re PR c++/23167 (internal compiler error: in create_tmp_var)
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
5 Contributed by Diego Novillo <dnovillo@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30
31 /* These RTL headers are needed for basic-block.h. */
32 #include "rtl.h"
33 #include "tm_p.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "diagnostic.h"
37 #include "langhooks.h"
38 #include "tree-inline.h"
39 #include "tree-flow.h"
40 #include "tree-gimple.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "timevar.h"
44 #include "flags.h"
45 #include "bitmap.h"
46 #include "obstack.h"
47 #include "target.h"
48 /* expr.h is needed for MOVE_RATIO. */
49 #include "expr.h"
50 #include "params.h"
51
52
53 /* This object of this pass is to replace a non-addressable aggregate with a
54 set of independent variables. Most of the time, all of these variables
55 will be scalars. But a secondary objective is to break up larger
56 aggregates into smaller aggregates. In the process we may find that some
57 bits of the larger aggregate can be deleted as unreferenced.
58
59 This substitution is done globally. More localized substitutions would
60 be the purvey of a load-store motion pass.
61
62 The optimization proceeds in phases:
63
64 (1) Identify variables that have types that are candidates for
65 decomposition.
66
67 (2) Scan the function looking for the ways these variables are used.
68 In particular we're interested in the number of times a variable
69 (or member) is needed as a complete unit, and the number of times
70 a variable (or member) is copied.
71
72 (3) Based on the usage profile, instantiate substitution variables.
73
74 (4) Scan the function making replacements.
75 */
76
77
78 /* The set of aggregate variables that are candidates for scalarization. */
79 static bitmap sra_candidates;
80
81 /* Set of scalarizable PARM_DECLs that need copy-in operations at the
82 beginning of the function. */
83 static bitmap needs_copy_in;
84
85 /* Sets of bit pairs that cache type decomposition and instantiation. */
86 static bitmap sra_type_decomp_cache;
87 static bitmap sra_type_inst_cache;
88
89 /* One of these structures is created for each candidate aggregate
90 and each (accessed) member of such an aggregate. */
91 struct sra_elt
92 {
93 /* A tree of the elements. Used when we want to traverse everything. */
94 struct sra_elt *parent;
95 struct sra_elt *children;
96 struct sra_elt *sibling;
97
98 /* If this element is a root, then this is the VAR_DECL. If this is
99 a sub-element, this is some token used to identify the reference.
100 In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
101 of an ARRAY_REF, this is the (constant) index. In the case of a
102 complex number, this is a zero or one. */
103 tree element;
104
105 /* The type of the element. */
106 tree type;
107
108 /* A VAR_DECL, for any sub-element we've decided to replace. */
109 tree replacement;
110
111 /* The number of times the element is referenced as a whole. I.e.
112 given "a.b.c", this would be incremented for C, but not for A or B. */
113 unsigned int n_uses;
114
115 /* The number of times the element is copied to or from another
116 scalarizable element. */
117 unsigned int n_copies;
118
119 /* True if TYPE is scalar. */
120 bool is_scalar;
121
122 /* True if we saw something about this element that prevents scalarization,
123 such as non-constant indexing. */
124 bool cannot_scalarize;
125
126 /* True if we've decided that structure-to-structure assignment
127 should happen via memcpy and not per-element. */
128 bool use_block_copy;
129
130 /* A flag for use with/after random access traversals. */
131 bool visited;
132 };
133
134 /* Random access to the child of a parent is performed by hashing.
135 This prevents quadratic behavior, and allows SRA to function
136 reasonably on larger records. */
137 static htab_t sra_map;
138
139 /* All structures are allocated out of the following obstack. */
140 static struct obstack sra_obstack;
141
142 /* Debugging functions. */
143 static void dump_sra_elt_name (FILE *, struct sra_elt *);
144 extern void debug_sra_elt_name (struct sra_elt *);
145
146 /* Forward declarations. */
147 static tree generate_element_ref (struct sra_elt *);
148 \f
149 /* Return true if DECL is an SRA candidate. */
150
151 static bool
152 is_sra_candidate_decl (tree decl)
153 {
154 return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
155 }
156
157 /* Return true if TYPE is a scalar type. */
158
159 static bool
160 is_sra_scalar_type (tree type)
161 {
162 enum tree_code code = TREE_CODE (type);
163 return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
164 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
165 || code == CHAR_TYPE || code == POINTER_TYPE || code == OFFSET_TYPE
166 || code == REFERENCE_TYPE);
167 }
168
169 /* Return true if TYPE can be decomposed into a set of independent variables.
170
171 Note that this doesn't imply that all elements of TYPE can be
172 instantiated, just that if we decide to break up the type into
173 separate pieces that it can be done. */
174
175 bool
176 sra_type_can_be_decomposed_p (tree type)
177 {
178 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
179 tree t;
180
181 /* Avoid searching the same type twice. */
182 if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
183 return true;
184 if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
185 return false;
186
187 /* The type must have a definite nonzero size. */
188 if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
189 || integer_zerop (TYPE_SIZE (type)))
190 goto fail;
191
192 /* The type must be a non-union aggregate. */
193 switch (TREE_CODE (type))
194 {
195 case RECORD_TYPE:
196 {
197 bool saw_one_field = false;
198
199 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
200 if (TREE_CODE (t) == FIELD_DECL)
201 {
202 /* Reject incorrectly represented bit fields. */
203 if (DECL_BIT_FIELD (t)
204 && (tree_low_cst (DECL_SIZE (t), 1)
205 != TYPE_PRECISION (TREE_TYPE (t))))
206 goto fail;
207
208 saw_one_field = true;
209 }
210
211 /* Record types must have at least one field. */
212 if (!saw_one_field)
213 goto fail;
214 }
215 break;
216
217 case ARRAY_TYPE:
218 /* Array types must have a fixed lower and upper bound. */
219 t = TYPE_DOMAIN (type);
220 if (t == NULL)
221 goto fail;
222 if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
223 goto fail;
224 if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
225 goto fail;
226 break;
227
228 case COMPLEX_TYPE:
229 break;
230
231 default:
232 goto fail;
233 }
234
235 bitmap_set_bit (sra_type_decomp_cache, cache+0);
236 return true;
237
238 fail:
239 bitmap_set_bit (sra_type_decomp_cache, cache+1);
240 return false;
241 }
242
243 /* Return true if DECL can be decomposed into a set of independent
244 (though not necessarily scalar) variables. */
245
246 static bool
247 decl_can_be_decomposed_p (tree var)
248 {
249 /* Early out for scalars. */
250 if (is_sra_scalar_type (TREE_TYPE (var)))
251 return false;
252
253 /* The variable must not be aliased. */
254 if (!is_gimple_non_addressable (var))
255 {
256 if (dump_file && (dump_flags & TDF_DETAILS))
257 {
258 fprintf (dump_file, "Cannot scalarize variable ");
259 print_generic_expr (dump_file, var, dump_flags);
260 fprintf (dump_file, " because it must live in memory\n");
261 }
262 return false;
263 }
264
265 /* The variable must not be volatile. */
266 if (TREE_THIS_VOLATILE (var))
267 {
268 if (dump_file && (dump_flags & TDF_DETAILS))
269 {
270 fprintf (dump_file, "Cannot scalarize variable ");
271 print_generic_expr (dump_file, var, dump_flags);
272 fprintf (dump_file, " because it is declared volatile\n");
273 }
274 return false;
275 }
276
277 /* We must be able to decompose the variable's type. */
278 if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
279 {
280 if (dump_file && (dump_flags & TDF_DETAILS))
281 {
282 fprintf (dump_file, "Cannot scalarize variable ");
283 print_generic_expr (dump_file, var, dump_flags);
284 fprintf (dump_file, " because its type cannot be decomposed\n");
285 }
286 return false;
287 }
288
289 return true;
290 }
291
292 /* Return true if TYPE can be *completely* decomposed into scalars. */
293
294 static bool
295 type_can_instantiate_all_elements (tree type)
296 {
297 if (is_sra_scalar_type (type))
298 return true;
299 if (!sra_type_can_be_decomposed_p (type))
300 return false;
301
302 switch (TREE_CODE (type))
303 {
304 case RECORD_TYPE:
305 {
306 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
307 tree f;
308
309 if (bitmap_bit_p (sra_type_inst_cache, cache+0))
310 return true;
311 if (bitmap_bit_p (sra_type_inst_cache, cache+1))
312 return false;
313
314 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
315 if (TREE_CODE (f) == FIELD_DECL)
316 {
317 if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
318 {
319 bitmap_set_bit (sra_type_inst_cache, cache+1);
320 return false;
321 }
322 }
323
324 bitmap_set_bit (sra_type_inst_cache, cache+0);
325 return true;
326 }
327
328 case ARRAY_TYPE:
329 return type_can_instantiate_all_elements (TREE_TYPE (type));
330
331 case COMPLEX_TYPE:
332 return true;
333
334 default:
335 gcc_unreachable ();
336 }
337 }
338
339 /* Test whether ELT or some sub-element cannot be scalarized. */
340
341 static bool
342 can_completely_scalarize_p (struct sra_elt *elt)
343 {
344 struct sra_elt *c;
345
346 if (elt->cannot_scalarize)
347 return false;
348
349 for (c = elt->children; c ; c = c->sibling)
350 if (!can_completely_scalarize_p (c))
351 return false;
352
353 return true;
354 }
355
356 \f
357 /* A simplified tree hashing algorithm that only handles the types of
358 trees we expect to find in sra_elt->element. */
359
360 static hashval_t
361 sra_hash_tree (tree t)
362 {
363 hashval_t h;
364
365 switch (TREE_CODE (t))
366 {
367 case VAR_DECL:
368 case PARM_DECL:
369 case RESULT_DECL:
370 h = DECL_UID (t);
371 break;
372
373 case INTEGER_CST:
374 h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
375 break;
376
377 case FIELD_DECL:
378 /* We can have types that are compatible, but have different member
379 lists, so we can't hash fields by ID. Use offsets instead. */
380 h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
381 h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
382 break;
383
384 default:
385 gcc_unreachable ();
386 }
387
388 return h;
389 }
390
391 /* Hash function for type SRA_PAIR. */
392
393 static hashval_t
394 sra_elt_hash (const void *x)
395 {
396 const struct sra_elt *e = x;
397 const struct sra_elt *p;
398 hashval_t h;
399
400 h = sra_hash_tree (e->element);
401
402 /* Take into account everything back up the chain. Given that chain
403 lengths are rarely very long, this should be acceptable. If we
404 truly identify this as a performance problem, it should work to
405 hash the pointer value "e->parent". */
406 for (p = e->parent; p ; p = p->parent)
407 h = (h * 65521) ^ sra_hash_tree (p->element);
408
409 return h;
410 }
411
412 /* Equality function for type SRA_PAIR. */
413
414 static int
415 sra_elt_eq (const void *x, const void *y)
416 {
417 const struct sra_elt *a = x;
418 const struct sra_elt *b = y;
419 tree ae, be;
420
421 if (a->parent != b->parent)
422 return false;
423
424 ae = a->element;
425 be = b->element;
426
427 if (ae == be)
428 return true;
429 if (TREE_CODE (ae) != TREE_CODE (be))
430 return false;
431
432 switch (TREE_CODE (ae))
433 {
434 case VAR_DECL:
435 case PARM_DECL:
436 case RESULT_DECL:
437 /* These are all pointer unique. */
438 return false;
439
440 case INTEGER_CST:
441 /* Integers are not pointer unique, so compare their values. */
442 return tree_int_cst_equal (ae, be);
443
444 case FIELD_DECL:
445 /* Fields are unique within a record, but not between
446 compatible records. */
447 if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
448 return false;
449 return fields_compatible_p (ae, be);
450
451 default:
452 gcc_unreachable ();
453 }
454 }
455
456 /* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
457 may be null, in which case CHILD must be a DECL. */
458
459 static struct sra_elt *
460 lookup_element (struct sra_elt *parent, tree child, tree type,
461 enum insert_option insert)
462 {
463 struct sra_elt dummy;
464 struct sra_elt **slot;
465 struct sra_elt *elt;
466
467 dummy.parent = parent;
468 dummy.element = child;
469
470 slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
471 if (!slot && insert == NO_INSERT)
472 return NULL;
473
474 elt = *slot;
475 if (!elt && insert == INSERT)
476 {
477 *slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
478 memset (elt, 0, sizeof (*elt));
479
480 elt->parent = parent;
481 elt->element = child;
482 elt->type = type;
483 elt->is_scalar = is_sra_scalar_type (type);
484
485 if (parent)
486 {
487 elt->sibling = parent->children;
488 parent->children = elt;
489 }
490
491 /* If this is a parameter, then if we want to scalarize, we have
492 one copy from the true function parameter. Count it now. */
493 if (TREE_CODE (child) == PARM_DECL)
494 {
495 elt->n_copies = 1;
496 bitmap_set_bit (needs_copy_in, DECL_UID (child));
497 }
498 }
499
500 return elt;
501 }
502
503 /* Return true if the ARRAY_REF in EXPR is a constant, in bounds access. */
504
505 static bool
506 is_valid_const_index (tree expr)
507 {
508 tree dom, t, index = TREE_OPERAND (expr, 1);
509
510 if (TREE_CODE (index) != INTEGER_CST)
511 return false;
512
513 /* Watch out for stupid user tricks, indexing outside the array.
514
515 Careful, we're not called only on scalarizable types, so do not
516 assume constant array bounds. We needn't do anything with such
517 cases, since they'll be referring to objects that we should have
518 already rejected for scalarization, so returning false is fine. */
519
520 dom = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (expr, 0)));
521 if (dom == NULL)
522 return false;
523
524 t = TYPE_MIN_VALUE (dom);
525 if (!t || TREE_CODE (t) != INTEGER_CST)
526 return false;
527 if (tree_int_cst_lt (index, t))
528 return false;
529
530 t = TYPE_MAX_VALUE (dom);
531 if (!t || TREE_CODE (t) != INTEGER_CST)
532 return false;
533 if (tree_int_cst_lt (t, index))
534 return false;
535
536 return true;
537 }
538
539 /* Create or return the SRA_ELT structure for EXPR if the expression
540 refers to a scalarizable variable. */
541
542 static struct sra_elt *
543 maybe_lookup_element_for_expr (tree expr)
544 {
545 struct sra_elt *elt;
546 tree child;
547
548 switch (TREE_CODE (expr))
549 {
550 case VAR_DECL:
551 case PARM_DECL:
552 case RESULT_DECL:
553 if (is_sra_candidate_decl (expr))
554 return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
555 return NULL;
556
557 case ARRAY_REF:
558 /* We can't scalarize variable array indicies. */
559 if (is_valid_const_index (expr))
560 child = TREE_OPERAND (expr, 1);
561 else
562 return NULL;
563 break;
564
565 case COMPONENT_REF:
566 /* Don't look through unions. */
567 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) != RECORD_TYPE)
568 return NULL;
569 child = TREE_OPERAND (expr, 1);
570 break;
571
572 case REALPART_EXPR:
573 child = integer_zero_node;
574 break;
575 case IMAGPART_EXPR:
576 child = integer_one_node;
577 break;
578
579 default:
580 return NULL;
581 }
582
583 elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
584 if (elt)
585 return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
586 return NULL;
587 }
588
589 \f
590 /* Functions to walk just enough of the tree to see all scalarizable
591 references, and categorize them. */
592
593 /* A set of callbacks for phases 2 and 4. They'll be invoked for the
594 various kinds of references seen. In all cases, *BSI is an iterator
595 pointing to the statement being processed. */
596 struct sra_walk_fns
597 {
598 /* Invoked when ELT is required as a unit. Note that ELT might refer to
599 a leaf node, in which case this is a simple scalar reference. *EXPR_P
600 points to the location of the expression. IS_OUTPUT is true if this
601 is a left-hand-side reference. */
602 void (*use) (struct sra_elt *elt, tree *expr_p,
603 block_stmt_iterator *bsi, bool is_output);
604
605 /* Invoked when we have a copy between two scalarizable references. */
606 void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
607 block_stmt_iterator *bsi);
608
609 /* Invoked when ELT is initialized from a constant. VALUE may be NULL,
610 in which case it should be treated as an empty CONSTRUCTOR. */
611 void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);
612
613 /* Invoked when we have a copy between one scalarizable reference ELT
614 and one non-scalarizable reference OTHER. IS_OUTPUT is true if ELT
615 is on the left-hand side. */
616 void (*ldst) (struct sra_elt *elt, tree other,
617 block_stmt_iterator *bsi, bool is_output);
618
619 /* True during phase 2, false during phase 4. */
620 /* ??? This is a hack. */
621 bool initial_scan;
622 };
623
624 #ifdef ENABLE_CHECKING
625 /* Invoked via walk_tree, if *TP contains a candidate decl, return it. */
626
627 static tree
628 sra_find_candidate_decl (tree *tp, int *walk_subtrees,
629 void *data ATTRIBUTE_UNUSED)
630 {
631 tree t = *tp;
632 enum tree_code code = TREE_CODE (t);
633
634 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
635 {
636 *walk_subtrees = 0;
637 if (is_sra_candidate_decl (t))
638 return t;
639 }
640 else if (TYPE_P (t))
641 *walk_subtrees = 0;
642
643 return NULL;
644 }
645 #endif
646
647 /* Walk most expressions looking for a scalarizable aggregate.
648 If we find one, invoke FNS->USE. */
649
650 static void
651 sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
652 const struct sra_walk_fns *fns)
653 {
654 tree expr = *expr_p;
655 tree inner = expr;
656 bool disable_scalarization = false;
657
658 /* We're looking to collect a reference expression between EXPR and INNER,
659 such that INNER is a scalarizable decl and all other nodes through EXPR
660 are references that we can scalarize. If we come across something that
661 we can't scalarize, we reset EXPR. This has the effect of making it
662 appear that we're referring to the larger expression as a whole. */
663
664 while (1)
665 switch (TREE_CODE (inner))
666 {
667 case VAR_DECL:
668 case PARM_DECL:
669 case RESULT_DECL:
670 /* If there is a scalarizable decl at the bottom, then process it. */
671 if (is_sra_candidate_decl (inner))
672 {
673 struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
674 if (disable_scalarization)
675 elt->cannot_scalarize = true;
676 else
677 fns->use (elt, expr_p, bsi, is_output);
678 }
679 return;
680
681 case ARRAY_REF:
682 /* Non-constant index means any member may be accessed. Prevent the
683 expression from being scalarized. If we were to treat this as a
684 reference to the whole array, we can wind up with a single dynamic
685 index reference inside a loop being overridden by several constant
686 index references during loop setup. It's possible that this could
687 be avoided by using dynamic usage counts based on BB trip counts
688 (based on loop analysis or profiling), but that hardly seems worth
689 the effort. */
690 /* ??? Hack. Figure out how to push this into the scan routines
691 without duplicating too much code. */
692 if (!is_valid_const_index (inner))
693 {
694 disable_scalarization = true;
695 goto use_all;
696 }
697 /* ??? Are we assured that non-constant bounds and stride will have
698 the same value everywhere? I don't think Fortran will... */
699 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
700 goto use_all;
701 inner = TREE_OPERAND (inner, 0);
702 break;
703
704 case COMPONENT_REF:
705 /* A reference to a union member constitutes a reference to the
706 entire union. */
707 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) != RECORD_TYPE)
708 goto use_all;
709 /* ??? See above re non-constant stride. */
710 if (TREE_OPERAND (inner, 2))
711 goto use_all;
712 inner = TREE_OPERAND (inner, 0);
713 break;
714
715 case REALPART_EXPR:
716 case IMAGPART_EXPR:
717 inner = TREE_OPERAND (inner, 0);
718 break;
719
720 case BIT_FIELD_REF:
721 /* A bit field reference (access to *multiple* fields simultaneously)
722 is not currently scalarized. Consider this an access to the
723 complete outer element, to which walk_tree will bring us next. */
724 goto use_all;
725
726 case ARRAY_RANGE_REF:
727 /* Similarly, a subrange reference is used to modify indexing. Which
728 means that the canonical element names that we have won't work. */
729 goto use_all;
730
731 case VIEW_CONVERT_EXPR:
732 case NOP_EXPR:
733 /* Similarly, a view/nop explicitly wants to look at an object in a
734 type other than the one we've scalarized. */
735 goto use_all;
736
737 case WITH_SIZE_EXPR:
738 /* This is a transparent wrapper. The entire inner expression really
739 is being used. */
740 goto use_all;
741
742 use_all:
743 expr_p = &TREE_OPERAND (inner, 0);
744 inner = expr = *expr_p;
745 break;
746
747 default:
748 #ifdef ENABLE_CHECKING
749 /* Validate that we're not missing any references. */
750 gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
751 #endif
752 return;
753 }
754 }
755
756 /* Walk a TREE_LIST of values looking for scalarizable aggregates.
757 If we find one, invoke FNS->USE. */
758
759 static void
760 sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
761 const struct sra_walk_fns *fns)
762 {
763 tree op;
764 for (op = list; op ; op = TREE_CHAIN (op))
765 sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
766 }
767
768 /* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
769 If we find one, invoke FNS->USE. */
770
771 static void
772 sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
773 const struct sra_walk_fns *fns)
774 {
775 sra_walk_tree_list (TREE_OPERAND (expr, 1), bsi, false, fns);
776 }
777
778 /* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
779 aggregates. If we find one, invoke FNS->USE. */
780
781 static void
782 sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
783 const struct sra_walk_fns *fns)
784 {
785 sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
786 sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
787 }
788
789 /* Walk a MODIFY_EXPR and categorize the assignment appropriately. */
790
791 static void
792 sra_walk_modify_expr (tree expr, block_stmt_iterator *bsi,
793 const struct sra_walk_fns *fns)
794 {
795 struct sra_elt *lhs_elt, *rhs_elt;
796 tree lhs, rhs;
797
798 lhs = TREE_OPERAND (expr, 0);
799 rhs = TREE_OPERAND (expr, 1);
800 lhs_elt = maybe_lookup_element_for_expr (lhs);
801 rhs_elt = maybe_lookup_element_for_expr (rhs);
802
803 /* If both sides are scalarizable, this is a COPY operation. */
804 if (lhs_elt && rhs_elt)
805 {
806 fns->copy (lhs_elt, rhs_elt, bsi);
807 return;
808 }
809
810 /* If the RHS is scalarizable, handle it. There are only two cases. */
811 if (rhs_elt)
812 {
813 if (!rhs_elt->is_scalar)
814 fns->ldst (rhs_elt, lhs, bsi, false);
815 else
816 fns->use (rhs_elt, &TREE_OPERAND (expr, 1), bsi, false);
817 }
818
819 /* If it isn't scalarizable, there may be scalarizable variables within, so
820 check for a call or else walk the RHS to see if we need to do any
821 copy-in operations. We need to do it before the LHS is scalarized so
822 that the statements get inserted in the proper place, before any
823 copy-out operations. */
824 else
825 {
826 tree call = get_call_expr_in (rhs);
827 if (call)
828 sra_walk_call_expr (call, bsi, fns);
829 else
830 sra_walk_expr (&TREE_OPERAND (expr, 1), bsi, false, fns);
831 }
832
833 /* Likewise, handle the LHS being scalarizable. We have cases similar
834 to those above, but also want to handle RHS being constant. */
835 if (lhs_elt)
836 {
837 /* If this is an assignment from a constant, or constructor, then
838 we have access to all of the elements individually. Invoke INIT. */
839 if (TREE_CODE (rhs) == COMPLEX_EXPR
840 || TREE_CODE (rhs) == COMPLEX_CST
841 || TREE_CODE (rhs) == CONSTRUCTOR)
842 fns->init (lhs_elt, rhs, bsi);
843
844 /* If this is an assignment from read-only memory, treat this as if
845 we'd been passed the constructor directly. Invoke INIT. */
846 else if (TREE_CODE (rhs) == VAR_DECL
847 && TREE_STATIC (rhs)
848 && TREE_READONLY (rhs)
849 && targetm.binds_local_p (rhs))
850 fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);
851
852 /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
853 The lvalue requirement prevents us from trying to directly scalarize
854 the result of a function call. Which would result in trying to call
855 the function multiple times, and other evil things. */
856 else if (!lhs_elt->is_scalar && is_gimple_addressable (rhs))
857 fns->ldst (lhs_elt, rhs, bsi, true);
858
859 /* Otherwise we're being used in some context that requires the
860 aggregate to be seen as a whole. Invoke USE. */
861 else
862 fns->use (lhs_elt, &TREE_OPERAND (expr, 0), bsi, true);
863 }
864
865 /* Similarly to above, LHS_ELT being null only means that the LHS as a
866 whole is not a scalarizable reference. There may be occurrences of
867 scalarizable variables within, which implies a USE. */
868 else
869 sra_walk_expr (&TREE_OPERAND (expr, 0), bsi, true, fns);
870 }
871
872 /* Entry point to the walk functions. Search the entire function,
873 invoking the callbacks in FNS on each of the references to
874 scalarizable variables. */
875
876 static void
877 sra_walk_function (const struct sra_walk_fns *fns)
878 {
879 basic_block bb;
880 block_stmt_iterator si, ni;
881
882 /* ??? Phase 4 could derive some benefit to walking the function in
883 dominator tree order. */
884
885 FOR_EACH_BB (bb)
886 for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
887 {
888 tree stmt, t;
889 stmt_ann_t ann;
890
891 stmt = bsi_stmt (si);
892 ann = stmt_ann (stmt);
893
894 ni = si;
895 bsi_next (&ni);
896
897 /* If the statement has no virtual operands, then it doesn't
898 make any structure references that we care about. */
899 if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
900 continue;
901
902 switch (TREE_CODE (stmt))
903 {
904 case RETURN_EXPR:
905 /* If we have "return <retval>" then the return value is
906 already exposed for our pleasure. Walk it as a USE to
907 force all the components back in place for the return.
908
909 If we have an embedded assignment, then <retval> is of
910 a type that gets returned in registers in this ABI, and
911 we do not wish to extend their lifetimes. Treat this
912 as a USE of the variable on the RHS of this assignment. */
913
914 t = TREE_OPERAND (stmt, 0);
915 if (TREE_CODE (t) == MODIFY_EXPR)
916 sra_walk_expr (&TREE_OPERAND (t, 1), &si, false, fns);
917 else
918 sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
919 break;
920
921 case MODIFY_EXPR:
922 sra_walk_modify_expr (stmt, &si, fns);
923 break;
924 case CALL_EXPR:
925 sra_walk_call_expr (stmt, &si, fns);
926 break;
927 case ASM_EXPR:
928 sra_walk_asm_expr (stmt, &si, fns);
929 break;
930
931 default:
932 break;
933 }
934 }
935 }
936 \f
937 /* Phase One: Scan all referenced variables in the program looking for
938 structures that could be decomposed. */
939
940 static bool
941 find_candidates_for_sra (void)
942 {
943 bool any_set = false;
944 tree var;
945 referenced_var_iterator rvi;
946
947 FOR_EACH_REFERENCED_VAR (var, rvi)
948 {
949 if (decl_can_be_decomposed_p (var))
950 {
951 bitmap_set_bit (sra_candidates, DECL_UID (var));
952 any_set = true;
953 }
954 }
955
956 return any_set;
957 }
958
959 \f
960 /* Phase Two: Scan all references to scalarizable variables. Count the
961 number of times they are used or copied respectively. */
962
963 /* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
964 considered a copy, because we can decompose the reference such that
965 the sub-elements needn't be contiguous. */
966
967 static void
968 scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
969 block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
970 bool is_output ATTRIBUTE_UNUSED)
971 {
972 elt->n_uses += 1;
973 }
974
975 static void
976 scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
977 block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
978 {
979 lhs_elt->n_copies += 1;
980 rhs_elt->n_copies += 1;
981 }
982
983 static void
984 scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
985 block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
986 {
987 lhs_elt->n_copies += 1;
988 }
989
990 static void
991 scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
992 block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
993 bool is_output ATTRIBUTE_UNUSED)
994 {
995 elt->n_copies += 1;
996 }
997
998 /* Dump the values we collected during the scanning phase. */
999
1000 static void
1001 scan_dump (struct sra_elt *elt)
1002 {
1003 struct sra_elt *c;
1004
1005 dump_sra_elt_name (dump_file, elt);
1006 fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1007
1008 for (c = elt->children; c ; c = c->sibling)
1009 scan_dump (c);
1010 }
1011
1012 /* Entry point to phase 2. Scan the entire function, building up
1013 scalarization data structures, recording copies and uses. */
1014
1015 static void
1016 scan_function (void)
1017 {
1018 static const struct sra_walk_fns fns = {
1019 scan_use, scan_copy, scan_init, scan_ldst, true
1020 };
1021 bitmap_iterator bi;
1022
1023 sra_walk_function (&fns);
1024
1025 if (dump_file && (dump_flags & TDF_DETAILS))
1026 {
1027 unsigned i;
1028
1029 fputs ("\nScan results:\n", dump_file);
1030 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1031 {
1032 tree var = referenced_var (i);
1033 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1034 if (elt)
1035 scan_dump (elt);
1036 }
1037 fputc ('\n', dump_file);
1038 }
1039 }
1040 \f
1041 /* Phase Three: Make decisions about which variables to scalarize, if any.
1042 All elements to be scalarized have replacement variables made for them. */
1043
1044 /* A subroutine of build_element_name. Recursively build the element
1045 name on the obstack. */
1046
1047 static void
1048 build_element_name_1 (struct sra_elt *elt)
1049 {
1050 tree t;
1051 char buffer[32];
1052
1053 if (elt->parent)
1054 {
1055 build_element_name_1 (elt->parent);
1056 obstack_1grow (&sra_obstack, '$');
1057
1058 if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1059 {
1060 if (elt->element == integer_zero_node)
1061 obstack_grow (&sra_obstack, "real", 4);
1062 else
1063 obstack_grow (&sra_obstack, "imag", 4);
1064 return;
1065 }
1066 }
1067
1068 t = elt->element;
1069 if (TREE_CODE (t) == INTEGER_CST)
1070 {
1071 /* ??? Eh. Don't bother doing double-wide printing. */
1072 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1073 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1074 }
1075 else
1076 {
1077 tree name = DECL_NAME (t);
1078 if (name)
1079 obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1080 IDENTIFIER_LENGTH (name));
1081 else
1082 {
1083 sprintf (buffer, "D%u", DECL_UID (t));
1084 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1085 }
1086 }
1087 }
1088
1089 /* Construct a pretty variable name for an element's replacement variable.
1090 The name is built on the obstack. */
1091
1092 static char *
1093 build_element_name (struct sra_elt *elt)
1094 {
1095 build_element_name_1 (elt);
1096 obstack_1grow (&sra_obstack, '\0');
1097 return XOBFINISH (&sra_obstack, char *);
1098 }
1099
1100 /* Instantiate an element as an independent variable. */
1101
1102 static void
1103 instantiate_element (struct sra_elt *elt)
1104 {
1105 struct sra_elt *base_elt;
1106 tree var, base;
1107
1108 for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1109 continue;
1110 base = base_elt->element;
1111
1112 elt->replacement = var = make_rename_temp (elt->type, "SR");
1113 DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1114 DECL_ARTIFICIAL (var) = 1;
1115
1116 if (TREE_THIS_VOLATILE (elt->type))
1117 {
1118 TREE_THIS_VOLATILE (var) = 1;
1119 TREE_SIDE_EFFECTS (var) = 1;
1120 }
1121
1122 if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1123 {
1124 char *pretty_name = build_element_name (elt);
1125 DECL_NAME (var) = get_identifier (pretty_name);
1126 obstack_free (&sra_obstack, pretty_name);
1127
1128 SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
1129 DECL_DEBUG_EXPR_IS_FROM (var) = 1;
1130
1131 DECL_IGNORED_P (var) = 0;
1132 TREE_NO_WARNING (var) = TREE_NO_WARNING (base);
1133 }
1134 else
1135 {
1136 DECL_IGNORED_P (var) = 1;
1137 /* ??? We can't generate any warning that would be meaningful. */
1138 TREE_NO_WARNING (var) = 1;
1139 }
1140
1141 if (dump_file)
1142 {
1143 fputs (" ", dump_file);
1144 dump_sra_elt_name (dump_file, elt);
1145 fputs (" -> ", dump_file);
1146 print_generic_expr (dump_file, var, dump_flags);
1147 fputc ('\n', dump_file);
1148 }
1149 }
1150
1151 /* Make one pass across an element tree deciding whether or not it's
1152 profitable to instantiate individual leaf scalars.
1153
1154 PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1155 fields all the way up the tree. */
1156
1157 static void
1158 decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1159 unsigned int parent_copies)
1160 {
1161 if (dump_file && !elt->parent)
1162 {
1163 fputs ("Initial instantiation for ", dump_file);
1164 dump_sra_elt_name (dump_file, elt);
1165 fputc ('\n', dump_file);
1166 }
1167
1168 if (elt->cannot_scalarize)
1169 return;
1170
1171 if (elt->is_scalar)
1172 {
1173 /* The decision is simple: instantiate if we're used more frequently
1174 than the parent needs to be seen as a complete unit. */
1175 if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1176 instantiate_element (elt);
1177 }
1178 else
1179 {
1180 struct sra_elt *c;
1181 unsigned int this_uses = elt->n_uses + parent_uses;
1182 unsigned int this_copies = elt->n_copies + parent_copies;
1183
1184 for (c = elt->children; c ; c = c->sibling)
1185 decide_instantiation_1 (c, this_uses, this_copies);
1186 }
1187 }
1188
1189 /* Compute the size and number of all instantiated elements below ELT.
1190 We will only care about this if the size of the complete structure
1191 fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
1192
1193 static unsigned int
1194 sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1195 {
1196 if (elt->replacement)
1197 {
1198 *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1199 return 1;
1200 }
1201 else
1202 {
1203 struct sra_elt *c;
1204 unsigned int count = 0;
1205
1206 for (c = elt->children; c ; c = c->sibling)
1207 count += sum_instantiated_sizes (c, sizep);
1208
1209 return count;
1210 }
1211 }
1212
1213 /* Instantiate fields in ELT->TYPE that are not currently present as
1214 children of ELT. */
1215
1216 static void instantiate_missing_elements (struct sra_elt *elt);
1217
1218 static void
1219 instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1220 {
1221 struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1222 if (sub->is_scalar)
1223 {
1224 if (sub->replacement == NULL)
1225 instantiate_element (sub);
1226 }
1227 else
1228 instantiate_missing_elements (sub);
1229 }
1230
1231 static void
1232 instantiate_missing_elements (struct sra_elt *elt)
1233 {
1234 tree type = elt->type;
1235
1236 switch (TREE_CODE (type))
1237 {
1238 case RECORD_TYPE:
1239 {
1240 tree f;
1241 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1242 if (TREE_CODE (f) == FIELD_DECL)
1243 instantiate_missing_elements_1 (elt, f, TREE_TYPE (f));
1244 break;
1245 }
1246
1247 case ARRAY_TYPE:
1248 {
1249 tree i, max, subtype;
1250
1251 i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1252 max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1253 subtype = TREE_TYPE (type);
1254
1255 while (1)
1256 {
1257 instantiate_missing_elements_1 (elt, i, subtype);
1258 if (tree_int_cst_equal (i, max))
1259 break;
1260 i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1261 }
1262
1263 break;
1264 }
1265
1266 case COMPLEX_TYPE:
1267 type = TREE_TYPE (type);
1268 instantiate_missing_elements_1 (elt, integer_zero_node, type);
1269 instantiate_missing_elements_1 (elt, integer_one_node, type);
1270 break;
1271
1272 default:
1273 gcc_unreachable ();
1274 }
1275 }
1276
1277 /* Make one pass across an element tree deciding whether to perform block
1278 or element copies. If we decide on element copies, instantiate all
1279 elements. Return true if there are any instantiated sub-elements. */
1280
1281 static bool
1282 decide_block_copy (struct sra_elt *elt)
1283 {
1284 struct sra_elt *c;
1285 bool any_inst;
1286
1287 /* If scalarization is disabled, respect it. */
1288 if (elt->cannot_scalarize)
1289 {
1290 elt->use_block_copy = 1;
1291
1292 if (dump_file)
1293 {
1294 fputs ("Scalarization disabled for ", dump_file);
1295 dump_sra_elt_name (dump_file, elt);
1296 fputc ('\n', dump_file);
1297 }
1298
1299 /* Disable scalarization of sub-elements */
1300 for (c = elt->children; c; c = c->sibling)
1301 {
1302 c->cannot_scalarize = 1;
1303 decide_block_copy (c);
1304 }
1305 return false;
1306 }
1307
1308 /* Don't decide if we've no uses. */
1309 if (elt->n_uses == 0 && elt->n_copies == 0)
1310 ;
1311
1312 else if (!elt->is_scalar)
1313 {
1314 tree size_tree = TYPE_SIZE_UNIT (elt->type);
1315 bool use_block_copy = true;
1316
1317 /* Tradeoffs for COMPLEX types pretty much always make it better
1318 to go ahead and split the components. */
1319 if (TREE_CODE (elt->type) == COMPLEX_TYPE)
1320 use_block_copy = false;
1321
1322 /* Don't bother trying to figure out the rest if the structure is
1323 so large we can't do easy arithmetic. This also forces block
1324 copies for variable sized structures. */
1325 else if (host_integerp (size_tree, 1))
1326 {
1327 unsigned HOST_WIDE_INT full_size, inst_size = 0;
1328 unsigned int max_size, max_count, inst_count, full_count;
1329
1330 /* If the sra-max-structure-size parameter is 0, then the
1331 user has not overridden the parameter and we can choose a
1332 sensible default. */
1333 max_size = SRA_MAX_STRUCTURE_SIZE
1334 ? SRA_MAX_STRUCTURE_SIZE
1335 : MOVE_RATIO * UNITS_PER_WORD;
1336 max_count = SRA_MAX_STRUCTURE_COUNT
1337 ? SRA_MAX_STRUCTURE_COUNT
1338 : MOVE_RATIO;
1339
1340 full_size = tree_low_cst (size_tree, 1);
1341 full_count = count_type_elements (elt->type, false);
1342 inst_count = sum_instantiated_sizes (elt, &inst_size);
1343
1344 /* ??? What to do here. If there are two fields, and we've only
1345 instantiated one, then instantiating the other is clearly a win.
1346 If there are a large number of fields then the size of the copy
1347 is much more of a factor. */
1348
1349 /* If the structure is small, and we've made copies, go ahead
1350 and instantiate, hoping that the copies will go away. */
1351 if (full_size <= max_size
1352 && (full_count - inst_count) <= max_count
1353 && elt->n_copies > elt->n_uses)
1354 use_block_copy = false;
1355 else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
1356 && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
1357 use_block_copy = false;
1358
1359 /* In order to avoid block copy, we have to be able to instantiate
1360 all elements of the type. See if this is possible. */
1361 if (!use_block_copy
1362 && (!can_completely_scalarize_p (elt)
1363 || !type_can_instantiate_all_elements (elt->type)))
1364 use_block_copy = true;
1365 }
1366 elt->use_block_copy = use_block_copy;
1367
1368 if (dump_file)
1369 {
1370 fprintf (dump_file, "Using %s for ",
1371 use_block_copy ? "block-copy" : "element-copy");
1372 dump_sra_elt_name (dump_file, elt);
1373 fputc ('\n', dump_file);
1374 }
1375
1376 if (!use_block_copy)
1377 {
1378 instantiate_missing_elements (elt);
1379 return true;
1380 }
1381 }
1382
1383 any_inst = elt->replacement != NULL;
1384
1385 for (c = elt->children; c ; c = c->sibling)
1386 any_inst |= decide_block_copy (c);
1387
1388 return any_inst;
1389 }
1390
1391 /* Entry point to phase 3. Instantiate scalar replacement variables. */
1392
1393 static void
1394 decide_instantiations (void)
1395 {
1396 unsigned int i;
1397 bool cleared_any;
1398 bitmap_head done_head;
1399 bitmap_iterator bi;
1400
1401 /* We cannot clear bits from a bitmap we're iterating over,
1402 so save up all the bits to clear until the end. */
1403 bitmap_initialize (&done_head, &bitmap_default_obstack);
1404 cleared_any = false;
1405
1406 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1407 {
1408 tree var = referenced_var (i);
1409 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1410 if (elt)
1411 {
1412 decide_instantiation_1 (elt, 0, 0);
1413 if (!decide_block_copy (elt))
1414 elt = NULL;
1415 }
1416 if (!elt)
1417 {
1418 bitmap_set_bit (&done_head, i);
1419 cleared_any = true;
1420 }
1421 }
1422
1423 if (cleared_any)
1424 {
1425 bitmap_and_compl_into (sra_candidates, &done_head);
1426 bitmap_and_compl_into (needs_copy_in, &done_head);
1427 }
1428 bitmap_clear (&done_head);
1429
1430 mark_set_for_renaming (sra_candidates);
1431
1432 if (dump_file)
1433 fputc ('\n', dump_file);
1434 }
1435
1436 \f
1437 /* Phase Four: Update the function to match the replacements created. */
1438
1439 /* Mark all the variables in V_MAY_DEF or V_MUST_DEF operands for STMT for
1440 renaming. This becomes necessary when we modify all of a non-scalar. */
1441
1442 static void
1443 mark_all_v_defs_1 (tree stmt)
1444 {
1445 tree sym;
1446 ssa_op_iter iter;
1447
1448 update_stmt_if_modified (stmt);
1449
1450 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
1451 {
1452 if (TREE_CODE (sym) == SSA_NAME)
1453 sym = SSA_NAME_VAR (sym);
1454 mark_sym_for_renaming (sym);
1455 }
1456 }
1457
1458
1459 /* Mark all the variables in virtual operands in all the statements in
1460 LIST for renaming. */
1461
1462 static void
1463 mark_all_v_defs (tree list)
1464 {
1465 if (TREE_CODE (list) != STATEMENT_LIST)
1466 mark_all_v_defs_1 (list);
1467 else
1468 {
1469 tree_stmt_iterator i;
1470 for (i = tsi_start (list); !tsi_end_p (i); tsi_next (&i))
1471 mark_all_v_defs_1 (tsi_stmt (i));
1472 }
1473 }
1474
1475
1476 /* Build a single level component reference to ELT rooted at BASE. */
1477
1478 static tree
1479 generate_one_element_ref (struct sra_elt *elt, tree base)
1480 {
1481 switch (TREE_CODE (TREE_TYPE (base)))
1482 {
1483 case RECORD_TYPE:
1484 {
1485 tree field = elt->element;
1486
1487 /* Watch out for compatible records with differing field lists. */
1488 if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
1489 field = find_compatible_field (TREE_TYPE (base), field);
1490
1491 return build (COMPONENT_REF, elt->type, base, field, NULL);
1492 }
1493
1494 case ARRAY_TYPE:
1495 return build (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
1496
1497 case COMPLEX_TYPE:
1498 if (elt->element == integer_zero_node)
1499 return build (REALPART_EXPR, elt->type, base);
1500 else
1501 return build (IMAGPART_EXPR, elt->type, base);
1502
1503 default:
1504 gcc_unreachable ();
1505 }
1506 }
1507
1508 /* Build a full component reference to ELT rooted at its native variable. */
1509
1510 static tree
1511 generate_element_ref (struct sra_elt *elt)
1512 {
1513 if (elt->parent)
1514 return generate_one_element_ref (elt, generate_element_ref (elt->parent));
1515 else
1516 return elt->element;
1517 }
1518
1519 /* Generate a set of assignment statements in *LIST_P to copy all
1520 instantiated elements under ELT to or from the equivalent structure
1521 rooted at EXPR. COPY_OUT controls the direction of the copy, with
1522 true meaning to copy out of EXPR into ELT. */
1523
1524 static void
1525 generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
1526 tree *list_p)
1527 {
1528 struct sra_elt *c;
1529 tree t;
1530
1531 if (!copy_out && TREE_CODE (expr) == SSA_NAME
1532 && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
1533 {
1534 tree r, i;
1535
1536 c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
1537 r = c->replacement;
1538 c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
1539 i = c->replacement;
1540
1541 t = build (COMPLEX_EXPR, elt->type, r, i);
1542 t = build (MODIFY_EXPR, void_type_node, expr, t);
1543 SSA_NAME_DEF_STMT (expr) = t;
1544 append_to_statement_list (t, list_p);
1545 }
1546 else if (elt->replacement)
1547 {
1548 if (copy_out)
1549 t = build (MODIFY_EXPR, void_type_node, elt->replacement, expr);
1550 else
1551 t = build (MODIFY_EXPR, void_type_node, expr, elt->replacement);
1552 append_to_statement_list (t, list_p);
1553 }
1554 else
1555 {
1556 for (c = elt->children; c ; c = c->sibling)
1557 {
1558 t = generate_one_element_ref (c, unshare_expr (expr));
1559 generate_copy_inout (c, copy_out, t, list_p);
1560 }
1561 }
1562 }
1563
1564 /* Generate a set of assignment statements in *LIST_P to copy all instantiated
1565 elements under SRC to their counterparts under DST. There must be a 1-1
1566 correspondence of instantiated elements. */
1567
1568 static void
1569 generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
1570 {
1571 struct sra_elt *dc, *sc;
1572
1573 for (dc = dst->children; dc ; dc = dc->sibling)
1574 {
1575 sc = lookup_element (src, dc->element, NULL, NO_INSERT);
1576 gcc_assert (sc);
1577 generate_element_copy (dc, sc, list_p);
1578 }
1579
1580 if (dst->replacement)
1581 {
1582 tree t;
1583
1584 gcc_assert (src->replacement);
1585
1586 t = build (MODIFY_EXPR, void_type_node, dst->replacement,
1587 src->replacement);
1588 append_to_statement_list (t, list_p);
1589 }
1590 }
1591
1592 /* Generate a set of assignment statements in *LIST_P to zero all instantiated
1593 elements under ELT. In addition, do not assign to elements that have been
1594 marked VISITED but do reset the visited flag; this allows easy coordination
1595 with generate_element_init. */
1596
1597 static void
1598 generate_element_zero (struct sra_elt *elt, tree *list_p)
1599 {
1600 struct sra_elt *c;
1601
1602 if (elt->visited)
1603 {
1604 elt->visited = false;
1605 return;
1606 }
1607
1608 for (c = elt->children; c ; c = c->sibling)
1609 generate_element_zero (c, list_p);
1610
1611 if (elt->replacement)
1612 {
1613 tree t;
1614
1615 gcc_assert (elt->is_scalar);
1616 t = fold_convert (elt->type, integer_zero_node);
1617
1618 t = build (MODIFY_EXPR, void_type_node, elt->replacement, t);
1619 append_to_statement_list (t, list_p);
1620 }
1621 }
1622
1623 /* Generate an assignment VAR = INIT, where INIT may need gimplification.
1624 Add the result to *LIST_P. */
1625
1626 static void
1627 generate_one_element_init (tree var, tree init, tree *list_p)
1628 {
1629 /* The replacement can be almost arbitrarily complex. Gimplify. */
1630 tree stmt = build (MODIFY_EXPR, void_type_node, var, init);
1631 gimplify_and_add (stmt, list_p);
1632 }
1633
1634 /* Generate a set of assignment statements in *LIST_P to set all instantiated
1635 elements under ELT with the contents of the initializer INIT. In addition,
1636 mark all assigned elements VISITED; this allows easy coordination with
1637 generate_element_zero. Return false if we found a case we couldn't
1638 handle. */
1639
1640 static bool
1641 generate_element_init_1 (struct sra_elt *elt, tree init, tree *list_p)
1642 {
1643 bool result = true;
1644 enum tree_code init_code;
1645 struct sra_elt *sub;
1646 tree t;
1647 unsigned HOST_WIDE_INT idx;
1648 tree value, purpose;
1649
1650 /* We can be passed DECL_INITIAL of a static variable. It might have a
1651 conversion, which we strip off here. */
1652 STRIP_USELESS_TYPE_CONVERSION (init);
1653 init_code = TREE_CODE (init);
1654
1655 if (elt->is_scalar)
1656 {
1657 if (elt->replacement)
1658 {
1659 generate_one_element_init (elt->replacement, init, list_p);
1660 elt->visited = true;
1661 }
1662 return result;
1663 }
1664
1665 switch (init_code)
1666 {
1667 case COMPLEX_CST:
1668 case COMPLEX_EXPR:
1669 for (sub = elt->children; sub ; sub = sub->sibling)
1670 {
1671 if (sub->element == integer_zero_node)
1672 t = (init_code == COMPLEX_EXPR
1673 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
1674 else
1675 t = (init_code == COMPLEX_EXPR
1676 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
1677 result &= generate_element_init_1 (sub, t, list_p);
1678 }
1679 break;
1680
1681 case CONSTRUCTOR:
1682 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
1683 {
1684 if (TREE_CODE (purpose) == RANGE_EXPR)
1685 {
1686 tree lower = TREE_OPERAND (purpose, 0);
1687 tree upper = TREE_OPERAND (purpose, 1);
1688
1689 while (1)
1690 {
1691 sub = lookup_element (elt, lower, NULL, NO_INSERT);
1692 if (sub != NULL)
1693 result &= generate_element_init_1 (sub, value, list_p);
1694 if (tree_int_cst_equal (lower, upper))
1695 break;
1696 lower = int_const_binop (PLUS_EXPR, lower,
1697 integer_one_node, true);
1698 }
1699 }
1700 else
1701 {
1702 sub = lookup_element (elt, purpose, NULL, NO_INSERT);
1703 if (sub != NULL)
1704 result &= generate_element_init_1 (sub, value, list_p);
1705 }
1706 }
1707 break;
1708
1709 default:
1710 elt->visited = true;
1711 result = false;
1712 }
1713
1714 return result;
1715 }
1716
1717 /* A wrapper function for generate_element_init_1 that handles cleanup after
1718 gimplification. */
1719
1720 static bool
1721 generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
1722 {
1723 bool ret;
1724
1725 push_gimplify_context ();
1726 ret = generate_element_init_1 (elt, init, list_p);
1727 pop_gimplify_context (NULL);
1728
1729 /* The replacement can expose previously unreferenced variables. */
1730 if (ret && *list_p)
1731 {
1732 tree_stmt_iterator i;
1733
1734 for (i = tsi_start (*list_p); !tsi_end_p (i); tsi_next (&i))
1735 find_new_referenced_vars (tsi_stmt_ptr (i));
1736 }
1737
1738 return ret;
1739 }
1740
1741 /* Insert STMT on all the outgoing edges out of BB. Note that if BB
1742 has more than one edge, STMT will be replicated for each edge. Also,
1743 abnormal edges will be ignored. */
1744
1745 void
1746 insert_edge_copies (tree stmt, basic_block bb)
1747 {
1748 edge e;
1749 edge_iterator ei;
1750 bool first_copy;
1751
1752 first_copy = true;
1753 FOR_EACH_EDGE (e, ei, bb->succs)
1754 {
1755 /* We don't need to insert copies on abnormal edges. The
1756 value of the scalar replacement is not guaranteed to
1757 be valid through an abnormal edge. */
1758 if (!(e->flags & EDGE_ABNORMAL))
1759 {
1760 if (first_copy)
1761 {
1762 bsi_insert_on_edge (e, stmt);
1763 first_copy = false;
1764 }
1765 else
1766 bsi_insert_on_edge (e, unsave_expr_now (stmt));
1767 }
1768 }
1769 }
1770
1771 /* Helper function to insert LIST before BSI, and set up line number info. */
1772
1773 void
1774 sra_insert_before (block_stmt_iterator *bsi, tree list)
1775 {
1776 tree stmt = bsi_stmt (*bsi);
1777
1778 if (EXPR_HAS_LOCATION (stmt))
1779 annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
1780 bsi_insert_before (bsi, list, BSI_SAME_STMT);
1781 }
1782
1783 /* Similarly, but insert after BSI. Handles insertion onto edges as well. */
1784
1785 void
1786 sra_insert_after (block_stmt_iterator *bsi, tree list)
1787 {
1788 tree stmt = bsi_stmt (*bsi);
1789
1790 if (EXPR_HAS_LOCATION (stmt))
1791 annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
1792
1793 if (stmt_ends_bb_p (stmt))
1794 insert_edge_copies (list, bsi->bb);
1795 else
1796 bsi_insert_after (bsi, list, BSI_SAME_STMT);
1797 }
1798
1799 /* Similarly, but replace the statement at BSI. */
1800
1801 static void
1802 sra_replace (block_stmt_iterator *bsi, tree list)
1803 {
1804 sra_insert_before (bsi, list);
1805 bsi_remove (bsi);
1806 if (bsi_end_p (*bsi))
1807 *bsi = bsi_last (bsi->bb);
1808 else
1809 bsi_prev (bsi);
1810 }
1811
1812 /* Scalarize a USE. To recap, this is either a simple reference to ELT,
1813 if elt is scalar, or some occurrence of ELT that requires a complete
1814 aggregate. IS_OUTPUT is true if ELT is being modified. */
1815
1816 static void
1817 scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
1818 bool is_output)
1819 {
1820 tree list = NULL, stmt = bsi_stmt (*bsi);
1821
1822 if (elt->replacement)
1823 {
1824 /* If we have a replacement, then updating the reference is as
1825 simple as modifying the existing statement in place. */
1826 if (is_output)
1827 mark_all_v_defs (stmt);
1828 *expr_p = elt->replacement;
1829 update_stmt (stmt);
1830 }
1831 else
1832 {
1833 /* Otherwise we need some copies. If ELT is being read, then we want
1834 to store all (modified) sub-elements back into the structure before
1835 the reference takes place. If ELT is being written, then we want to
1836 load the changed values back into our shadow variables. */
1837 /* ??? We don't check modified for reads, we just always write all of
1838 the values. We should be able to record the SSA number of the VOP
1839 for which the values were last read. If that number matches the
1840 SSA number of the VOP in the current statement, then we needn't
1841 emit an assignment. This would also eliminate double writes when
1842 a structure is passed as more than one argument to a function call.
1843 This optimization would be most effective if sra_walk_function
1844 processed the blocks in dominator order. */
1845
1846 generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
1847 if (list == NULL)
1848 return;
1849 mark_all_v_defs (list);
1850 if (is_output)
1851 sra_insert_after (bsi, list);
1852 else
1853 sra_insert_before (bsi, list);
1854 }
1855 }
1856
1857 /* Scalarize a COPY. To recap, this is an assignment statement between
1858 two scalarizable references, LHS_ELT and RHS_ELT. */
1859
1860 static void
1861 scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1862 block_stmt_iterator *bsi)
1863 {
1864 tree list, stmt;
1865
1866 if (lhs_elt->replacement && rhs_elt->replacement)
1867 {
1868 /* If we have two scalar operands, modify the existing statement. */
1869 stmt = bsi_stmt (*bsi);
1870
1871 /* See the commentary in sra_walk_function concerning
1872 RETURN_EXPR, and why we should never see one here. */
1873 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
1874
1875 TREE_OPERAND (stmt, 0) = lhs_elt->replacement;
1876 TREE_OPERAND (stmt, 1) = rhs_elt->replacement;
1877 update_stmt (stmt);
1878 }
1879 else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
1880 {
1881 /* If either side requires a block copy, then sync the RHS back
1882 to the original structure, leave the original assignment
1883 statement (which will perform the block copy), then load the
1884 LHS values out of its now-updated original structure. */
1885 /* ??? Could perform a modified pair-wise element copy. That
1886 would at least allow those elements that are instantiated in
1887 both structures to be optimized well. */
1888
1889 list = NULL;
1890 generate_copy_inout (rhs_elt, false,
1891 generate_element_ref (rhs_elt), &list);
1892 if (list)
1893 {
1894 mark_all_v_defs (list);
1895 sra_insert_before (bsi, list);
1896 }
1897
1898 list = NULL;
1899 generate_copy_inout (lhs_elt, true,
1900 generate_element_ref (lhs_elt), &list);
1901 if (list)
1902 {
1903 mark_all_v_defs (list);
1904 sra_insert_after (bsi, list);
1905 }
1906 }
1907 else
1908 {
1909 /* Otherwise both sides must be fully instantiated. In which
1910 case perform pair-wise element assignments and replace the
1911 original block copy statement. */
1912
1913 stmt = bsi_stmt (*bsi);
1914 mark_all_v_defs (stmt);
1915
1916 list = NULL;
1917 generate_element_copy (lhs_elt, rhs_elt, &list);
1918 gcc_assert (list);
1919 mark_all_v_defs (list);
1920 sra_replace (bsi, list);
1921 }
1922 }
1923
1924 /* Scalarize an INIT. To recap, this is an assignment to a scalarizable
1925 reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
1926 COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
1927 CONSTRUCTOR. */
1928
1929 static void
1930 scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
1931 {
1932 bool result = true;
1933 tree list = NULL;
1934
1935 /* Generate initialization statements for all members extant in the RHS. */
1936 if (rhs)
1937 {
1938 /* Unshare the expression just in case this is from a decl's initial. */
1939 rhs = unshare_expr (rhs);
1940 result = generate_element_init (lhs_elt, rhs, &list);
1941 }
1942
1943 /* CONSTRUCTOR is defined such that any member not mentioned is assigned
1944 a zero value. Initialize the rest of the instantiated elements. */
1945 generate_element_zero (lhs_elt, &list);
1946
1947 if (!result)
1948 {
1949 /* If we failed to convert the entire initializer, then we must
1950 leave the structure assignment in place and must load values
1951 from the structure into the slots for which we did not find
1952 constants. The easiest way to do this is to generate a complete
1953 copy-out, and then follow that with the constant assignments
1954 that we were able to build. DCE will clean things up. */
1955 tree list0 = NULL;
1956 generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
1957 &list0);
1958 append_to_statement_list (list, &list0);
1959 list = list0;
1960 }
1961
1962 if (lhs_elt->use_block_copy || !result)
1963 {
1964 /* Since LHS is not fully instantiated, we must leave the structure
1965 assignment in place. Treating this case differently from a USE
1966 exposes constants to later optimizations. */
1967 if (list)
1968 {
1969 mark_all_v_defs (list);
1970 sra_insert_after (bsi, list);
1971 }
1972 }
1973 else
1974 {
1975 /* The LHS is fully instantiated. The list of initializations
1976 replaces the original structure assignment. */
1977 gcc_assert (list);
1978 mark_all_v_defs (bsi_stmt (*bsi));
1979 mark_all_v_defs (list);
1980 sra_replace (bsi, list);
1981 }
1982 }
1983
1984 /* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
1985 on all INDIRECT_REFs. */
1986
1987 static tree
1988 mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1989 {
1990 tree t = *tp;
1991
1992 if (TREE_CODE (t) == INDIRECT_REF)
1993 {
1994 TREE_THIS_NOTRAP (t) = 1;
1995 *walk_subtrees = 0;
1996 }
1997 else if (IS_TYPE_OR_DECL_P (t))
1998 *walk_subtrees = 0;
1999
2000 return NULL;
2001 }
2002
2003 /* Scalarize a LDST. To recap, this is an assignment between one scalarizable
2004 reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
2005 if ELT is on the left-hand side. */
2006
2007 static void
2008 scalarize_ldst (struct sra_elt *elt, tree other,
2009 block_stmt_iterator *bsi, bool is_output)
2010 {
2011 /* Shouldn't have gotten called for a scalar. */
2012 gcc_assert (!elt->replacement);
2013
2014 if (elt->use_block_copy)
2015 {
2016 /* Since ELT is not fully instantiated, we have to leave the
2017 block copy in place. Treat this as a USE. */
2018 scalarize_use (elt, NULL, bsi, is_output);
2019 }
2020 else
2021 {
2022 /* The interesting case is when ELT is fully instantiated. In this
2023 case we can have each element stored/loaded directly to/from the
2024 corresponding slot in OTHER. This avoids a block copy. */
2025
2026 tree list = NULL, stmt = bsi_stmt (*bsi);
2027
2028 mark_all_v_defs (stmt);
2029 generate_copy_inout (elt, is_output, other, &list);
2030 mark_all_v_defs (list);
2031 gcc_assert (list);
2032
2033 /* Preserve EH semantics. */
2034 if (stmt_ends_bb_p (stmt))
2035 {
2036 tree_stmt_iterator tsi;
2037 tree first;
2038
2039 /* Extract the first statement from LIST. */
2040 tsi = tsi_start (list);
2041 first = tsi_stmt (tsi);
2042 tsi_delink (&tsi);
2043
2044 /* Replace the old statement with this new representative. */
2045 bsi_replace (bsi, first, true);
2046
2047 if (!tsi_end_p (tsi))
2048 {
2049 /* If any reference would trap, then they all would. And more
2050 to the point, the first would. Therefore none of the rest
2051 will trap since the first didn't. Indicate this by
2052 iterating over the remaining statements and set
2053 TREE_THIS_NOTRAP in all INDIRECT_REFs. */
2054 do
2055 {
2056 walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
2057 tsi_next (&tsi);
2058 }
2059 while (!tsi_end_p (tsi));
2060
2061 insert_edge_copies (list, bsi->bb);
2062 }
2063 }
2064 else
2065 sra_replace (bsi, list);
2066 }
2067 }
2068
2069 /* Generate initializations for all scalarizable parameters. */
2070
2071 static void
2072 scalarize_parms (void)
2073 {
2074 tree list = NULL;
2075 unsigned i;
2076 bitmap_iterator bi;
2077
2078 EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
2079 {
2080 tree var = referenced_var (i);
2081 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
2082 generate_copy_inout (elt, true, var, &list);
2083 }
2084
2085 if (list)
2086 {
2087 insert_edge_copies (list, ENTRY_BLOCK_PTR);
2088 mark_all_v_defs (list);
2089 }
2090 }
2091
2092 /* Entry point to phase 4. Update the function to match replacements. */
2093
2094 static void
2095 scalarize_function (void)
2096 {
2097 static const struct sra_walk_fns fns = {
2098 scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
2099 };
2100
2101 sra_walk_function (&fns);
2102 scalarize_parms ();
2103 bsi_commit_edge_inserts ();
2104 }
2105
2106 \f
2107 /* Debug helper function. Print ELT in a nice human-readable format. */
2108
2109 static void
2110 dump_sra_elt_name (FILE *f, struct sra_elt *elt)
2111 {
2112 if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
2113 {
2114 fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
2115 dump_sra_elt_name (f, elt->parent);
2116 }
2117 else
2118 {
2119 if (elt->parent)
2120 dump_sra_elt_name (f, elt->parent);
2121 if (DECL_P (elt->element))
2122 {
2123 if (TREE_CODE (elt->element) == FIELD_DECL)
2124 fputc ('.', f);
2125 print_generic_expr (f, elt->element, dump_flags);
2126 }
2127 else
2128 fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
2129 TREE_INT_CST_LOW (elt->element));
2130 }
2131 }
2132
2133 /* Likewise, but callable from the debugger. */
2134
2135 void
2136 debug_sra_elt_name (struct sra_elt *elt)
2137 {
2138 dump_sra_elt_name (stderr, elt);
2139 fputc ('\n', stderr);
2140 }
2141
2142 void
2143 sra_init_cache (void)
2144 {
2145 if (sra_type_decomp_cache)
2146 return;
2147
2148 sra_type_decomp_cache = BITMAP_ALLOC (NULL);
2149 sra_type_inst_cache = BITMAP_ALLOC (NULL);
2150 }
2151
2152 /* Main entry point. */
2153
2154 static void
2155 tree_sra (void)
2156 {
2157 /* Initialize local variables. */
2158 gcc_obstack_init (&sra_obstack);
2159 sra_candidates = BITMAP_ALLOC (NULL);
2160 needs_copy_in = BITMAP_ALLOC (NULL);
2161 sra_init_cache ();
2162 sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
2163
2164 /* Scan. If we find anything, instantiate and scalarize. */
2165 if (find_candidates_for_sra ())
2166 {
2167 scan_function ();
2168 decide_instantiations ();
2169 scalarize_function ();
2170 }
2171
2172 /* Free allocated memory. */
2173 htab_delete (sra_map);
2174 sra_map = NULL;
2175 BITMAP_FREE (sra_candidates);
2176 BITMAP_FREE (needs_copy_in);
2177 BITMAP_FREE (sra_type_decomp_cache);
2178 BITMAP_FREE (sra_type_inst_cache);
2179 obstack_free (&sra_obstack, NULL);
2180 }
2181
2182 static bool
2183 gate_sra (void)
2184 {
2185 return flag_tree_sra != 0;
2186 }
2187
2188 struct tree_opt_pass pass_sra =
2189 {
2190 "sra", /* name */
2191 gate_sra, /* gate */
2192 tree_sra, /* execute */
2193 NULL, /* sub */
2194 NULL, /* next */
2195 0, /* static_pass_number */
2196 TV_TREE_SRA, /* tv_id */
2197 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2198 0, /* properties_provided */
2199 0, /* properties_destroyed */
2200 0, /* todo_flags_start */
2201 TODO_dump_func | TODO_update_ssa
2202 | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2203 0 /* letter */
2204 };