case RESULT_DECL:
438 /* These are all pointer unique. */
439 return false;
440
441 case INTEGER_CST:
442 /* Integers are not pointer unique, so compare their values. */
443 return tree_int_cst_equal (ae, be);
444
445 case FIELD_DECL:
446 /* Fields are unique within a record, but not between
447 compatible records. */
448 if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
449 return false;
450 return fields_compatible_p (ae, be);
451
452 default:
453 gcc_unreachable ();
454 }
455 }
456
457 /* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
458 may be null, in which case CHILD must be a DECL. */
459
460 static struct sra_elt *
461 lookup_element (struct sra_elt *parent, tree child, tree type,
462 enum insert_option insert)
463 {
464 struct sra_elt dummy;
465 struct sra_elt **slot;
466 struct sra_elt *elt;
467
468 dummy.parent = parent;
469 dummy.element = child;
470
471 slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
472 if (!slot && insert == NO_INSERT)
473 return NULL;
474
475 elt = *slot;
476 if (!elt && insert == INSERT)
477 {
478 *slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
479 memset (elt, 0, sizeof (*elt));
480
481 elt->parent = parent;
482 elt->element = child;
483 elt->type = type;
484 elt->is_scalar = is_sra_scalar_type (type);
485
486 if (parent)
487 {
488 elt->sibling = parent->children;
489 parent->children = elt;
490 }
491
492 /* If this is a parameter, then if we want to scalarize, we have
493 one copy from the true function parameter. Count it now. */
494 if (TREE_CODE (child) == PARM_DECL)
495 {
496 elt->n_copies = 1;
497 bitmap_set_bit (needs_copy_in, var_ann (child)->uid);
498 }
499 }
500
501 return elt;
502 }
503
504 /* Return true if the ARRAY_REF in EXPR is a constant, in bounds access. */
505
506 static bool
507 is_valid_const_index (tree expr)
508 {
509 tree dom, t, index = TREE_OPERAND (expr, 1);
510
511 if (TREE_CODE (index) != INTEGER_CST)
512 return false;
513
514 /* Watch out for stupid user tricks, indexing outside the array.
515
516 Careful, we're not called only on scalarizable types, so do not
517 assume constant array bounds. We needn't do anything with such
518 cases, since they'll be referring to objects that we should have
519 already rejected for scalarization, so returning false is fine. */
520
521 dom = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (expr, 0)));
522 if (dom == NULL)
523 return false;
524
525 t = TYPE_MIN_VALUE (dom);
526 if (!t || TREE_CODE (t) != INTEGER_CST)
527 return false;
528 if (tree_int_cst_lt (index, t))
529 return false;
530
531 t = TYPE_MAX_VALUE (dom);
532 if (!t || TREE_CODE (t) != INTEGER_CST)
533 return false;
534 if (tree_int_cst_lt (t, index))
535 return false;
536
537 return true;
538 }
539
540 /* Create or return the SRA_ELT structure for EXPR if the expression
541 refers to a scalarizable variable. */
542
543 static struct sra_elt *
544 maybe_lookup_element_for_expr (tree expr)
545 {
546 struct sra_elt *elt;
547 tree child;
548
549 switch (TREE_CODE (expr))
550 {
551 case VAR_DECL:
552 case PARM_DECL:
553 case RESULT_DECL:
554 if (is_sra_candidate_decl (expr))
555 return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
556 return NULL;
557
558 case ARRAY_REF:
559 /* We can't scalarize variable array indicies. */
560 if (is_valid_const_index (expr))
561 child = TREE_OPERAND (expr, 1);
562 else
563 return NULL;
564 break;
565
566 case COMPONENT_REF:
567 /* Don't look through unions. */
568 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) != RECORD_TYPE)
569 return NULL;
570 child = TREE_OPERAND (expr, 1);
571 break;
572
573 case REALPART_EXPR:
574 child = integer_zero_node;
575 break;
576 case IMAGPART_EXPR:
577 child = integer_one_node;
578 break;
579
580 default:
581 return NULL;
582 }
583
584 elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
585 if (elt)
586 return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
587 return NULL;
588 }
589
590 \f
591 /* Functions to walk just enough of the tree to see all scalarizable
592 references, and categorize them. */
593
594 /* A set of callbacks for phases 2 and 4. They'll be invoked for the
595 various kinds of references seen. In all cases, *BSI is an iterator
596 pointing to the statement being processed. */
597 struct sra_walk_fns
598 {
599 /* Invoked when ELT is required as a unit. Note that ELT might refer to
600 a leaf node, in which case this is a simple scalar reference. *EXPR_P
601 points to the location of the expression. IS_OUTPUT is true if this
602 is a left-hand-side reference. */
603 void (*use) (struct sra_elt *elt, tree *expr_p,
604 block_stmt_iterator *bsi, bool is_output);
605
606 /* Invoked when we have a copy between two scalarizable references. */
607 void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
608 block_stmt_iterator *bsi);
609
610 /* Invoked when ELT is initialized from a constant. VALUE may be NULL,
611 in which case it should be treated as an empty CONSTRUCTOR. */
612 void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);
613
614 /* Invoked when we have a copy between one scalarizable reference ELT
615 and one non-scalarizable reference OTHER. IS_OUTPUT is true if ELT
616 is on the left-hand side. */
617 void (*ldst) (struct sra_elt *elt, tree other,
618 block_stmt_iterator *bsi, bool is_output);
619
620 /* True during phase 2, false during phase 4. */
621 /* ??? This is a hack. */
622 bool initial_scan;
623 };
624
625 #ifdef ENABLE_CHECKING
626 /* Invoked via walk_tree, if *TP contains a candidate decl, return it. */
627
628 static tree
629 sra_find_candidate_decl (tree *tp, int *walk_subtrees,
630 void *data ATTRIBUTE_UNUSED)
631 {
632 tree t = *tp;
633 enum tree_code code = TREE_CODE (t);
634
635 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
636 {
637 *walk_subtrees = 0;
638 if (is_sra_candidate_decl (t))
639 return t;
640 }
641 else if (TYPE_P (t))
642 *walk_subtrees = 0;
643
644 return NULL;
645 }
646 #endif
647
648 /* Walk most expressions looking for a scalarizable aggregate.
649 If we find one, invoke FNS->USE. */
650
651 static void
652 sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
653 const struct sra_walk_fns *fns)
654 {
655 tree expr = *expr_p;
656 tree inner = expr;
657 bool disable_scalarization = false;
658
659 /* We're looking to collect a reference expression between EXPR and INNER,
660 such that INNER is a scalarizable decl and all other nodes through EXPR
661 are references that we can scalarize. If we come across something that
662 we can't scalarize, we reset EXPR. This has the effect of making it
663 appear that we're referring to the larger expression as a whole. */
664
665 while (1)
666 switch (TREE_CODE (inner))
667 {
668 case VAR_DECL:
669 case PARM_DECL:
670 case RESULT_DECL:
671 /* If there is a scalarizable decl at the bottom, then process it. */
672 if (is_sra_candidate_decl (inner))
673 {
674 struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
675 if (disable_scalarization)
676 elt->cannot_scalarize = true;
677 else
678 fns->use (elt, expr_p, bsi, is_output);
679 }
680 return;
681
682 case ARRAY_REF:
683 /* Non-constant index means any member may be accessed. Prevent the
684 expression from being scalarized. If we were to treat this as a
685 reference to the whole array, we can wind up with a single dynamic
686 index reference inside a loop being overridden by several constant
687 index references during loop setup. It's possible that this could
688 be avoided by using dynamic usage counts based on BB trip counts
689 (based on loop analysis or profiling), but that hardly seems worth
690 the effort. */
691 /* ??? Hack. Figure out how to push this into the scan routines
692 without duplicating too much code. */
693 if (!is_valid_const_index (inner))
694 {
695 disable_scalarization = true;
696 goto use_all;
697 }
698 /* ??? Are we assured that non-constant bounds and stride will have
699 the same value everywhere? I don't think Fortran will... */
700 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
701 goto use_all;
702 inner = TREE_OPERAND (inner, 0);
703 break;
704
705 case COMPONENT_REF:
706 /* A reference to a union member constitutes a reference to the
707 entire union. */
708 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) != RECORD_TYPE)
709 goto use_all;
710 /* ??? See above re non-constant stride. */
711 if (TREE_OPERAND (inner, 2))
712 goto use_all;
713 inner = TREE_OPERAND (inner, 0);
714 break;
715
716 case REALPART_EXPR:
717 case IMAGPART_EXPR:
718 inner = TREE_OPERAND (inner, 0);
719 break;
720
721 case BIT_FIELD_REF:
722 /* A bit field reference (access to *multiple* fields simultaneously)
723 is not currently scalarized. Consider this an access to the
724 complete outer element, to which walk_tree will bring us next. */
725 goto use_all;
726
727 case ARRAY_RANGE_REF:
728 /* Similarly, an subrange reference is used to modify indexing. Which
729 means that the canonical element names that we have won't work. */
730 goto use_all;
731
732 case VIEW_CONVERT_EXPR:
733 case NOP_EXPR:
734 /* Similarly, a view/nop explicitly wants to look at an object in a
735 type other than the one we've scalarized. */
736 goto use_all;
737
738 case WITH_SIZE_EXPR:
739 /* This is a transparent wrapper. The entire inner expression really
740 is being used. */
741 goto use_all;
742
743 use_all:
744 expr_p = &TREE_OPERAND (inner, 0);
745 inner = expr = *expr_p;
746 break;
747
748 default:
749 #ifdef ENABLE_CHECKING
750 /* Validate that we're not missing any references. */
751 gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
752 #endif
753 return;
754 }
755 }
756
757 /* Walk a TREE_LIST of values looking for scalarizable aggregates.
758 If we find one, invoke FNS->USE. */
759
760 static void
761 sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
762 const struct sra_walk_fns *fns)
763 {
764 tree op;
765 for (op = list; op ; op = TREE_CHAIN (op))
766 sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
767 }
768
769 /* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
770 If we find one, invoke FNS->USE. */
771
772 static void
773 sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
774 const struct sra_walk_fns *fns)
775 {
776 sra_walk_tree_list (TREE_OPERAND (expr, 1), bsi, false, fns);
777 }
778
779 /* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
780 aggregates. If we find one, invoke FNS->USE. */
781
782 static void
783 sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
784 const struct sra_walk_fns *fns)
785 {
786 sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
787 sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
788 }
789
790 /* Walk a MODIFY_EXPR and categorize the assignment appropriately. */
791
792 static void
793 sra_walk_modify_expr (tree expr, block_stmt_iterator *bsi,
794 const struct sra_walk_fns *fns)
795 {
796 struct sra_elt *lhs_elt, *rhs_elt;
797 tree lhs, rhs;
798
799 lhs = TREE_OPERAND (expr, 0);
800 rhs = TREE_OPERAND (expr, 1);
801 lhs_elt = maybe_lookup_element_for_expr (lhs);
802 rhs_elt = maybe_lookup_element_for_expr (rhs);
803
804 /* If both sides are scalarizable, this is a COPY operation. */
805 if (lhs_elt && rhs_elt)
806 {
807 fns->copy (lhs_elt, rhs_elt, bsi);
808 return;
809 }
810
811 /* If the RHS is scalarizable, handle it. There are only two cases. */
812 if (rhs_elt)
813 {
814 if (!rhs_elt->is_scalar)
815 fns->ldst (rhs_elt, lhs, bsi, false);
816 else
817 fns->use (rhs_elt, &TREE_OPERAND (expr, 1), bsi, false);
818 }
819
820 /* If it isn't scalarizable, there may be scalarizable variables within, so
821 check for a call or else walk the RHS to see if we need to do any
822 copy-in operations. We need to do it before the LHS is scalarized so
823 that the statements get inserted in the proper place, before any
824 copy-out operations. */
825 else
826 {
827 tree call = get_call_expr_in (rhs);
828 if (call)
829 sra_walk_call_expr (call, bsi, fns);
830 else
831 sra_walk_expr (&TREE_OPERAND (expr, 1), bsi, false, fns);
832 }
833
834 /* Likewise, handle the LHS being scalarizable. We have cases similar
835 to those above, but also want to handle RHS being constant. */
836 if (lhs_elt)
837 {
838 /* If this is an assignment from a constant, or constructor, then
839 we have access to all of the elements individually. Invoke INIT. */
840 if (TREE_CODE (rhs) == COMPLEX_EXPR
841 || TREE_CODE (rhs) == COMPLEX_CST
842 || TREE_CODE (rhs) == CONSTRUCTOR)
843 fns->init (lhs_elt, rhs, bsi);
844
845 /* If this is an assignment from read-only memory, treat this as if
846 we'd been passed the constructor directly. Invoke INIT. */
847 else if (TREE_CODE (rhs) == VAR_DECL
848 && TREE_STATIC (rhs)
849 && TREE_READONLY (rhs)
850 && targetm.binds_local_p (rhs))
851 fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);
852
853 /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
854 The lvalue requirement prevents us from trying to directly scalarize
855 the result of a function call. Which would result in trying to call
856 the function multiple times, and other evil things. */
857 else if (!lhs_elt->is_scalar && is_gimple_addressable (rhs))
858 fns->ldst (lhs_elt, rhs, bsi, true);
859
860 /* Otherwise we're being used in some context that requires the
861 aggregate to be seen as a whole. Invoke USE. */
862 else
863 fns->use (lhs_elt, &TREE_OPERAND (expr, 0), bsi, true);
864 }
865
866 /* Similarly to above, LHS_ELT being null only means that the LHS as a
867 whole is not a scalarizable reference. There may be occurrences of
868 scalarizable variables within, which implies a USE. */
869 else
870 sra_walk_expr (&TREE_OPERAND (expr, 0), bsi, true, fns);
871 }
872
873 /* Entry point to the walk functions. Search the entire function,
874 invoking the callbacks in FNS on each of the references to
875 scalarizable variables. */
876
877 static void
878 sra_walk_function (const struct sra_walk_fns *fns)
879 {
880 basic_block bb;
881 block_stmt_iterator si, ni;
882
883 /* ??? Phase 4 could derive some benefit to walking the function in
884 dominator tree order. */
885
886 FOR_EACH_BB (bb)
887 for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
888 {
889 tree stmt, t;
890 stmt_ann_t ann;
891
892 stmt = bsi_stmt (si);
893 ann = stmt_ann (stmt);
894
895 ni = si;
896 bsi_next (&ni);
897
898 /* If the statement has no virtual operands, then it doesn't
899 make any structure references that we care about. */
900 if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
901 continue;
902
903 switch (TREE_CODE (stmt))
904 {
905 case RETURN_EXPR:
906 /* If we have "return <retval>" then the return value is
907 already exposed for our pleasure. Walk it as a USE to
908 force all the components back in place for the return.
909
910 If we have an embedded assignment, then <retval> is of
911 a type that gets returned in registers in this ABI, and
912 we do not wish to extend their lifetimes. Treat this
913 as a USE of the variable on the RHS of this assignment. */
914
915 t = TREE_OPERAND (stmt, 0);
916 if (TREE_CODE (t) == MODIFY_EXPR)
917 sra_walk_expr (&TREE_OPERAND (t, 1), &si, false, fns);
918 else
919 sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
920 break;
921
922 case MODIFY_EXPR:
923 sra_walk_modify_expr (stmt, &si, fns);
924 break;
925 case CALL_EXPR:
926 sra_walk_call_expr (stmt, &si, fns);
927 break;
928 case ASM_EXPR:
929 sra_walk_asm_expr (stmt, &si, fns);
930 break;
931
932 default:
933 break;
934 }
935 }
936 }
937 \f
938 /* Phase One: Scan all referenced variables in the program looking for
939 structures that could be decomposed. */
940
941 static bool
942 find_candidates_for_sra (void)
943 {
944 size_t i;
945 bool any_set = false;
946
947 for (i = 0; i < num_referenced_vars; i++)
948 {
949 tree var = referenced_var (i);
950 if (decl_can_be_decomposed_p (var))
951 {
952 bitmap_set_bit (sra_candidates, var_ann (var)->uid);
953 any_set = true;
954 }
955 }
956
957 return any_set;
958 }
959
960 \f
961 /* Phase Two: Scan all references to scalarizable variables. Count the
962 number of times they are used or copied respectively. */
963
964 /* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
965 considered a copy, because we can decompose the reference such that
966 the sub-elements needn't be contiguous. */
967
968 static void
969 scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
970 block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
971 bool is_output ATTRIBUTE_UNUSED)
972 {
973 elt->n_uses += 1;
974 }
975
976 static void
977 scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
978 block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
979 {
980 lhs_elt->n_copies += 1;
981 rhs_elt->n_copies += 1;
982 }
983
984 static void
985 scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
986 block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
987 {
988 lhs_elt->n_copies += 1;
989 }
990
991 static void
992 scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
993 block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
994 bool is_output ATTRIBUTE_UNUSED)
995 {
996 elt->n_copies += 1;
997 }
998
999 /* Dump the values we collected during the scanning phase. */
1000
1001 static void
1002 scan_dump (struct sra_elt *elt)
1003 {
1004 struct sra_elt *c;
1005
1006 dump_sra_elt_name (dump_file, elt);
1007 fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1008
1009 for (c = elt->children; c ; c = c->sibling)
1010 scan_dump (c);
1011 }
1012
1013 /* Entry point to phase 2. Scan the entire function, building up
1014 scalarization data structures, recording copies and uses. */
1015
1016 static void
1017 scan_function (void)
1018 {
1019 static const struct sra_walk_fns fns = {
1020 scan_use, scan_copy, scan_init, scan_ldst, true
1021 };
1022 bitmap_iterator bi;
1023
1024 sra_walk_function (&fns);
1025
1026 if (dump_file && (dump_flags & TDF_DETAILS))
1027 {
1028 unsigned i;
1029
1030 fputs ("\nScan results:\n", dump_file);
1031 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1032 {
1033 tree var = referenced_var (i);
1034 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1035 if (elt)
1036 scan_dump (elt);
1037 }
1038 fputc ('\n', dump_file);
1039 }
1040 }
1041 \f
1042 /* Phase Three: Make decisions about which variables to scalarize, if any.
1043 All elements to be scalarized have replacement variables made for them. */
1044
1045 /* A subroutine of build_element_name. Recursively build the element
1046 name on the obstack. */
1047
1048 static void
1049 build_element_name_1 (struct sra_elt *elt)
1050 {
1051 tree t;
1052 char buffer[32];
1053
1054 if (elt->parent)
1055 {
1056 build_element_name_1 (elt->parent);
1057 obstack_1grow (&sra_obstack, '$');
1058
1059 if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1060 {
1061 if (elt->element == integer_zero_node)
1062 obstack_grow (&sra_obstack, "real", 4);
1063 else
1064 obstack_grow (&sra_obstack, "imag", 4);
1065 return;
1066 }
1067 }
1068
1069 t = elt->element;
1070 if (TREE_CODE (t) == INTEGER_CST)
1071 {
1072 /* ??? Eh. Don't bother doing double-wide printing. */
1073 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1074 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1075 }
1076 else
1077 {
1078 tree name = DECL_NAME (t);
1079 if (name)
1080 obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1081 IDENTIFIER_LENGTH (name));
1082 else
1083 {
1084 sprintf (buffer, "D%u", DECL_UID (t));
1085 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1086 }
1087 }
1088 }
1089
1090 /* Construct a pretty variable name for an element's replacement variable.
1091 The name is built on the obstack. */
1092
1093 static char *
1094 build_element_name (struct sra_elt *elt)
1095 {
1096 build_element_name_1 (elt);
1097 obstack_1grow (&sra_obstack, '\0');
1098 return obstack_finish (&sra_obstack);
1099 }
1100
1101 /* Instantiate an element as an independent variable. */
1102
1103 static void
1104 instantiate_element (struct sra_elt *elt)
1105 {
1106 struct sra_elt *base_elt;
1107 tree var, base;
1108
1109 for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1110 continue;
1111 base = base_elt->element;
1112
1113 elt->replacement = var = make_rename_temp (elt->type, "SR");
1114 DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1115 DECL_ARTIFICIAL (var) = 1;
1116
1117 if (TREE_THIS_VOLATILE (elt->type))
1118 {
1119 TREE_THIS_VOLATILE (var) = 1;
1120 TREE_SIDE_EFFECTS (var) = 1;
1121 }
1122
1123 if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1124 {
1125 char *pretty_name = build_element_name (elt);
1126 DECL_NAME (var) = get_identifier (pretty_name);
1127 obstack_free (&sra_obstack, pretty_name);
1128
1129 DECL_DEBUG_EXPR (var) = generate_element_ref (elt);
1130 DECL_DEBUG_EXPR_IS_FROM (var) = 1;
1131
1132 DECL_IGNORED_P (var) = 0;
1133 TREE_NO_WARNING (var) = TREE_NO_WARNING (base);
1134 }
1135 else
1136 {
1137 DECL_IGNORED_P (var) = 1;
1138 /* ??? We can't generate any warning that would be meaningful. */
1139 TREE_NO_WARNING (var) = 1;
1140 }
1141
1142 if (dump_file)
1143 {
1144 fputs (" ", dump_file);
1145 dump_sra_elt_name (dump_file, elt);
1146 fputs (" -> ", dump_file);
1147 print_generic_expr (dump_file, var, dump_flags);
1148 fputc ('\n', dump_file);
1149 }
1150 }
1151
1152 /* Make one pass across an element tree deciding whether or not it's
1153 profitable to instantiate individual leaf scalars.
1154
1155 PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1156 fields all the way up the tree. */
1157
1158 static void
1159 decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1160 unsigned int parent_copies)
1161 {
1162 if (dump_file && !elt->parent)
1163 {
1164 fputs ("Initial instantiation for ", dump_file);
1165 dump_sra_elt_name (dump_file, elt);
1166 fputc ('\n', dump_file);
1167 }
1168
1169 if (elt->cannot_scalarize)
1170 return;
1171
1172 if (elt->is_scalar)
1173 {
1174 /* The decision is simple: instantiate if we're used more frequently
1175 than the parent needs to be seen as a complete unit. */
1176 if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1177 instantiate_element (elt);
1178 }
1179 else
1180 {
1181 struct sra_elt *c;
1182 unsigned int this_uses = elt->n_uses + parent_uses;
1183 unsigned int this_copies = elt->n_copies + parent_copies;
1184
1185 for (c = elt->children; c ; c = c->sibling)
1186 decide_instantiation_1 (c, this_uses, this_copies);
1187 }
1188 }
1189
1190 /* Compute the size and number of all instantiated elements below ELT.
1191 We will only care about this if the size of the complete structure
1192 fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
1193
1194 static unsigned int
1195 sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1196 {
1197 if (elt->replacement)
1198 {
1199 *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1200 return 1;
1201 }
1202 else
1203 {
1204 struct sra_elt *c;
1205 unsigned int count = 0;
1206
1207 for (c = elt->children; c ; c = c->sibling)
1208 count += sum_instantiated_sizes (c, sizep);
1209
1210 return count;
1211 }
1212 }
1213
1214 /* Instantiate fields in ELT->TYPE that are not currently present as
1215 children of ELT. */
1216
1217 static void instantiate_missing_elements (struct sra_elt *elt);
1218
1219 static void
1220 instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1221 {
1222 struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1223 if (sub->is_scalar)
1224 {
1225 if (sub->replacement == NULL)
1226 instantiate_element (sub);
1227 }
1228 else
1229 instantiate_missing_elements (sub);
1230 }
1231
1232 static void
1233 instantiate_missing_elements (struct sra_elt *elt)
1234 {
1235 tree type = elt->type;
1236
1237 switch (TREE_CODE (type))
1238 {
1239 case RECORD_TYPE:
1240 {
1241 tree f;
1242 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1243 if (TREE_CODE (f) == FIELD_DECL)
1244 instantiate_missing_elements_1 (elt, f, TREE_TYPE (f));
1245 break;
1246 }
1247
1248 case ARRAY_TYPE:
1249 {
1250 tree i, max, subtype;
1251
1252 i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1253 max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1254 subtype = TREE_TYPE (type);
1255
1256 while (1)
1257 {
1258 instantiate_missing_elements_1 (elt, i, subtype);
1259 if (tree_int_cst_equal (i, max))
1260 break;
1261 i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1262 }
1263
1264 break;
1265 }
1266
1267 case COMPLEX_TYPE:
1268 type = TREE_TYPE (type);
1269 instantiate_missing_elements_1 (elt, integer_zero_node, type);
1270 instantiate_missing_elements_1 (elt, integer_one_node, type);
1271 break;
1272
1273 default:
1274 gcc_unreachable ();
1275 }
1276 }
1277
1278 /* Make one pass across an element tree deciding whether to perform block
1279 or element copies. If we decide on element copies, instantiate all
1280 elements. Return true if there are any instantiated sub-elements. */
1281
1282 static bool
1283 decide_block_copy (struct sra_elt *elt)
1284 {
1285 struct sra_elt *c;
1286 bool any_inst;
1287
1288 /* If scalarization is disabled, respect it. */
1289 if (elt->cannot_scalarize)
1290 {
1291 elt->use_block_copy = 1;
1292
1293 if (dump_file)
1294 {
1295 fputs ("Scalarization disabled for ", dump_file);
1296 dump_sra_elt_name (dump_file, elt);
1297 fputc ('\n', dump_file);
1298 }
1299
1300 /* Disable scalarization of sub-elements */
1301 for (c = elt->children; c; c = c->sibling)
1302 {
1303 c->cannot_scalarize = 1;
1304 decide_block_copy (c);
1305 }
1306 return false;
1307 }
1308
1309 /* Don't decide if we've no uses. */
1310 if (elt->n_uses == 0 && elt->n_copies == 0)
1311 ;
1312
1313 else if (!elt->is_scalar)
1314 {
1315 tree size_tree = TYPE_SIZE_UNIT (elt->type);
1316 bool use_block_copy = true;
1317
1318 /* Tradeoffs for COMPLEX types pretty much always make it better
1319 to go ahead and split the components. */
1320 if (TREE_CODE (elt->type) == COMPLEX_TYPE)
1321 use_block_copy = false;
1322
1323 /* Don't bother trying to figure out the rest if the structure is
1324 so large we can't do easy arithmetic. This also forces block
1325 copies for variable sized structures. */
1326 else if (host_integerp (size_tree, 1))
1327 {
1328 unsigned HOST_WIDE_INT full_size, inst_size = 0;
1329 unsigned int max_size;
1330
1331 /* If the sra-max-structure-size parameter is 0, then the
1332 user has not overridden the parameter and we can choose a
1333 sensible default. */
1334 max_size = SRA_MAX_STRUCTURE_SIZE
1335 ? SRA_MAX_STRUCTURE_SIZE
1336 : MOVE_RATIO * UNITS_PER_WORD;
1337
1338 full_size = tree_low_cst (size_tree, 1);
1339
1340 /* ??? What to do here. If there are two fields, and we've only
1341 instantiated one, then instantiating the other is clearly a win.
1342 If there are a large number of fields then the size of the copy
1343 is much more of a factor. */
1344
1345 /* If the structure is small, and we've made copies, go ahead
1346 and instantiate, hoping that the copies will go away. */
1347 if (full_size <= max_size
1348 && elt->n_copies > elt->n_uses)
1349 use_block_copy = false;
1350 else
1351 {
1352 sum_instantiated_sizes (elt, &inst_size);
1353
1354 if (inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
1355 use_block_copy = false;
1356 }
1357
1358 /* In order to avoid block copy, we have to be able to instantiate
1359 all elements of the type. See if this is possible. */
1360 if (!use_block_copy
1361 && (!can_completely_scalarize_p (elt)
1362 || !type_can_instantiate_all_elements (elt->type)))
1363 use_block_copy = true;
1364 }
1365 elt->use_block_copy = use_block_copy;
1366
1367 if (dump_file)
1368 {
1369 fprintf (dump_file, "Using %s for ",
1370 use_block_copy ? "block-copy" : "element-copy");
1371 dump_sra_elt_name (dump_file, elt);
1372 fputc ('\n', dump_file);
1373 }
1374
1375 if (!use_block_copy)
1376 {
1377 instantiate_missing_elements (elt);
1378 return true;
1379 }
1380 }
1381
1382 any_inst = elt->replacement != NULL;
1383
1384 for (c = elt->children; c ; c = c->sibling)
1385 any_inst |= decide_block_copy (c);
1386
1387 return any_inst;
1388 }
1389
1390 /* Entry point to phase 3. Instantiate scalar replacement variables. */
1391
1392 static void
1393 decide_instantiations (void)
1394 {
1395 unsigned int i;
1396 bool cleared_any;
1397 bitmap_head done_head;
1398 bitmap_iterator bi;
1399
1400 /* We cannot clear bits from a bitmap we're iterating over,
1401 so save up all the bits to clear until the end. */
1402 bitmap_initialize (&done_head, &bitmap_default_obstack);
1403 cleared_any = false;
1404
1405 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1406 {
1407 tree var = referenced_var (i);
1408 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1409 if (elt)
1410 {
1411 decide_instantiation_1 (elt, 0, 0);
1412 if (!decide_block_copy (elt))
1413 elt = NULL;
1414 }
1415 if (!elt)
1416 {
1417 bitmap_set_bit (&done_head, i);
1418 cleared_any = true;
1419 }
1420 }
1421
1422 if (cleared_any)
1423 {
1424 bitmap_and_compl_into (sra_candidates, &done_head);
1425 bitmap_and_compl_into (needs_copy_in, &done_head);
1426 }
1427 bitmap_clear (&done_head);
1428
1429 mark_set_for_renaming (sra_candidates);
1430
1431 if (dump_file)
1432 fputc ('\n', dump_file);
1433 }
1434
1435 \f
1436 /* Phase Four: Update the function to match the replacements created. */
1437
1438 /* Mark all the variables in V_MAY_DEF or V_MUST_DEF operands for STMT for
1439 renaming. This becomes necessary when we modify all of a non-scalar. */
1440
1441 static void
1442 mark_all_v_defs_1 (tree stmt)
1443 {
1444 tree sym;
1445 ssa_op_iter iter;
1446
1447 update_stmt_if_modified (stmt);
1448
1449 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
1450 {
1451 if (TREE_CODE (sym) == SSA_NAME)
1452 sym = SSA_NAME_VAR (sym);
1453 mark_sym_for_renaming (sym);
1454 }
1455 }
1456
1457
1458 /* Mark all the variables in virtual operands in all the statements in
1459 LIST for renaming. */
1460
1461 static void
1462 mark_all_v_defs (tree list)
1463 {
1464 if (TREE_CODE (list) != STATEMENT_LIST)
1465 mark_all_v_defs_1 (list);
1466 else
1467 {
1468 tree_stmt_iterator i;
1469 for (i = tsi_start (list); !tsi_end_p (i); tsi_next (&i))
1470 mark_all_v_defs_1 (tsi_stmt (i));
1471 }
1472 }
1473
1474
1475 /* Build a single level component reference to ELT rooted at BASE. */
1476
1477 static tree
1478 generate_one_element_ref (struct sra_elt *elt, tree base)
1479 {
1480 switch (TREE_CODE (TREE_TYPE (base)))
1481 {
1482 case RECORD_TYPE:
1483 {
1484 tree field = elt->element;
1485
1486 /* Watch out for compatible records with differing field lists. */
1487 if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
1488 field = find_compatible_field (TREE_TYPE (base), field);
1489
1490 return build (COMPONENT_REF, elt->type, base, field, NULL);
1491 }
1492
1493 case ARRAY_TYPE:
1494 return build (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
1495
1496 case COMPLEX_TYPE:
1497 if (elt->element == integer_zero_node)
1498 return build (REALPART_EXPR, elt->type, base);
1499 else
1500 return build (IMAGPART_EXPR, elt->type, base);
1501
1502 default:
1503 gcc_unreachable ();
1504 }
1505 }
1506
1507 /* Build a full component reference to ELT rooted at its native variable. */
1508
1509 static tree
1510 generate_element_ref (struct sra_elt *elt)
1511 {
1512 if (elt->parent)
1513 return generate_one_element_ref (elt, generate_element_ref (elt->parent));
1514 else
1515 return elt->element;
1516 }
1517
1518 /* Generate a set of assignment statements in *LIST_P to copy all
1519 instantiated elements under ELT to or from the equivalent structure
1520 rooted at EXPR. COPY_OUT controls the direction of the copy, with
1521 true meaning to copy out of EXPR into ELT. */
1522
1523 static void
1524 generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
1525 tree *list_p)
1526 {
1527 struct sra_elt *c;
1528 tree t;
1529
1530 if (elt->replacement)
1531 {
1532 if (copy_out)
1533 t = build (MODIFY_EXPR, void_type_node, elt->replacement, expr);
1534 else
1535 t = build (MODIFY_EXPR, void_type_node, expr, elt->replacement);
1536 append_to_statement_list (t, list_p);
1537 }
1538 else
1539 {
1540 for (c = elt->children; c ; c = c->sibling)
1541 {
1542 t = generate_one_element_ref (c, unshare_expr (expr));
1543 generate_copy_inout (c, copy_out, t, list_p);
1544 }
1545 }
1546 }
1547
1548 /* Generate a set of assignment statements in *LIST_P to copy all instantiated
1549 elements under SRC to their counterparts under DST. There must be a 1-1
1550 correspondence of instantiated elements. */
1551
1552 static void
1553 generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
1554 {
1555 struct sra_elt *dc, *sc;
1556
1557 for (dc = dst->children; dc ; dc = dc->sibling)
1558 {
1559 sc = lookup_element (src, dc->element, NULL, NO_INSERT);
1560 gcc_assert (sc);
1561 generate_element_copy (dc, sc, list_p);
1562 }
1563
1564 if (dst->replacement)
1565 {
1566 tree t;
1567
1568 gcc_assert (src->replacement);
1569
1570 t = build (MODIFY_EXPR, void_type_node, dst->replacement,
1571 src->replacement);
1572 append_to_statement_list (t, list_p);
1573 }
1574 }
1575
1576 /* Generate a set of assignment statements in *LIST_P to zero all instantiated
1577 elements under ELT. In addition, do not assign to elements that have been
1578 marked VISITED but do reset the visited flag; this allows easy coordination
1579 with generate_element_init. */
1580
1581 static void
1582 generate_element_zero (struct sra_elt *elt, tree *list_p)
1583 {
1584 struct sra_elt *c;
1585
1586 if (elt->visited)
1587 {
1588 elt->visited = false;
1589 return;
1590 }
1591
1592 for (c = elt->children; c ; c = c->sibling)
1593 generate_element_zero (c, list_p);
1594
1595 if (elt->replacement)
1596 {
1597 tree t;
1598
1599 gcc_assert (elt->is_scalar);
1600 t = fold_convert (elt->type, integer_zero_node);
1601
1602 t = build (MODIFY_EXPR, void_type_node, elt->replacement, t);
1603 append_to_statement_list (t, list_p);
1604 }
1605 }
1606
1607 /* Generate an assignment VAR = INIT, where INIT may need gimplification.
1608 Add the result to *LIST_P. */
1609
1610 static void
1611 generate_one_element_init (tree var, tree init, tree *list_p)
1612 {
1613 /* The replacement can be almost arbitrarily complex. Gimplify. */
1614 tree stmt = build (MODIFY_EXPR, void_type_node, var, init);
1615 gimplify_and_add (stmt, list_p);
1616 }
1617
1618 /* Generate a set of assignment statements in *LIST_P to set all instantiated
1619 elements under ELT with the contents of the initializer INIT. In addition,
1620 mark all assigned elements VISITED; this allows easy coordination with
1621 generate_element_zero. Return false if we found a case we couldn't
1622 handle. */
1623
1624 static bool
1625 generate_element_init_1 (struct sra_elt *elt, tree init, tree *list_p)
1626 {
1627 bool result = true;
1628 enum tree_code init_code;
1629 struct sra_elt *sub;
1630 tree t;
1631
1632 /* We can be passed DECL_INITIAL of a static variable. It might have a
1633 conversion, which we strip off here. */
1634 STRIP_USELESS_TYPE_CONVERSION (init);
1635 init_code = TREE_CODE (init);
1636
1637 if (elt->is_scalar)
1638 {
1639 if (elt->replacement)
1640 {
1641 generate_one_element_init (elt->replacement, init, list_p);
1642 elt->visited = true;
1643 }
1644 return result;
1645 }
1646
1647 switch (init_code)
1648 {
1649 case COMPLEX_CST:
1650 case COMPLEX_EXPR:
1651 for (sub = elt->children; sub ; sub = sub->sibling)
1652 {
1653 if (sub->element == integer_zero_node)
1654 t = (init_code == COMPLEX_EXPR
1655 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
1656 else
1657 t = (init_code == COMPLEX_EXPR
1658 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
1659 result &= generate_element_init_1 (sub, t, list_p);
1660 }
1661 break;
1662
1663 case CONSTRUCTOR:
1664 for (t = CONSTRUCTOR_ELTS (init); t ; t = TREE_CHAIN (t))
1665 {
1666 tree purpose = TREE_PURPOSE (t);
1667 tree value = TREE_VALUE (t);
1668
1669 if (TREE_CODE (purpose) == RANGE_EXPR)
1670 {
1671 tree lower = TREE_OPERAND (purpose, 0);
1672 tree upper = TREE_OPERAND (purpose, 1);
1673
1674 while (1)
1675 {
1676 sub = lookup_element (elt, lower, NULL, NO_INSERT);
1677 if (sub != NULL)
1678 result &= generate_element_init_1 (sub, value, list_p);
1679 if (tree_int_cst_equal (lower, upper))
1680 break;
1681 lower = int_const_binop (PLUS_EXPR, lower,
1682 integer_one_node, true);
1683 }
1684 }
1685 else
1686 {
1687 sub = lookup_element (elt, purpose, NULL, NO_INSERT);
1688 if (sub != NULL)
1689 result &= generate_element_init_1 (sub, value, list_p);
1690 }
1691 }
1692 break;
1693
1694 default:
1695 elt->visited = true;
1696 result = false;
1697 }
1698
1699 return result;
1700 }
1701
1702 /* A wrapper function for generate_element_init_1 that handles cleanup after
1703 gimplification. */
1704
1705 static bool
1706 generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
1707 {
1708 bool ret;
1709
1710 push_gimplify_context ();
1711 ret = generate_element_init_1 (elt, init, list_p);
1712 pop_gimplify_context (NULL);
1713
1714 /* The replacement can expose previously unreferenced variables. */
1715 if (ret && *list_p)
1716 {
1717 tree_stmt_iterator i;
1718 size_t old, new, j;
1719
1720 old = num_referenced_vars;
1721
1722 for (i = tsi_start (*list_p); !tsi_end_p (i); tsi_next (&i))
1723 find_new_referenced_vars (tsi_stmt_ptr (i));
1724
1725 new = num_referenced_vars;
1726 for (j = old; j < new; ++j)
1727 mark_sym_for_renaming (referenced_var (j));
1728 }
1729
1730 return ret;
1731 }
1732
1733 /* Insert STMT on all the outgoing edges out of BB. Note that if BB
1734 has more than one edge, STMT will be replicated for each edge. Also,
1735 abnormal edges will be ignored. */
1736
1737 void
1738 insert_edge_copies (tree stmt, basic_block bb)
1739 {
1740 edge e;
1741 edge_iterator ei;
1742 bool first_copy;
1743
1744 first_copy = true;
1745 FOR_EACH_EDGE (e, ei, bb->succs)
1746 {
1747 /* We don't need to insert copies on abnormal edges. The
1748 value of the scalar replacement is not guaranteed to
1749 be valid through an abnormal edge. */
1750 if (!(e->flags & EDGE_ABNORMAL))
1751 {
1752 if (first_copy)
1753 {
1754 bsi_insert_on_edge (e, stmt);
1755 first_copy = false;
1756 }
1757 else
1758 bsi_insert_on_edge (e, unsave_expr_now (stmt));
1759 }
1760 }
1761 }
1762
1763 /* Helper function to insert LIST before BSI, and set up line number info. */
1764
1765 static void
1766 sra_insert_before (block_stmt_iterator *bsi, tree list)
1767 {
1768 tree stmt = bsi_stmt (*bsi);
1769
1770 if (EXPR_HAS_LOCATION (stmt))
1771 annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
1772 bsi_insert_before (bsi, list, BSI_SAME_STMT);
1773 }
1774
1775 /* Similarly, but insert after BSI. Handles insertion onto edges as well. */
1776
1777 static void
1778 sra_insert_after (block_stmt_iterator *bsi, tree list)
1779 {
1780 tree stmt = bsi_stmt (*bsi);
1781
1782 if (EXPR_HAS_LOCATION (stmt))
1783 annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
1784
1785 if (stmt_ends_bb_p (stmt))
1786 insert_edge_copies (list, bsi->bb);
1787 else
1788 bsi_insert_after (bsi, list, BSI_SAME_STMT);
1789 }
1790
1791 /* Similarly, but replace the statement at BSI. */
1792
1793 static void
1794 sra_replace (block_stmt_iterator *bsi, tree list)
1795 {
1796 sra_insert_before (bsi, list);
1797 bsi_remove (bsi);
1798 if (bsi_end_p (*bsi))
1799 *bsi = bsi_last (bsi->bb);
1800 else
1801 bsi_prev (bsi);
1802 }
1803
1804 /* Scalarize a USE. To recap, this is either a simple reference to ELT,
1805 if elt is scalar, or some occurrence of ELT that requires a complete
1806 aggregate. IS_OUTPUT is true if ELT is being modified. */
1807
1808 static void
1809 scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
1810 bool is_output)
1811 {
1812 tree list = NULL, stmt = bsi_stmt (*bsi);
1813
1814 if (elt->replacement)
1815 {
1816 /* If we have a replacement, then updating the reference is as
1817 simple as modifying the existing statement in place. */
1818 if (is_output)
1819 mark_all_v_defs (stmt);
1820 *expr_p = elt->replacement;
1821 update_stmt (stmt);
1822 }
1823 else
1824 {
1825 /* Otherwise we need some copies. If ELT is being read, then we want
1826 to store all (modified) sub-elements back into the structure before
1827 the reference takes place. If ELT is being written, then we want to
1828 load the changed values back into our shadow variables. */
1829 /* ??? We don't check modified for reads, we just always write all of
1830 the values. We should be able to record the SSA number of the VOP
1831 for which the values were last read. If that number matches the
1832 SSA number of the VOP in the current statement, then we needn't
1833 emit an assignment. This would also eliminate double writes when
1834 a structure is passed as more than one argument to a function call.
1835 This optimization would be most effective if sra_walk_function
1836 processed the blocks in dominator order. */
1837
1838 generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
1839 if (list == NULL)
1840 return;
1841 mark_all_v_defs (list);
1842 if (is_output)
1843 sra_insert_after (bsi, list);
1844 else
1845 sra_insert_before (bsi, list);
1846 }
1847 }
1848
1849 /* Scalarize a COPY. To recap, this is an assignment statement between
1850 two scalarizable references, LHS_ELT and RHS_ELT. */
1851
1852 static void
1853 scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1854 block_stmt_iterator *bsi)
1855 {
1856 tree list, stmt;
1857
1858 if (lhs_elt->replacement && rhs_elt->replacement)
1859 {
1860 /* If we have two scalar operands, modify the existing statement. */
1861 stmt = bsi_stmt (*bsi);
1862
1863 /* See the commentary in sra_walk_function concerning
1864 RETURN_EXPR, and why we should never see one here. */
1865 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
1866
1867 TREE_OPERAND (stmt, 0) = lhs_elt->replacement;
1868 TREE_OPERAND (stmt, 1) = rhs_elt->replacement;
1869 update_stmt (stmt);
1870 }
1871 else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
1872 {
1873 /* If either side requires a block copy, then sync the RHS back
1874 to the original structure, leave the original assignment
1875 statement (which will perform the block copy), then load the
1876 LHS values out of its now-updated original structure. */
1877 /* ??? Could perform a modified pair-wise element copy. That
1878 would at least allow those elements that are instantiated in
1879 both structures to be optimized well. */
1880
1881 list = NULL;
1882 generate_copy_inout (rhs_elt, false,
1883 generate_element_ref (rhs_elt), &list);
1884 if (list)
1885 {
1886 mark_all_v_defs (list);
1887 sra_insert_before (bsi, list);
1888 }
1889
1890 list = NULL;
1891 generate_copy_inout (lhs_elt, true,
1892 generate_element_ref (lhs_elt), &list);
1893 if (list)
1894 {
1895 mark_all_v_defs (list);
1896 sra_insert_after (bsi, list);
1897 }
1898 }
1899 else
1900 {
1901 /* Otherwise both sides must be fully instantiated. In which
1902 case perform pair-wise element assignments and replace the
1903 original block copy statement. */
1904
1905 stmt = bsi_stmt (*bsi);
1906 mark_all_v_defs (stmt);
1907
1908 list = NULL;
1909 generate_element_copy (lhs_elt, rhs_elt, &list);
1910 gcc_assert (list);
1911 mark_all_v_defs (list);
1912 sra_replace (bsi, list);
1913 }
1914 }
1915
1916 /* Scalarize an INIT. To recap, this is an assignment to a scalarizable
1917 reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
1918 COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
1919 CONSTRUCTOR. */
1920
1921 static void
1922 scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
1923 {
1924 bool result = true;
1925 tree list = NULL;
1926
1927 /* Generate initialization statements for all members extant in the RHS. */
1928 if (rhs)
1929 {
1930 /* Unshare the expression just in case this is from a decl's initial. */
1931 rhs = unshare_expr (rhs);
1932 result = generate_element_init (lhs_elt, rhs, &list);
1933 }
1934
1935 /* CONSTRUCTOR is defined such that any member not mentioned is assigned
1936 a zero value. Initialize the rest of the instantiated elements. */
1937 generate_element_zero (lhs_elt, &list);
1938
1939 if (!result)
1940 {
1941 /* If we failed to convert the entire initializer, then we must
1942 leave the structure assignment in place and must load values
1943 from the structure into the slots for which we did not find
1944 constants. The easiest way to do this is to generate a complete
1945 copy-out, and then follow that with the constant assignments
1946 that we were able to build. DCE will clean things up. */
1947 tree list0 = NULL;
1948 generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
1949 &list0);
1950 append_to_statement_list (list, &list0);
1951 list = list0;
1952 }
1953
1954 if (lhs_elt->use_block_copy || !result)
1955 {
1956 /* Since LHS is not fully instantiated, we must leave the structure
1957 assignment in place. Treating this case differently from a USE
1958 exposes constants to later optimizations. */
1959 if (list)
1960 {
1961 mark_all_v_defs (list);
1962 sra_insert_after (bsi, list);
1963 }
1964 }
1965 else
1966 {
1967 /* The LHS is fully instantiated. The list of initializations
1968 replaces the original structure assignment. */
1969 gcc_assert (list);
1970 mark_all_v_defs (bsi_stmt (*bsi));
1971 mark_all_v_defs (list);
1972 sra_replace (bsi, list);
1973 }
1974 }
1975
1976 /* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
1977 on all INDIRECT_REFs. */
1978
1979 static tree
1980 mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1981 {
1982 tree t = *tp;
1983
1984 if (TREE_CODE (t) == INDIRECT_REF)
1985 {
1986 TREE_THIS_NOTRAP (t) = 1;
1987 *walk_subtrees = 0;
1988 }
1989 else if (IS_TYPE_OR_DECL_P (t))
1990 *walk_subtrees = 0;
1991
1992 return NULL;
1993 }
1994
1995 /* Scalarize a LDST. To recap, this is an assignment between one scalarizable
1996 reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
1997 if ELT is on the left-hand side. */
1998
1999 static void
2000 scalarize_ldst (struct sra_elt *elt, tree other,
2001 block_stmt_iterator *bsi, bool is_output)
2002 {
2003 /* Shouldn't have gotten called for a scalar. */
2004 gcc_assert (!elt->replacement);
2005
2006 if (elt->use_block_copy)
2007 {
2008 /* Since ELT is not fully instantiated, we have to leave the
2009 block copy in place. Treat this as a USE. */
2010 scalarize_use (elt, NULL, bsi, is_output);
2011 }
2012 else
2013 {
2014 /* The interesting case is when ELT is fully instantiated. In this
2015 case we can have each element stored/loaded directly to/from the
2016 corresponding slot in OTHER. This avoids a block copy. */
2017
2018 tree list = NULL, stmt = bsi_stmt (*bsi);
2019
2020 mark_all_v_defs (stmt);
2021 generate_copy_inout (elt, is_output, other, &list);
2022 mark_all_v_defs (list);
2023 gcc_assert (list);
2024
2025 /* Preserve EH semantics. */
2026 if (stmt_ends_bb_p (stmt))
2027 {
2028 tree_stmt_iterator tsi;
2029 tree first;
2030
2031 /* Extract the first statement from LIST. */
2032 tsi = tsi_start (list);
2033 first = tsi_stmt (tsi);
2034 tsi_delink (&tsi);
2035
2036 /* Replace the old statement with this new representative. */
2037 bsi_replace (bsi, first, true);
2038
2039 if (!tsi_end_p (tsi))
2040 {
2041 /* If any reference would trap, then they all would. And more
2042 to the point, the first would. Therefore none of the rest
2043 will trap since the first didn't. Indicate this by
2044 iterating over the remaining statements and set
2045 TREE_THIS_NOTRAP in all INDIRECT_REFs. */
2046 do
2047 {
2048 walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
2049 tsi_next (&tsi);
2050 }
2051 while (!tsi_end_p (tsi));
2052
2053 insert_edge_copies (list, bsi->bb);
2054 }
2055 }
2056 else
2057 sra_replace (bsi, list);
2058 }
2059 }
2060
2061 /* Generate initializations for all scalarizable parameters. */
2062
2063 static void
2064 scalarize_parms (void)
2065 {
2066 tree list = NULL;
2067 unsigned i;
2068 bitmap_iterator bi;
2069
2070 EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
2071 {
2072 tree var = referenced_var (i);
2073 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
2074 generate_copy_inout (elt, true, var, &list);
2075 }
2076
2077 if (list)
2078 {
2079 insert_edge_copies (list, ENTRY_BLOCK_PTR);
2080 mark_all_v_defs (list);
2081 }
2082 }
2083
2084 /* Entry point to phase 4. Update the function to match replacements. */
2085
2086 static void
2087 scalarize_function (void)
2088 {
2089 static const struct sra_walk_fns fns = {
2090 scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
2091 };
2092
2093 sra_walk_function (&fns);
2094 scalarize_parms ();
2095 bsi_commit_edge_inserts ();
2096 }
2097
2098 \f
2099 /* Debug helper function. Print ELT in a nice human-readable format. */
2100
2101 static void
2102 dump_sra_elt_name (FILE *f, struct sra_elt *elt)
2103 {
2104 if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
2105 {
2106 fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
2107 dump_sra_elt_name (f, elt->parent);
2108 }
2109 else
2110 {
2111 if (elt->parent)
2112 dump_sra_elt_name (f, elt->parent);
2113 if (DECL_P (elt->element))
2114 {
2115 if (TREE_CODE (elt->element) == FIELD_DECL)
2116 fputc ('.', f);
2117 print_generic_expr (f, elt->element, dump_flags);
2118 }
2119 else
2120 fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
2121 TREE_INT_CST_LOW (elt->element));
2122 }
2123 }
2124
2125 /* Likewise, but callable from the debugger. */
2126
2127 void
2128 debug_sra_elt_name (struct sra_elt *elt)
2129 {
2130 dump_sra_elt_name (stderr, elt);
2131 fputc ('\n', stderr);
2132 }
2133
2134 /* Main entry point. */
2135
2136 static void
2137 tree_sra (void)
2138 {
2139 /* Initialize local variables. */
2140 gcc_obstack_init (&sra_obstack);
2141 sra_candidates = BITMAP_ALLOC (NULL);
2142 needs_copy_in = BITMAP_ALLOC (NULL);
2143 sra_type_decomp_cache = BITMAP_ALLOC (NULL);
2144 sra_type_inst_cache = BITMAP_ALLOC (NULL);
2145 sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
2146
2147 /* Scan. If we find anything, instantiate and scalarize. */
2148 if (find_candidates_for_sra ())
2149 {
2150 scan_function ();
2151 decide_instantiations ();
2152 scalarize_function ();
2153 }
2154
2155 /* Free allocated memory. */
2156 htab_delete (sra_map);
2157 sra_map = NULL;
2158 BITMAP_FREE (sra_candidates);
2159 BITMAP_FREE (needs_copy_in);
2160 BITMAP_FREE (sra_type_decomp_cache);
2161 BITMAP_FREE (sra_type_inst_cache);
2162 obstack_free (&sra_obstack, NULL);
2163 }
2164
2165 static bool
2166 gate_sra (void)
2167 {
2168 return flag_tree_sra != 0;
2169 }
2170
2171 struct tree_opt_pass pass_sra =
2172 {
2173 "sra", /* name */
2174 gate_sra, /* gate */
2175 tree_sra, /* execute */
2176 NULL, /* sub */
2177 NULL, /* next */
2178 0, /* static_pass_number */
2179 TV_TREE_SRA, /* tv_id */
2180 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2181 0, /* properties_provided */
2182 0, /* properties_destroyed */
2183 0, /* todo_flags_start */
2184 TODO_dump_func | TODO_update_ssa
2185 | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2186 0 /* letter */
2187 };