ia64.c (ia64_expand_prologue): Declare ei variable.
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2003, 2004 Free Software Foundation, Inc.
5 Contributed by Diego Novillo <dnovillo@redhat.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "errors.h"
29 #include "ggc.h"
30 #include "tree.h"
31
32 /* These RTL headers are needed for basic-block.h. */
33 #include "rtl.h"
34 #include "tm_p.h"
35 #include "hard-reg-set.h"
36 #include "basic-block.h"
37 #include "diagnostic.h"
38 #include "langhooks.h"
39 #include "tree-inline.h"
40 #include "tree-flow.h"
41 #include "tree-gimple.h"
42 #include "tree-dump.h"
43 #include "tree-pass.h"
44 #include "timevar.h"
45 #include "flags.h"
46 #include "bitmap.h"
47 #include "obstack.h"
48 #include "target.h"
49 /* expr.h is needed for MOVE_RATIO. */
50 #include "expr.h"
51
52
53 /* This object of this pass is to replace a non-addressable aggregate with a
54 set of independent variables. Most of the time, all of these variables
55 will be scalars. But a secondary objective is to break up larger
56 aggregates into smaller aggregates. In the process we may find that some
57 bits of the larger aggregate can be deleted as unreferenced.
58
59 This substitution is done globally. More localized substitutions would
60 be the purvey of a load-store motion pass.
61
62 The optimization proceeds in phases:
63
64 (1) Identify variables that have types that are candidates for
65 decomposition.
66
67 (2) Scan the function looking for the ways these variables are used.
68 In particular we're interested in the number of times a variable
69 (or member) is needed as a complete unit, and the number of times
70 a variable (or member) is copied.
71
72 (3) Based on the usage profile, instantiate substitution variables.
73
74 (4) Scan the function making replacements.
75 */
76
77
78 /* The set of aggregate variables that are candidates for scalarization. */
79 static bitmap sra_candidates;
80
81 /* Set of scalarizable PARM_DECLs that need copy-in operations at the
82 beginning of the function. */
83 static bitmap needs_copy_in;
84
85 /* Sets of bit pairs that cache type decomposition and instantiation. */
86 static bitmap sra_type_decomp_cache;
87 static bitmap sra_type_inst_cache;
88
89 /* One of these structures is created for each candidate aggregate
90 and each (accessed) member of such an aggregate. */
91 struct sra_elt
92 {
93 /* A tree of the elements. Used when we want to traverse everything. */
94 struct sra_elt *parent;
95 struct sra_elt *children;
96 struct sra_elt *sibling;
97
98 /* If this element is a root, then this is the VAR_DECL. If this is
99 a sub-element, this is some token used to identify the reference.
100 In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
101 of an ARRAY_REF, this is the (constant) index. In the case of a
102 complex number, this is a zero or one. */
103 tree element;
104
105 /* The type of the element. */
106 tree type;
107
108 /* A VAR_DECL, for any sub-element we've decided to replace. */
109 tree replacement;
110
111 /* The number of times the element is referenced as a whole. I.e.
112 given "a.b.c", this would be incremented for C, but not for A or B. */
113 unsigned int n_uses;
114
115 /* The number of times the element is copied to or from another
116 scalarizable element. */
117 unsigned int n_copies;
118
119 /* True if TYPE is scalar. */
120 bool is_scalar;
121
122 /* True if we saw something about this element that prevents scalarization,
123 such as non-constant indexing. */
124 bool cannot_scalarize;
125
126 /* True if we've decided that structure-to-structure assignment
127 should happen via memcpy and not per-element. */
128 bool use_block_copy;
129
130 /* A flag for use with/after random access traversals. */
131 bool visited;
132 };
133
134 /* Random access to the child of a parent is performed by hashing.
135 This prevents quadratic behavior, and allows SRA to function
136 reasonably on larger records. */
137 static htab_t sra_map;
138
139 /* All structures are allocated out of the following obstack. */
140 static struct obstack sra_obstack;
141
142 /* Debugging functions. */
143 static void dump_sra_elt_name (FILE *, struct sra_elt *);
144 extern void debug_sra_elt_name (struct sra_elt *);
145
146 \f
147 /* Return true if DECL is an SRA candidate. */
148
149 static bool
150 is_sra_candidate_decl (tree decl)
151 {
152 return DECL_P (decl) && bitmap_bit_p (sra_candidates, var_ann (decl)->uid);
153 }
154
155 /* Return true if TYPE is a scalar type. */
156
157 static bool
158 is_sra_scalar_type (tree type)
159 {
160 enum tree_code code = TREE_CODE (type);
161 return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
162 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
163 || code == CHAR_TYPE || code == POINTER_TYPE || code == OFFSET_TYPE
164 || code == REFERENCE_TYPE);
165 }
166
167 /* Return true if TYPE can be decomposed into a set of independent variables.
168
169 Note that this doesn't imply that all elements of TYPE can be
170 instantiated, just that if we decide to break up the type into
171 separate pieces that it can be done. */
172
173 static bool
174 type_can_be_decomposed_p (tree type)
175 {
176 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
177 tree t;
178
179 /* Avoid searching the same type twice. */
180 if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
181 return true;
182 if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
183 return false;
184
185 /* The type must have a definite nonzero size. */
186 if (TYPE_SIZE (type) == NULL || integer_zerop (TYPE_SIZE (type)))
187 goto fail;
188
189 /* The type must be a non-union aggregate. */
190 switch (TREE_CODE (type))
191 {
192 case RECORD_TYPE:
193 {
194 bool saw_one_field = false;
195
196 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
197 if (TREE_CODE (t) == FIELD_DECL)
198 {
199 /* Reject incorrectly represented bit fields. */
200 if (DECL_BIT_FIELD (t)
201 && (tree_low_cst (DECL_SIZE (t), 1)
202 != TYPE_PRECISION (TREE_TYPE (t))))
203 goto fail;
204
205 saw_one_field = true;
206 }
207
208 /* Record types must have at least one field. */
209 if (!saw_one_field)
210 goto fail;
211 }
212 break;
213
214 case ARRAY_TYPE:
215 /* Array types must have a fixed lower and upper bound. */
216 t = TYPE_DOMAIN (type);
217 if (t == NULL)
218 goto fail;
219 if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
220 goto fail;
221 if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
222 goto fail;
223 break;
224
225 case COMPLEX_TYPE:
226 break;
227
228 default:
229 goto fail;
230 }
231
232 bitmap_set_bit (sra_type_decomp_cache, cache+0);
233 return true;
234
235 fail:
236 bitmap_set_bit (sra_type_decomp_cache, cache+1);
237 return false;
238 }
239
240 /* Return true if DECL can be decomposed into a set of independent
241 (though not necessarily scalar) variables. */
242
243 static bool
244 decl_can_be_decomposed_p (tree var)
245 {
246 /* Early out for scalars. */
247 if (is_sra_scalar_type (TREE_TYPE (var)))
248 return false;
249
250 /* The variable must not be aliased. */
251 if (!is_gimple_non_addressable (var))
252 {
253 if (dump_file && (dump_flags & TDF_DETAILS))
254 {
255 fprintf (dump_file, "Cannot scalarize variable ");
256 print_generic_expr (dump_file, var, dump_flags);
257 fprintf (dump_file, " because it must live in memory\n");
258 }
259 return false;
260 }
261
262 /* The variable must not be volatile. */
263 if (TREE_THIS_VOLATILE (var))
264 {
265 if (dump_file && (dump_flags & TDF_DETAILS))
266 {
267 fprintf (dump_file, "Cannot scalarize variable ");
268 print_generic_expr (dump_file, var, dump_flags);
269 fprintf (dump_file, " because it is declared volatile\n");
270 }
271 return false;
272 }
273
274 /* We must be able to decompose the variable's type. */
275 if (!type_can_be_decomposed_p (TREE_TYPE (var)))
276 {
277 if (dump_file && (dump_flags & TDF_DETAILS))
278 {
279 fprintf (dump_file, "Cannot scalarize variable ");
280 print_generic_expr (dump_file, var, dump_flags);
281 fprintf (dump_file, " because its type cannot be decomposed\n");
282 }
283 return false;
284 }
285
286 return true;
287 }
288
289 /* Return true if TYPE can be *completely* decomposed into scalars. */
290
291 static bool
292 type_can_instantiate_all_elements (tree type)
293 {
294 if (is_sra_scalar_type (type))
295 return true;
296 if (!type_can_be_decomposed_p (type))
297 return false;
298
299 switch (TREE_CODE (type))
300 {
301 case RECORD_TYPE:
302 {
303 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
304 tree f;
305
306 if (bitmap_bit_p (sra_type_inst_cache, cache+0))
307 return true;
308 if (bitmap_bit_p (sra_type_inst_cache, cache+1))
309 return false;
310
311 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
312 if (TREE_CODE (f) == FIELD_DECL)
313 {
314 if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
315 {
316 bitmap_set_bit (sra_type_inst_cache, cache+1);
317 return false;
318 }
319 }
320
321 bitmap_set_bit (sra_type_inst_cache, cache+0);
322 return true;
323 }
324
325 case ARRAY_TYPE:
326 return type_can_instantiate_all_elements (TREE_TYPE (type));
327
328 case COMPLEX_TYPE:
329 return true;
330
331 default:
332 gcc_unreachable ();
333 }
334 }
335
336 /* Test whether ELT or some sub-element cannot be scalarized. */
337
338 static bool
339 can_completely_scalarize_p (struct sra_elt *elt)
340 {
341 struct sra_elt *c;
342
343 if (elt->cannot_scalarize)
344 return false;
345
346 for (c = elt->children; c ; c = c->sibling)
347 if (!can_completely_scalarize_p (c))
348 return false;
349
350 return true;
351 }
352
353 \f
354 /* A simplified tree hashing algorithm that only handles the types of
355 trees we expect to find in sra_elt->element. */
356
357 static hashval_t
358 sra_hash_tree (tree t)
359 {
360 hashval_t h;
361
362 switch (TREE_CODE (t))
363 {
364 case VAR_DECL:
365 case PARM_DECL:
366 case RESULT_DECL:
367 h = DECL_UID (t);
368 break;
369
370 case INTEGER_CST:
371 h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
372 break;
373
374 case FIELD_DECL:
375 /* We can have types that are compatible, but have different member
376 lists, so we can't hash fields by ID. Use offsets instead. */
377 h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
378 h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
379 break;
380
381 default:
382 gcc_unreachable ();
383 }
384
385 return h;
386 }
387
388 /* Hash function for type SRA_PAIR. */
389
390 static hashval_t
391 sra_elt_hash (const void *x)
392 {
393 const struct sra_elt *e = x;
394 const struct sra_elt *p;
395 hashval_t h;
396
397 h = sra_hash_tree (e->element);
398
399 /* Take into account everything back up the chain. Given that chain
400 lengths are rarely very long, this should be acceptable. If we
401 truly identify this as a performance problem, it should work to
402 hash the pointer value "e->parent". */
403 for (p = e->parent; p ; p = p->parent)
404 h = (h * 65521) ^ sra_hash_tree (p->element);
405
406 return h;
407 }
408
409 /* Equality function for type SRA_PAIR. */
410
411 static int
412 sra_elt_eq (const void *x, const void *y)
413 {
414 const struct sra_elt *a = x;
415 const struct sra_elt *b = y;
416 tree ae, be;
417
418 if (a->parent != b->parent)
419 return false;
420
421 ae = a->element;
422 be = b->element;
423
424 if (ae == be)
425 return true;
426 if (TREE_CODE (ae) != TREE_CODE (be))
427 return false;
428
429 switch (TREE_CODE (ae))
430 {
431 case VAR_DECL:
432 case PARM_DECL:
433 case RESULT_DECL:
434 /* These are all pointer unique. */
435 return false;
436
437 case INTEGER_CST:
438 /* Integers are not pointer unique, so compare their values. */
439 return tree_int_cst_equal (ae, be);
440
441 case FIELD_DECL:
442 /* Fields are unique within a record, but not between
443 compatible records. */
444 if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
445 return false;
446 return fields_compatible_p (ae, be);
447
448 default:
449 gcc_unreachable ();
450 }
451 }
452
453 /* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
454 may be null, in which case CHILD must be a DECL. */
455
456 static struct sra_elt *
457 lookup_element (struct sra_elt *parent, tree child, tree type,
458 enum insert_option insert)
459 {
460 struct sra_elt dummy;
461 struct sra_elt **slot;
462 struct sra_elt *elt;
463
464 dummy.parent = parent;
465 dummy.element = child;
466
467 slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
468 if (!slot && insert == NO_INSERT)
469 return NULL;
470
471 elt = *slot;
472 if (!elt && insert == INSERT)
473 {
474 *slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
475 memset (elt, 0, sizeof (*elt));
476
477 elt->parent = parent;
478 elt->element = child;
479 elt->type = type;
480 elt->is_scalar = is_sra_scalar_type (type);
481
482 if (parent)
483 {
484 elt->sibling = parent->children;
485 parent->children = elt;
486 }
487
488 /* If this is a parameter, then if we want to scalarize, we have
489 one copy from the true function parameter. Count it now. */
490 if (TREE_CODE (child) == PARM_DECL)
491 {
492 elt->n_copies = 1;
493 bitmap_set_bit (needs_copy_in, var_ann (child)->uid);
494 }
495 }
496
497 return elt;
498 }
499
500 /* Return true if the ARRAY_REF in EXPR is a constant, in bounds access. */
501
502 static bool
503 is_valid_const_index (tree expr)
504 {
505 tree dom, t, index = TREE_OPERAND (expr, 1);
506
507 if (TREE_CODE (index) != INTEGER_CST)
508 return false;
509
510 /* Watch out for stupid user tricks, indexing outside the array.
511
512 Careful, we're not called only on scalarizable types, so do not
513 assume constant array bounds. We needn't do anything with such
514 cases, since they'll be referring to objects that we should have
515 already rejected for scalarization, so returning false is fine. */
516
517 dom = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (expr, 0)));
518 if (dom == NULL)
519 return false;
520
521 t = TYPE_MIN_VALUE (dom);
522 if (!t || TREE_CODE (t) != INTEGER_CST)
523 return false;
524 if (tree_int_cst_lt (index, t))
525 return false;
526
527 t = TYPE_MAX_VALUE (dom);
528 if (!t || TREE_CODE (t) != INTEGER_CST)
529 return false;
530 if (tree_int_cst_lt (t, index))
531 return false;
532
533 return true;
534 }
535
536 /* Create or return the SRA_ELT structure for EXPR if the expression
537 refers to a scalarizable variable. */
538
539 static struct sra_elt *
540 maybe_lookup_element_for_expr (tree expr)
541 {
542 struct sra_elt *elt;
543 tree child;
544
545 switch (TREE_CODE (expr))
546 {
547 case VAR_DECL:
548 case PARM_DECL:
549 case RESULT_DECL:
550 if (is_sra_candidate_decl (expr))
551 return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
552 return NULL;
553
554 case ARRAY_REF:
555 /* We can't scalarize variable array indicies. */
556 if (is_valid_const_index (expr))
557 child = TREE_OPERAND (expr, 1);
558 else
559 return NULL;
560 break;
561
562 case COMPONENT_REF:
563 /* Don't look through unions. */
564 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) != RECORD_TYPE)
565 return NULL;
566 child = TREE_OPERAND (expr, 1);
567 break;
568
569 case REALPART_EXPR:
570 child = integer_zero_node;
571 break;
572 case IMAGPART_EXPR:
573 child = integer_one_node;
574 break;
575
576 default:
577 return NULL;
578 }
579
580 elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
581 if (elt)
582 return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
583 return NULL;
584 }
585
586 \f
587 /* Functions to walk just enough of the tree to see all scalarizable
588 references, and categorize them. */
589
590 /* A set of callbacks for phases 2 and 4. They'll be invoked for the
591 various kinds of references seen. In all cases, *BSI is an iterator
592 pointing to the statement being processed. */
593 struct sra_walk_fns
594 {
595 /* Invoked when ELT is required as a unit. Note that ELT might refer to
596 a leaf node, in which case this is a simple scalar reference. *EXPR_P
597 points to the location of the expression. IS_OUTPUT is true if this
598 is a left-hand-side reference. */
599 void (*use) (struct sra_elt *elt, tree *expr_p,
600 block_stmt_iterator *bsi, bool is_output);
601
602 /* Invoked when we have a copy between two scalarizable references. */
603 void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
604 block_stmt_iterator *bsi);
605
606 /* Invoked when ELT is initialized from a constant. VALUE may be NULL,
607 in which case it should be treated as an empty CONSTRUCTOR. */
608 void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);
609
610 /* Invoked when we have a copy between one scalarizable reference ELT
611 and one non-scalarizable reference OTHER. IS_OUTPUT is true if ELT
612 is on the left-hand side. */
613 void (*ldst) (struct sra_elt *elt, tree other,
614 block_stmt_iterator *bsi, bool is_output);
615
616 /* True during phase 2, false during phase 4. */
617 /* ??? This is a hack. */
618 bool initial_scan;
619 };
620
621 #ifdef ENABLE_CHECKING
622 /* Invoked via walk_tree, if *TP contains an candidate decl, return it. */
623
624 static tree
625 sra_find_candidate_decl (tree *tp, int *walk_subtrees,
626 void *data ATTRIBUTE_UNUSED)
627 {
628 tree t = *tp;
629 enum tree_code code = TREE_CODE (t);
630
631 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
632 {
633 *walk_subtrees = 0;
634 if (is_sra_candidate_decl (t))
635 return t;
636 }
637 else if (TYPE_P (t))
638 *walk_subtrees = 0;
639
640 return NULL;
641 }
642 #endif
643
644 /* Walk most expressions looking for a scalarizable aggregate.
645 If we find one, invoke FNS->USE. */
646
647 static void
648 sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
649 const struct sra_walk_fns *fns)
650 {
651 tree expr = *expr_p;
652 tree inner = expr;
653 bool disable_scalarization = false;
654
655 /* We're looking to collect a reference expression between EXPR and INNER,
656 such that INNER is a scalarizable decl and all other nodes through EXPR
657 are references that we can scalarize. If we come across something that
658 we can't scalarize, we reset EXPR. This has the effect of making it
659 appear that we're referring to the larger expression as a whole. */
660
661 while (1)
662 switch (TREE_CODE (inner))
663 {
664 case VAR_DECL:
665 case PARM_DECL:
666 case RESULT_DECL:
667 /* If there is a scalarizable decl at the bottom, then process it. */
668 if (is_sra_candidate_decl (inner))
669 {
670 struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
671 if (disable_scalarization)
672 elt->cannot_scalarize = true;
673 else
674 fns->use (elt, expr_p, bsi, is_output);
675 }
676 return;
677
678 case ARRAY_REF:
679 /* Non-constant index means any member may be accessed. Prevent the
680 expression from being scalarized. If we were to treat this as a
681 reference to the whole array, we can wind up with a single dynamic
682 index reference inside a loop being overridden by several constant
683 index references during loop setup. It's possible that this could
684 be avoided by using dynamic usage counts based on BB trip counts
685 (based on loop analysis or profiling), but that hardly seems worth
686 the effort. */
687 /* ??? Hack. Figure out how to push this into the scan routines
688 without duplicating too much code. */
689 if (!is_valid_const_index (inner))
690 {
691 disable_scalarization = true;
692 goto use_all;
693 }
694 /* ??? Are we assured that non-constant bounds and stride will have
695 the same value everywhere? I don't think Fortran will... */
696 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
697 goto use_all;
698 inner = TREE_OPERAND (inner, 0);
699 break;
700
701 case COMPONENT_REF:
702 /* A reference to a union member constitutes a reference to the
703 entire union. */
704 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) != RECORD_TYPE)
705 goto use_all;
706 /* ??? See above re non-constant stride. */
707 if (TREE_OPERAND (inner, 2))
708 goto use_all;
709 inner = TREE_OPERAND (inner, 0);
710 break;
711
712 case REALPART_EXPR:
713 case IMAGPART_EXPR:
714 inner = TREE_OPERAND (inner, 0);
715 break;
716
717 case BIT_FIELD_REF:
718 /* A bit field reference (access to *multiple* fields simultaneously)
719 is not currently scalarized. Consider this an access to the
720 complete outer element, to which walk_tree will bring us next. */
721 goto use_all;
722
723 case ARRAY_RANGE_REF:
724 /* Similarly, an subrange reference is used to modify indexing. Which
725 means that the canonical element names that we have won't work. */
726 goto use_all;
727
728 case VIEW_CONVERT_EXPR:
729 case NOP_EXPR:
730 /* Similarly, a view/nop explicitly wants to look at an object in a
731 type other than the one we've scalarized. */
732 goto use_all;
733
734 case WITH_SIZE_EXPR:
735 /* This is a transparent wrapper. The entire inner expression really
736 is being used. */
737 goto use_all;
738
739 use_all:
740 expr_p = &TREE_OPERAND (inner, 0);
741 inner = expr = *expr_p;
742 break;
743
744 default:
745 #ifdef ENABLE_CHECKING
746 /* Validate that we're not missing any references. */
747 gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
748 #endif
749 return;
750 }
751 }
752
753 /* Walk a TREE_LIST of values looking for scalarizable aggregates.
754 If we find one, invoke FNS->USE. */
755
756 static void
757 sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
758 const struct sra_walk_fns *fns)
759 {
760 tree op;
761 for (op = list; op ; op = TREE_CHAIN (op))
762 sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
763 }
764
765 /* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
766 If we find one, invoke FNS->USE. */
767
768 static void
769 sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
770 const struct sra_walk_fns *fns)
771 {
772 sra_walk_tree_list (TREE_OPERAND (expr, 1), bsi, false, fns);
773 }
774
775 /* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
776 aggregates. If we find one, invoke FNS->USE. */
777
778 static void
779 sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
780 const struct sra_walk_fns *fns)
781 {
782 sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
783 sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
784 }
785
786 /* Walk a MODIFY_EXPR and categorize the assignment appropriately. */
787
788 static void
789 sra_walk_modify_expr (tree expr, block_stmt_iterator *bsi,
790 const struct sra_walk_fns *fns)
791 {
792 struct sra_elt *lhs_elt, *rhs_elt;
793 tree lhs, rhs;
794
795 lhs = TREE_OPERAND (expr, 0);
796 rhs = TREE_OPERAND (expr, 1);
797 lhs_elt = maybe_lookup_element_for_expr (lhs);
798 rhs_elt = maybe_lookup_element_for_expr (rhs);
799
800 /* If both sides are scalarizable, this is a COPY operation. */
801 if (lhs_elt && rhs_elt)
802 {
803 fns->copy (lhs_elt, rhs_elt, bsi);
804 return;
805 }
806
807 if (lhs_elt)
808 {
809 /* If this is an assignment from a constant, or constructor, then
810 we have access to all of the elements individually. Invoke INIT. */
811 if (TREE_CODE (rhs) == COMPLEX_EXPR
812 || TREE_CODE (rhs) == COMPLEX_CST
813 || TREE_CODE (rhs) == CONSTRUCTOR)
814 fns->init (lhs_elt, rhs, bsi);
815
816 /* If this is an assignment from read-only memory, treat this as if
817 we'd been passed the constructor directly. Invoke INIT. */
818 else if (TREE_CODE (rhs) == VAR_DECL
819 && TREE_STATIC (rhs)
820 && TREE_READONLY (rhs)
821 && targetm.binds_local_p (rhs))
822 fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);
823
824 /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
825 The lvalue requirement prevents us from trying to directly scalarize
826 the result of a function call. Which would result in trying to call
827 the function multiple times, and other evil things. */
828 else if (!lhs_elt->is_scalar && is_gimple_addressable (rhs))
829 fns->ldst (lhs_elt, rhs, bsi, true);
830
831 /* Otherwise we're being used in some context that requires the
832 aggregate to be seen as a whole. Invoke USE. */
833 else
834 fns->use (lhs_elt, &TREE_OPERAND (expr, 0), bsi, true);
835 }
836 else
837 {
838 /* LHS_ELT being null only means that the LHS as a whole is not a
839 scalarizable reference. There may be occurrences of scalarizable
840 variables within, which implies a USE. */
841 sra_walk_expr (&TREE_OPERAND (expr, 0), bsi, true, fns);
842 }
843
844 /* Likewise for the right-hand side. The only difference here is that
845 we don't have to handle constants, and the RHS may be a call. */
846 if (rhs_elt)
847 {
848 if (!rhs_elt->is_scalar)
849 fns->ldst (rhs_elt, lhs, bsi, false);
850 else
851 fns->use (rhs_elt, &TREE_OPERAND (expr, 1), bsi, false);
852 }
853 else
854 {
855 tree call = get_call_expr_in (rhs);
856 if (call)
857 sra_walk_call_expr (call, bsi, fns);
858 else
859 sra_walk_expr (&TREE_OPERAND (expr, 1), bsi, false, fns);
860 }
861 }
862
863 /* Entry point to the walk functions. Search the entire function,
864 invoking the callbacks in FNS on each of the references to
865 scalarizable variables. */
866
867 static void
868 sra_walk_function (const struct sra_walk_fns *fns)
869 {
870 basic_block bb;
871 block_stmt_iterator si, ni;
872
873 /* ??? Phase 4 could derive some benefit to walking the function in
874 dominator tree order. */
875
876 FOR_EACH_BB (bb)
877 for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
878 {
879 tree stmt, t;
880 stmt_ann_t ann;
881
882 stmt = bsi_stmt (si);
883 ann = stmt_ann (stmt);
884
885 ni = si;
886 bsi_next (&ni);
887
888 /* If the statement has no virtual operands, then it doesn't
889 make any structure references that we care about. */
890 if (NUM_V_MAY_DEFS (V_MAY_DEF_OPS (ann)) == 0
891 && NUM_VUSES (VUSE_OPS (ann)) == 0
892 && NUM_V_MUST_DEFS (V_MUST_DEF_OPS (ann)) == 0)
893 continue;
894
895 switch (TREE_CODE (stmt))
896 {
897 case RETURN_EXPR:
898 /* If we have "return <retval>" then the return value is
899 already exposed for our pleasure. Walk it as a USE to
900 force all the components back in place for the return.
901
902 If we have an embedded assignment, then <retval> is of
903 a type that gets returned in registers in this ABI, and
904 we do not wish to extend their lifetimes. Treat this
905 as a USE of the variable on the RHS of this assignment. */
906
907 t = TREE_OPERAND (stmt, 0);
908 if (TREE_CODE (t) == MODIFY_EXPR)
909 sra_walk_expr (&TREE_OPERAND (t, 1), &si, false, fns);
910 else
911 sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
912 break;
913
914 case MODIFY_EXPR:
915 sra_walk_modify_expr (stmt, &si, fns);
916 break;
917 case CALL_EXPR:
918 sra_walk_call_expr (stmt, &si, fns);
919 break;
920 case ASM_EXPR:
921 sra_walk_asm_expr (stmt, &si, fns);
922 break;
923
924 default:
925 break;
926 }
927 }
928 }
929 \f
930 /* Phase One: Scan all referenced variables in the program looking for
931 structures that could be decomposed. */
932
933 static bool
934 find_candidates_for_sra (void)
935 {
936 size_t i;
937 bool any_set = false;
938
939 for (i = 0; i < num_referenced_vars; i++)
940 {
941 tree var = referenced_var (i);
942 if (decl_can_be_decomposed_p (var))
943 {
944 bitmap_set_bit (sra_candidates, var_ann (var)->uid);
945 any_set = true;
946 }
947 }
948
949 return any_set;
950 }
951
952 \f
953 /* Phase Two: Scan all references to scalarizable variables. Count the
954 number of times they are used or copied respectively. */
955
956 /* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
957 considered a copy, because we can decompose the reference such that
958 the sub-elements needn't be contiguous. */
959
960 static void
961 scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
962 block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
963 bool is_output ATTRIBUTE_UNUSED)
964 {
965 elt->n_uses += 1;
966 }
967
968 static void
969 scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
970 block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
971 {
972 lhs_elt->n_copies += 1;
973 rhs_elt->n_copies += 1;
974 }
975
976 static void
977 scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
978 block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
979 {
980 lhs_elt->n_copies += 1;
981 }
982
983 static void
984 scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
985 block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
986 bool is_output ATTRIBUTE_UNUSED)
987 {
988 elt->n_copies += 1;
989 }
990
991 /* Dump the values we collected during the scanning phase. */
992
993 static void
994 scan_dump (struct sra_elt *elt)
995 {
996 struct sra_elt *c;
997
998 dump_sra_elt_name (dump_file, elt);
999 fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1000
1001 for (c = elt->children; c ; c = c->sibling)
1002 scan_dump (c);
1003 }
1004
1005 /* Entry point to phase 2. Scan the entire function, building up
1006 scalarization data structures, recording copies and uses. */
1007
1008 static void
1009 scan_function (void)
1010 {
1011 static const struct sra_walk_fns fns = {
1012 scan_use, scan_copy, scan_init, scan_ldst, true
1013 };
1014 bitmap_iterator bi;
1015
1016 sra_walk_function (&fns);
1017
1018 if (dump_file && (dump_flags & TDF_DETAILS))
1019 {
1020 size_t i;
1021
1022 fputs ("\nScan results:\n", dump_file);
1023 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1024 {
1025 tree var = referenced_var (i);
1026 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1027 if (elt)
1028 scan_dump (elt);
1029 }
1030 fputc ('\n', dump_file);
1031 }
1032 }
1033 \f
1034 /* Phase Three: Make decisions about which variables to scalarize, if any.
1035 All elements to be scalarized have replacement variables made for them. */
1036
1037 /* A subroutine of build_element_name. Recursively build the element
1038 name on the obstack. */
1039
1040 static void
1041 build_element_name_1 (struct sra_elt *elt)
1042 {
1043 tree t;
1044 char buffer[32];
1045
1046 if (elt->parent)
1047 {
1048 build_element_name_1 (elt->parent);
1049 obstack_1grow (&sra_obstack, '$');
1050
1051 if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1052 {
1053 if (elt->element == integer_zero_node)
1054 obstack_grow (&sra_obstack, "real", 4);
1055 else
1056 obstack_grow (&sra_obstack, "imag", 4);
1057 return;
1058 }
1059 }
1060
1061 t = elt->element;
1062 if (TREE_CODE (t) == INTEGER_CST)
1063 {
1064 /* ??? Eh. Don't bother doing double-wide printing. */
1065 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1066 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1067 }
1068 else
1069 {
1070 tree name = DECL_NAME (t);
1071 if (name)
1072 obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1073 IDENTIFIER_LENGTH (name));
1074 else
1075 {
1076 sprintf (buffer, "D%u", DECL_UID (t));
1077 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1078 }
1079 }
1080 }
1081
1082 /* Construct a pretty variable name for an element's replacement variable.
1083 The name is built on the obstack. */
1084
1085 static char *
1086 build_element_name (struct sra_elt *elt)
1087 {
1088 build_element_name_1 (elt);
1089 obstack_1grow (&sra_obstack, '\0');
1090 return obstack_finish (&sra_obstack);
1091 }
1092
1093 /* Instantiate an element as an independent variable. */
1094
1095 static void
1096 instantiate_element (struct sra_elt *elt)
1097 {
1098 struct sra_elt *base_elt;
1099 tree var, base;
1100
1101 for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1102 continue;
1103 base = base_elt->element;
1104
1105 elt->replacement = var = make_rename_temp (elt->type, "SR");
1106 DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1107 TREE_NO_WARNING (var) = TREE_NO_WARNING (base);
1108 DECL_ARTIFICIAL (var) = DECL_ARTIFICIAL (base);
1109
1110 if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1111 {
1112 char *pretty_name = build_element_name (elt);
1113 DECL_NAME (var) = get_identifier (pretty_name);
1114 obstack_free (&sra_obstack, pretty_name);
1115 }
1116
1117 if (dump_file)
1118 {
1119 fputs (" ", dump_file);
1120 dump_sra_elt_name (dump_file, elt);
1121 fputs (" -> ", dump_file);
1122 print_generic_expr (dump_file, var, dump_flags);
1123 fputc ('\n', dump_file);
1124 }
1125 }
1126
1127 /* Make one pass across an element tree deciding whether or not it's
1128 profitable to instantiate individual leaf scalars.
1129
1130 PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1131 fields all the way up the tree. */
1132
1133 static void
1134 decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1135 unsigned int parent_copies)
1136 {
1137 if (dump_file && !elt->parent)
1138 {
1139 fputs ("Initial instantiation for ", dump_file);
1140 dump_sra_elt_name (dump_file, elt);
1141 fputc ('\n', dump_file);
1142 }
1143
1144 if (elt->cannot_scalarize)
1145 return;
1146
1147 if (elt->is_scalar)
1148 {
1149 /* The decision is simple: instantiate if we're used more frequently
1150 than the parent needs to be seen as a complete unit. */
1151 if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1152 instantiate_element (elt);
1153 }
1154 else
1155 {
1156 struct sra_elt *c;
1157 unsigned int this_uses = elt->n_uses + parent_uses;
1158 unsigned int this_copies = elt->n_copies + parent_copies;
1159
1160 for (c = elt->children; c ; c = c->sibling)
1161 decide_instantiation_1 (c, this_uses, this_copies);
1162 }
1163 }
1164
1165 /* Compute the size and number of all instantiated elements below ELT.
1166 We will only care about this if the size of the complete structure
1167 fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
1168
1169 static unsigned int
1170 sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1171 {
1172 if (elt->replacement)
1173 {
1174 *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1175 return 1;
1176 }
1177 else
1178 {
1179 struct sra_elt *c;
1180 unsigned int count = 0;
1181
1182 for (c = elt->children; c ; c = c->sibling)
1183 count += sum_instantiated_sizes (c, sizep);
1184
1185 return count;
1186 }
1187 }
1188
1189 /* Instantiate fields in ELT->TYPE that are not currently present as
1190 children of ELT. */
1191
1192 static void instantiate_missing_elements (struct sra_elt *elt);
1193
1194 static void
1195 instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1196 {
1197 struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1198 if (sub->is_scalar)
1199 {
1200 if (sub->replacement == NULL)
1201 instantiate_element (sub);
1202 }
1203 else
1204 instantiate_missing_elements (sub);
1205 }
1206
1207 static void
1208 instantiate_missing_elements (struct sra_elt *elt)
1209 {
1210 tree type = elt->type;
1211
1212 switch (TREE_CODE (type))
1213 {
1214 case RECORD_TYPE:
1215 {
1216 tree f;
1217 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1218 if (TREE_CODE (f) == FIELD_DECL)
1219 instantiate_missing_elements_1 (elt, f, TREE_TYPE (f));
1220 break;
1221 }
1222
1223 case ARRAY_TYPE:
1224 {
1225 tree i, max, subtype;
1226
1227 i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1228 max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1229 subtype = TREE_TYPE (type);
1230
1231 while (1)
1232 {
1233 instantiate_missing_elements_1 (elt, i, subtype);
1234 if (tree_int_cst_equal (i, max))
1235 break;
1236 i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1237 }
1238
1239 break;
1240 }
1241
1242 case COMPLEX_TYPE:
1243 type = TREE_TYPE (type);
1244 instantiate_missing_elements_1 (elt, integer_zero_node, type);
1245 instantiate_missing_elements_1 (elt, integer_one_node, type);
1246 break;
1247
1248 default:
1249 gcc_unreachable ();
1250 }
1251 }
1252
1253 /* Make one pass across an element tree deciding whether to perform block
1254 or element copies. If we decide on element copies, instantiate all
1255 elements. Return true if there are any instantiated sub-elements. */
1256
1257 static bool
1258 decide_block_copy (struct sra_elt *elt)
1259 {
1260 struct sra_elt *c;
1261 bool any_inst;
1262
1263 /* If scalarization is disabled, respect it. */
1264 if (elt->cannot_scalarize)
1265 {
1266 elt->use_block_copy = 1;
1267
1268 if (dump_file)
1269 {
1270 fputs ("Scalarization disabled for ", dump_file);
1271 dump_sra_elt_name (dump_file, elt);
1272 fputc ('\n', dump_file);
1273 }
1274
1275 return false;
1276 }
1277
1278 /* Don't decide if we've no uses. */
1279 if (elt->n_uses == 0 && elt->n_copies == 0)
1280 ;
1281
1282 else if (!elt->is_scalar)
1283 {
1284 tree size_tree = TYPE_SIZE_UNIT (elt->type);
1285 bool use_block_copy = true;
1286
1287 /* Don't bother trying to figure out the rest if the structure is
1288 so large we can't do easy arithmetic. This also forces block
1289 copies for variable sized structures. */
1290 if (host_integerp (size_tree, 1))
1291 {
1292 unsigned HOST_WIDE_INT full_size, inst_size = 0;
1293 unsigned int inst_count;
1294
1295 full_size = tree_low_cst (size_tree, 1);
1296
1297 /* ??? What to do here. If there are two fields, and we've only
1298 instantiated one, then instantiating the other is clearly a win.
1299 If there are a large number of fields then the size of the copy
1300 is much more of a factor. */
1301
1302 /* If the structure is small, and we've made copies, go ahead
1303 and instantiate, hoping that the copies will go away. */
1304 if (full_size <= (unsigned) MOVE_RATIO * UNITS_PER_WORD
1305 && elt->n_copies > elt->n_uses)
1306 use_block_copy = false;
1307 else
1308 {
1309 inst_count = sum_instantiated_sizes (elt, &inst_size);
1310
1311 if (inst_size * 4 >= full_size * 3)
1312 use_block_copy = false;
1313 }
1314
1315 /* In order to avoid block copy, we have to be able to instantiate
1316 all elements of the type. See if this is possible. */
1317 if (!use_block_copy
1318 && (!can_completely_scalarize_p (elt)
1319 || !type_can_instantiate_all_elements (elt->type)))
1320 use_block_copy = true;
1321 }
1322 elt->use_block_copy = use_block_copy;
1323
1324 if (dump_file)
1325 {
1326 fprintf (dump_file, "Using %s for ",
1327 use_block_copy ? "block-copy" : "element-copy");
1328 dump_sra_elt_name (dump_file, elt);
1329 fputc ('\n', dump_file);
1330 }
1331
1332 if (!use_block_copy)
1333 {
1334 instantiate_missing_elements (elt);
1335 return true;
1336 }
1337 }
1338
1339 any_inst = elt->replacement != NULL;
1340
1341 for (c = elt->children; c ; c = c->sibling)
1342 any_inst |= decide_block_copy (c);
1343
1344 return any_inst;
1345 }
1346
1347 /* Entry point to phase 3. Instantiate scalar replacement variables. */
1348
1349 static void
1350 decide_instantiations (void)
1351 {
1352 unsigned int i;
1353 bool cleared_any;
1354 struct bitmap_head_def done_head;
1355 bitmap_iterator bi;
1356
1357 /* We cannot clear bits from a bitmap we're iterating over,
1358 so save up all the bits to clear until the end. */
1359 bitmap_initialize (&done_head, 1);
1360 cleared_any = false;
1361
1362 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1363 {
1364 tree var = referenced_var (i);
1365 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1366 if (elt)
1367 {
1368 decide_instantiation_1 (elt, 0, 0);
1369 if (!decide_block_copy (elt))
1370 elt = NULL;
1371 }
1372 if (!elt)
1373 {
1374 bitmap_set_bit (&done_head, i);
1375 cleared_any = true;
1376 }
1377 }
1378
1379 if (cleared_any)
1380 {
1381 bitmap_operation (sra_candidates, sra_candidates, &done_head,
1382 BITMAP_AND_COMPL);
1383 bitmap_operation (needs_copy_in, needs_copy_in, &done_head,
1384 BITMAP_AND_COMPL);
1385 }
1386 bitmap_clear (&done_head);
1387
1388 if (dump_file)
1389 fputc ('\n', dump_file);
1390 }
1391
1392 \f
1393 /* Phase Four: Update the function to match the replacements created. */
1394
1395 /* Mark all the variables in V_MAY_DEF or V_MUST_DEF operands for STMT for
1396 renaming. This becomes necessary when we modify all of a non-scalar. */
1397
1398 static void
1399 mark_all_v_defs (tree stmt)
1400 {
1401 tree sym;
1402 ssa_op_iter iter;
1403
1404 get_stmt_operands (stmt);
1405
1406 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1407 {
1408 if (TREE_CODE (sym) == SSA_NAME)
1409 sym = SSA_NAME_VAR (sym);
1410 bitmap_set_bit (vars_to_rename, var_ann (sym)->uid);
1411 }
1412 }
1413
1414 /* Build a single level component reference to ELT rooted at BASE. */
1415
1416 static tree
1417 generate_one_element_ref (struct sra_elt *elt, tree base)
1418 {
1419 switch (TREE_CODE (TREE_TYPE (base)))
1420 {
1421 case RECORD_TYPE:
1422 {
1423 tree field = elt->element;
1424
1425 /* Watch out for compatible records with differing field lists. */
1426 if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
1427 field = find_compatible_field (TREE_TYPE (base), field);
1428
1429 return build (COMPONENT_REF, elt->type, base, field, NULL);
1430 }
1431
1432 case ARRAY_TYPE:
1433 return build (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
1434
1435 case COMPLEX_TYPE:
1436 if (elt->element == integer_zero_node)
1437 return build (REALPART_EXPR, elt->type, base);
1438 else
1439 return build (IMAGPART_EXPR, elt->type, base);
1440
1441 default:
1442 gcc_unreachable ();
1443 }
1444 }
1445
1446 /* Build a full component reference to ELT rooted at its native variable. */
1447
1448 static tree
1449 generate_element_ref (struct sra_elt *elt)
1450 {
1451 if (elt->parent)
1452 return generate_one_element_ref (elt, generate_element_ref (elt->parent));
1453 else
1454 return elt->element;
1455 }
1456
1457 /* Generate a set of assignment statements in *LIST_P to copy all
1458 instantiated elements under ELT to or from the equivalent structure
1459 rooted at EXPR. COPY_OUT controls the direction of the copy, with
1460 true meaning to copy out of EXPR into ELT. */
1461
1462 static void
1463 generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
1464 tree *list_p)
1465 {
1466 struct sra_elt *c;
1467 tree t;
1468
1469 if (elt->replacement)
1470 {
1471 if (copy_out)
1472 t = build (MODIFY_EXPR, void_type_node, elt->replacement, expr);
1473 else
1474 t = build (MODIFY_EXPR, void_type_node, expr, elt->replacement);
1475 append_to_statement_list (t, list_p);
1476 }
1477 else
1478 {
1479 for (c = elt->children; c ; c = c->sibling)
1480 {
1481 t = generate_one_element_ref (c, unshare_expr (expr));
1482 generate_copy_inout (c, copy_out, t, list_p);
1483 }
1484 }
1485 }
1486
1487 /* Generate a set of assignment statements in *LIST_P to copy all instantiated
1488 elements under SRC to their counterparts under DST. There must be a 1-1
1489 correspondence of instantiated elements. */
1490
1491 static void
1492 generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
1493 {
1494 struct sra_elt *dc, *sc;
1495
1496 for (dc = dst->children; dc ; dc = dc->sibling)
1497 {
1498 sc = lookup_element (src, dc->element, NULL, NO_INSERT);
1499 gcc_assert (sc);
1500 generate_element_copy (dc, sc, list_p);
1501 }
1502
1503 if (dst->replacement)
1504 {
1505 tree t;
1506
1507 gcc_assert (src->replacement);
1508
1509 t = build (MODIFY_EXPR, void_type_node, dst->replacement,
1510 src->replacement);
1511 append_to_statement_list (t, list_p);
1512 }
1513 }
1514
1515 /* Generate a set of assignment statements in *LIST_P to zero all instantiated
1516 elements under ELT. In addition, do not assign to elements that have been
1517 marked VISITED but do reset the visited flag; this allows easy coordination
1518 with generate_element_init. */
1519
1520 static void
1521 generate_element_zero (struct sra_elt *elt, tree *list_p)
1522 {
1523 struct sra_elt *c;
1524
1525 if (elt->visited)
1526 {
1527 elt->visited = false;
1528 return;
1529 }
1530
1531 for (c = elt->children; c ; c = c->sibling)
1532 generate_element_zero (c, list_p);
1533
1534 if (elt->replacement)
1535 {
1536 tree t;
1537
1538 gcc_assert (elt->is_scalar);
1539 t = fold_convert (elt->type, integer_zero_node);
1540
1541 t = build (MODIFY_EXPR, void_type_node, elt->replacement, t);
1542 append_to_statement_list (t, list_p);
1543 }
1544 }
1545
1546 /* Generate an assignment VAR = INIT, where INIT may need gimplification.
1547 Add the result to *LIST_P. */
1548
1549 static void
1550 generate_one_element_init (tree var, tree init, tree *list_p)
1551 {
1552 tree stmt;
1553
1554 /* The replacement can be almost arbitrarily complex. Gimplify. */
1555 stmt = build (MODIFY_EXPR, void_type_node, var, init);
1556 gimplify_stmt (&stmt);
1557
1558 /* The replacement can expose previously unreferenced variables. */
1559 if (TREE_CODE (stmt) == STATEMENT_LIST)
1560 {
1561 tree_stmt_iterator i;
1562 for (i = tsi_start (stmt); !tsi_end_p (i); tsi_next (&i))
1563 find_new_referenced_vars (tsi_stmt_ptr (i));
1564 }
1565 else
1566 find_new_referenced_vars (&stmt);
1567
1568 append_to_statement_list (stmt, list_p);
1569 }
1570
1571 /* Generate a set of assignment statements in *LIST_P to set all instantiated
1572 elements under ELT with the contents of the initializer INIT. In addition,
1573 mark all assigned elements VISITED; this allows easy coordination with
1574 generate_element_zero. Return false if we found a case we couldn't
1575 handle. */
1576
1577 static bool
1578 generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
1579 {
1580 bool result = true;
1581 enum tree_code init_code;
1582 struct sra_elt *sub;
1583 tree t;
1584
1585 /* We can be passed DECL_INITIAL of a static variable. It might have a
1586 conversion, which we strip off here. */
1587 STRIP_USELESS_TYPE_CONVERSION (init);
1588 init_code = TREE_CODE (init);
1589
1590 if (elt->is_scalar)
1591 {
1592 if (elt->replacement)
1593 {
1594 generate_one_element_init (elt->replacement, init, list_p);
1595 elt->visited = true;
1596 }
1597 return result;
1598 }
1599
1600 switch (init_code)
1601 {
1602 case COMPLEX_CST:
1603 case COMPLEX_EXPR:
1604 for (sub = elt->children; sub ; sub = sub->sibling)
1605 {
1606 if (sub->element == integer_zero_node)
1607 t = (init_code == COMPLEX_EXPR
1608 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
1609 else
1610 t = (init_code == COMPLEX_EXPR
1611 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
1612 result &= generate_element_init (sub, t, list_p);
1613 }
1614 break;
1615
1616 case CONSTRUCTOR:
1617 for (t = CONSTRUCTOR_ELTS (init); t ; t = TREE_CHAIN (t))
1618 {
1619 sub = lookup_element (elt, TREE_PURPOSE (t), NULL, NO_INSERT);
1620 if (sub == NULL)
1621 continue;
1622 result &= generate_element_init (sub, TREE_VALUE (t), list_p);
1623 }
1624 break;
1625
1626 default:
1627 elt->visited = true;
1628 result = false;
1629 }
1630
1631 return result;
1632 }
1633
1634 /* Insert STMT on all the outgoing edges out of BB. Note that if BB
1635 has more than one edge, STMT will be replicated for each edge. Also,
1636 abnormal edges will be ignored. */
1637
1638 void
1639 insert_edge_copies (tree stmt, basic_block bb)
1640 {
1641 edge e;
1642 edge_iterator ei;
1643 bool first_copy;
1644
1645 first_copy = true;
1646 FOR_EACH_EDGE (e, ei, bb->succs)
1647 {
1648 /* We don't need to insert copies on abnormal edges. The
1649 value of the scalar replacement is not guaranteed to
1650 be valid through an abnormal edge. */
1651 if (!(e->flags & EDGE_ABNORMAL))
1652 {
1653 if (first_copy)
1654 {
1655 bsi_insert_on_edge (e, stmt);
1656 first_copy = false;
1657 }
1658 else
1659 bsi_insert_on_edge (e, unsave_expr_now (stmt));
1660 }
1661 }
1662 }
1663
1664 /* Helper function to insert LIST before BSI, and set up line number info. */
1665
1666 static void
1667 sra_insert_before (block_stmt_iterator *bsi, tree list)
1668 {
1669 tree stmt = bsi_stmt (*bsi);
1670
1671 if (EXPR_HAS_LOCATION (stmt))
1672 annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
1673 bsi_insert_before (bsi, list, BSI_SAME_STMT);
1674 }
1675
1676 /* Similarly, but insert after BSI. Handles insertion onto edges as well. */
1677
1678 static void
1679 sra_insert_after (block_stmt_iterator *bsi, tree list)
1680 {
1681 tree stmt = bsi_stmt (*bsi);
1682
1683 if (EXPR_HAS_LOCATION (stmt))
1684 annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
1685
1686 if (stmt_ends_bb_p (stmt))
1687 insert_edge_copies (list, bsi->bb);
1688 else
1689 bsi_insert_after (bsi, list, BSI_SAME_STMT);
1690 }
1691
1692 /* Similarly, but replace the statement at BSI. */
1693
1694 static void
1695 sra_replace (block_stmt_iterator *bsi, tree list)
1696 {
1697 sra_insert_before (bsi, list);
1698 bsi_remove (bsi);
1699 if (bsi_end_p (*bsi))
1700 *bsi = bsi_last (bsi->bb);
1701 else
1702 bsi_prev (bsi);
1703 }
1704
1705 /* Scalarize a USE. To recap, this is either a simple reference to ELT,
1706 if elt is scalar, or some occurrence of ELT that requires a complete
1707 aggregate. IS_OUTPUT is true if ELT is being modified. */
1708
1709 static void
1710 scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
1711 bool is_output)
1712 {
1713 tree list = NULL, stmt = bsi_stmt (*bsi);
1714
1715 if (elt->replacement)
1716 {
1717 /* If we have a replacement, then updating the reference is as
1718 simple as modifying the existing statement in place. */
1719 if (is_output)
1720 mark_all_v_defs (stmt);
1721 *expr_p = elt->replacement;
1722 modify_stmt (stmt);
1723 }
1724 else
1725 {
1726 /* Otherwise we need some copies. If ELT is being read, then we want
1727 to store all (modified) sub-elements back into the structure before
1728 the reference takes place. If ELT is being written, then we want to
1729 load the changed values back into our shadow variables. */
1730 /* ??? We don't check modified for reads, we just always write all of
1731 the values. We should be able to record the SSA number of the VOP
1732 for which the values were last read. If that number matches the
1733 SSA number of the VOP in the current statement, then we needn't
1734 emit an assignment. This would also eliminate double writes when
1735 a structure is passed as more than one argument to a function call.
1736 This optimization would be most effective if sra_walk_function
1737 processed the blocks in dominator order. */
1738
1739 generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
1740 if (list == NULL)
1741 return;
1742 mark_all_v_defs (expr_first (list));
1743 if (is_output)
1744 sra_insert_after (bsi, list);
1745 else
1746 sra_insert_before (bsi, list);
1747 }
1748 }
1749
1750 /* Scalarize a COPY. To recap, this is an assignment statement between
1751 two scalarizable references, LHS_ELT and RHS_ELT. */
1752
1753 static void
1754 scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1755 block_stmt_iterator *bsi)
1756 {
1757 tree list, stmt;
1758
1759 if (lhs_elt->replacement && rhs_elt->replacement)
1760 {
1761 /* If we have two scalar operands, modify the existing statement. */
1762 stmt = bsi_stmt (*bsi);
1763
1764 /* See the commentary in sra_walk_function concerning
1765 RETURN_EXPR, and why we should never see one here. */
1766 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
1767
1768 TREE_OPERAND (stmt, 0) = lhs_elt->replacement;
1769 TREE_OPERAND (stmt, 1) = rhs_elt->replacement;
1770 modify_stmt (stmt);
1771 }
1772 else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
1773 {
1774 /* If either side requires a block copy, then sync the RHS back
1775 to the original structure, leave the original assignment
1776 statement (which will perform the block copy), then load the
1777 LHS values out of its now-updated original structure. */
1778 /* ??? Could perform a modified pair-wise element copy. That
1779 would at least allow those elements that are instantiated in
1780 both structures to be optimized well. */
1781
1782 list = NULL;
1783 generate_copy_inout (rhs_elt, false,
1784 generate_element_ref (rhs_elt), &list);
1785 if (list)
1786 {
1787 mark_all_v_defs (expr_first (list));
1788 sra_insert_before (bsi, list);
1789 }
1790
1791 list = NULL;
1792 generate_copy_inout (lhs_elt, true,
1793 generate_element_ref (lhs_elt), &list);
1794 if (list)
1795 sra_insert_after (bsi, list);
1796 }
1797 else
1798 {
1799 /* Otherwise both sides must be fully instantiated. In which
1800 case perform pair-wise element assignments and replace the
1801 original block copy statement. */
1802
1803 stmt = bsi_stmt (*bsi);
1804 mark_all_v_defs (stmt);
1805
1806 list = NULL;
1807 generate_element_copy (lhs_elt, rhs_elt, &list);
1808 gcc_assert (list);
1809 sra_replace (bsi, list);
1810 }
1811 }
1812
1813 /* Scalarize an INIT. To recap, this is an assignment to a scalarizable
1814 reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
1815 COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
1816 CONSTRUCTOR. */
1817
1818 static void
1819 scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
1820 {
1821 bool result = true;
1822 tree list = NULL;
1823
1824 /* Generate initialization statements for all members extant in the RHS. */
1825 if (rhs)
1826 {
1827 push_gimplify_context ();
1828 result = generate_element_init (lhs_elt, rhs, &list);
1829 pop_gimplify_context (NULL);
1830 }
1831
1832 /* CONSTRUCTOR is defined such that any member not mentioned is assigned
1833 a zero value. Initialize the rest of the instantiated elements. */
1834 generate_element_zero (lhs_elt, &list);
1835
1836 if (!result)
1837 {
1838 /* If we failed to convert the entire initializer, then we must
1839 leave the structure assignment in place and must load values
1840 from the structure into the slots for which we did not find
1841 constants. The easiest way to do this is to generate a complete
1842 copy-out, and then follow that with the constant assignments
1843 that we were able to build. DCE will clean things up. */
1844 tree list0 = NULL;
1845 generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
1846 &list0);
1847 append_to_statement_list (list, &list0);
1848 list = list0;
1849 }
1850
1851 if (lhs_elt->use_block_copy || !result)
1852 {
1853 /* Since LHS is not fully instantiated, we must leave the structure
1854 assignment in place. Treating this case differently from a USE
1855 exposes constants to later optimizations. */
1856 if (list)
1857 {
1858 mark_all_v_defs (expr_first (list));
1859 sra_insert_after (bsi, list);
1860 }
1861 }
1862 else
1863 {
1864 /* The LHS is fully instantiated. The list of initializations
1865 replaces the original structure assignment. */
1866 gcc_assert (list);
1867 mark_all_v_defs (bsi_stmt (*bsi));
1868 sra_replace (bsi, list);
1869 }
1870 }
1871
1872 /* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
1873 on all INDIRECT_REFs. */
1874
1875 static tree
1876 mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1877 {
1878 tree t = *tp;
1879
1880 if (TREE_CODE (t) == INDIRECT_REF)
1881 {
1882 TREE_THIS_NOTRAP (t) = 1;
1883 *walk_subtrees = 0;
1884 }
1885 else if (IS_TYPE_OR_DECL_P (t))
1886 *walk_subtrees = 0;
1887
1888 return NULL;
1889 }
1890
1891 /* Scalarize a LDST. To recap, this is an assignment between one scalarizable
1892 reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
1893 if ELT is on the left-hand side. */
1894
1895 static void
1896 scalarize_ldst (struct sra_elt *elt, tree other,
1897 block_stmt_iterator *bsi, bool is_output)
1898 {
1899 /* Shouldn't have gotten called for a scalar. */
1900 gcc_assert (!elt->replacement);
1901
1902 if (elt->use_block_copy)
1903 {
1904 /* Since ELT is not fully instantiated, we have to leave the
1905 block copy in place. Treat this as a USE. */
1906 scalarize_use (elt, NULL, bsi, is_output);
1907 }
1908 else
1909 {
1910 /* The interesting case is when ELT is fully instantiated. In this
1911 case we can have each element stored/loaded directly to/from the
1912 corresponding slot in OTHER. This avoids a block copy. */
1913
1914 tree list = NULL, stmt = bsi_stmt (*bsi);
1915
1916 mark_all_v_defs (stmt);
1917 generate_copy_inout (elt, is_output, other, &list);
1918 gcc_assert (list);
1919
1920 /* Preserve EH semantics. */
1921 if (stmt_ends_bb_p (stmt))
1922 {
1923 tree_stmt_iterator tsi;
1924 tree first;
1925
1926 /* Extract the first statement from LIST. */
1927 tsi = tsi_start (list);
1928 first = tsi_stmt (tsi);
1929 tsi_delink (&tsi);
1930
1931 /* Replace the old statement with this new representative. */
1932 bsi_replace (bsi, first, true);
1933
1934 if (!tsi_end_p (tsi))
1935 {
1936 /* If any reference would trap, then they all would. And more
1937 to the point, the first would. Therefore none of the rest
1938 will trap since the first didn't. Indicate this by
1939 iterating over the remaining statements and set
1940 TREE_THIS_NOTRAP in all INDIRECT_REFs. */
1941 do
1942 {
1943 walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
1944 tsi_next (&tsi);
1945 }
1946 while (!tsi_end_p (tsi));
1947
1948 insert_edge_copies (list, bsi->bb);
1949 }
1950 }
1951 else
1952 sra_replace (bsi, list);
1953 }
1954 }
1955
1956 /* Generate initializations for all scalarizable parameters. */
1957
1958 static void
1959 scalarize_parms (void)
1960 {
1961 tree list = NULL;
1962 size_t i;
1963 bitmap_iterator bi;
1964
1965 EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
1966 {
1967 tree var = referenced_var (i);
1968 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1969 generate_copy_inout (elt, true, var, &list);
1970 }
1971
1972 if (list)
1973 insert_edge_copies (list, ENTRY_BLOCK_PTR);
1974 }
1975
1976 /* Entry point to phase 4. Update the function to match replacements. */
1977
1978 static void
1979 scalarize_function (void)
1980 {
1981 static const struct sra_walk_fns fns = {
1982 scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
1983 };
1984
1985 sra_walk_function (&fns);
1986 scalarize_parms ();
1987 bsi_commit_edge_inserts (NULL);
1988 }
1989
1990 \f
1991 /* Debug helper function. Print ELT in a nice human-readable format. */
1992
1993 static void
1994 dump_sra_elt_name (FILE *f, struct sra_elt *elt)
1995 {
1996 if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1997 {
1998 fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
1999 dump_sra_elt_name (f, elt->parent);
2000 }
2001 else
2002 {
2003 if (elt->parent)
2004 dump_sra_elt_name (f, elt->parent);
2005 if (DECL_P (elt->element))
2006 {
2007 if (TREE_CODE (elt->element) == FIELD_DECL)
2008 fputc ('.', f);
2009 print_generic_expr (f, elt->element, dump_flags);
2010 }
2011 else
2012 fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
2013 TREE_INT_CST_LOW (elt->element));
2014 }
2015 }
2016
2017 /* Likewise, but callable from the debugger. */
2018
2019 void
2020 debug_sra_elt_name (struct sra_elt *elt)
2021 {
2022 dump_sra_elt_name (stderr, elt);
2023 fputc ('\n', stderr);
2024 }
2025
2026 /* Main entry point. */
2027
2028 static void
2029 tree_sra (void)
2030 {
2031 /* Initialize local variables. */
2032 gcc_obstack_init (&sra_obstack);
2033 sra_candidates = BITMAP_XMALLOC ();
2034 needs_copy_in = BITMAP_XMALLOC ();
2035 sra_type_decomp_cache = BITMAP_XMALLOC ();
2036 sra_type_inst_cache = BITMAP_XMALLOC ();
2037 sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
2038
2039 /* Scan. If we find anything, instantiate and scalarize. */
2040 if (find_candidates_for_sra ())
2041 {
2042 scan_function ();
2043 decide_instantiations ();
2044 scalarize_function ();
2045 }
2046
2047 /* Free allocated memory. */
2048 htab_delete (sra_map);
2049 sra_map = NULL;
2050 BITMAP_XFREE (sra_candidates);
2051 BITMAP_XFREE (needs_copy_in);
2052 BITMAP_XFREE (sra_type_decomp_cache);
2053 BITMAP_XFREE (sra_type_inst_cache);
2054 obstack_free (&sra_obstack, NULL);
2055 }
2056
2057 static bool
2058 gate_sra (void)
2059 {
2060 return flag_tree_sra != 0;
2061 }
2062
2063 struct tree_opt_pass pass_sra =
2064 {
2065 "sra", /* name */
2066 gate_sra, /* gate */
2067 tree_sra, /* execute */
2068 NULL, /* sub */
2069 NULL, /* next */
2070 0, /* static_pass_number */
2071 TV_TREE_SRA, /* tv_id */
2072 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2073 0, /* properties_provided */
2074 0, /* properties_destroyed */
2075 0, /* todo_flags_start */
2076 TODO_dump_func | TODO_rename_vars
2077 | TODO_ggc_collect | TODO_verify_ssa, /* todo_flags_finish */
2078 0 /* letter */
2079 };