fa567e54e8b6ef25d342d7861caf6e8f9ecb0823
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
27
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
32
33 Both passes operate in four stages:
34
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
38
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
46
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
50
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
55
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
60
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
64
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
67
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
73
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
94
95 /* Enumeration of all aggregate reductions we can do. */
96 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
97 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
98 SRA_MODE_INTRA }; /* late intraprocedural SRA */
99
100 /* Global variable describing which aggregate reduction we are performing at
101 the moment. */
102 static enum sra_mode sra_mode;
103
104 struct assign_link;
105
106 /* ACCESS represents each access to an aggregate variable (as a whole or a
107 part). It can also represent a group of accesses that refer to exactly the
108 same fragment of an aggregate (i.e. those that have exactly the same offset
109 and size). Such representatives for a single aggregate, once determined,
110 are linked in a linked list and have the group fields set.
111
112 Moreover, when doing intraprocedural SRA, a tree is built from those
113 representatives (by the means of first_child and next_sibling pointers), in
114 which all items in a subtree are "within" the root, i.e. their offset is
115 greater or equal to offset of the root and offset+size is smaller or equal
116 to offset+size of the root. Children of an access are sorted by offset.
117
118 Note that accesses to parts of vector and complex number types always
119 represented by an access to the whole complex number or a vector. It is a
120 duty of the modifying functions to replace them appropriately. */
121
122 struct access
123 {
124 /* Values returned by `get_ref_base_and_extent' for each component reference
125 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
126 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
127 HOST_WIDE_INT offset;
128 HOST_WIDE_INT size;
129 tree base;
130
131 /* Expression. It is context dependent so do not use it to create new
132 expressions to access the original aggregate. See PR 42154 for a
133 testcase. */
134 tree expr;
135 /* Type. */
136 tree type;
137
138 /* The statement this access belongs to. */
139 gimple stmt;
140
141 /* Next group representative for this aggregate. */
142 struct access *next_grp;
143
144 /* Pointer to the group representative. Pointer to itself if the struct is
145 the representative. */
146 struct access *group_representative;
147
148 /* If this access has any children (in terms of the definition above), this
149 points to the first one. */
150 struct access *first_child;
151
152 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
153 described above. In IPA-SRA this is a pointer to the next access
154 belonging to the same group (having the same representative). */
155 struct access *next_sibling;
156
157 /* Pointers to the first and last element in the linked list of assign
158 links. */
159 struct assign_link *first_link, *last_link;
160
161 /* Pointer to the next access in the work queue. */
162 struct access *next_queued;
163
164 /* Replacement variable for this access "region." Never to be accessed
165 directly, always only by the means of get_access_replacement() and only
166 when grp_to_be_replaced flag is set. */
167 tree replacement_decl;
168
169 /* Is this particular access write access? */
170 unsigned write : 1;
171
172 /* Is this access an artificial one created to scalarize some record
173 entirely? */
174 unsigned total_scalarization : 1;
175
176 /* Is this access currently in the work queue? */
177 unsigned grp_queued : 1;
178
179 /* Does this group contain a write access? This flag is propagated down the
180 access tree. */
181 unsigned grp_write : 1;
182
183 /* Does this group contain a read access? This flag is propagated down the
184 access tree. */
185 unsigned grp_read : 1;
186
187 /* Does this group contain a read access that comes from an assignment
188 statement? This flag is propagated down the access tree. */
189 unsigned grp_assignment_read : 1;
190
191 /* Other passes of the analysis use this bit to make function
192 analyze_access_subtree create scalar replacements for this group if
193 possible. */
194 unsigned grp_hint : 1;
195
196 /* Is the subtree rooted in this access fully covered by scalar
197 replacements? */
198 unsigned grp_covered : 1;
199
200 /* If set to true, this access and all below it in an access tree must not be
201 scalarized. */
202 unsigned grp_unscalarizable_region : 1;
203
204 /* Whether data have been written to parts of the aggregate covered by this
205 access which is not to be scalarized. This flag is propagated up in the
206 access tree. */
207 unsigned grp_unscalarized_data : 1;
208
209 /* Does this access and/or group contain a write access through a
210 BIT_FIELD_REF? */
211 unsigned grp_partial_lhs : 1;
212
213 /* Set when a scalar replacement should be created for this variable. We do
214 the decision and creation at different places because create_tmp_var
215 cannot be called from within FOR_EACH_REFERENCED_VAR. */
216 unsigned grp_to_be_replaced : 1;
217
218 /* Is it possible that the group refers to data which might be (directly or
219 otherwise) modified? */
220 unsigned grp_maybe_modified : 1;
221
222 /* Set when this is a representative of a pointer to scalar (i.e. by
223 reference) parameter which we consider for turning into a plain scalar
224 (i.e. a by value parameter). */
225 unsigned grp_scalar_ptr : 1;
226
227 /* Set when we discover that this pointer is not safe to dereference in the
228 caller. */
229 unsigned grp_not_necessarilly_dereferenced : 1;
230 };
231
232 typedef struct access *access_p;
233
234 DEF_VEC_P (access_p);
235 DEF_VEC_ALLOC_P (access_p, heap);
236
237 /* Alloc pool for allocating access structures. */
238 static alloc_pool access_pool;
239
240 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
241 are used to propagate subaccesses from rhs to lhs as long as they don't
242 conflict with what is already there. */
243 struct assign_link
244 {
245 struct access *lacc, *racc;
246 struct assign_link *next;
247 };
248
249 /* Alloc pool for allocating assign link structures. */
250 static alloc_pool link_pool;
251
252 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
253 static struct pointer_map_t *base_access_vec;
254
255 /* Bitmap of candidates. */
256 static bitmap candidate_bitmap;
257
258 /* Bitmap of candidates which we should try to entirely scalarize away and
259 those which cannot be (because they are and need be used as a whole). */
260 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
261
262 /* Obstack for creation of fancy names. */
263 static struct obstack name_obstack;
264
265 /* Head of a linked list of accesses that need to have its subaccesses
266 propagated to their assignment counterparts. */
267 static struct access *work_queue_head;
268
269 /* Number of parameters of the analyzed function when doing early ipa SRA. */
270 static int func_param_count;
271
272 /* scan_function sets the following to true if it encounters a call to
273 __builtin_apply_args. */
274 static bool encountered_apply_args;
275
276 /* Set by scan_function when it finds a recursive call. */
277 static bool encountered_recursive_call;
278
279 /* Set by scan_function when it finds a recursive call with less actual
280 arguments than formal parameters.. */
281 static bool encountered_unchangable_recursive_call;
282
283 /* This is a table in which for each basic block and parameter there is a
284 distance (offset + size) in that parameter which is dereferenced and
285 accessed in that BB. */
286 static HOST_WIDE_INT *bb_dereferences;
287 /* Bitmap of BBs that can cause the function to "stop" progressing by
288 returning, throwing externally, looping infinitely or calling a function
289 which might abort etc.. */
290 static bitmap final_bbs;
291
292 /* Representative of no accesses at all. */
293 static struct access no_accesses_representant;
294
295 /* Predicate to test the special value. */
296
297 static inline bool
298 no_accesses_p (struct access *access)
299 {
300 return access == &no_accesses_representant;
301 }
302
303 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
304 representative fields are dumped, otherwise those which only describe the
305 individual access are. */
306
307 static struct
308 {
309 /* Number of processed aggregates is readily available in
310 analyze_all_variable_accesses and so is not stored here. */
311
312 /* Number of created scalar replacements. */
313 int replacements;
314
315 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
316 expression. */
317 int exprs;
318
319 /* Number of statements created by generate_subtree_copies. */
320 int subtree_copies;
321
322 /* Number of statements created by load_assign_lhs_subreplacements. */
323 int subreplacements;
324
325 /* Number of times sra_modify_assign has deleted a statement. */
326 int deleted;
327
328 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
329 RHS reparately due to type conversions or nonexistent matching
330 references. */
331 int separate_lhs_rhs_handling;
332
333 /* Number of parameters that were removed because they were unused. */
334 int deleted_unused_parameters;
335
336 /* Number of scalars passed as parameters by reference that have been
337 converted to be passed by value. */
338 int scalar_by_ref_to_by_val;
339
340 /* Number of aggregate parameters that were replaced by one or more of their
341 components. */
342 int aggregate_params_reduced;
343
344 /* Numbber of components created when splitting aggregate parameters. */
345 int param_reductions_created;
346 } sra_stats;
347
348 static void
349 dump_access (FILE *f, struct access *access, bool grp)
350 {
351 fprintf (f, "access { ");
352 fprintf (f, "base = (%d)'", DECL_UID (access->base));
353 print_generic_expr (f, access->base, 0);
354 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
355 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
356 fprintf (f, ", expr = ");
357 print_generic_expr (f, access->expr, 0);
358 fprintf (f, ", type = ");
359 print_generic_expr (f, access->type, 0);
360 if (grp)
361 fprintf (f, ", grp_write = %d, total_scalarization = %d, "
362 "grp_read = %d, grp_hint = %d, grp_assignment_read = %d,"
363 "grp_covered = %d, grp_unscalarizable_region = %d, "
364 "grp_unscalarized_data = %d, grp_partial_lhs = %d, "
365 "grp_to_be_replaced = %d, grp_maybe_modified = %d, "
366 "grp_not_necessarilly_dereferenced = %d\n",
367 access->grp_write, access->total_scalarization,
368 access->grp_read, access->grp_hint, access->grp_assignment_read,
369 access->grp_covered, access->grp_unscalarizable_region,
370 access->grp_unscalarized_data, access->grp_partial_lhs,
371 access->grp_to_be_replaced, access->grp_maybe_modified,
372 access->grp_not_necessarilly_dereferenced);
373 else
374 fprintf (f, ", write = %d, total_scalarization = %d, "
375 "grp_partial_lhs = %d\n",
376 access->write, access->total_scalarization,
377 access->grp_partial_lhs);
378 }
379
380 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
381
382 static void
383 dump_access_tree_1 (FILE *f, struct access *access, int level)
384 {
385 do
386 {
387 int i;
388
389 for (i = 0; i < level; i++)
390 fputs ("* ", dump_file);
391
392 dump_access (f, access, true);
393
394 if (access->first_child)
395 dump_access_tree_1 (f, access->first_child, level + 1);
396
397 access = access->next_sibling;
398 }
399 while (access);
400 }
401
402 /* Dump all access trees for a variable, given the pointer to the first root in
403 ACCESS. */
404
405 static void
406 dump_access_tree (FILE *f, struct access *access)
407 {
408 for (; access; access = access->next_grp)
409 dump_access_tree_1 (f, access, 0);
410 }
411
412 /* Return true iff ACC is non-NULL and has subaccesses. */
413
414 static inline bool
415 access_has_children_p (struct access *acc)
416 {
417 return acc && acc->first_child;
418 }
419
420 /* Return a vector of pointers to accesses for the variable given in BASE or
421 NULL if there is none. */
422
423 static VEC (access_p, heap) *
424 get_base_access_vector (tree base)
425 {
426 void **slot;
427
428 slot = pointer_map_contains (base_access_vec, base);
429 if (!slot)
430 return NULL;
431 else
432 return *(VEC (access_p, heap) **) slot;
433 }
434
435 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
436 in ACCESS. Return NULL if it cannot be found. */
437
438 static struct access *
439 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
440 HOST_WIDE_INT size)
441 {
442 while (access && (access->offset != offset || access->size != size))
443 {
444 struct access *child = access->first_child;
445
446 while (child && (child->offset + child->size <= offset))
447 child = child->next_sibling;
448 access = child;
449 }
450
451 return access;
452 }
453
454 /* Return the first group representative for DECL or NULL if none exists. */
455
456 static struct access *
457 get_first_repr_for_decl (tree base)
458 {
459 VEC (access_p, heap) *access_vec;
460
461 access_vec = get_base_access_vector (base);
462 if (!access_vec)
463 return NULL;
464
465 return VEC_index (access_p, access_vec, 0);
466 }
467
468 /* Find an access representative for the variable BASE and given OFFSET and
469 SIZE. Requires that access trees have already been built. Return NULL if
470 it cannot be found. */
471
472 static struct access *
473 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
474 HOST_WIDE_INT size)
475 {
476 struct access *access;
477
478 access = get_first_repr_for_decl (base);
479 while (access && (access->offset + access->size <= offset))
480 access = access->next_grp;
481 if (!access)
482 return NULL;
483
484 return find_access_in_subtree (access, offset, size);
485 }
486
487 /* Add LINK to the linked list of assign links of RACC. */
488 static void
489 add_link_to_rhs (struct access *racc, struct assign_link *link)
490 {
491 gcc_assert (link->racc == racc);
492
493 if (!racc->first_link)
494 {
495 gcc_assert (!racc->last_link);
496 racc->first_link = link;
497 }
498 else
499 racc->last_link->next = link;
500
501 racc->last_link = link;
502 link->next = NULL;
503 }
504
505 /* Move all link structures in their linked list in OLD_RACC to the linked list
506 in NEW_RACC. */
507 static void
508 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
509 {
510 if (!old_racc->first_link)
511 {
512 gcc_assert (!old_racc->last_link);
513 return;
514 }
515
516 if (new_racc->first_link)
517 {
518 gcc_assert (!new_racc->last_link->next);
519 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
520
521 new_racc->last_link->next = old_racc->first_link;
522 new_racc->last_link = old_racc->last_link;
523 }
524 else
525 {
526 gcc_assert (!new_racc->last_link);
527
528 new_racc->first_link = old_racc->first_link;
529 new_racc->last_link = old_racc->last_link;
530 }
531 old_racc->first_link = old_racc->last_link = NULL;
532 }
533
534 /* Add ACCESS to the work queue (which is actually a stack). */
535
536 static void
537 add_access_to_work_queue (struct access *access)
538 {
539 if (!access->grp_queued)
540 {
541 gcc_assert (!access->next_queued);
542 access->next_queued = work_queue_head;
543 access->grp_queued = 1;
544 work_queue_head = access;
545 }
546 }
547
548 /* Pop an access from the work queue, and return it, assuming there is one. */
549
550 static struct access *
551 pop_access_from_work_queue (void)
552 {
553 struct access *access = work_queue_head;
554
555 work_queue_head = access->next_queued;
556 access->next_queued = NULL;
557 access->grp_queued = 0;
558 return access;
559 }
560
561
562 /* Allocate necessary structures. */
563
564 static void
565 sra_initialize (void)
566 {
567 candidate_bitmap = BITMAP_ALLOC (NULL);
568 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
569 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
570 gcc_obstack_init (&name_obstack);
571 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
572 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
573 base_access_vec = pointer_map_create ();
574 memset (&sra_stats, 0, sizeof (sra_stats));
575 encountered_apply_args = false;
576 encountered_recursive_call = false;
577 encountered_unchangable_recursive_call = false;
578 }
579
580 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
581
582 static bool
583 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
584 void *data ATTRIBUTE_UNUSED)
585 {
586 VEC (access_p, heap) *access_vec;
587 access_vec = (VEC (access_p, heap) *) *value;
588 VEC_free (access_p, heap, access_vec);
589
590 return true;
591 }
592
593 /* Deallocate all general structures. */
594
595 static void
596 sra_deinitialize (void)
597 {
598 BITMAP_FREE (candidate_bitmap);
599 BITMAP_FREE (should_scalarize_away_bitmap);
600 BITMAP_FREE (cannot_scalarize_away_bitmap);
601 free_alloc_pool (access_pool);
602 free_alloc_pool (link_pool);
603 obstack_free (&name_obstack, NULL);
604
605 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
606 pointer_map_destroy (base_access_vec);
607 }
608
609 /* Remove DECL from candidates for SRA and write REASON to the dump file if
610 there is one. */
611 static void
612 disqualify_candidate (tree decl, const char *reason)
613 {
614 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
615
616 if (dump_file && (dump_flags & TDF_DETAILS))
617 {
618 fprintf (dump_file, "! Disqualifying ");
619 print_generic_expr (dump_file, decl, 0);
620 fprintf (dump_file, " - %s\n", reason);
621 }
622 }
623
624 /* Return true iff the type contains a field or an element which does not allow
625 scalarization. */
626
627 static bool
628 type_internals_preclude_sra_p (tree type)
629 {
630 tree fld;
631 tree et;
632
633 switch (TREE_CODE (type))
634 {
635 case RECORD_TYPE:
636 case UNION_TYPE:
637 case QUAL_UNION_TYPE:
638 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
639 if (TREE_CODE (fld) == FIELD_DECL)
640 {
641 tree ft = TREE_TYPE (fld);
642
643 if (TREE_THIS_VOLATILE (fld)
644 || !DECL_FIELD_OFFSET (fld) || !DECL_SIZE (fld)
645 || !host_integerp (DECL_FIELD_OFFSET (fld), 1)
646 || !host_integerp (DECL_SIZE (fld), 1))
647 return true;
648
649 if (AGGREGATE_TYPE_P (ft)
650 && type_internals_preclude_sra_p (ft))
651 return true;
652 }
653
654 return false;
655
656 case ARRAY_TYPE:
657 et = TREE_TYPE (type);
658
659 if (AGGREGATE_TYPE_P (et))
660 return type_internals_preclude_sra_p (et);
661 else
662 return false;
663
664 default:
665 return false;
666 }
667 }
668
669 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
670 base variable if it is. Return T if it is not an SSA_NAME. */
671
672 static tree
673 get_ssa_base_param (tree t)
674 {
675 if (TREE_CODE (t) == SSA_NAME)
676 {
677 if (SSA_NAME_IS_DEFAULT_DEF (t))
678 return SSA_NAME_VAR (t);
679 else
680 return NULL_TREE;
681 }
682 return t;
683 }
684
685 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
686 belongs to, unless the BB has already been marked as a potentially
687 final. */
688
689 static void
690 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
691 {
692 basic_block bb = gimple_bb (stmt);
693 int idx, parm_index = 0;
694 tree parm;
695
696 if (bitmap_bit_p (final_bbs, bb->index))
697 return;
698
699 for (parm = DECL_ARGUMENTS (current_function_decl);
700 parm && parm != base;
701 parm = DECL_CHAIN (parm))
702 parm_index++;
703
704 gcc_assert (parm_index < func_param_count);
705
706 idx = bb->index * func_param_count + parm_index;
707 if (bb_dereferences[idx] < dist)
708 bb_dereferences[idx] = dist;
709 }
710
711 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
712 the three fields. Also add it to the vector of accesses corresponding to
713 the base. Finally, return the new access. */
714
715 static struct access *
716 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
717 {
718 VEC (access_p, heap) *vec;
719 struct access *access;
720 void **slot;
721
722 access = (struct access *) pool_alloc (access_pool);
723 memset (access, 0, sizeof (struct access));
724 access->base = base;
725 access->offset = offset;
726 access->size = size;
727
728 slot = pointer_map_contains (base_access_vec, base);
729 if (slot)
730 vec = (VEC (access_p, heap) *) *slot;
731 else
732 vec = VEC_alloc (access_p, heap, 32);
733
734 VEC_safe_push (access_p, heap, vec, access);
735
736 *((struct VEC (access_p,heap) **)
737 pointer_map_insert (base_access_vec, base)) = vec;
738
739 return access;
740 }
741
742 /* Create and insert access for EXPR. Return created access, or NULL if it is
743 not possible. */
744
745 static struct access *
746 create_access (tree expr, gimple stmt, bool write)
747 {
748 struct access *access;
749 HOST_WIDE_INT offset, size, max_size;
750 tree base = expr;
751 bool ptr, unscalarizable_region = false;
752
753 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
754
755 if (sra_mode == SRA_MODE_EARLY_IPA
756 && TREE_CODE (base) == MEM_REF)
757 {
758 base = get_ssa_base_param (TREE_OPERAND (base, 0));
759 if (!base)
760 return NULL;
761 ptr = true;
762 }
763 else
764 ptr = false;
765
766 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
767 return NULL;
768
769 if (sra_mode == SRA_MODE_EARLY_IPA)
770 {
771 if (size < 0 || size != max_size)
772 {
773 disqualify_candidate (base, "Encountered a variable sized access.");
774 return NULL;
775 }
776 if ((offset % BITS_PER_UNIT) != 0 || (size % BITS_PER_UNIT) != 0)
777 {
778 disqualify_candidate (base,
779 "Encountered an acces not aligned to a byte.");
780 return NULL;
781 }
782
783 if (ptr)
784 mark_parm_dereference (base, offset + size, stmt);
785 }
786 else
787 {
788 if (size != max_size)
789 {
790 size = max_size;
791 unscalarizable_region = true;
792 }
793 if (size < 0)
794 {
795 disqualify_candidate (base, "Encountered an unconstrained access.");
796 return NULL;
797 }
798 }
799
800 access = create_access_1 (base, offset, size);
801 access->expr = expr;
802 access->type = TREE_TYPE (expr);
803 access->write = write;
804 access->grp_unscalarizable_region = unscalarizable_region;
805 access->stmt = stmt;
806
807 return access;
808 }
809
810
811 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
812 register types or (recursively) records with only these two kinds of fields.
813 It also returns false if any of these records has a zero-size field as its
814 last field. */
815
816 static bool
817 type_consists_of_records_p (tree type)
818 {
819 tree fld;
820 bool last_fld_has_zero_size = false;
821
822 if (TREE_CODE (type) != RECORD_TYPE)
823 return false;
824
825 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
826 if (TREE_CODE (fld) == FIELD_DECL)
827 {
828 tree ft = TREE_TYPE (fld);
829
830 if (!is_gimple_reg_type (ft)
831 && !type_consists_of_records_p (ft))
832 return false;
833
834 last_fld_has_zero_size = tree_low_cst (DECL_SIZE (fld), 1) == 0;
835 }
836
837 if (last_fld_has_zero_size)
838 return false;
839
840 return true;
841 }
842
843 /* Create total_scalarization accesses for all scalar type fields in DECL that
844 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
845 must be the top-most VAR_DECL representing the variable, OFFSET must be the
846 offset of DECL within BASE. */
847
848 static void
849 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset)
850 {
851 tree fld, decl_type = TREE_TYPE (decl);
852
853 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
854 if (TREE_CODE (fld) == FIELD_DECL)
855 {
856 HOST_WIDE_INT pos = offset + int_bit_position (fld);
857 tree ft = TREE_TYPE (fld);
858
859 if (is_gimple_reg_type (ft))
860 {
861 struct access *access;
862 HOST_WIDE_INT size;
863 tree expr;
864 bool ok;
865
866 size = tree_low_cst (DECL_SIZE (fld), 1);
867 expr = base;
868 ok = build_ref_for_offset (&expr, TREE_TYPE (base), pos,
869 ft, false);
870 gcc_assert (ok);
871
872 access = create_access_1 (base, pos, size);
873 access->expr = expr;
874 access->type = ft;
875 access->total_scalarization = 1;
876 /* Accesses for intraprocedural SRA can have their stmt NULL. */
877 }
878 else
879 completely_scalarize_record (base, fld, pos);
880 }
881 }
882
883
884 /* Search the given tree for a declaration by skipping handled components and
885 exclude it from the candidates. */
886
887 static void
888 disqualify_base_of_expr (tree t, const char *reason)
889 {
890 t = get_base_address (t);
891 if (sra_mode == SRA_MODE_EARLY_IPA
892 && TREE_CODE (t) == MEM_REF)
893 t = get_ssa_base_param (TREE_OPERAND (t, 0));
894
895 if (t && DECL_P (t))
896 disqualify_candidate (t, reason);
897 }
898
899 /* Scan expression EXPR and create access structures for all accesses to
900 candidates for scalarization. Return the created access or NULL if none is
901 created. */
902
903 static struct access *
904 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
905 {
906 struct access *ret = NULL;
907 bool partial_ref;
908
909 if (TREE_CODE (expr) == BIT_FIELD_REF
910 || TREE_CODE (expr) == IMAGPART_EXPR
911 || TREE_CODE (expr) == REALPART_EXPR)
912 {
913 expr = TREE_OPERAND (expr, 0);
914 partial_ref = true;
915 }
916 else
917 partial_ref = false;
918
919 /* We need to dive through V_C_Es in order to get the size of its parameter
920 and not the result type. Ada produces such statements. We are also
921 capable of handling the topmost V_C_E but not any of those buried in other
922 handled components. */
923 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
924 expr = TREE_OPERAND (expr, 0);
925
926 if (contains_view_convert_expr_p (expr))
927 {
928 disqualify_base_of_expr (expr, "V_C_E under a different handled "
929 "component.");
930 return NULL;
931 }
932
933 switch (TREE_CODE (expr))
934 {
935 case MEM_REF:
936 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
937 && sra_mode != SRA_MODE_EARLY_IPA)
938 return NULL;
939 /* fall through */
940 case VAR_DECL:
941 case PARM_DECL:
942 case RESULT_DECL:
943 case COMPONENT_REF:
944 case ARRAY_REF:
945 case ARRAY_RANGE_REF:
946 ret = create_access (expr, stmt, write);
947 break;
948
949 default:
950 break;
951 }
952
953 if (write && partial_ref && ret)
954 ret->grp_partial_lhs = 1;
955
956 return ret;
957 }
958
959 /* Scan expression EXPR and create access structures for all accesses to
960 candidates for scalarization. Return true if any access has been inserted.
961 STMT must be the statement from which the expression is taken, WRITE must be
962 true if the expression is a store and false otherwise. */
963
964 static bool
965 build_access_from_expr (tree expr, gimple stmt, bool write)
966 {
967 struct access *access;
968
969 access = build_access_from_expr_1 (expr, stmt, write);
970 if (access)
971 {
972 /* This means the aggregate is accesses as a whole in a way other than an
973 assign statement and thus cannot be removed even if we had a scalar
974 replacement for everything. */
975 if (cannot_scalarize_away_bitmap)
976 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
977 return true;
978 }
979 return false;
980 }
981
982 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
983 modes in which it matters, return true iff they have been disqualified. RHS
984 may be NULL, in that case ignore it. If we scalarize an aggregate in
985 intra-SRA we may need to add statements after each statement. This is not
986 possible if a statement unconditionally has to end the basic block. */
987 static bool
988 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
989 {
990 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
991 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
992 {
993 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
994 if (rhs)
995 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
996 return true;
997 }
998 return false;
999 }
1000
1001 /* Scan expressions occuring in STMT, create access structures for all accesses
1002 to candidates for scalarization and remove those candidates which occur in
1003 statements or expressions that prevent them from being split apart. Return
1004 true if any access has been inserted. */
1005
1006 static bool
1007 build_accesses_from_assign (gimple stmt)
1008 {
1009 tree lhs, rhs;
1010 struct access *lacc, *racc;
1011
1012 if (!gimple_assign_single_p (stmt))
1013 return false;
1014
1015 lhs = gimple_assign_lhs (stmt);
1016 rhs = gimple_assign_rhs1 (stmt);
1017
1018 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1019 return false;
1020
1021 racc = build_access_from_expr_1 (rhs, stmt, false);
1022 lacc = build_access_from_expr_1 (lhs, stmt, true);
1023
1024 if (racc)
1025 {
1026 racc->grp_assignment_read = 1;
1027 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1028 && !is_gimple_reg_type (racc->type))
1029 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1030 }
1031
1032 if (lacc && racc
1033 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1034 && !lacc->grp_unscalarizable_region
1035 && !racc->grp_unscalarizable_region
1036 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1037 /* FIXME: Turn the following line into an assert after PR 40058 is
1038 fixed. */
1039 && lacc->size == racc->size
1040 && useless_type_conversion_p (lacc->type, racc->type))
1041 {
1042 struct assign_link *link;
1043
1044 link = (struct assign_link *) pool_alloc (link_pool);
1045 memset (link, 0, sizeof (struct assign_link));
1046
1047 link->lacc = lacc;
1048 link->racc = racc;
1049
1050 add_link_to_rhs (racc, link);
1051 }
1052
1053 return lacc || racc;
1054 }
1055
1056 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1057 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1058
1059 static bool
1060 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1061 void *data ATTRIBUTE_UNUSED)
1062 {
1063 op = get_base_address (op);
1064 if (op
1065 && DECL_P (op))
1066 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1067
1068 return false;
1069 }
1070
1071 /* Return true iff callsite CALL has at least as many actual arguments as there
1072 are formal parameters of the function currently processed by IPA-SRA. */
1073
1074 static inline bool
1075 callsite_has_enough_arguments_p (gimple call)
1076 {
1077 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1078 }
1079
1080 /* Scan function and look for interesting expressions and create access
1081 structures for them. Return true iff any access is created. */
1082
1083 static bool
1084 scan_function (void)
1085 {
1086 basic_block bb;
1087 bool ret = false;
1088
1089 FOR_EACH_BB (bb)
1090 {
1091 gimple_stmt_iterator gsi;
1092 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1093 {
1094 gimple stmt = gsi_stmt (gsi);
1095 tree t;
1096 unsigned i;
1097
1098 if (final_bbs && stmt_can_throw_external (stmt))
1099 bitmap_set_bit (final_bbs, bb->index);
1100 switch (gimple_code (stmt))
1101 {
1102 case GIMPLE_RETURN:
1103 t = gimple_return_retval (stmt);
1104 if (t != NULL_TREE)
1105 ret |= build_access_from_expr (t, stmt, false);
1106 if (final_bbs)
1107 bitmap_set_bit (final_bbs, bb->index);
1108 break;
1109
1110 case GIMPLE_ASSIGN:
1111 ret |= build_accesses_from_assign (stmt);
1112 break;
1113
1114 case GIMPLE_CALL:
1115 for (i = 0; i < gimple_call_num_args (stmt); i++)
1116 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1117 stmt, false);
1118
1119 if (sra_mode == SRA_MODE_EARLY_IPA)
1120 {
1121 tree dest = gimple_call_fndecl (stmt);
1122 int flags = gimple_call_flags (stmt);
1123
1124 if (dest)
1125 {
1126 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1127 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1128 encountered_apply_args = true;
1129 if (cgraph_get_node (dest)
1130 == cgraph_get_node (current_function_decl))
1131 {
1132 encountered_recursive_call = true;
1133 if (!callsite_has_enough_arguments_p (stmt))
1134 encountered_unchangable_recursive_call = true;
1135 }
1136 }
1137
1138 if (final_bbs
1139 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1140 bitmap_set_bit (final_bbs, bb->index);
1141 }
1142
1143 t = gimple_call_lhs (stmt);
1144 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1145 ret |= build_access_from_expr (t, stmt, true);
1146 break;
1147
1148 case GIMPLE_ASM:
1149 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1150 asm_visit_addr);
1151 if (final_bbs)
1152 bitmap_set_bit (final_bbs, bb->index);
1153
1154 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1155 {
1156 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1157 ret |= build_access_from_expr (t, stmt, false);
1158 }
1159 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1160 {
1161 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1162 ret |= build_access_from_expr (t, stmt, true);
1163 }
1164 break;
1165
1166 default:
1167 break;
1168 }
1169 }
1170 }
1171
1172 return ret;
1173 }
1174
1175 /* Helper of QSORT function. There are pointers to accesses in the array. An
1176 access is considered smaller than another if it has smaller offset or if the
1177 offsets are the same but is size is bigger. */
1178
1179 static int
1180 compare_access_positions (const void *a, const void *b)
1181 {
1182 const access_p *fp1 = (const access_p *) a;
1183 const access_p *fp2 = (const access_p *) b;
1184 const access_p f1 = *fp1;
1185 const access_p f2 = *fp2;
1186
1187 if (f1->offset != f2->offset)
1188 return f1->offset < f2->offset ? -1 : 1;
1189
1190 if (f1->size == f2->size)
1191 {
1192 if (f1->type == f2->type)
1193 return 0;
1194 /* Put any non-aggregate type before any aggregate type. */
1195 else if (!is_gimple_reg_type (f1->type)
1196 && is_gimple_reg_type (f2->type))
1197 return 1;
1198 else if (is_gimple_reg_type (f1->type)
1199 && !is_gimple_reg_type (f2->type))
1200 return -1;
1201 /* Put any complex or vector type before any other scalar type. */
1202 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1203 && TREE_CODE (f1->type) != VECTOR_TYPE
1204 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1205 || TREE_CODE (f2->type) == VECTOR_TYPE))
1206 return 1;
1207 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1208 || TREE_CODE (f1->type) == VECTOR_TYPE)
1209 && TREE_CODE (f2->type) != COMPLEX_TYPE
1210 && TREE_CODE (f2->type) != VECTOR_TYPE)
1211 return -1;
1212 /* Put the integral type with the bigger precision first. */
1213 else if (INTEGRAL_TYPE_P (f1->type)
1214 && INTEGRAL_TYPE_P (f2->type))
1215 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1216 /* Put any integral type with non-full precision last. */
1217 else if (INTEGRAL_TYPE_P (f1->type)
1218 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1219 != TYPE_PRECISION (f1->type)))
1220 return 1;
1221 else if (INTEGRAL_TYPE_P (f2->type)
1222 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1223 != TYPE_PRECISION (f2->type)))
1224 return -1;
1225 /* Stabilize the sort. */
1226 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1227 }
1228
1229 /* We want the bigger accesses first, thus the opposite operator in the next
1230 line: */
1231 return f1->size > f2->size ? -1 : 1;
1232 }
1233
1234
1235 /* Append a name of the declaration to the name obstack. A helper function for
1236 make_fancy_name. */
1237
1238 static void
1239 make_fancy_decl_name (tree decl)
1240 {
1241 char buffer[32];
1242
1243 tree name = DECL_NAME (decl);
1244 if (name)
1245 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1246 IDENTIFIER_LENGTH (name));
1247 else
1248 {
1249 sprintf (buffer, "D%u", DECL_UID (decl));
1250 obstack_grow (&name_obstack, buffer, strlen (buffer));
1251 }
1252 }
1253
1254 /* Helper for make_fancy_name. */
1255
1256 static void
1257 make_fancy_name_1 (tree expr)
1258 {
1259 char buffer[32];
1260 tree index;
1261
1262 if (DECL_P (expr))
1263 {
1264 make_fancy_decl_name (expr);
1265 return;
1266 }
1267
1268 switch (TREE_CODE (expr))
1269 {
1270 case COMPONENT_REF:
1271 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1272 obstack_1grow (&name_obstack, '$');
1273 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1274 break;
1275
1276 case ARRAY_REF:
1277 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1278 obstack_1grow (&name_obstack, '$');
1279 /* Arrays with only one element may not have a constant as their
1280 index. */
1281 index = TREE_OPERAND (expr, 1);
1282 if (TREE_CODE (index) != INTEGER_CST)
1283 break;
1284 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1285 obstack_grow (&name_obstack, buffer, strlen (buffer));
1286 break;
1287
1288 case ADDR_EXPR:
1289 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1290 break;
1291
1292 case MEM_REF:
1293 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1294 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1295 {
1296 obstack_1grow (&name_obstack, '$');
1297 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1298 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1299 obstack_grow (&name_obstack, buffer, strlen (buffer));
1300 }
1301 break;
1302
1303 case BIT_FIELD_REF:
1304 case REALPART_EXPR:
1305 case IMAGPART_EXPR:
1306 gcc_unreachable (); /* we treat these as scalars. */
1307 break;
1308 default:
1309 break;
1310 }
1311 }
1312
1313 /* Create a human readable name for replacement variable of ACCESS. */
1314
1315 static char *
1316 make_fancy_name (tree expr)
1317 {
1318 make_fancy_name_1 (expr);
1319 obstack_1grow (&name_obstack, '\0');
1320 return XOBFINISH (&name_obstack, char *);
1321 }
1322
1323 /* Helper function for build_ref_for_offset.
1324
1325 FIXME: Eventually this should be rewritten to either re-use the
1326 original access expression unshared (which is good for alias
1327 analysis) or to build a MEM_REF expression. */
1328
1329 static bool
1330 build_ref_for_offset_1 (tree *res, tree type, HOST_WIDE_INT offset,
1331 tree exp_type)
1332 {
1333 while (1)
1334 {
1335 tree fld;
1336 tree tr_size, index, minidx;
1337 HOST_WIDE_INT el_size;
1338
1339 if (offset == 0 && exp_type
1340 && types_compatible_p (exp_type, type))
1341 return true;
1342
1343 switch (TREE_CODE (type))
1344 {
1345 case UNION_TYPE:
1346 case QUAL_UNION_TYPE:
1347 case RECORD_TYPE:
1348 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1349 {
1350 HOST_WIDE_INT pos, size;
1351 tree expr, *expr_ptr;
1352
1353 if (TREE_CODE (fld) != FIELD_DECL)
1354 continue;
1355
1356 pos = int_bit_position (fld);
1357 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1358 tr_size = DECL_SIZE (fld);
1359 if (!tr_size || !host_integerp (tr_size, 1))
1360 continue;
1361 size = tree_low_cst (tr_size, 1);
1362 if (size == 0)
1363 {
1364 if (pos != offset)
1365 continue;
1366 }
1367 else if (pos > offset || (pos + size) <= offset)
1368 continue;
1369
1370 if (res)
1371 {
1372 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1373 NULL_TREE);
1374 expr_ptr = &expr;
1375 }
1376 else
1377 expr_ptr = NULL;
1378 if (build_ref_for_offset_1 (expr_ptr, TREE_TYPE (fld),
1379 offset - pos, exp_type))
1380 {
1381 if (res)
1382 *res = expr;
1383 return true;
1384 }
1385 }
1386 return false;
1387
1388 case ARRAY_TYPE:
1389 tr_size = TYPE_SIZE (TREE_TYPE (type));
1390 if (!tr_size || !host_integerp (tr_size, 1))
1391 return false;
1392 el_size = tree_low_cst (tr_size, 1);
1393
1394 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1395 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1396 return false;
1397 if (res)
1398 {
1399 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1400 if (!integer_zerop (minidx))
1401 index = int_const_binop (PLUS_EXPR, index, minidx, 0);
1402 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1403 NULL_TREE, NULL_TREE);
1404 }
1405 offset = offset % el_size;
1406 type = TREE_TYPE (type);
1407 break;
1408
1409 default:
1410 if (offset != 0)
1411 return false;
1412
1413 if (exp_type)
1414 return false;
1415 else
1416 return true;
1417 }
1418 }
1419 }
1420
1421 /* Construct an expression that would reference a part of aggregate *EXPR of
1422 type TYPE at the given OFFSET of the type EXP_TYPE. If EXPR is NULL, the
1423 function only determines whether it can build such a reference without
1424 actually doing it, otherwise, the tree it points to is unshared first and
1425 then used as a base for furhter sub-references. */
1426
1427 bool
1428 build_ref_for_offset (tree *expr, tree type, HOST_WIDE_INT offset,
1429 tree exp_type, bool allow_ptr)
1430 {
1431 location_t loc = expr ? EXPR_LOCATION (*expr) : UNKNOWN_LOCATION;
1432
1433 if (expr)
1434 *expr = unshare_expr (*expr);
1435
1436 if (allow_ptr && POINTER_TYPE_P (type))
1437 {
1438 type = TREE_TYPE (type);
1439 if (expr)
1440 *expr = build_simple_mem_ref_loc (loc, *expr);
1441 }
1442
1443 return build_ref_for_offset_1 (expr, type, offset, exp_type);
1444 }
1445
1446 /* Return true iff TYPE is stdarg va_list type. */
1447
1448 static inline bool
1449 is_va_list_type (tree type)
1450 {
1451 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1452 }
1453
1454 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1455 those with type which is suitable for scalarization. */
1456
1457 static bool
1458 find_var_candidates (void)
1459 {
1460 tree var, type;
1461 referenced_var_iterator rvi;
1462 bool ret = false;
1463
1464 FOR_EACH_REFERENCED_VAR (var, rvi)
1465 {
1466 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1467 continue;
1468 type = TREE_TYPE (var);
1469
1470 if (!AGGREGATE_TYPE_P (type)
1471 || needs_to_live_in_memory (var)
1472 || TREE_THIS_VOLATILE (var)
1473 || !COMPLETE_TYPE_P (type)
1474 || !host_integerp (TYPE_SIZE (type), 1)
1475 || tree_low_cst (TYPE_SIZE (type), 1) == 0
1476 || type_internals_preclude_sra_p (type)
1477 /* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1478 we also want to schedule it rather late. Thus we ignore it in
1479 the early pass. */
1480 || (sra_mode == SRA_MODE_EARLY_INTRA
1481 && is_va_list_type (type)))
1482 continue;
1483
1484 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1485
1486 if (dump_file && (dump_flags & TDF_DETAILS))
1487 {
1488 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1489 print_generic_expr (dump_file, var, 0);
1490 fprintf (dump_file, "\n");
1491 }
1492 ret = true;
1493 }
1494
1495 return ret;
1496 }
1497
1498 /* Sort all accesses for the given variable, check for partial overlaps and
1499 return NULL if there are any. If there are none, pick a representative for
1500 each combination of offset and size and create a linked list out of them.
1501 Return the pointer to the first representative and make sure it is the first
1502 one in the vector of accesses. */
1503
1504 static struct access *
1505 sort_and_splice_var_accesses (tree var)
1506 {
1507 int i, j, access_count;
1508 struct access *res, **prev_acc_ptr = &res;
1509 VEC (access_p, heap) *access_vec;
1510 bool first = true;
1511 HOST_WIDE_INT low = -1, high = 0;
1512
1513 access_vec = get_base_access_vector (var);
1514 if (!access_vec)
1515 return NULL;
1516 access_count = VEC_length (access_p, access_vec);
1517
1518 /* Sort by <OFFSET, SIZE>. */
1519 qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
1520 compare_access_positions);
1521
1522 i = 0;
1523 while (i < access_count)
1524 {
1525 struct access *access = VEC_index (access_p, access_vec, i);
1526 bool grp_write = access->write;
1527 bool grp_read = !access->write;
1528 bool grp_assignment_read = access->grp_assignment_read;
1529 bool multiple_reads = false;
1530 bool total_scalarization = access->total_scalarization;
1531 bool grp_partial_lhs = access->grp_partial_lhs;
1532 bool first_scalar = is_gimple_reg_type (access->type);
1533 bool unscalarizable_region = access->grp_unscalarizable_region;
1534
1535 if (first || access->offset >= high)
1536 {
1537 first = false;
1538 low = access->offset;
1539 high = access->offset + access->size;
1540 }
1541 else if (access->offset > low && access->offset + access->size > high)
1542 return NULL;
1543 else
1544 gcc_assert (access->offset >= low
1545 && access->offset + access->size <= high);
1546
1547 j = i + 1;
1548 while (j < access_count)
1549 {
1550 struct access *ac2 = VEC_index (access_p, access_vec, j);
1551 if (ac2->offset != access->offset || ac2->size != access->size)
1552 break;
1553 if (ac2->write)
1554 grp_write = true;
1555 else
1556 {
1557 if (grp_read)
1558 multiple_reads = true;
1559 else
1560 grp_read = true;
1561 }
1562 grp_assignment_read |= ac2->grp_assignment_read;
1563 grp_partial_lhs |= ac2->grp_partial_lhs;
1564 unscalarizable_region |= ac2->grp_unscalarizable_region;
1565 total_scalarization |= ac2->total_scalarization;
1566 relink_to_new_repr (access, ac2);
1567
1568 /* If there are both aggregate-type and scalar-type accesses with
1569 this combination of size and offset, the comparison function
1570 should have put the scalars first. */
1571 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1572 ac2->group_representative = access;
1573 j++;
1574 }
1575
1576 i = j;
1577
1578 access->group_representative = access;
1579 access->grp_write = grp_write;
1580 access->grp_read = grp_read;
1581 access->grp_assignment_read = grp_assignment_read;
1582 access->grp_hint = multiple_reads || total_scalarization;
1583 access->grp_partial_lhs = grp_partial_lhs;
1584 access->grp_unscalarizable_region = unscalarizable_region;
1585 if (access->first_link)
1586 add_access_to_work_queue (access);
1587
1588 *prev_acc_ptr = access;
1589 prev_acc_ptr = &access->next_grp;
1590 }
1591
1592 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1593 return res;
1594 }
1595
1596 /* Create a variable for the given ACCESS which determines the type, name and a
1597 few other properties. Return the variable declaration and store it also to
1598 ACCESS->replacement. */
1599
1600 static tree
1601 create_access_replacement (struct access *access, bool rename)
1602 {
1603 tree repl;
1604
1605 repl = create_tmp_var (access->type, "SR");
1606 get_var_ann (repl);
1607 add_referenced_var (repl);
1608 if (rename)
1609 mark_sym_for_renaming (repl);
1610
1611 if (!access->grp_partial_lhs
1612 && (TREE_CODE (access->type) == COMPLEX_TYPE
1613 || TREE_CODE (access->type) == VECTOR_TYPE))
1614 DECL_GIMPLE_REG_P (repl) = 1;
1615
1616 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1617 DECL_ARTIFICIAL (repl) = 1;
1618 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1619
1620 if (DECL_NAME (access->base)
1621 && !DECL_IGNORED_P (access->base)
1622 && !DECL_ARTIFICIAL (access->base))
1623 {
1624 char *pretty_name = make_fancy_name (access->expr);
1625 tree debug_expr = unshare_expr (access->expr), d;
1626
1627 DECL_NAME (repl) = get_identifier (pretty_name);
1628 obstack_free (&name_obstack, pretty_name);
1629
1630 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1631 as DECL_DEBUG_EXPR isn't considered when looking for still
1632 used SSA_NAMEs and thus they could be freed. All debug info
1633 generation cares is whether something is constant or variable
1634 and that get_ref_base_and_extent works properly on the
1635 expression. */
1636 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1637 switch (TREE_CODE (d))
1638 {
1639 case ARRAY_REF:
1640 case ARRAY_RANGE_REF:
1641 if (TREE_OPERAND (d, 1)
1642 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1643 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1644 if (TREE_OPERAND (d, 3)
1645 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1646 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1647 /* FALLTHRU */
1648 case COMPONENT_REF:
1649 if (TREE_OPERAND (d, 2)
1650 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1651 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1652 break;
1653 default:
1654 break;
1655 }
1656 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1657 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1658 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1659 }
1660 else
1661 TREE_NO_WARNING (repl) = 1;
1662
1663 if (dump_file)
1664 {
1665 fprintf (dump_file, "Created a replacement for ");
1666 print_generic_expr (dump_file, access->base, 0);
1667 fprintf (dump_file, " offset: %u, size: %u: ",
1668 (unsigned) access->offset, (unsigned) access->size);
1669 print_generic_expr (dump_file, repl, 0);
1670 fprintf (dump_file, "\n");
1671 }
1672 sra_stats.replacements++;
1673
1674 return repl;
1675 }
1676
1677 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1678
1679 static inline tree
1680 get_access_replacement (struct access *access)
1681 {
1682 gcc_assert (access->grp_to_be_replaced);
1683
1684 if (!access->replacement_decl)
1685 access->replacement_decl = create_access_replacement (access, true);
1686 return access->replacement_decl;
1687 }
1688
1689 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
1690 not mark it for renaming. */
1691
1692 static inline tree
1693 get_unrenamed_access_replacement (struct access *access)
1694 {
1695 gcc_assert (!access->grp_to_be_replaced);
1696
1697 if (!access->replacement_decl)
1698 access->replacement_decl = create_access_replacement (access, false);
1699 return access->replacement_decl;
1700 }
1701
1702
1703 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1704 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1705 to it is not "within" the root. Return false iff some accesses partially
1706 overlap. */
1707
1708 static bool
1709 build_access_subtree (struct access **access)
1710 {
1711 struct access *root = *access, *last_child = NULL;
1712 HOST_WIDE_INT limit = root->offset + root->size;
1713
1714 *access = (*access)->next_grp;
1715 while (*access && (*access)->offset + (*access)->size <= limit)
1716 {
1717 if (!last_child)
1718 root->first_child = *access;
1719 else
1720 last_child->next_sibling = *access;
1721 last_child = *access;
1722
1723 if (!build_access_subtree (access))
1724 return false;
1725 }
1726
1727 if (*access && (*access)->offset < limit)
1728 return false;
1729
1730 return true;
1731 }
1732
1733 /* Build a tree of access representatives, ACCESS is the pointer to the first
1734 one, others are linked in a list by the next_grp field. Return false iff
1735 some accesses partially overlap. */
1736
1737 static bool
1738 build_access_trees (struct access *access)
1739 {
1740 while (access)
1741 {
1742 struct access *root = access;
1743
1744 if (!build_access_subtree (&access))
1745 return false;
1746 root->next_grp = access;
1747 }
1748 return true;
1749 }
1750
1751 /* Return true if expr contains some ARRAY_REFs into a variable bounded
1752 array. */
1753
1754 static bool
1755 expr_with_var_bounded_array_refs_p (tree expr)
1756 {
1757 while (handled_component_p (expr))
1758 {
1759 if (TREE_CODE (expr) == ARRAY_REF
1760 && !host_integerp (array_ref_low_bound (expr), 0))
1761 return true;
1762 expr = TREE_OPERAND (expr, 0);
1763 }
1764 return false;
1765 }
1766
1767 enum mark_read_status { SRA_MR_NOT_READ, SRA_MR_READ, SRA_MR_ASSIGN_READ};
1768
1769 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
1770 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
1771 sorts of access flags appropriately along the way, notably always set
1772 grp_read and grp_assign_read according to MARK_READ and grp_write when
1773 MARK_WRITE is true. */
1774
1775 static bool
1776 analyze_access_subtree (struct access *root, bool allow_replacements,
1777 enum mark_read_status mark_read, bool mark_write)
1778 {
1779 struct access *child;
1780 HOST_WIDE_INT limit = root->offset + root->size;
1781 HOST_WIDE_INT covered_to = root->offset;
1782 bool scalar = is_gimple_reg_type (root->type);
1783 bool hole = false, sth_created = false;
1784 bool direct_read = root->grp_read;
1785
1786 if (mark_read == SRA_MR_ASSIGN_READ)
1787 {
1788 root->grp_read = 1;
1789 root->grp_assignment_read = 1;
1790 }
1791 if (mark_read == SRA_MR_READ)
1792 root->grp_read = 1;
1793 else if (root->grp_assignment_read)
1794 mark_read = SRA_MR_ASSIGN_READ;
1795 else if (root->grp_read)
1796 mark_read = SRA_MR_READ;
1797
1798 if (mark_write)
1799 root->grp_write = true;
1800 else if (root->grp_write)
1801 mark_write = true;
1802
1803 if (root->grp_unscalarizable_region)
1804 allow_replacements = false;
1805
1806 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
1807 allow_replacements = false;
1808
1809 for (child = root->first_child; child; child = child->next_sibling)
1810 {
1811 if (!hole && child->offset < covered_to)
1812 hole = true;
1813 else
1814 covered_to += child->size;
1815
1816 sth_created |= analyze_access_subtree (child,
1817 allow_replacements && !scalar,
1818 mark_read, mark_write);
1819
1820 root->grp_unscalarized_data |= child->grp_unscalarized_data;
1821 hole |= !child->grp_covered;
1822 }
1823
1824 if (allow_replacements && scalar && !root->first_child
1825 && (root->grp_hint
1826 || (root->grp_write && (direct_read || root->grp_assignment_read)))
1827 /* We must not ICE later on when trying to build an access to the
1828 original data within the aggregate even when it is impossible to do in
1829 a defined way like in the PR 42703 testcase. Therefore we check
1830 pre-emptively here that we will be able to do that. */
1831 && build_ref_for_offset (NULL, TREE_TYPE (root->base), root->offset,
1832 root->type, false))
1833 {
1834 if (dump_file && (dump_flags & TDF_DETAILS))
1835 {
1836 fprintf (dump_file, "Marking ");
1837 print_generic_expr (dump_file, root->base, 0);
1838 fprintf (dump_file, " offset: %u, size: %u: ",
1839 (unsigned) root->offset, (unsigned) root->size);
1840 fprintf (dump_file, " to be replaced.\n");
1841 }
1842
1843 root->grp_to_be_replaced = 1;
1844 sth_created = true;
1845 hole = false;
1846 }
1847 else if (covered_to < limit)
1848 hole = true;
1849
1850 if (sth_created && !hole)
1851 {
1852 root->grp_covered = 1;
1853 return true;
1854 }
1855 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
1856 root->grp_unscalarized_data = 1; /* not covered and written to */
1857 if (sth_created)
1858 return true;
1859 return false;
1860 }
1861
1862 /* Analyze all access trees linked by next_grp by the means of
1863 analyze_access_subtree. */
1864 static bool
1865 analyze_access_trees (struct access *access)
1866 {
1867 bool ret = false;
1868
1869 while (access)
1870 {
1871 if (analyze_access_subtree (access, true, SRA_MR_NOT_READ, false))
1872 ret = true;
1873 access = access->next_grp;
1874 }
1875
1876 return ret;
1877 }
1878
1879 /* Return true iff a potential new child of LACC at offset OFFSET and with size
1880 SIZE would conflict with an already existing one. If exactly such a child
1881 already exists in LACC, store a pointer to it in EXACT_MATCH. */
1882
1883 static bool
1884 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
1885 HOST_WIDE_INT size, struct access **exact_match)
1886 {
1887 struct access *child;
1888
1889 for (child = lacc->first_child; child; child = child->next_sibling)
1890 {
1891 if (child->offset == norm_offset && child->size == size)
1892 {
1893 *exact_match = child;
1894 return true;
1895 }
1896
1897 if (child->offset < norm_offset + size
1898 && child->offset + child->size > norm_offset)
1899 return true;
1900 }
1901
1902 return false;
1903 }
1904
1905 /* Create a new child access of PARENT, with all properties just like MODEL
1906 except for its offset and with its grp_write false and grp_read true.
1907 Return the new access or NULL if it cannot be created. Note that this access
1908 is created long after all splicing and sorting, it's not located in any
1909 access vector and is automatically a representative of its group. */
1910
1911 static struct access *
1912 create_artificial_child_access (struct access *parent, struct access *model,
1913 HOST_WIDE_INT new_offset)
1914 {
1915 struct access *access;
1916 struct access **child;
1917 tree expr = parent->base;;
1918
1919 gcc_assert (!model->grp_unscalarizable_region);
1920
1921 if (!build_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
1922 model->type, false))
1923 return NULL;
1924
1925 access = (struct access *) pool_alloc (access_pool);
1926 memset (access, 0, sizeof (struct access));
1927 access->base = parent->base;
1928 access->expr = expr;
1929 access->offset = new_offset;
1930 access->size = model->size;
1931 access->type = model->type;
1932 access->grp_write = true;
1933 access->grp_read = false;
1934
1935 child = &parent->first_child;
1936 while (*child && (*child)->offset < new_offset)
1937 child = &(*child)->next_sibling;
1938
1939 access->next_sibling = *child;
1940 *child = access;
1941
1942 return access;
1943 }
1944
1945
1946 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
1947 true if any new subaccess was created. Additionally, if RACC is a scalar
1948 access but LACC is not, change the type of the latter, if possible. */
1949
1950 static bool
1951 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
1952 {
1953 struct access *rchild;
1954 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
1955 bool ret = false;
1956
1957 if (is_gimple_reg_type (lacc->type)
1958 || lacc->grp_unscalarizable_region
1959 || racc->grp_unscalarizable_region)
1960 return false;
1961
1962 if (!lacc->first_child && !racc->first_child
1963 && is_gimple_reg_type (racc->type))
1964 {
1965 tree t = lacc->base;
1966
1967 if (build_ref_for_offset (&t, TREE_TYPE (t), lacc->offset, racc->type,
1968 false))
1969 {
1970 lacc->expr = t;
1971 lacc->type = racc->type;
1972 }
1973 return false;
1974 }
1975
1976 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
1977 {
1978 struct access *new_acc = NULL;
1979 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
1980
1981 if (rchild->grp_unscalarizable_region)
1982 continue;
1983
1984 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
1985 &new_acc))
1986 {
1987 if (new_acc)
1988 {
1989 rchild->grp_hint = 1;
1990 new_acc->grp_hint |= new_acc->grp_read;
1991 if (rchild->first_child)
1992 ret |= propagate_subaccesses_across_link (new_acc, rchild);
1993 }
1994 continue;
1995 }
1996
1997 /* If a (part of) a union field is on the RHS of an assignment, it can
1998 have sub-accesses which do not make sense on the LHS (PR 40351).
1999 Check that this is not the case. */
2000 if (!build_ref_for_offset (NULL, TREE_TYPE (lacc->base), norm_offset,
2001 rchild->type, false))
2002 continue;
2003
2004 rchild->grp_hint = 1;
2005 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2006 if (new_acc)
2007 {
2008 ret = true;
2009 if (racc->first_child)
2010 propagate_subaccesses_across_link (new_acc, rchild);
2011 }
2012 }
2013
2014 return ret;
2015 }
2016
2017 /* Propagate all subaccesses across assignment links. */
2018
2019 static void
2020 propagate_all_subaccesses (void)
2021 {
2022 while (work_queue_head)
2023 {
2024 struct access *racc = pop_access_from_work_queue ();
2025 struct assign_link *link;
2026
2027 gcc_assert (racc->first_link);
2028
2029 for (link = racc->first_link; link; link = link->next)
2030 {
2031 struct access *lacc = link->lacc;
2032
2033 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2034 continue;
2035 lacc = lacc->group_representative;
2036 if (propagate_subaccesses_across_link (lacc, racc)
2037 && lacc->first_link)
2038 add_access_to_work_queue (lacc);
2039 }
2040 }
2041 }
2042
2043 /* Go through all accesses collected throughout the (intraprocedural) analysis
2044 stage, exclude overlapping ones, identify representatives and build trees
2045 out of them, making decisions about scalarization on the way. Return true
2046 iff there are any to-be-scalarized variables after this stage. */
2047
2048 static bool
2049 analyze_all_variable_accesses (void)
2050 {
2051 int res = 0;
2052 bitmap tmp = BITMAP_ALLOC (NULL);
2053 bitmap_iterator bi;
2054 unsigned i, max_total_scalarization_size;
2055
2056 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2057 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2058
2059 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2060 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2061 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2062 {
2063 tree var = referenced_var (i);
2064
2065 if (TREE_CODE (var) == VAR_DECL
2066 && ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2067 <= max_total_scalarization_size)
2068 && type_consists_of_records_p (TREE_TYPE (var)))
2069 {
2070 completely_scalarize_record (var, var, 0);
2071 if (dump_file && (dump_flags & TDF_DETAILS))
2072 {
2073 fprintf (dump_file, "Will attempt to totally scalarize ");
2074 print_generic_expr (dump_file, var, 0);
2075 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2076 }
2077 }
2078 }
2079
2080 bitmap_copy (tmp, candidate_bitmap);
2081 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2082 {
2083 tree var = referenced_var (i);
2084 struct access *access;
2085
2086 access = sort_and_splice_var_accesses (var);
2087 if (!access || !build_access_trees (access))
2088 disqualify_candidate (var,
2089 "No or inhibitingly overlapping accesses.");
2090 }
2091
2092 propagate_all_subaccesses ();
2093
2094 bitmap_copy (tmp, candidate_bitmap);
2095 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2096 {
2097 tree var = referenced_var (i);
2098 struct access *access = get_first_repr_for_decl (var);
2099
2100 if (analyze_access_trees (access))
2101 {
2102 res++;
2103 if (dump_file && (dump_flags & TDF_DETAILS))
2104 {
2105 fprintf (dump_file, "\nAccess trees for ");
2106 print_generic_expr (dump_file, var, 0);
2107 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2108 dump_access_tree (dump_file, access);
2109 fprintf (dump_file, "\n");
2110 }
2111 }
2112 else
2113 disqualify_candidate (var, "No scalar replacements to be created.");
2114 }
2115
2116 BITMAP_FREE (tmp);
2117
2118 if (res)
2119 {
2120 statistics_counter_event (cfun, "Scalarized aggregates", res);
2121 return true;
2122 }
2123 else
2124 return false;
2125 }
2126
2127 /* Return true iff a reference statement into aggregate AGG can be built for
2128 every single to-be-replaced accesses that is a child of ACCESS, its sibling
2129 or a child of its sibling. TOP_OFFSET is the offset from the processed
2130 access subtree that has to be subtracted from offset of each access. */
2131
2132 static bool
2133 ref_expr_for_all_replacements_p (struct access *access, tree agg,
2134 HOST_WIDE_INT top_offset)
2135 {
2136 do
2137 {
2138 if (access->grp_to_be_replaced
2139 && !build_ref_for_offset (NULL, TREE_TYPE (agg),
2140 access->offset - top_offset,
2141 access->type, false))
2142 return false;
2143
2144 if (access->first_child
2145 && !ref_expr_for_all_replacements_p (access->first_child, agg,
2146 top_offset))
2147 return false;
2148
2149 access = access->next_sibling;
2150 }
2151 while (access);
2152
2153 return true;
2154 }
2155
2156 /* Generate statements copying scalar replacements of accesses within a subtree
2157 into or out of AGG. ACCESS is the first child of the root of the subtree to
2158 be processed. AGG is an aggregate type expression (can be a declaration but
2159 does not have to be, it can for example also be an indirect_ref).
2160 TOP_OFFSET is the offset of the processed subtree which has to be subtracted
2161 from offsets of individual accesses to get corresponding offsets for AGG.
2162 If CHUNK_SIZE is non-null, copy only replacements in the interval
2163 <start_offset, start_offset + chunk_size>, otherwise copy all. GSI is a
2164 statement iterator used to place the new statements. WRITE should be true
2165 when the statements should write from AGG to the replacement and false if
2166 vice versa. if INSERT_AFTER is true, new statements will be added after the
2167 current statement in GSI, they will be added before the statement
2168 otherwise. */
2169
2170 static void
2171 generate_subtree_copies (struct access *access, tree agg,
2172 HOST_WIDE_INT top_offset,
2173 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2174 gimple_stmt_iterator *gsi, bool write,
2175 bool insert_after)
2176 {
2177 do
2178 {
2179 tree expr = agg;
2180
2181 if (chunk_size && access->offset >= start_offset + chunk_size)
2182 return;
2183
2184 if (access->grp_to_be_replaced
2185 && (chunk_size == 0
2186 || access->offset + access->size > start_offset))
2187 {
2188 tree repl = get_access_replacement (access);
2189 bool ref_found;
2190 gimple stmt;
2191
2192 ref_found = build_ref_for_offset (&expr, TREE_TYPE (agg),
2193 access->offset - top_offset,
2194 access->type, false);
2195 gcc_assert (ref_found);
2196
2197 if (write)
2198 {
2199 if (access->grp_partial_lhs)
2200 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2201 !insert_after,
2202 insert_after ? GSI_NEW_STMT
2203 : GSI_SAME_STMT);
2204 stmt = gimple_build_assign (repl, expr);
2205 }
2206 else
2207 {
2208 TREE_NO_WARNING (repl) = 1;
2209 if (access->grp_partial_lhs)
2210 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2211 !insert_after,
2212 insert_after ? GSI_NEW_STMT
2213 : GSI_SAME_STMT);
2214 stmt = gimple_build_assign (expr, repl);
2215 }
2216
2217 if (insert_after)
2218 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2219 else
2220 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2221 update_stmt (stmt);
2222 sra_stats.subtree_copies++;
2223 }
2224
2225 if (access->first_child)
2226 generate_subtree_copies (access->first_child, agg, top_offset,
2227 start_offset, chunk_size, gsi,
2228 write, insert_after);
2229
2230 access = access->next_sibling;
2231 }
2232 while (access);
2233 }
2234
2235 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2236 the root of the subtree to be processed. GSI is the statement iterator used
2237 for inserting statements which are added after the current statement if
2238 INSERT_AFTER is true or before it otherwise. */
2239
2240 static void
2241 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2242 bool insert_after)
2243
2244 {
2245 struct access *child;
2246
2247 if (access->grp_to_be_replaced)
2248 {
2249 gimple stmt;
2250
2251 stmt = gimple_build_assign (get_access_replacement (access),
2252 fold_convert (access->type,
2253 integer_zero_node));
2254 if (insert_after)
2255 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2256 else
2257 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2258 update_stmt (stmt);
2259 }
2260
2261 for (child = access->first_child; child; child = child->next_sibling)
2262 init_subtree_with_zero (child, gsi, insert_after);
2263 }
2264
2265 /* Search for an access representative for the given expression EXPR and
2266 return it or NULL if it cannot be found. */
2267
2268 static struct access *
2269 get_access_for_expr (tree expr)
2270 {
2271 HOST_WIDE_INT offset, size, max_size;
2272 tree base;
2273
2274 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2275 a different size than the size of its argument and we need the latter
2276 one. */
2277 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2278 expr = TREE_OPERAND (expr, 0);
2279
2280 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2281 if (max_size == -1 || !DECL_P (base))
2282 return NULL;
2283
2284 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2285 return NULL;
2286
2287 return get_var_base_offset_size_access (base, offset, max_size);
2288 }
2289
2290 /* Replace the expression EXPR with a scalar replacement if there is one and
2291 generate other statements to do type conversion or subtree copying if
2292 necessary. GSI is used to place newly created statements, WRITE is true if
2293 the expression is being written to (it is on a LHS of a statement or output
2294 in an assembly statement). */
2295
2296 static bool
2297 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2298 {
2299 struct access *access;
2300 tree type, bfr;
2301
2302 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2303 {
2304 bfr = *expr;
2305 expr = &TREE_OPERAND (*expr, 0);
2306 }
2307 else
2308 bfr = NULL_TREE;
2309
2310 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2311 expr = &TREE_OPERAND (*expr, 0);
2312 access = get_access_for_expr (*expr);
2313 if (!access)
2314 return false;
2315 type = TREE_TYPE (*expr);
2316
2317 if (access->grp_to_be_replaced)
2318 {
2319 tree repl = get_access_replacement (access);
2320 /* If we replace a non-register typed access simply use the original
2321 access expression to extract the scalar component afterwards.
2322 This happens if scalarizing a function return value or parameter
2323 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2324 gcc.c-torture/compile/20011217-1.c.
2325
2326 We also want to use this when accessing a complex or vector which can
2327 be accessed as a different type too, potentially creating a need for
2328 type conversion (see PR42196) and when scalarized unions are involved
2329 in assembler statements (see PR42398). */
2330 if (!useless_type_conversion_p (type, access->type))
2331 {
2332 tree ref = access->base;
2333 bool ok;
2334
2335 ok = build_ref_for_offset (&ref, TREE_TYPE (ref),
2336 access->offset, access->type, false);
2337 gcc_assert (ok);
2338
2339 if (write)
2340 {
2341 gimple stmt;
2342
2343 if (access->grp_partial_lhs)
2344 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2345 false, GSI_NEW_STMT);
2346 stmt = gimple_build_assign (repl, ref);
2347 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2348 }
2349 else
2350 {
2351 gimple stmt;
2352
2353 if (access->grp_partial_lhs)
2354 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2355 true, GSI_SAME_STMT);
2356 stmt = gimple_build_assign (ref, repl);
2357 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2358 }
2359 }
2360 else
2361 *expr = repl;
2362 sra_stats.exprs++;
2363 }
2364
2365 if (access->first_child)
2366 {
2367 HOST_WIDE_INT start_offset, chunk_size;
2368 if (bfr
2369 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2370 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2371 {
2372 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2373 start_offset = access->offset
2374 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2375 }
2376 else
2377 start_offset = chunk_size = 0;
2378
2379 generate_subtree_copies (access->first_child, access->base, 0,
2380 start_offset, chunk_size, gsi, write, write);
2381 }
2382 return true;
2383 }
2384
2385 /* Where scalar replacements of the RHS have been written to when a replacement
2386 of a LHS of an assigments cannot be direclty loaded from a replacement of
2387 the RHS. */
2388 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2389 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2390 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2391
2392 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2393 base aggregate if there are unscalarized data or directly to LHS
2394 otherwise. */
2395
2396 static enum unscalarized_data_handling
2397 handle_unscalarized_data_in_subtree (struct access *top_racc, tree lhs,
2398 gimple_stmt_iterator *gsi)
2399 {
2400 if (top_racc->grp_unscalarized_data)
2401 {
2402 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2403 gsi, false, false);
2404 return SRA_UDH_RIGHT;
2405 }
2406 else
2407 {
2408 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2409 0, 0, gsi, false, false);
2410 return SRA_UDH_LEFT;
2411 }
2412 }
2413
2414
2415 /* Try to generate statements to load all sub-replacements in an access
2416 (sub)tree (LACC is the first child) from scalar replacements in the TOP_RACC
2417 (sub)tree. If that is not possible, refresh the TOP_RACC base aggregate and
2418 load the accesses from it. LEFT_OFFSET is the offset of the left whole
2419 subtree being copied, RIGHT_OFFSET is the same thing for the right subtree.
2420 NEW_GSI is stmt iterator used for statement insertions after the original
2421 assignment, OLD_GSI is used to insert statements before the assignment.
2422 *REFRESHED keeps the information whether we have needed to refresh
2423 replacements of the LHS and from which side of the assignments this takes
2424 place. */
2425
2426 static void
2427 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2428 HOST_WIDE_INT left_offset,
2429 HOST_WIDE_INT right_offset,
2430 gimple_stmt_iterator *old_gsi,
2431 gimple_stmt_iterator *new_gsi,
2432 enum unscalarized_data_handling *refreshed,
2433 tree lhs)
2434 {
2435 location_t loc = EXPR_LOCATION (lacc->expr);
2436 do
2437 {
2438 if (lacc->grp_to_be_replaced)
2439 {
2440 struct access *racc;
2441 HOST_WIDE_INT offset = lacc->offset - left_offset + right_offset;
2442 gimple stmt;
2443 tree rhs;
2444
2445 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2446 if (racc && racc->grp_to_be_replaced)
2447 {
2448 rhs = get_access_replacement (racc);
2449 if (!useless_type_conversion_p (lacc->type, racc->type))
2450 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2451 }
2452 else
2453 {
2454 /* No suitable access on the right hand side, need to load from
2455 the aggregate. See if we have to update it first... */
2456 if (*refreshed == SRA_UDH_NONE)
2457 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2458 lhs, old_gsi);
2459
2460 if (*refreshed == SRA_UDH_LEFT)
2461 {
2462 bool repl_found;
2463
2464 rhs = lacc->base;
2465 repl_found = build_ref_for_offset (&rhs, TREE_TYPE (rhs),
2466 lacc->offset, lacc->type,
2467 false);
2468 gcc_assert (repl_found);
2469 }
2470 else
2471 {
2472 bool repl_found;
2473
2474 rhs = top_racc->base;
2475 repl_found = build_ref_for_offset (&rhs,
2476 TREE_TYPE (top_racc->base),
2477 offset, lacc->type, false);
2478 gcc_assert (repl_found);
2479 }
2480 }
2481
2482 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2483 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2484 update_stmt (stmt);
2485 sra_stats.subreplacements++;
2486 }
2487 else if (*refreshed == SRA_UDH_NONE
2488 && lacc->grp_read && !lacc->grp_covered)
2489 *refreshed = handle_unscalarized_data_in_subtree (top_racc, lhs,
2490 old_gsi);
2491
2492 if (lacc->first_child)
2493 load_assign_lhs_subreplacements (lacc->first_child, top_racc,
2494 left_offset, right_offset,
2495 old_gsi, new_gsi, refreshed, lhs);
2496 lacc = lacc->next_sibling;
2497 }
2498 while (lacc);
2499 }
2500
2501 /* Result code for SRA assignment modification. */
2502 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2503 SRA_AM_MODIFIED, /* stmt changed but not
2504 removed */
2505 SRA_AM_REMOVED }; /* stmt eliminated */
2506
2507 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2508 to the assignment and GSI is the statement iterator pointing at it. Returns
2509 the same values as sra_modify_assign. */
2510
2511 static enum assignment_mod_result
2512 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2513 {
2514 tree lhs = gimple_assign_lhs (*stmt);
2515 struct access *acc;
2516
2517 acc = get_access_for_expr (lhs);
2518 if (!acc)
2519 return SRA_AM_NONE;
2520
2521 if (VEC_length (constructor_elt,
2522 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2523 {
2524 /* I have never seen this code path trigger but if it can happen the
2525 following should handle it gracefully. */
2526 if (access_has_children_p (acc))
2527 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2528 true, true);
2529 return SRA_AM_MODIFIED;
2530 }
2531
2532 if (acc->grp_covered)
2533 {
2534 init_subtree_with_zero (acc, gsi, false);
2535 unlink_stmt_vdef (*stmt);
2536 gsi_remove (gsi, true);
2537 return SRA_AM_REMOVED;
2538 }
2539 else
2540 {
2541 init_subtree_with_zero (acc, gsi, true);
2542 return SRA_AM_MODIFIED;
2543 }
2544 }
2545
2546 /* Create and return a new suitable default definition SSA_NAME for RACC which
2547 is an access describing an uninitialized part of an aggregate that is being
2548 loaded. */
2549
2550 static tree
2551 get_repl_default_def_ssa_name (struct access *racc)
2552 {
2553 tree repl, decl;
2554
2555 decl = get_unrenamed_access_replacement (racc);
2556
2557 repl = gimple_default_def (cfun, decl);
2558 if (!repl)
2559 {
2560 repl = make_ssa_name (decl, gimple_build_nop ());
2561 set_default_def (decl, repl);
2562 }
2563
2564 return repl;
2565 }
2566
2567 /* Examine both sides of the assignment statement pointed to by STMT, replace
2568 them with a scalare replacement if there is one and generate copying of
2569 replacements if scalarized aggregates have been used in the assignment. GSI
2570 is used to hold generated statements for type conversions and subtree
2571 copying. */
2572
2573 static enum assignment_mod_result
2574 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2575 {
2576 struct access *lacc, *racc;
2577 tree lhs, rhs;
2578 bool modify_this_stmt = false;
2579 bool force_gimple_rhs = false;
2580 location_t loc = gimple_location (*stmt);
2581 gimple_stmt_iterator orig_gsi = *gsi;
2582
2583 if (!gimple_assign_single_p (*stmt))
2584 return SRA_AM_NONE;
2585 lhs = gimple_assign_lhs (*stmt);
2586 rhs = gimple_assign_rhs1 (*stmt);
2587
2588 if (TREE_CODE (rhs) == CONSTRUCTOR)
2589 return sra_modify_constructor_assign (stmt, gsi);
2590
2591 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2592 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2593 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2594 {
2595 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2596 gsi, false);
2597 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2598 gsi, true);
2599 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2600 }
2601
2602 lacc = get_access_for_expr (lhs);
2603 racc = get_access_for_expr (rhs);
2604 if (!lacc && !racc)
2605 return SRA_AM_NONE;
2606
2607 if (lacc && lacc->grp_to_be_replaced)
2608 {
2609 lhs = get_access_replacement (lacc);
2610 gimple_assign_set_lhs (*stmt, lhs);
2611 modify_this_stmt = true;
2612 if (lacc->grp_partial_lhs)
2613 force_gimple_rhs = true;
2614 sra_stats.exprs++;
2615 }
2616
2617 if (racc && racc->grp_to_be_replaced)
2618 {
2619 rhs = get_access_replacement (racc);
2620 modify_this_stmt = true;
2621 if (racc->grp_partial_lhs)
2622 force_gimple_rhs = true;
2623 sra_stats.exprs++;
2624 }
2625
2626 if (modify_this_stmt)
2627 {
2628 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2629 {
2630 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2631 ??? This should move to fold_stmt which we simply should
2632 call after building a VIEW_CONVERT_EXPR here. */
2633 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2634 && !access_has_children_p (lacc))
2635 {
2636 tree expr = lhs;
2637 if (build_ref_for_offset (&expr, TREE_TYPE (lhs), 0,
2638 TREE_TYPE (rhs), false))
2639 {
2640 lhs = expr;
2641 gimple_assign_set_lhs (*stmt, expr);
2642 }
2643 }
2644 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2645 && !access_has_children_p (racc))
2646 {
2647 tree expr = rhs;
2648 if (build_ref_for_offset (&expr, TREE_TYPE (rhs), 0,
2649 TREE_TYPE (lhs), false))
2650 rhs = expr;
2651 }
2652 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2653 {
2654 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2655 if (is_gimple_reg_type (TREE_TYPE (lhs))
2656 && TREE_CODE (lhs) != SSA_NAME)
2657 force_gimple_rhs = true;
2658 }
2659 }
2660 }
2661
2662 /* From this point on, the function deals with assignments in between
2663 aggregates when at least one has scalar reductions of some of its
2664 components. There are three possible scenarios: Both the LHS and RHS have
2665 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2666
2667 In the first case, we would like to load the LHS components from RHS
2668 components whenever possible. If that is not possible, we would like to
2669 read it directly from the RHS (after updating it by storing in it its own
2670 components). If there are some necessary unscalarized data in the LHS,
2671 those will be loaded by the original assignment too. If neither of these
2672 cases happen, the original statement can be removed. Most of this is done
2673 by load_assign_lhs_subreplacements.
2674
2675 In the second case, we would like to store all RHS scalarized components
2676 directly into LHS and if they cover the aggregate completely, remove the
2677 statement too. In the third case, we want the LHS components to be loaded
2678 directly from the RHS (DSE will remove the original statement if it
2679 becomes redundant).
2680
2681 This is a bit complex but manageable when types match and when unions do
2682 not cause confusion in a way that we cannot really load a component of LHS
2683 from the RHS or vice versa (the access representing this level can have
2684 subaccesses that are accessible only through a different union field at a
2685 higher level - different from the one used in the examined expression).
2686 Unions are fun.
2687
2688 Therefore, I specially handle a fourth case, happening when there is a
2689 specific type cast or it is impossible to locate a scalarized subaccess on
2690 the other side of the expression. If that happens, I simply "refresh" the
2691 RHS by storing in it is scalarized components leave the original statement
2692 there to do the copying and then load the scalar replacements of the LHS.
2693 This is what the first branch does. */
2694
2695 if (gimple_has_volatile_ops (*stmt)
2696 || contains_view_convert_expr_p (rhs)
2697 || contains_view_convert_expr_p (lhs)
2698 || (access_has_children_p (racc)
2699 && !ref_expr_for_all_replacements_p (racc, lhs, racc->offset))
2700 || (access_has_children_p (lacc)
2701 && !ref_expr_for_all_replacements_p (lacc, rhs, lacc->offset)))
2702 {
2703 if (access_has_children_p (racc))
2704 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
2705 gsi, false, false);
2706 if (access_has_children_p (lacc))
2707 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
2708 gsi, true, true);
2709 sra_stats.separate_lhs_rhs_handling++;
2710 }
2711 else
2712 {
2713 if (access_has_children_p (lacc) && access_has_children_p (racc))
2714 {
2715 gimple_stmt_iterator orig_gsi = *gsi;
2716 enum unscalarized_data_handling refreshed;
2717
2718 if (lacc->grp_read && !lacc->grp_covered)
2719 refreshed = handle_unscalarized_data_in_subtree (racc, lhs, gsi);
2720 else
2721 refreshed = SRA_UDH_NONE;
2722
2723 load_assign_lhs_subreplacements (lacc->first_child, racc,
2724 lacc->offset, racc->offset,
2725 &orig_gsi, gsi, &refreshed, lhs);
2726 if (refreshed != SRA_UDH_RIGHT)
2727 {
2728 gsi_next (gsi);
2729 unlink_stmt_vdef (*stmt);
2730 gsi_remove (&orig_gsi, true);
2731 sra_stats.deleted++;
2732 return SRA_AM_REMOVED;
2733 }
2734 }
2735 else
2736 {
2737 if (racc)
2738 {
2739 if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data)
2740 {
2741 if (dump_file)
2742 {
2743 fprintf (dump_file, "Removing load: ");
2744 print_gimple_stmt (dump_file, *stmt, 0, 0);
2745 }
2746
2747 if (TREE_CODE (lhs) == SSA_NAME)
2748 {
2749 rhs = get_repl_default_def_ssa_name (racc);
2750 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2751 TREE_TYPE (rhs)))
2752 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
2753 TREE_TYPE (lhs), rhs);
2754 }
2755 else
2756 {
2757 if (racc->first_child)
2758 generate_subtree_copies (racc->first_child, lhs,
2759 racc->offset, 0, 0, gsi,
2760 false, false);
2761
2762 gcc_assert (*stmt == gsi_stmt (*gsi));
2763 unlink_stmt_vdef (*stmt);
2764 gsi_remove (gsi, true);
2765 sra_stats.deleted++;
2766 return SRA_AM_REMOVED;
2767 }
2768 }
2769 else if (racc->first_child)
2770 generate_subtree_copies (racc->first_child, lhs,
2771 racc->offset, 0, 0, gsi, false, true);
2772 }
2773 if (access_has_children_p (lacc))
2774 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
2775 0, 0, gsi, true, true);
2776 }
2777 }
2778
2779 /* This gimplification must be done after generate_subtree_copies, lest we
2780 insert the subtree copies in the middle of the gimplified sequence. */
2781 if (force_gimple_rhs)
2782 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
2783 true, GSI_SAME_STMT);
2784 if (gimple_assign_rhs1 (*stmt) != rhs)
2785 {
2786 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
2787 gcc_assert (*stmt == gsi_stmt (orig_gsi));
2788 }
2789
2790 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2791 }
2792
2793 /* Traverse the function body and all modifications as decided in
2794 analyze_all_variable_accesses. Return true iff the CFG has been
2795 changed. */
2796
2797 static bool
2798 sra_modify_function_body (void)
2799 {
2800 bool cfg_changed = false;
2801 basic_block bb;
2802
2803 FOR_EACH_BB (bb)
2804 {
2805 gimple_stmt_iterator gsi = gsi_start_bb (bb);
2806 while (!gsi_end_p (gsi))
2807 {
2808 gimple stmt = gsi_stmt (gsi);
2809 enum assignment_mod_result assign_result;
2810 bool modified = false, deleted = false;
2811 tree *t;
2812 unsigned i;
2813
2814 switch (gimple_code (stmt))
2815 {
2816 case GIMPLE_RETURN:
2817 t = gimple_return_retval_ptr (stmt);
2818 if (*t != NULL_TREE)
2819 modified |= sra_modify_expr (t, &gsi, false);
2820 break;
2821
2822 case GIMPLE_ASSIGN:
2823 assign_result = sra_modify_assign (&stmt, &gsi);
2824 modified |= assign_result == SRA_AM_MODIFIED;
2825 deleted = assign_result == SRA_AM_REMOVED;
2826 break;
2827
2828 case GIMPLE_CALL:
2829 /* Operands must be processed before the lhs. */
2830 for (i = 0; i < gimple_call_num_args (stmt); i++)
2831 {
2832 t = gimple_call_arg_ptr (stmt, i);
2833 modified |= sra_modify_expr (t, &gsi, false);
2834 }
2835
2836 if (gimple_call_lhs (stmt))
2837 {
2838 t = gimple_call_lhs_ptr (stmt);
2839 modified |= sra_modify_expr (t, &gsi, true);
2840 }
2841 break;
2842
2843 case GIMPLE_ASM:
2844 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
2845 {
2846 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
2847 modified |= sra_modify_expr (t, &gsi, false);
2848 }
2849 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
2850 {
2851 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
2852 modified |= sra_modify_expr (t, &gsi, true);
2853 }
2854 break;
2855
2856 default:
2857 break;
2858 }
2859
2860 if (modified)
2861 {
2862 update_stmt (stmt);
2863 if (maybe_clean_eh_stmt (stmt)
2864 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
2865 cfg_changed = true;
2866 }
2867 if (!deleted)
2868 gsi_next (&gsi);
2869 }
2870 }
2871
2872 return cfg_changed;
2873 }
2874
2875 /* Generate statements initializing scalar replacements of parts of function
2876 parameters. */
2877
2878 static void
2879 initialize_parameter_reductions (void)
2880 {
2881 gimple_stmt_iterator gsi;
2882 gimple_seq seq = NULL;
2883 tree parm;
2884
2885 for (parm = DECL_ARGUMENTS (current_function_decl);
2886 parm;
2887 parm = DECL_CHAIN (parm))
2888 {
2889 VEC (access_p, heap) *access_vec;
2890 struct access *access;
2891
2892 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
2893 continue;
2894 access_vec = get_base_access_vector (parm);
2895 if (!access_vec)
2896 continue;
2897
2898 if (!seq)
2899 {
2900 seq = gimple_seq_alloc ();
2901 gsi = gsi_start (seq);
2902 }
2903
2904 for (access = VEC_index (access_p, access_vec, 0);
2905 access;
2906 access = access->next_grp)
2907 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true);
2908 }
2909
2910 if (seq)
2911 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
2912 }
2913
2914 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
2915 it reveals there are components of some aggregates to be scalarized, it runs
2916 the required transformations. */
2917 static unsigned int
2918 perform_intra_sra (void)
2919 {
2920 int ret = 0;
2921 sra_initialize ();
2922
2923 if (!find_var_candidates ())
2924 goto out;
2925
2926 if (!scan_function ())
2927 goto out;
2928
2929 if (!analyze_all_variable_accesses ())
2930 goto out;
2931
2932 if (sra_modify_function_body ())
2933 ret = TODO_update_ssa | TODO_cleanup_cfg;
2934 else
2935 ret = TODO_update_ssa;
2936 initialize_parameter_reductions ();
2937
2938 statistics_counter_event (cfun, "Scalar replacements created",
2939 sra_stats.replacements);
2940 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
2941 statistics_counter_event (cfun, "Subtree copy stmts",
2942 sra_stats.subtree_copies);
2943 statistics_counter_event (cfun, "Subreplacement stmts",
2944 sra_stats.subreplacements);
2945 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
2946 statistics_counter_event (cfun, "Separate LHS and RHS handling",
2947 sra_stats.separate_lhs_rhs_handling);
2948
2949 out:
2950 sra_deinitialize ();
2951 return ret;
2952 }
2953
2954 /* Perform early intraprocedural SRA. */
2955 static unsigned int
2956 early_intra_sra (void)
2957 {
2958 sra_mode = SRA_MODE_EARLY_INTRA;
2959 return perform_intra_sra ();
2960 }
2961
2962 /* Perform "late" intraprocedural SRA. */
2963 static unsigned int
2964 late_intra_sra (void)
2965 {
2966 sra_mode = SRA_MODE_INTRA;
2967 return perform_intra_sra ();
2968 }
2969
2970
2971 static bool
2972 gate_intra_sra (void)
2973 {
2974 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
2975 }
2976
2977
2978 struct gimple_opt_pass pass_sra_early =
2979 {
2980 {
2981 GIMPLE_PASS,
2982 "esra", /* name */
2983 gate_intra_sra, /* gate */
2984 early_intra_sra, /* execute */
2985 NULL, /* sub */
2986 NULL, /* next */
2987 0, /* static_pass_number */
2988 TV_TREE_SRA, /* tv_id */
2989 PROP_cfg | PROP_ssa, /* properties_required */
2990 0, /* properties_provided */
2991 0, /* properties_destroyed */
2992 0, /* todo_flags_start */
2993 TODO_dump_func
2994 | TODO_update_ssa
2995 | TODO_ggc_collect
2996 | TODO_verify_ssa /* todo_flags_finish */
2997 }
2998 };
2999
3000 struct gimple_opt_pass pass_sra =
3001 {
3002 {
3003 GIMPLE_PASS,
3004 "sra", /* name */
3005 gate_intra_sra, /* gate */
3006 late_intra_sra, /* execute */
3007 NULL, /* sub */
3008 NULL, /* next */
3009 0, /* static_pass_number */
3010 TV_TREE_SRA, /* tv_id */
3011 PROP_cfg | PROP_ssa, /* properties_required */
3012 0, /* properties_provided */
3013 0, /* properties_destroyed */
3014 TODO_update_address_taken, /* todo_flags_start */
3015 TODO_dump_func
3016 | TODO_update_ssa
3017 | TODO_ggc_collect
3018 | TODO_verify_ssa /* todo_flags_finish */
3019 }
3020 };
3021
3022
3023 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3024 parameter. */
3025
3026 static bool
3027 is_unused_scalar_param (tree parm)
3028 {
3029 tree name;
3030 return (is_gimple_reg (parm)
3031 && (!(name = gimple_default_def (cfun, parm))
3032 || has_zero_uses (name)));
3033 }
3034
3035 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3036 examine whether there are any direct or otherwise infeasible ones. If so,
3037 return true, otherwise return false. PARM must be a gimple register with a
3038 non-NULL default definition. */
3039
3040 static bool
3041 ptr_parm_has_direct_uses (tree parm)
3042 {
3043 imm_use_iterator ui;
3044 gimple stmt;
3045 tree name = gimple_default_def (cfun, parm);
3046 bool ret = false;
3047
3048 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3049 {
3050 int uses_ok = 0;
3051 use_operand_p use_p;
3052
3053 if (is_gimple_debug (stmt))
3054 continue;
3055
3056 /* Valid uses include dereferences on the lhs and the rhs. */
3057 if (gimple_has_lhs (stmt))
3058 {
3059 tree lhs = gimple_get_lhs (stmt);
3060 while (handled_component_p (lhs))
3061 lhs = TREE_OPERAND (lhs, 0);
3062 if (TREE_CODE (lhs) == MEM_REF
3063 && TREE_OPERAND (lhs, 0) == name
3064 && integer_zerop (TREE_OPERAND (lhs, 1))
3065 && types_compatible_p (TREE_TYPE (lhs),
3066 TREE_TYPE (TREE_TYPE (name))))
3067 uses_ok++;
3068 }
3069 if (gimple_assign_single_p (stmt))
3070 {
3071 tree rhs = gimple_assign_rhs1 (stmt);
3072 while (handled_component_p (rhs))
3073 rhs = TREE_OPERAND (rhs, 0);
3074 if (TREE_CODE (rhs) == MEM_REF
3075 && TREE_OPERAND (rhs, 0) == name
3076 && integer_zerop (TREE_OPERAND (rhs, 1))
3077 && types_compatible_p (TREE_TYPE (rhs),
3078 TREE_TYPE (TREE_TYPE (name))))
3079 uses_ok++;
3080 }
3081 else if (is_gimple_call (stmt))
3082 {
3083 unsigned i;
3084 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3085 {
3086 tree arg = gimple_call_arg (stmt, i);
3087 while (handled_component_p (arg))
3088 arg = TREE_OPERAND (arg, 0);
3089 if (TREE_CODE (arg) == MEM_REF
3090 && TREE_OPERAND (arg, 0) == name
3091 && integer_zerop (TREE_OPERAND (arg, 1))
3092 && types_compatible_p (TREE_TYPE (arg),
3093 TREE_TYPE (TREE_TYPE (name))))
3094 uses_ok++;
3095 }
3096 }
3097
3098 /* If the number of valid uses does not match the number of
3099 uses in this stmt there is an unhandled use. */
3100 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3101 --uses_ok;
3102
3103 if (uses_ok != 0)
3104 ret = true;
3105
3106 if (ret)
3107 BREAK_FROM_IMM_USE_STMT (ui);
3108 }
3109
3110 return ret;
3111 }
3112
3113 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3114 them in candidate_bitmap. Note that these do not necessarily include
3115 parameter which are unused and thus can be removed. Return true iff any
3116 such candidate has been found. */
3117
3118 static bool
3119 find_param_candidates (void)
3120 {
3121 tree parm;
3122 int count = 0;
3123 bool ret = false;
3124
3125 for (parm = DECL_ARGUMENTS (current_function_decl);
3126 parm;
3127 parm = DECL_CHAIN (parm))
3128 {
3129 tree type = TREE_TYPE (parm);
3130
3131 count++;
3132
3133 if (TREE_THIS_VOLATILE (parm)
3134 || TREE_ADDRESSABLE (parm)
3135 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3136 continue;
3137
3138 if (is_unused_scalar_param (parm))
3139 {
3140 ret = true;
3141 continue;
3142 }
3143
3144 if (POINTER_TYPE_P (type))
3145 {
3146 type = TREE_TYPE (type);
3147
3148 if (TREE_CODE (type) == FUNCTION_TYPE
3149 || TYPE_VOLATILE (type)
3150 || !is_gimple_reg (parm)
3151 || is_va_list_type (type)
3152 || ptr_parm_has_direct_uses (parm))
3153 continue;
3154 }
3155 else if (!AGGREGATE_TYPE_P (type))
3156 continue;
3157
3158 if (!COMPLETE_TYPE_P (type)
3159 || !host_integerp (TYPE_SIZE (type), 1)
3160 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3161 || (AGGREGATE_TYPE_P (type)
3162 && type_internals_preclude_sra_p (type)))
3163 continue;
3164
3165 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3166 ret = true;
3167 if (dump_file && (dump_flags & TDF_DETAILS))
3168 {
3169 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3170 print_generic_expr (dump_file, parm, 0);
3171 fprintf (dump_file, "\n");
3172 }
3173 }
3174
3175 func_param_count = count;
3176 return ret;
3177 }
3178
3179 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3180 maybe_modified. */
3181
3182 static bool
3183 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3184 void *data)
3185 {
3186 struct access *repr = (struct access *) data;
3187
3188 repr->grp_maybe_modified = 1;
3189 return true;
3190 }
3191
3192 /* Analyze what representatives (in linked lists accessible from
3193 REPRESENTATIVES) can be modified by side effects of statements in the
3194 current function. */
3195
3196 static void
3197 analyze_modified_params (VEC (access_p, heap) *representatives)
3198 {
3199 int i;
3200
3201 for (i = 0; i < func_param_count; i++)
3202 {
3203 struct access *repr;
3204
3205 for (repr = VEC_index (access_p, representatives, i);
3206 repr;
3207 repr = repr->next_grp)
3208 {
3209 struct access *access;
3210 bitmap visited;
3211 ao_ref ar;
3212
3213 if (no_accesses_p (repr))
3214 continue;
3215 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3216 || repr->grp_maybe_modified)
3217 continue;
3218
3219 ao_ref_init (&ar, repr->expr);
3220 visited = BITMAP_ALLOC (NULL);
3221 for (access = repr; access; access = access->next_sibling)
3222 {
3223 /* All accesses are read ones, otherwise grp_maybe_modified would
3224 be trivially set. */
3225 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3226 mark_maybe_modified, repr, &visited);
3227 if (repr->grp_maybe_modified)
3228 break;
3229 }
3230 BITMAP_FREE (visited);
3231 }
3232 }
3233 }
3234
3235 /* Propagate distances in bb_dereferences in the opposite direction than the
3236 control flow edges, in each step storing the maximum of the current value
3237 and the minimum of all successors. These steps are repeated until the table
3238 stabilizes. Note that BBs which might terminate the functions (according to
3239 final_bbs bitmap) never updated in this way. */
3240
3241 static void
3242 propagate_dereference_distances (void)
3243 {
3244 VEC (basic_block, heap) *queue;
3245 basic_block bb;
3246
3247 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3248 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3249 FOR_EACH_BB (bb)
3250 {
3251 VEC_quick_push (basic_block, queue, bb);
3252 bb->aux = bb;
3253 }
3254
3255 while (!VEC_empty (basic_block, queue))
3256 {
3257 edge_iterator ei;
3258 edge e;
3259 bool change = false;
3260 int i;
3261
3262 bb = VEC_pop (basic_block, queue);
3263 bb->aux = NULL;
3264
3265 if (bitmap_bit_p (final_bbs, bb->index))
3266 continue;
3267
3268 for (i = 0; i < func_param_count; i++)
3269 {
3270 int idx = bb->index * func_param_count + i;
3271 bool first = true;
3272 HOST_WIDE_INT inh = 0;
3273
3274 FOR_EACH_EDGE (e, ei, bb->succs)
3275 {
3276 int succ_idx = e->dest->index * func_param_count + i;
3277
3278 if (e->src == EXIT_BLOCK_PTR)
3279 continue;
3280
3281 if (first)
3282 {
3283 first = false;
3284 inh = bb_dereferences [succ_idx];
3285 }
3286 else if (bb_dereferences [succ_idx] < inh)
3287 inh = bb_dereferences [succ_idx];
3288 }
3289
3290 if (!first && bb_dereferences[idx] < inh)
3291 {
3292 bb_dereferences[idx] = inh;
3293 change = true;
3294 }
3295 }
3296
3297 if (change && !bitmap_bit_p (final_bbs, bb->index))
3298 FOR_EACH_EDGE (e, ei, bb->preds)
3299 {
3300 if (e->src->aux)
3301 continue;
3302
3303 e->src->aux = e->src;
3304 VEC_quick_push (basic_block, queue, e->src);
3305 }
3306 }
3307
3308 VEC_free (basic_block, heap, queue);
3309 }
3310
3311 /* Dump a dereferences TABLE with heading STR to file F. */
3312
3313 static void
3314 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3315 {
3316 basic_block bb;
3317
3318 fprintf (dump_file, str);
3319 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3320 {
3321 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3322 if (bb != EXIT_BLOCK_PTR)
3323 {
3324 int i;
3325 for (i = 0; i < func_param_count; i++)
3326 {
3327 int idx = bb->index * func_param_count + i;
3328 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3329 }
3330 }
3331 fprintf (f, "\n");
3332 }
3333 fprintf (dump_file, "\n");
3334 }
3335
3336 /* Determine what (parts of) parameters passed by reference that are not
3337 assigned to are not certainly dereferenced in this function and thus the
3338 dereferencing cannot be safely moved to the caller without potentially
3339 introducing a segfault. Mark such REPRESENTATIVES as
3340 grp_not_necessarilly_dereferenced.
3341
3342 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3343 part is calculated rather than simple booleans are calculated for each
3344 pointer parameter to handle cases when only a fraction of the whole
3345 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3346 an example).
3347
3348 The maximum dereference distances for each pointer parameter and BB are
3349 already stored in bb_dereference. This routine simply propagates these
3350 values upwards by propagate_dereference_distances and then compares the
3351 distances of individual parameters in the ENTRY BB to the equivalent
3352 distances of each representative of a (fraction of a) parameter. */
3353
3354 static void
3355 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3356 {
3357 int i;
3358
3359 if (dump_file && (dump_flags & TDF_DETAILS))
3360 dump_dereferences_table (dump_file,
3361 "Dereference table before propagation:\n",
3362 bb_dereferences);
3363
3364 propagate_dereference_distances ();
3365
3366 if (dump_file && (dump_flags & TDF_DETAILS))
3367 dump_dereferences_table (dump_file,
3368 "Dereference table after propagation:\n",
3369 bb_dereferences);
3370
3371 for (i = 0; i < func_param_count; i++)
3372 {
3373 struct access *repr = VEC_index (access_p, representatives, i);
3374 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3375
3376 if (!repr || no_accesses_p (repr))
3377 continue;
3378
3379 do
3380 {
3381 if ((repr->offset + repr->size) > bb_dereferences[idx])
3382 repr->grp_not_necessarilly_dereferenced = 1;
3383 repr = repr->next_grp;
3384 }
3385 while (repr);
3386 }
3387 }
3388
3389 /* Return the representative access for the parameter declaration PARM if it is
3390 a scalar passed by reference which is not written to and the pointer value
3391 is not used directly. Thus, if it is legal to dereference it in the caller
3392 and we can rule out modifications through aliases, such parameter should be
3393 turned into one passed by value. Return NULL otherwise. */
3394
3395 static struct access *
3396 unmodified_by_ref_scalar_representative (tree parm)
3397 {
3398 int i, access_count;
3399 struct access *repr;
3400 VEC (access_p, heap) *access_vec;
3401
3402 access_vec = get_base_access_vector (parm);
3403 gcc_assert (access_vec);
3404 repr = VEC_index (access_p, access_vec, 0);
3405 if (repr->write)
3406 return NULL;
3407 repr->group_representative = repr;
3408
3409 access_count = VEC_length (access_p, access_vec);
3410 for (i = 1; i < access_count; i++)
3411 {
3412 struct access *access = VEC_index (access_p, access_vec, i);
3413 if (access->write)
3414 return NULL;
3415 access->group_representative = repr;
3416 access->next_sibling = repr->next_sibling;
3417 repr->next_sibling = access;
3418 }
3419
3420 repr->grp_read = 1;
3421 repr->grp_scalar_ptr = 1;
3422 return repr;
3423 }
3424
3425 /* Return true iff this access precludes IPA-SRA of the parameter it is
3426 associated with. */
3427
3428 static bool
3429 access_precludes_ipa_sra_p (struct access *access)
3430 {
3431 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3432 is incompatible assign in a call statement (and possibly even in asm
3433 statements). This can be relaxed by using a new temporary but only for
3434 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3435 intraprocedural SRA we deal with this by keeping the old aggregate around,
3436 something we cannot do in IPA-SRA.) */
3437 if (access->write
3438 && (is_gimple_call (access->stmt)
3439 || gimple_code (access->stmt) == GIMPLE_ASM))
3440 return true;
3441
3442 return false;
3443 }
3444
3445
3446 /* Sort collected accesses for parameter PARM, identify representatives for
3447 each accessed region and link them together. Return NULL if there are
3448 different but overlapping accesses, return the special ptr value meaning
3449 there are no accesses for this parameter if that is the case and return the
3450 first representative otherwise. Set *RO_GRP if there is a group of accesses
3451 with only read (i.e. no write) accesses. */
3452
3453 static struct access *
3454 splice_param_accesses (tree parm, bool *ro_grp)
3455 {
3456 int i, j, access_count, group_count;
3457 int agg_size, total_size = 0;
3458 struct access *access, *res, **prev_acc_ptr = &res;
3459 VEC (access_p, heap) *access_vec;
3460
3461 access_vec = get_base_access_vector (parm);
3462 if (!access_vec)
3463 return &no_accesses_representant;
3464 access_count = VEC_length (access_p, access_vec);
3465
3466 qsort (VEC_address (access_p, access_vec), access_count, sizeof (access_p),
3467 compare_access_positions);
3468
3469 i = 0;
3470 total_size = 0;
3471 group_count = 0;
3472 while (i < access_count)
3473 {
3474 bool modification;
3475 access = VEC_index (access_p, access_vec, i);
3476 modification = access->write;
3477 if (access_precludes_ipa_sra_p (access))
3478 return NULL;
3479
3480 /* Access is about to become group representative unless we find some
3481 nasty overlap which would preclude us from breaking this parameter
3482 apart. */
3483
3484 j = i + 1;
3485 while (j < access_count)
3486 {
3487 struct access *ac2 = VEC_index (access_p, access_vec, j);
3488 if (ac2->offset != access->offset)
3489 {
3490 /* All or nothing law for parameters. */
3491 if (access->offset + access->size > ac2->offset)
3492 return NULL;
3493 else
3494 break;
3495 }
3496 else if (ac2->size != access->size)
3497 return NULL;
3498
3499 if (access_precludes_ipa_sra_p (ac2))
3500 return NULL;
3501
3502 modification |= ac2->write;
3503 ac2->group_representative = access;
3504 ac2->next_sibling = access->next_sibling;
3505 access->next_sibling = ac2;
3506 j++;
3507 }
3508
3509 group_count++;
3510 access->grp_maybe_modified = modification;
3511 if (!modification)
3512 *ro_grp = true;
3513 *prev_acc_ptr = access;
3514 prev_acc_ptr = &access->next_grp;
3515 total_size += access->size;
3516 i = j;
3517 }
3518
3519 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3520 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3521 else
3522 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3523 if (total_size >= agg_size)
3524 return NULL;
3525
3526 gcc_assert (group_count > 0);
3527 return res;
3528 }
3529
3530 /* Decide whether parameters with representative accesses given by REPR should
3531 be reduced into components. */
3532
3533 static int
3534 decide_one_param_reduction (struct access *repr)
3535 {
3536 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3537 bool by_ref;
3538 tree parm;
3539
3540 parm = repr->base;
3541 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3542 gcc_assert (cur_parm_size > 0);
3543
3544 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3545 {
3546 by_ref = true;
3547 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3548 }
3549 else
3550 {
3551 by_ref = false;
3552 agg_size = cur_parm_size;
3553 }
3554
3555 if (dump_file)
3556 {
3557 struct access *acc;
3558 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3559 print_generic_expr (dump_file, parm, 0);
3560 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3561 for (acc = repr; acc; acc = acc->next_grp)
3562 dump_access (dump_file, acc, true);
3563 }
3564
3565 total_size = 0;
3566 new_param_count = 0;
3567
3568 for (; repr; repr = repr->next_grp)
3569 {
3570 gcc_assert (parm == repr->base);
3571 new_param_count++;
3572
3573 if (!by_ref || (!repr->grp_maybe_modified
3574 && !repr->grp_not_necessarilly_dereferenced))
3575 total_size += repr->size;
3576 else
3577 total_size += cur_parm_size;
3578 }
3579
3580 gcc_assert (new_param_count > 0);
3581
3582 if (optimize_function_for_size_p (cfun))
3583 parm_size_limit = cur_parm_size;
3584 else
3585 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3586 * cur_parm_size);
3587
3588 if (total_size < agg_size
3589 && total_size <= parm_size_limit)
3590 {
3591 if (dump_file)
3592 fprintf (dump_file, " ....will be split into %i components\n",
3593 new_param_count);
3594 return new_param_count;
3595 }
3596 else
3597 return 0;
3598 }
3599
3600 /* The order of the following enums is important, we need to do extra work for
3601 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3602 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3603 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3604
3605 /* Identify representatives of all accesses to all candidate parameters for
3606 IPA-SRA. Return result based on what representatives have been found. */
3607
3608 static enum ipa_splicing_result
3609 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3610 {
3611 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3612 tree parm;
3613 struct access *repr;
3614
3615 *representatives = VEC_alloc (access_p, heap, func_param_count);
3616
3617 for (parm = DECL_ARGUMENTS (current_function_decl);
3618 parm;
3619 parm = DECL_CHAIN (parm))
3620 {
3621 if (is_unused_scalar_param (parm))
3622 {
3623 VEC_quick_push (access_p, *representatives,
3624 &no_accesses_representant);
3625 if (result == NO_GOOD_ACCESS)
3626 result = UNUSED_PARAMS;
3627 }
3628 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3629 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3630 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3631 {
3632 repr = unmodified_by_ref_scalar_representative (parm);
3633 VEC_quick_push (access_p, *representatives, repr);
3634 if (repr)
3635 result = UNMODIF_BY_REF_ACCESSES;
3636 }
3637 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3638 {
3639 bool ro_grp = false;
3640 repr = splice_param_accesses (parm, &ro_grp);
3641 VEC_quick_push (access_p, *representatives, repr);
3642
3643 if (repr && !no_accesses_p (repr))
3644 {
3645 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3646 {
3647 if (ro_grp)
3648 result = UNMODIF_BY_REF_ACCESSES;
3649 else if (result < MODIF_BY_REF_ACCESSES)
3650 result = MODIF_BY_REF_ACCESSES;
3651 }
3652 else if (result < BY_VAL_ACCESSES)
3653 result = BY_VAL_ACCESSES;
3654 }
3655 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3656 result = UNUSED_PARAMS;
3657 }
3658 else
3659 VEC_quick_push (access_p, *representatives, NULL);
3660 }
3661
3662 if (result == NO_GOOD_ACCESS)
3663 {
3664 VEC_free (access_p, heap, *representatives);
3665 *representatives = NULL;
3666 return NO_GOOD_ACCESS;
3667 }
3668
3669 return result;
3670 }
3671
3672 /* Return the index of BASE in PARMS. Abort if it is not found. */
3673
3674 static inline int
3675 get_param_index (tree base, VEC(tree, heap) *parms)
3676 {
3677 int i, len;
3678
3679 len = VEC_length (tree, parms);
3680 for (i = 0; i < len; i++)
3681 if (VEC_index (tree, parms, i) == base)
3682 return i;
3683 gcc_unreachable ();
3684 }
3685
3686 /* Convert the decisions made at the representative level into compact
3687 parameter adjustments. REPRESENTATIVES are pointers to first
3688 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
3689 final number of adjustments. */
3690
3691 static ipa_parm_adjustment_vec
3692 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
3693 int adjustments_count)
3694 {
3695 VEC (tree, heap) *parms;
3696 ipa_parm_adjustment_vec adjustments;
3697 tree parm;
3698 int i;
3699
3700 gcc_assert (adjustments_count > 0);
3701 parms = ipa_get_vector_of_formal_parms (current_function_decl);
3702 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
3703 parm = DECL_ARGUMENTS (current_function_decl);
3704 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
3705 {
3706 struct access *repr = VEC_index (access_p, representatives, i);
3707
3708 if (!repr || no_accesses_p (repr))
3709 {
3710 struct ipa_parm_adjustment *adj;
3711
3712 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3713 memset (adj, 0, sizeof (*adj));
3714 adj->base_index = get_param_index (parm, parms);
3715 adj->base = parm;
3716 if (!repr)
3717 adj->copy_param = 1;
3718 else
3719 adj->remove_param = 1;
3720 }
3721 else
3722 {
3723 struct ipa_parm_adjustment *adj;
3724 int index = get_param_index (parm, parms);
3725
3726 for (; repr; repr = repr->next_grp)
3727 {
3728 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3729 memset (adj, 0, sizeof (*adj));
3730 gcc_assert (repr->base == parm);
3731 adj->base_index = index;
3732 adj->base = repr->base;
3733 adj->type = repr->type;
3734 adj->offset = repr->offset;
3735 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
3736 && (repr->grp_maybe_modified
3737 || repr->grp_not_necessarilly_dereferenced));
3738
3739 }
3740 }
3741 }
3742 VEC_free (tree, heap, parms);
3743 return adjustments;
3744 }
3745
3746 /* Analyze the collected accesses and produce a plan what to do with the
3747 parameters in the form of adjustments, NULL meaning nothing. */
3748
3749 static ipa_parm_adjustment_vec
3750 analyze_all_param_acesses (void)
3751 {
3752 enum ipa_splicing_result repr_state;
3753 bool proceed = false;
3754 int i, adjustments_count = 0;
3755 VEC (access_p, heap) *representatives;
3756 ipa_parm_adjustment_vec adjustments;
3757
3758 repr_state = splice_all_param_accesses (&representatives);
3759 if (repr_state == NO_GOOD_ACCESS)
3760 return NULL;
3761
3762 /* If there are any parameters passed by reference which are not modified
3763 directly, we need to check whether they can be modified indirectly. */
3764 if (repr_state == UNMODIF_BY_REF_ACCESSES)
3765 {
3766 analyze_caller_dereference_legality (representatives);
3767 analyze_modified_params (representatives);
3768 }
3769
3770 for (i = 0; i < func_param_count; i++)
3771 {
3772 struct access *repr = VEC_index (access_p, representatives, i);
3773
3774 if (repr && !no_accesses_p (repr))
3775 {
3776 if (repr->grp_scalar_ptr)
3777 {
3778 adjustments_count++;
3779 if (repr->grp_not_necessarilly_dereferenced
3780 || repr->grp_maybe_modified)
3781 VEC_replace (access_p, representatives, i, NULL);
3782 else
3783 {
3784 proceed = true;
3785 sra_stats.scalar_by_ref_to_by_val++;
3786 }
3787 }
3788 else
3789 {
3790 int new_components = decide_one_param_reduction (repr);
3791
3792 if (new_components == 0)
3793 {
3794 VEC_replace (access_p, representatives, i, NULL);
3795 adjustments_count++;
3796 }
3797 else
3798 {
3799 adjustments_count += new_components;
3800 sra_stats.aggregate_params_reduced++;
3801 sra_stats.param_reductions_created += new_components;
3802 proceed = true;
3803 }
3804 }
3805 }
3806 else
3807 {
3808 if (no_accesses_p (repr))
3809 {
3810 proceed = true;
3811 sra_stats.deleted_unused_parameters++;
3812 }
3813 adjustments_count++;
3814 }
3815 }
3816
3817 if (!proceed && dump_file)
3818 fprintf (dump_file, "NOT proceeding to change params.\n");
3819
3820 if (proceed)
3821 adjustments = turn_representatives_into_adjustments (representatives,
3822 adjustments_count);
3823 else
3824 adjustments = NULL;
3825
3826 VEC_free (access_p, heap, representatives);
3827 return adjustments;
3828 }
3829
3830 /* If a parameter replacement identified by ADJ does not yet exist in the form
3831 of declaration, create it and record it, otherwise return the previously
3832 created one. */
3833
3834 static tree
3835 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
3836 {
3837 tree repl;
3838 if (!adj->new_ssa_base)
3839 {
3840 char *pretty_name = make_fancy_name (adj->base);
3841
3842 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
3843 DECL_NAME (repl) = get_identifier (pretty_name);
3844 obstack_free (&name_obstack, pretty_name);
3845
3846 get_var_ann (repl);
3847 add_referenced_var (repl);
3848 adj->new_ssa_base = repl;
3849 }
3850 else
3851 repl = adj->new_ssa_base;
3852 return repl;
3853 }
3854
3855 /* Find the first adjustment for a particular parameter BASE in a vector of
3856 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
3857 adjustment. */
3858
3859 static struct ipa_parm_adjustment *
3860 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
3861 {
3862 int i, len;
3863
3864 len = VEC_length (ipa_parm_adjustment_t, adjustments);
3865 for (i = 0; i < len; i++)
3866 {
3867 struct ipa_parm_adjustment *adj;
3868
3869 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
3870 if (!adj->copy_param && adj->base == base)
3871 return adj;
3872 }
3873
3874 return NULL;
3875 }
3876
3877 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
3878 removed because its value is not used, replace the SSA_NAME with a one
3879 relating to a created VAR_DECL together all of its uses and return true.
3880 ADJUSTMENTS is a pointer to an adjustments vector. */
3881
3882 static bool
3883 replace_removed_params_ssa_names (gimple stmt,
3884 ipa_parm_adjustment_vec adjustments)
3885 {
3886 struct ipa_parm_adjustment *adj;
3887 tree lhs, decl, repl, name;
3888
3889 if (gimple_code (stmt) == GIMPLE_PHI)
3890 lhs = gimple_phi_result (stmt);
3891 else if (is_gimple_assign (stmt))
3892 lhs = gimple_assign_lhs (stmt);
3893 else if (is_gimple_call (stmt))
3894 lhs = gimple_call_lhs (stmt);
3895 else
3896 gcc_unreachable ();
3897
3898 if (TREE_CODE (lhs) != SSA_NAME)
3899 return false;
3900 decl = SSA_NAME_VAR (lhs);
3901 if (TREE_CODE (decl) != PARM_DECL)
3902 return false;
3903
3904 adj = get_adjustment_for_base (adjustments, decl);
3905 if (!adj)
3906 return false;
3907
3908 repl = get_replaced_param_substitute (adj);
3909 name = make_ssa_name (repl, stmt);
3910
3911 if (dump_file)
3912 {
3913 fprintf (dump_file, "replacing an SSA name of a removed param ");
3914 print_generic_expr (dump_file, lhs, 0);
3915 fprintf (dump_file, " with ");
3916 print_generic_expr (dump_file, name, 0);
3917 fprintf (dump_file, "\n");
3918 }
3919
3920 if (is_gimple_assign (stmt))
3921 gimple_assign_set_lhs (stmt, name);
3922 else if (is_gimple_call (stmt))
3923 gimple_call_set_lhs (stmt, name);
3924 else
3925 gimple_phi_set_result (stmt, name);
3926
3927 replace_uses_by (lhs, name);
3928 release_ssa_name (lhs);
3929 return true;
3930 }
3931
3932 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
3933 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
3934 specifies whether the function should care about type incompatibility the
3935 current and new expressions. If it is false, the function will leave
3936 incompatibility issues to the caller. Return true iff the expression
3937 was modified. */
3938
3939 static bool
3940 sra_ipa_modify_expr (tree *expr, bool convert,
3941 ipa_parm_adjustment_vec adjustments)
3942 {
3943 int i, len;
3944 struct ipa_parm_adjustment *adj, *cand = NULL;
3945 HOST_WIDE_INT offset, size, max_size;
3946 tree base, src;
3947
3948 len = VEC_length (ipa_parm_adjustment_t, adjustments);
3949
3950 if (TREE_CODE (*expr) == BIT_FIELD_REF
3951 || TREE_CODE (*expr) == IMAGPART_EXPR
3952 || TREE_CODE (*expr) == REALPART_EXPR)
3953 {
3954 expr = &TREE_OPERAND (*expr, 0);
3955 convert = true;
3956 }
3957
3958 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
3959 if (!base || size == -1 || max_size == -1)
3960 return false;
3961
3962 if (TREE_CODE (base) == MEM_REF)
3963 {
3964 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
3965 base = TREE_OPERAND (base, 0);
3966 }
3967
3968 base = get_ssa_base_param (base);
3969 if (!base || TREE_CODE (base) != PARM_DECL)
3970 return false;
3971
3972 for (i = 0; i < len; i++)
3973 {
3974 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
3975
3976 if (adj->base == base &&
3977 (adj->offset == offset || adj->remove_param))
3978 {
3979 cand = adj;
3980 break;
3981 }
3982 }
3983 if (!cand || cand->copy_param || cand->remove_param)
3984 return false;
3985
3986 if (cand->by_ref)
3987 src = build_simple_mem_ref (cand->reduction);
3988 else
3989 src = cand->reduction;
3990
3991 if (dump_file && (dump_flags & TDF_DETAILS))
3992 {
3993 fprintf (dump_file, "About to replace expr ");
3994 print_generic_expr (dump_file, *expr, 0);
3995 fprintf (dump_file, " with ");
3996 print_generic_expr (dump_file, src, 0);
3997 fprintf (dump_file, "\n");
3998 }
3999
4000 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4001 {
4002 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4003 *expr = vce;
4004 }
4005 else
4006 *expr = src;
4007 return true;
4008 }
4009
4010 /* If the statement pointed to by STMT_PTR contains any expressions that need
4011 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4012 potential type incompatibilities (GSI is used to accommodate conversion
4013 statements and must point to the statement). Return true iff the statement
4014 was modified. */
4015
4016 static bool
4017 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4018 ipa_parm_adjustment_vec adjustments)
4019 {
4020 gimple stmt = *stmt_ptr;
4021 tree *lhs_p, *rhs_p;
4022 bool any;
4023
4024 if (!gimple_assign_single_p (stmt))
4025 return false;
4026
4027 rhs_p = gimple_assign_rhs1_ptr (stmt);
4028 lhs_p = gimple_assign_lhs_ptr (stmt);
4029
4030 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4031 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4032 if (any)
4033 {
4034 tree new_rhs = NULL_TREE;
4035
4036 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4037 {
4038 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4039 {
4040 /* V_C_Es of constructors can cause trouble (PR 42714). */
4041 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4042 *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
4043 else
4044 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4045 }
4046 else
4047 new_rhs = fold_build1_loc (gimple_location (stmt),
4048 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4049 *rhs_p);
4050 }
4051 else if (REFERENCE_CLASS_P (*rhs_p)
4052 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4053 && !is_gimple_reg (*lhs_p))
4054 /* This can happen when an assignment in between two single field
4055 structures is turned into an assignment in between two pointers to
4056 scalars (PR 42237). */
4057 new_rhs = *rhs_p;
4058
4059 if (new_rhs)
4060 {
4061 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4062 true, GSI_SAME_STMT);
4063
4064 gimple_assign_set_rhs_from_tree (gsi, tmp);
4065 }
4066
4067 return true;
4068 }
4069
4070 return false;
4071 }
4072
4073 /* Traverse the function body and all modifications as described in
4074 ADJUSTMENTS. Return true iff the CFG has been changed. */
4075
4076 static bool
4077 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4078 {
4079 bool cfg_changed = false;
4080 basic_block bb;
4081
4082 FOR_EACH_BB (bb)
4083 {
4084 gimple_stmt_iterator gsi;
4085
4086 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4087 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4088
4089 gsi = gsi_start_bb (bb);
4090 while (!gsi_end_p (gsi))
4091 {
4092 gimple stmt = gsi_stmt (gsi);
4093 bool modified = false;
4094 tree *t;
4095 unsigned i;
4096
4097 switch (gimple_code (stmt))
4098 {
4099 case GIMPLE_RETURN:
4100 t = gimple_return_retval_ptr (stmt);
4101 if (*t != NULL_TREE)
4102 modified |= sra_ipa_modify_expr (t, true, adjustments);
4103 break;
4104
4105 case GIMPLE_ASSIGN:
4106 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4107 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4108 break;
4109
4110 case GIMPLE_CALL:
4111 /* Operands must be processed before the lhs. */
4112 for (i = 0; i < gimple_call_num_args (stmt); i++)
4113 {
4114 t = gimple_call_arg_ptr (stmt, i);
4115 modified |= sra_ipa_modify_expr (t, true, adjustments);
4116 }
4117
4118 if (gimple_call_lhs (stmt))
4119 {
4120 t = gimple_call_lhs_ptr (stmt);
4121 modified |= sra_ipa_modify_expr (t, false, adjustments);
4122 modified |= replace_removed_params_ssa_names (stmt,
4123 adjustments);
4124 }
4125 break;
4126
4127 case GIMPLE_ASM:
4128 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4129 {
4130 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4131 modified |= sra_ipa_modify_expr (t, true, adjustments);
4132 }
4133 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4134 {
4135 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4136 modified |= sra_ipa_modify_expr (t, false, adjustments);
4137 }
4138 break;
4139
4140 default:
4141 break;
4142 }
4143
4144 if (modified)
4145 {
4146 update_stmt (stmt);
4147 if (maybe_clean_eh_stmt (stmt)
4148 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4149 cfg_changed = true;
4150 }
4151 gsi_next (&gsi);
4152 }
4153 }
4154
4155 return cfg_changed;
4156 }
4157
4158 /* Call gimple_debug_bind_reset_value on all debug statements describing
4159 gimple register parameters that are being removed or replaced. */
4160
4161 static void
4162 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4163 {
4164 int i, len;
4165
4166 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4167 for (i = 0; i < len; i++)
4168 {
4169 struct ipa_parm_adjustment *adj;
4170 imm_use_iterator ui;
4171 gimple stmt;
4172 tree name;
4173
4174 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4175 if (adj->copy_param || !is_gimple_reg (adj->base))
4176 continue;
4177 name = gimple_default_def (cfun, adj->base);
4178 if (!name)
4179 continue;
4180 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4181 {
4182 /* All other users must have been removed by
4183 ipa_sra_modify_function_body. */
4184 gcc_assert (is_gimple_debug (stmt));
4185 gimple_debug_bind_reset_value (stmt);
4186 update_stmt (stmt);
4187 }
4188 }
4189 }
4190
4191 /* Return true iff all callers have at least as many actual arguments as there
4192 are formal parameters in the current function. */
4193
4194 static bool
4195 all_callers_have_enough_arguments_p (struct cgraph_node *node)
4196 {
4197 struct cgraph_edge *cs;
4198 for (cs = node->callers; cs; cs = cs->next_caller)
4199 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4200 return false;
4201
4202 return true;
4203 }
4204
4205
4206 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4207
4208 static void
4209 convert_callers (struct cgraph_node *node, tree old_decl,
4210 ipa_parm_adjustment_vec adjustments)
4211 {
4212 tree old_cur_fndecl = current_function_decl;
4213 struct cgraph_edge *cs;
4214 basic_block this_block;
4215 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4216
4217 for (cs = node->callers; cs; cs = cs->next_caller)
4218 {
4219 current_function_decl = cs->caller->decl;
4220 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4221
4222 if (dump_file)
4223 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4224 cs->caller->uid, cs->callee->uid,
4225 cgraph_node_name (cs->caller),
4226 cgraph_node_name (cs->callee));
4227
4228 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4229
4230 pop_cfun ();
4231 }
4232
4233 for (cs = node->callers; cs; cs = cs->next_caller)
4234 if (!bitmap_bit_p (recomputed_callers, cs->caller->uid))
4235 {
4236 compute_inline_parameters (cs->caller);
4237 bitmap_set_bit (recomputed_callers, cs->caller->uid);
4238 }
4239 BITMAP_FREE (recomputed_callers);
4240
4241 current_function_decl = old_cur_fndecl;
4242
4243 if (!encountered_recursive_call)
4244 return;
4245
4246 FOR_EACH_BB (this_block)
4247 {
4248 gimple_stmt_iterator gsi;
4249
4250 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4251 {
4252 gimple stmt = gsi_stmt (gsi);
4253 tree call_fndecl;
4254 if (gimple_code (stmt) != GIMPLE_CALL)
4255 continue;
4256 call_fndecl = gimple_call_fndecl (stmt);
4257 if (call_fndecl == old_decl)
4258 {
4259 if (dump_file)
4260 fprintf (dump_file, "Adjusting recursive call");
4261 gimple_call_set_fndecl (stmt, node->decl);
4262 ipa_modify_call_arguments (NULL, stmt, adjustments);
4263 }
4264 }
4265 }
4266
4267 return;
4268 }
4269
4270 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4271 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4272
4273 static bool
4274 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4275 {
4276 struct cgraph_node *new_node;
4277 struct cgraph_edge *cs;
4278 bool cfg_changed;
4279 VEC (cgraph_edge_p, heap) * redirect_callers;
4280 int node_callers;
4281
4282 node_callers = 0;
4283 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
4284 node_callers++;
4285 redirect_callers = VEC_alloc (cgraph_edge_p, heap, node_callers);
4286 for (cs = node->callers; cs != NULL; cs = cs->next_caller)
4287 VEC_quick_push (cgraph_edge_p, redirect_callers, cs);
4288
4289 rebuild_cgraph_edges ();
4290 pop_cfun ();
4291 current_function_decl = NULL_TREE;
4292
4293 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4294 NULL, NULL, "isra");
4295 current_function_decl = new_node->decl;
4296 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4297
4298 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4299 cfg_changed = ipa_sra_modify_function_body (adjustments);
4300 sra_ipa_reset_debug_stmts (adjustments);
4301 convert_callers (new_node, node->decl, adjustments);
4302 cgraph_make_node_local (new_node);
4303 return cfg_changed;
4304 }
4305
4306 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4307 attributes, return true otherwise. NODE is the cgraph node of the current
4308 function. */
4309
4310 static bool
4311 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4312 {
4313 if (!tree_versionable_function_p (current_function_decl))
4314 {
4315 if (dump_file)
4316 fprintf (dump_file, "Function isn't allowed to be versioned.\n");
4317 return false;
4318 }
4319
4320 if (!cgraph_node_can_be_local_p (node))
4321 {
4322 if (dump_file)
4323 fprintf (dump_file, "Function not local to this compilation unit.\n");
4324 return false;
4325 }
4326
4327 if (!tree_versionable_function_p (node->decl))
4328 {
4329 if (dump_file)
4330 fprintf (dump_file, "Function is not versionable.\n");
4331 return false;
4332 }
4333
4334 if (DECL_VIRTUAL_P (current_function_decl))
4335 {
4336 if (dump_file)
4337 fprintf (dump_file, "Function is a virtual method.\n");
4338 return false;
4339 }
4340
4341 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4342 && node->global.size >= MAX_INLINE_INSNS_AUTO)
4343 {
4344 if (dump_file)
4345 fprintf (dump_file, "Function too big to be made truly local.\n");
4346 return false;
4347 }
4348
4349 if (!node->callers)
4350 {
4351 if (dump_file)
4352 fprintf (dump_file,
4353 "Function has no callers in this compilation unit.\n");
4354 return false;
4355 }
4356
4357 if (cfun->stdarg)
4358 {
4359 if (dump_file)
4360 fprintf (dump_file, "Function uses stdarg. \n");
4361 return false;
4362 }
4363
4364 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4365 return false;
4366
4367 return true;
4368 }
4369
4370 /* Perform early interprocedural SRA. */
4371
4372 static unsigned int
4373 ipa_early_sra (void)
4374 {
4375 struct cgraph_node *node = cgraph_node (current_function_decl);
4376 ipa_parm_adjustment_vec adjustments;
4377 int ret = 0;
4378
4379 if (!ipa_sra_preliminary_function_checks (node))
4380 return 0;
4381
4382 sra_initialize ();
4383 sra_mode = SRA_MODE_EARLY_IPA;
4384
4385 if (!find_param_candidates ())
4386 {
4387 if (dump_file)
4388 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4389 goto simple_out;
4390 }
4391
4392 if (!all_callers_have_enough_arguments_p (node))
4393 {
4394 if (dump_file)
4395 fprintf (dump_file, "There are callers with insufficient number of "
4396 "arguments.\n");
4397 goto simple_out;
4398 }
4399
4400 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4401 func_param_count
4402 * last_basic_block_for_function (cfun));
4403 final_bbs = BITMAP_ALLOC (NULL);
4404
4405 scan_function ();
4406 if (encountered_apply_args)
4407 {
4408 if (dump_file)
4409 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4410 goto out;
4411 }
4412
4413 if (encountered_unchangable_recursive_call)
4414 {
4415 if (dump_file)
4416 fprintf (dump_file, "Function calls itself with insufficient "
4417 "number of arguments.\n");
4418 goto out;
4419 }
4420
4421 adjustments = analyze_all_param_acesses ();
4422 if (!adjustments)
4423 goto out;
4424 if (dump_file)
4425 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4426
4427 if (modify_function (node, adjustments))
4428 ret = TODO_update_ssa | TODO_cleanup_cfg;
4429 else
4430 ret = TODO_update_ssa;
4431 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4432
4433 statistics_counter_event (cfun, "Unused parameters deleted",
4434 sra_stats.deleted_unused_parameters);
4435 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4436 sra_stats.scalar_by_ref_to_by_val);
4437 statistics_counter_event (cfun, "Aggregate parameters broken up",
4438 sra_stats.aggregate_params_reduced);
4439 statistics_counter_event (cfun, "Aggregate parameter components created",
4440 sra_stats.param_reductions_created);
4441
4442 out:
4443 BITMAP_FREE (final_bbs);
4444 free (bb_dereferences);
4445 simple_out:
4446 sra_deinitialize ();
4447 return ret;
4448 }
4449
4450 /* Return if early ipa sra shall be performed. */
4451 static bool
4452 ipa_early_sra_gate (void)
4453 {
4454 return flag_ipa_sra;
4455 }
4456
4457 struct gimple_opt_pass pass_early_ipa_sra =
4458 {
4459 {
4460 GIMPLE_PASS,
4461 "eipa_sra", /* name */
4462 ipa_early_sra_gate, /* gate */
4463 ipa_early_sra, /* execute */
4464 NULL, /* sub */
4465 NULL, /* next */
4466 0, /* static_pass_number */
4467 TV_IPA_SRA, /* tv_id */
4468 0, /* properties_required */
4469 0, /* properties_provided */
4470 0, /* properties_destroyed */
4471 0, /* todo_flags_start */
4472 TODO_dump_func | TODO_dump_cgraph /* todo_flags_finish */
4473 }
4474 };
4475
4476