tree.h (IS_CONVERT_EXPR_CODE_P): Renamed to
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6 Contributed by Diego Novillo <dnovillo@redhat.com>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30
31 /* These RTL headers are needed for basic-block.h. */
32 #include "rtl.h"
33 #include "tm_p.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "diagnostic.h"
37 #include "langhooks.h"
38 #include "tree-inline.h"
39 #include "tree-flow.h"
40 #include "gimple.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "timevar.h"
44 #include "flags.h"
45 #include "bitmap.h"
46 #include "obstack.h"
47 #include "target.h"
48 /* expr.h is needed for MOVE_RATIO. */
49 #include "expr.h"
50 #include "params.h"
51
52
53 /* This object of this pass is to replace a non-addressable aggregate with a
54 set of independent variables. Most of the time, all of these variables
55 will be scalars. But a secondary objective is to break up larger
56 aggregates into smaller aggregates. In the process we may find that some
57 bits of the larger aggregate can be deleted as unreferenced.
58
59 This substitution is done globally. More localized substitutions would
60 be the purvey of a load-store motion pass.
61
62 The optimization proceeds in phases:
63
64 (1) Identify variables that have types that are candidates for
65 decomposition.
66
67 (2) Scan the function looking for the ways these variables are used.
68 In particular we're interested in the number of times a variable
69 (or member) is needed as a complete unit, and the number of times
70 a variable (or member) is copied.
71
72 (3) Based on the usage profile, instantiate substitution variables.
73
74 (4) Scan the function making replacements.
75 */
76
77
78 /* True if this is the "early" pass, before inlining. */
79 static bool early_sra;
80
81 /* The set of todo flags to return from tree_sra. */
82 static unsigned int todoflags;
83
84 /* The set of aggregate variables that are candidates for scalarization. */
85 static bitmap sra_candidates;
86
87 /* Set of scalarizable PARM_DECLs that need copy-in operations at the
88 beginning of the function. */
89 static bitmap needs_copy_in;
90
91 /* Sets of bit pairs that cache type decomposition and instantiation. */
92 static bitmap sra_type_decomp_cache;
93 static bitmap sra_type_inst_cache;
94
95 /* One of these structures is created for each candidate aggregate and
96 each (accessed) member or group of members of such an aggregate. */
97 struct sra_elt
98 {
99 /* A tree of the elements. Used when we want to traverse everything. */
100 struct sra_elt *parent;
101 struct sra_elt *groups;
102 struct sra_elt *children;
103 struct sra_elt *sibling;
104
105 /* If this element is a root, then this is the VAR_DECL. If this is
106 a sub-element, this is some token used to identify the reference.
107 In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
108 of an ARRAY_REF, this is the (constant) index. In the case of an
109 ARRAY_RANGE_REF, this is the (constant) RANGE_EXPR. In the case
110 of a complex number, this is a zero or one. */
111 tree element;
112
113 /* The type of the element. */
114 tree type;
115
116 /* A VAR_DECL, for any sub-element we've decided to replace. */
117 tree replacement;
118
119 /* The number of times the element is referenced as a whole. I.e.
120 given "a.b.c", this would be incremented for C, but not for A or B. */
121 unsigned int n_uses;
122
123 /* The number of times the element is copied to or from another
124 scalarizable element. */
125 unsigned int n_copies;
126
127 /* True if TYPE is scalar. */
128 bool is_scalar;
129
130 /* True if this element is a group of members of its parent. */
131 bool is_group;
132
133 /* True if we saw something about this element that prevents scalarization,
134 such as non-constant indexing. */
135 bool cannot_scalarize;
136
137 /* True if we've decided that structure-to-structure assignment
138 should happen via memcpy and not per-element. */
139 bool use_block_copy;
140
141 /* True if everything under this element has been marked TREE_NO_WARNING. */
142 bool all_no_warning;
143
144 /* A flag for use with/after random access traversals. */
145 bool visited;
146
147 /* True if there is BIT_FIELD_REF on the lhs with a vector. */
148 bool is_vector_lhs;
149
150 /* 1 if the element is a field that is part of a block, 2 if the field
151 is the block itself, 0 if it's neither. */
152 char in_bitfld_block;
153 };
154
155 #define IS_ELEMENT_FOR_GROUP(ELEMENT) (TREE_CODE (ELEMENT) == RANGE_EXPR)
156
157 #define FOR_EACH_ACTUAL_CHILD(CHILD, ELT) \
158 for ((CHILD) = (ELT)->is_group \
159 ? next_child_for_group (NULL, (ELT)) \
160 : (ELT)->children; \
161 (CHILD); \
162 (CHILD) = (ELT)->is_group \
163 ? next_child_for_group ((CHILD), (ELT)) \
164 : (CHILD)->sibling)
165
166 /* Helper function for above macro. Return next child in group. */
167 static struct sra_elt *
168 next_child_for_group (struct sra_elt *child, struct sra_elt *group)
169 {
170 gcc_assert (group->is_group);
171
172 /* Find the next child in the parent. */
173 if (child)
174 child = child->sibling;
175 else
176 child = group->parent->children;
177
178 /* Skip siblings that do not belong to the group. */
179 while (child)
180 {
181 tree g_elt = group->element;
182 if (TREE_CODE (g_elt) == RANGE_EXPR)
183 {
184 if (!tree_int_cst_lt (child->element, TREE_OPERAND (g_elt, 0))
185 && !tree_int_cst_lt (TREE_OPERAND (g_elt, 1), child->element))
186 break;
187 }
188 else
189 gcc_unreachable ();
190
191 child = child->sibling;
192 }
193
194 return child;
195 }
196
197 /* Random access to the child of a parent is performed by hashing.
198 This prevents quadratic behavior, and allows SRA to function
199 reasonably on larger records. */
200 static htab_t sra_map;
201
202 /* All structures are allocated out of the following obstack. */
203 static struct obstack sra_obstack;
204
205 /* Debugging functions. */
206 static void dump_sra_elt_name (FILE *, struct sra_elt *);
207 extern void debug_sra_elt_name (struct sra_elt *);
208
209 /* Forward declarations. */
210 static tree generate_element_ref (struct sra_elt *);
211 static gimple_seq sra_build_assignment (tree dst, tree src);
212 static void mark_all_v_defs_seq (gimple_seq);
213 static void mark_all_v_defs_stmt (gimple);
214
215 \f
216 /* Return true if DECL is an SRA candidate. */
217
218 static bool
219 is_sra_candidate_decl (tree decl)
220 {
221 return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
222 }
223
224 /* Return true if TYPE is a scalar type. */
225
226 static bool
227 is_sra_scalar_type (tree type)
228 {
229 enum tree_code code = TREE_CODE (type);
230 return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
231 || code == FIXED_POINT_TYPE
232 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
233 || code == POINTER_TYPE || code == OFFSET_TYPE
234 || code == REFERENCE_TYPE);
235 }
236
237 /* Return true if TYPE can be decomposed into a set of independent variables.
238
239 Note that this doesn't imply that all elements of TYPE can be
240 instantiated, just that if we decide to break up the type into
241 separate pieces that it can be done. */
242
243 bool
244 sra_type_can_be_decomposed_p (tree type)
245 {
246 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
247 tree t;
248
249 /* Avoid searching the same type twice. */
250 if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
251 return true;
252 if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
253 return false;
254
255 /* The type must have a definite nonzero size. */
256 if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
257 || integer_zerop (TYPE_SIZE (type)))
258 goto fail;
259
260 /* The type must be a non-union aggregate. */
261 switch (TREE_CODE (type))
262 {
263 case RECORD_TYPE:
264 {
265 bool saw_one_field = false;
266
267 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
268 if (TREE_CODE (t) == FIELD_DECL)
269 {
270 /* Reject incorrectly represented bit fields. */
271 if (DECL_BIT_FIELD (t)
272 && INTEGRAL_TYPE_P (TREE_TYPE (t))
273 && (tree_low_cst (DECL_SIZE (t), 1)
274 != TYPE_PRECISION (TREE_TYPE (t))))
275 goto fail;
276
277 saw_one_field = true;
278 }
279
280 /* Record types must have at least one field. */
281 if (!saw_one_field)
282 goto fail;
283 }
284 break;
285
286 case ARRAY_TYPE:
287 /* Array types must have a fixed lower and upper bound. */
288 t = TYPE_DOMAIN (type);
289 if (t == NULL)
290 goto fail;
291 if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
292 goto fail;
293 if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
294 goto fail;
295 break;
296
297 case COMPLEX_TYPE:
298 break;
299
300 default:
301 goto fail;
302 }
303
304 bitmap_set_bit (sra_type_decomp_cache, cache+0);
305 return true;
306
307 fail:
308 bitmap_set_bit (sra_type_decomp_cache, cache+1);
309 return false;
310 }
311
312 /* Returns true if the TYPE is one of the available va_list types.
313 Otherwise it returns false.
314 Note, that for multiple calling conventions there can be more
315 than just one va_list type present. */
316
317 static bool
318 is_va_list_type (tree type)
319 {
320 tree h;
321
322 if (type == NULL_TREE)
323 return false;
324 h = targetm.canonical_va_list_type (type);
325 if (h == NULL_TREE)
326 return false;
327 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (h))
328 return true;
329 return false;
330 }
331
332 /* Return true if DECL can be decomposed into a set of independent
333 (though not necessarily scalar) variables. */
334
335 static bool
336 decl_can_be_decomposed_p (tree var)
337 {
338 /* Early out for scalars. */
339 if (is_sra_scalar_type (TREE_TYPE (var)))
340 return false;
341
342 /* The variable must not be aliased. */
343 if (!is_gimple_non_addressable (var))
344 {
345 if (dump_file && (dump_flags & TDF_DETAILS))
346 {
347 fprintf (dump_file, "Cannot scalarize variable ");
348 print_generic_expr (dump_file, var, dump_flags);
349 fprintf (dump_file, " because it must live in memory\n");
350 }
351 return false;
352 }
353
354 /* The variable must not be volatile. */
355 if (TREE_THIS_VOLATILE (var))
356 {
357 if (dump_file && (dump_flags & TDF_DETAILS))
358 {
359 fprintf (dump_file, "Cannot scalarize variable ");
360 print_generic_expr (dump_file, var, dump_flags);
361 fprintf (dump_file, " because it is declared volatile\n");
362 }
363 return false;
364 }
365
366 /* We must be able to decompose the variable's type. */
367 if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
368 {
369 if (dump_file && (dump_flags & TDF_DETAILS))
370 {
371 fprintf (dump_file, "Cannot scalarize variable ");
372 print_generic_expr (dump_file, var, dump_flags);
373 fprintf (dump_file, " because its type cannot be decomposed\n");
374 }
375 return false;
376 }
377
378 /* HACK: if we decompose a va_list_type_node before inlining, then we'll
379 confuse tree-stdarg.c, and we won't be able to figure out which and
380 how many arguments are accessed. This really should be improved in
381 tree-stdarg.c, as the decomposition is truly a win. This could also
382 be fixed if the stdarg pass ran early, but this can't be done until
383 we've aliasing information early too. See PR 30791. */
384 if (early_sra && is_va_list_type (TREE_TYPE (var)))
385 return false;
386
387 return true;
388 }
389
390 /* Return true if TYPE can be *completely* decomposed into scalars. */
391
392 static bool
393 type_can_instantiate_all_elements (tree type)
394 {
395 if (is_sra_scalar_type (type))
396 return true;
397 if (!sra_type_can_be_decomposed_p (type))
398 return false;
399
400 switch (TREE_CODE (type))
401 {
402 case RECORD_TYPE:
403 {
404 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
405 tree f;
406
407 if (bitmap_bit_p (sra_type_inst_cache, cache+0))
408 return true;
409 if (bitmap_bit_p (sra_type_inst_cache, cache+1))
410 return false;
411
412 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
413 if (TREE_CODE (f) == FIELD_DECL)
414 {
415 if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
416 {
417 bitmap_set_bit (sra_type_inst_cache, cache+1);
418 return false;
419 }
420 }
421
422 bitmap_set_bit (sra_type_inst_cache, cache+0);
423 return true;
424 }
425
426 case ARRAY_TYPE:
427 return type_can_instantiate_all_elements (TREE_TYPE (type));
428
429 case COMPLEX_TYPE:
430 return true;
431
432 default:
433 gcc_unreachable ();
434 }
435 }
436
437 /* Test whether ELT or some sub-element cannot be scalarized. */
438
439 static bool
440 can_completely_scalarize_p (struct sra_elt *elt)
441 {
442 struct sra_elt *c;
443
444 if (elt->cannot_scalarize)
445 return false;
446
447 for (c = elt->children; c; c = c->sibling)
448 if (!can_completely_scalarize_p (c))
449 return false;
450
451 for (c = elt->groups; c; c = c->sibling)
452 if (!can_completely_scalarize_p (c))
453 return false;
454
455 return true;
456 }
457
458 \f
459 /* A simplified tree hashing algorithm that only handles the types of
460 trees we expect to find in sra_elt->element. */
461
462 static hashval_t
463 sra_hash_tree (tree t)
464 {
465 hashval_t h;
466
467 switch (TREE_CODE (t))
468 {
469 case VAR_DECL:
470 case PARM_DECL:
471 case RESULT_DECL:
472 h = DECL_UID (t);
473 break;
474
475 case INTEGER_CST:
476 h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
477 break;
478
479 case RANGE_EXPR:
480 h = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
481 h = iterative_hash_expr (TREE_OPERAND (t, 1), h);
482 break;
483
484 case FIELD_DECL:
485 /* We can have types that are compatible, but have different member
486 lists, so we can't hash fields by ID. Use offsets instead. */
487 h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
488 h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
489 break;
490
491 case BIT_FIELD_REF:
492 /* Don't take operand 0 into account, that's our parent. */
493 h = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
494 h = iterative_hash_expr (TREE_OPERAND (t, 2), h);
495 break;
496
497 default:
498 gcc_unreachable ();
499 }
500
501 return h;
502 }
503
504 /* Hash function for type SRA_PAIR. */
505
506 static hashval_t
507 sra_elt_hash (const void *x)
508 {
509 const struct sra_elt *const e = (const struct sra_elt *) x;
510 const struct sra_elt *p;
511 hashval_t h;
512
513 h = sra_hash_tree (e->element);
514
515 /* Take into account everything except bitfield blocks back up the
516 chain. Given that chain lengths are rarely very long, this
517 should be acceptable. If we truly identify this as a performance
518 problem, it should work to hash the pointer value
519 "e->parent". */
520 for (p = e->parent; p ; p = p->parent)
521 if (!p->in_bitfld_block)
522 h = (h * 65521) ^ sra_hash_tree (p->element);
523
524 return h;
525 }
526
527 /* Equality function for type SRA_PAIR. */
528
529 static int
530 sra_elt_eq (const void *x, const void *y)
531 {
532 const struct sra_elt *const a = (const struct sra_elt *) x;
533 const struct sra_elt *const b = (const struct sra_elt *) y;
534 tree ae, be;
535 const struct sra_elt *ap = a->parent;
536 const struct sra_elt *bp = b->parent;
537
538 if (ap)
539 while (ap->in_bitfld_block)
540 ap = ap->parent;
541 if (bp)
542 while (bp->in_bitfld_block)
543 bp = bp->parent;
544
545 if (ap != bp)
546 return false;
547
548 ae = a->element;
549 be = b->element;
550
551 if (ae == be)
552 return true;
553 if (TREE_CODE (ae) != TREE_CODE (be))
554 return false;
555
556 switch (TREE_CODE (ae))
557 {
558 case VAR_DECL:
559 case PARM_DECL:
560 case RESULT_DECL:
561 /* These are all pointer unique. */
562 return false;
563
564 case INTEGER_CST:
565 /* Integers are not pointer unique, so compare their values. */
566 return tree_int_cst_equal (ae, be);
567
568 case RANGE_EXPR:
569 return
570 tree_int_cst_equal (TREE_OPERAND (ae, 0), TREE_OPERAND (be, 0))
571 && tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1));
572
573 case FIELD_DECL:
574 /* Fields are unique within a record, but not between
575 compatible records. */
576 if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
577 return false;
578 return fields_compatible_p (ae, be);
579
580 case BIT_FIELD_REF:
581 return
582 tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1))
583 && tree_int_cst_equal (TREE_OPERAND (ae, 2), TREE_OPERAND (be, 2));
584
585 default:
586 gcc_unreachable ();
587 }
588 }
589
590 /* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
591 may be null, in which case CHILD must be a DECL. */
592
593 static struct sra_elt *
594 lookup_element (struct sra_elt *parent, tree child, tree type,
595 enum insert_option insert)
596 {
597 struct sra_elt dummy;
598 struct sra_elt **slot;
599 struct sra_elt *elt;
600
601 if (parent)
602 dummy.parent = parent->is_group ? parent->parent : parent;
603 else
604 dummy.parent = NULL;
605 dummy.element = child;
606
607 slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
608 if (!slot && insert == NO_INSERT)
609 return NULL;
610
611 elt = *slot;
612 if (!elt && insert == INSERT)
613 {
614 *slot = elt = XOBNEW (&sra_obstack, struct sra_elt);
615 memset (elt, 0, sizeof (*elt));
616
617 elt->parent = parent;
618 elt->element = child;
619 elt->type = type;
620 elt->is_scalar = is_sra_scalar_type (type);
621
622 if (parent)
623 {
624 if (IS_ELEMENT_FOR_GROUP (elt->element))
625 {
626 elt->is_group = true;
627 elt->sibling = parent->groups;
628 parent->groups = elt;
629 }
630 else
631 {
632 elt->sibling = parent->children;
633 parent->children = elt;
634 }
635 }
636
637 /* If this is a parameter, then if we want to scalarize, we have
638 one copy from the true function parameter. Count it now. */
639 if (TREE_CODE (child) == PARM_DECL)
640 {
641 elt->n_copies = 1;
642 bitmap_set_bit (needs_copy_in, DECL_UID (child));
643 }
644 }
645
646 return elt;
647 }
648
649 /* Create or return the SRA_ELT structure for EXPR if the expression
650 refers to a scalarizable variable. */
651
652 static struct sra_elt *
653 maybe_lookup_element_for_expr (tree expr)
654 {
655 struct sra_elt *elt;
656 tree child;
657
658 switch (TREE_CODE (expr))
659 {
660 case VAR_DECL:
661 case PARM_DECL:
662 case RESULT_DECL:
663 if (is_sra_candidate_decl (expr))
664 return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
665 return NULL;
666
667 case ARRAY_REF:
668 /* We can't scalarize variable array indices. */
669 if (in_array_bounds_p (expr))
670 child = TREE_OPERAND (expr, 1);
671 else
672 return NULL;
673 break;
674
675 case ARRAY_RANGE_REF:
676 /* We can't scalarize variable array indices. */
677 if (range_in_array_bounds_p (expr))
678 {
679 tree domain = TYPE_DOMAIN (TREE_TYPE (expr));
680 child = build2 (RANGE_EXPR, integer_type_node,
681 TYPE_MIN_VALUE (domain), TYPE_MAX_VALUE (domain));
682 }
683 else
684 return NULL;
685 break;
686
687 case COMPONENT_REF:
688 {
689 tree type = TREE_TYPE (TREE_OPERAND (expr, 0));
690 /* Don't look through unions. */
691 if (TREE_CODE (type) != RECORD_TYPE)
692 return NULL;
693 /* Neither through variable-sized records. */
694 if (TYPE_SIZE (type) == NULL_TREE
695 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
696 return NULL;
697 child = TREE_OPERAND (expr, 1);
698 }
699 break;
700
701 case REALPART_EXPR:
702 child = integer_zero_node;
703 break;
704 case IMAGPART_EXPR:
705 child = integer_one_node;
706 break;
707
708 default:
709 return NULL;
710 }
711
712 elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
713 if (elt)
714 return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
715 return NULL;
716 }
717
718 \f
719 /* Functions to walk just enough of the tree to see all scalarizable
720 references, and categorize them. */
721
722 /* A set of callbacks for phases 2 and 4. They'll be invoked for the
723 various kinds of references seen. In all cases, *GSI is an iterator
724 pointing to the statement being processed. */
725 struct sra_walk_fns
726 {
727 /* Invoked when ELT is required as a unit. Note that ELT might refer to
728 a leaf node, in which case this is a simple scalar reference. *EXPR_P
729 points to the location of the expression. IS_OUTPUT is true if this
730 is a left-hand-side reference. USE_ALL is true if we saw something we
731 couldn't quite identify and had to force the use of the entire object. */
732 void (*use) (struct sra_elt *elt, tree *expr_p,
733 gimple_stmt_iterator *gsi, bool is_output, bool use_all);
734
735 /* Invoked when we have a copy between two scalarizable references. */
736 void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
737 gimple_stmt_iterator *gsi);
738
739 /* Invoked when ELT is initialized from a constant. VALUE may be NULL,
740 in which case it should be treated as an empty CONSTRUCTOR. */
741 void (*init) (struct sra_elt *elt, tree value, gimple_stmt_iterator *gsi);
742
743 /* Invoked when we have a copy between one scalarizable reference ELT
744 and one non-scalarizable reference OTHER without side-effects.
745 IS_OUTPUT is true if ELT is on the left-hand side. */
746 void (*ldst) (struct sra_elt *elt, tree other,
747 gimple_stmt_iterator *gsi, bool is_output);
748
749 /* True during phase 2, false during phase 4. */
750 /* ??? This is a hack. */
751 bool initial_scan;
752 };
753
754 #ifdef ENABLE_CHECKING
755 /* Invoked via walk_tree, if *TP contains a candidate decl, return it. */
756
757 static tree
758 sra_find_candidate_decl (tree *tp, int *walk_subtrees,
759 void *data ATTRIBUTE_UNUSED)
760 {
761 tree t = *tp;
762 enum tree_code code = TREE_CODE (t);
763
764 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
765 {
766 *walk_subtrees = 0;
767 if (is_sra_candidate_decl (t))
768 return t;
769 }
770 else if (TYPE_P (t))
771 *walk_subtrees = 0;
772
773 return NULL;
774 }
775 #endif
776
777 /* Walk most expressions looking for a scalarizable aggregate.
778 If we find one, invoke FNS->USE. */
779
780 static void
781 sra_walk_expr (tree *expr_p, gimple_stmt_iterator *gsi, bool is_output,
782 const struct sra_walk_fns *fns)
783 {
784 tree expr = *expr_p;
785 tree inner = expr;
786 bool disable_scalarization = false;
787 bool use_all_p = false;
788
789 /* We're looking to collect a reference expression between EXPR and INNER,
790 such that INNER is a scalarizable decl and all other nodes through EXPR
791 are references that we can scalarize. If we come across something that
792 we can't scalarize, we reset EXPR. This has the effect of making it
793 appear that we're referring to the larger expression as a whole. */
794
795 while (1)
796 switch (TREE_CODE (inner))
797 {
798 case VAR_DECL:
799 case PARM_DECL:
800 case RESULT_DECL:
801 /* If there is a scalarizable decl at the bottom, then process it. */
802 if (is_sra_candidate_decl (inner))
803 {
804 struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
805 if (disable_scalarization)
806 elt->cannot_scalarize = true;
807 else
808 fns->use (elt, expr_p, gsi, is_output, use_all_p);
809 }
810 return;
811
812 case ARRAY_REF:
813 /* Non-constant index means any member may be accessed. Prevent the
814 expression from being scalarized. If we were to treat this as a
815 reference to the whole array, we can wind up with a single dynamic
816 index reference inside a loop being overridden by several constant
817 index references during loop setup. It's possible that this could
818 be avoided by using dynamic usage counts based on BB trip counts
819 (based on loop analysis or profiling), but that hardly seems worth
820 the effort. */
821 /* ??? Hack. Figure out how to push this into the scan routines
822 without duplicating too much code. */
823 if (!in_array_bounds_p (inner))
824 {
825 disable_scalarization = true;
826 goto use_all;
827 }
828 /* ??? Are we assured that non-constant bounds and stride will have
829 the same value everywhere? I don't think Fortran will... */
830 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
831 goto use_all;
832 inner = TREE_OPERAND (inner, 0);
833 break;
834
835 case ARRAY_RANGE_REF:
836 if (!range_in_array_bounds_p (inner))
837 {
838 disable_scalarization = true;
839 goto use_all;
840 }
841 /* ??? See above non-constant bounds and stride . */
842 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
843 goto use_all;
844 inner = TREE_OPERAND (inner, 0);
845 break;
846
847 case COMPONENT_REF:
848 {
849 tree type = TREE_TYPE (TREE_OPERAND (inner, 0));
850 /* Don't look through unions. */
851 if (TREE_CODE (type) != RECORD_TYPE)
852 goto use_all;
853 /* Neither through variable-sized records. */
854 if (TYPE_SIZE (type) == NULL_TREE
855 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
856 goto use_all;
857 inner = TREE_OPERAND (inner, 0);
858 }
859 break;
860
861 case REALPART_EXPR:
862 case IMAGPART_EXPR:
863 inner = TREE_OPERAND (inner, 0);
864 break;
865
866 case BIT_FIELD_REF:
867 /* A bit field reference to a specific vector is scalarized but for
868 ones for inputs need to be marked as used on the left hand size so
869 when we scalarize it, we can mark that variable as non renamable. */
870 if (is_output
871 && TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) == VECTOR_TYPE)
872 {
873 struct sra_elt *elt
874 = maybe_lookup_element_for_expr (TREE_OPERAND (inner, 0));
875 if (elt)
876 elt->is_vector_lhs = true;
877 }
878
879 /* A bit field reference (access to *multiple* fields simultaneously)
880 is not currently scalarized. Consider this an access to the full
881 outer element, to which walk_tree will bring us next. */
882 goto use_all;
883
884 CASE_CONVERT:
885 /* Similarly, a nop explicitly wants to look at an object in a
886 type other than the one we've scalarized. */
887 goto use_all;
888
889 case VIEW_CONVERT_EXPR:
890 /* Likewise for a view conversion, but with an additional twist:
891 it can be on the LHS and, in this case, an access to the full
892 outer element would mean a killing def. So we need to punt
893 if we haven't already a full access to the current element,
894 because we cannot pretend to have a killing def if we only
895 have a partial access at some level. */
896 if (is_output && !use_all_p && inner != expr)
897 disable_scalarization = true;
898 goto use_all;
899
900 case WITH_SIZE_EXPR:
901 /* This is a transparent wrapper. The entire inner expression really
902 is being used. */
903 goto use_all;
904
905 use_all:
906 expr_p = &TREE_OPERAND (inner, 0);
907 inner = expr = *expr_p;
908 use_all_p = true;
909 break;
910
911 default:
912 #ifdef ENABLE_CHECKING
913 /* Validate that we're not missing any references. */
914 gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
915 #endif
916 return;
917 }
918 }
919
920 /* Walk the arguments of a GIMPLE_CALL looking for scalarizable aggregates.
921 If we find one, invoke FNS->USE. */
922
923 static void
924 sra_walk_gimple_call (gimple stmt, gimple_stmt_iterator *gsi,
925 const struct sra_walk_fns *fns)
926 {
927 int i;
928 int nargs = gimple_call_num_args (stmt);
929
930 for (i = 0; i < nargs; i++)
931 sra_walk_expr (gimple_call_arg_ptr (stmt, i), gsi, false, fns);
932
933 if (gimple_call_lhs (stmt))
934 sra_walk_expr (gimple_call_lhs_ptr (stmt), gsi, true, fns);
935 }
936
937 /* Walk the inputs and outputs of a GIMPLE_ASM looking for scalarizable
938 aggregates. If we find one, invoke FNS->USE. */
939
940 static void
941 sra_walk_gimple_asm (gimple stmt, gimple_stmt_iterator *gsi,
942 const struct sra_walk_fns *fns)
943 {
944 size_t i;
945 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
946 sra_walk_expr (&TREE_VALUE (gimple_asm_input_op (stmt, i)), gsi, false, fns);
947 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
948 sra_walk_expr (&TREE_VALUE (gimple_asm_output_op (stmt, i)), gsi, true, fns);
949 }
950
951 /* Walk a GIMPLE_ASSIGN and categorize the assignment appropriately. */
952
953 static void
954 sra_walk_gimple_assign (gimple stmt, gimple_stmt_iterator *gsi,
955 const struct sra_walk_fns *fns)
956 {
957 struct sra_elt *lhs_elt = NULL, *rhs_elt = NULL;
958 tree lhs, rhs;
959
960 /* If there is more than 1 element on the RHS, only walk the lhs. */
961 if (!gimple_assign_single_p (stmt))
962 {
963 sra_walk_expr (gimple_assign_lhs_ptr (stmt), gsi, true, fns);
964 return;
965 }
966
967 lhs = gimple_assign_lhs (stmt);
968 rhs = gimple_assign_rhs1 (stmt);
969 lhs_elt = maybe_lookup_element_for_expr (lhs);
970 rhs_elt = maybe_lookup_element_for_expr (rhs);
971
972 /* If both sides are scalarizable, this is a COPY operation. */
973 if (lhs_elt && rhs_elt)
974 {
975 fns->copy (lhs_elt, rhs_elt, gsi);
976 return;
977 }
978
979 /* If the RHS is scalarizable, handle it. There are only two cases. */
980 if (rhs_elt)
981 {
982 if (!rhs_elt->is_scalar && !TREE_SIDE_EFFECTS (lhs))
983 fns->ldst (rhs_elt, lhs, gsi, false);
984 else
985 fns->use (rhs_elt, gimple_assign_rhs1_ptr (stmt), gsi, false, false);
986 }
987
988 /* If it isn't scalarizable, there may be scalarizable variables within, so
989 check for a call or else walk the RHS to see if we need to do any
990 copy-in operations. We need to do it before the LHS is scalarized so
991 that the statements get inserted in the proper place, before any
992 copy-out operations. */
993 else
994 sra_walk_expr (gimple_assign_rhs1_ptr (stmt), gsi, false, fns);
995
996 /* Likewise, handle the LHS being scalarizable. We have cases similar
997 to those above, but also want to handle RHS being constant. */
998 if (lhs_elt)
999 {
1000 /* If this is an assignment from a constant, or constructor, then
1001 we have access to all of the elements individually. Invoke INIT. */
1002 if (TREE_CODE (rhs) == COMPLEX_EXPR
1003 || TREE_CODE (rhs) == COMPLEX_CST
1004 || TREE_CODE (rhs) == CONSTRUCTOR)
1005 fns->init (lhs_elt, rhs, gsi);
1006
1007 /* If this is an assignment from read-only memory, treat this as if
1008 we'd been passed the constructor directly. Invoke INIT. */
1009 else if (TREE_CODE (rhs) == VAR_DECL
1010 && TREE_STATIC (rhs)
1011 && TREE_READONLY (rhs)
1012 && targetm.binds_local_p (rhs))
1013 fns->init (lhs_elt, DECL_INITIAL (rhs), gsi);
1014
1015 /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
1016 The lvalue requirement prevents us from trying to directly scalarize
1017 the result of a function call. Which would result in trying to call
1018 the function multiple times, and other evil things. */
1019 else if (!lhs_elt->is_scalar
1020 && !TREE_SIDE_EFFECTS (rhs) && is_gimple_addressable (rhs))
1021 fns->ldst (lhs_elt, rhs, gsi, true);
1022
1023 /* Otherwise we're being used in some context that requires the
1024 aggregate to be seen as a whole. Invoke USE. */
1025 else
1026 fns->use (lhs_elt, gimple_assign_lhs_ptr (stmt), gsi, true, false);
1027 }
1028
1029 /* Similarly to above, LHS_ELT being null only means that the LHS as a
1030 whole is not a scalarizable reference. There may be occurrences of
1031 scalarizable variables within, which implies a USE. */
1032 else
1033 sra_walk_expr (gimple_assign_lhs_ptr (stmt), gsi, true, fns);
1034 }
1035
1036 /* Entry point to the walk functions. Search the entire function,
1037 invoking the callbacks in FNS on each of the references to
1038 scalarizable variables. */
1039
1040 static void
1041 sra_walk_function (const struct sra_walk_fns *fns)
1042 {
1043 basic_block bb;
1044 gimple_stmt_iterator si, ni;
1045
1046 /* ??? Phase 4 could derive some benefit to walking the function in
1047 dominator tree order. */
1048
1049 FOR_EACH_BB (bb)
1050 for (si = gsi_start_bb (bb); !gsi_end_p (si); si = ni)
1051 {
1052 gimple stmt;
1053
1054 stmt = gsi_stmt (si);
1055
1056 ni = si;
1057 gsi_next (&ni);
1058
1059 /* If the statement has no virtual operands, then it doesn't
1060 make any structure references that we care about. */
1061 if (gimple_aliases_computed_p (cfun)
1062 && ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
1063 continue;
1064
1065 switch (gimple_code (stmt))
1066 {
1067 case GIMPLE_RETURN:
1068 /* If we have "return <retval>" then the return value is
1069 already exposed for our pleasure. Walk it as a USE to
1070 force all the components back in place for the return.
1071 */
1072 if (gimple_return_retval (stmt) == NULL_TREE)
1073 ;
1074 else
1075 sra_walk_expr (gimple_return_retval_ptr (stmt), &si, false,
1076 fns);
1077 break;
1078
1079 case GIMPLE_ASSIGN:
1080 sra_walk_gimple_assign (stmt, &si, fns);
1081 break;
1082 case GIMPLE_CALL:
1083 sra_walk_gimple_call (stmt, &si, fns);
1084 break;
1085 case GIMPLE_ASM:
1086 sra_walk_gimple_asm (stmt, &si, fns);
1087 break;
1088
1089 default:
1090 break;
1091 }
1092 }
1093 }
1094 \f
1095 /* Phase One: Scan all referenced variables in the program looking for
1096 structures that could be decomposed. */
1097
1098 static bool
1099 find_candidates_for_sra (void)
1100 {
1101 bool any_set = false;
1102 tree var;
1103 referenced_var_iterator rvi;
1104
1105 FOR_EACH_REFERENCED_VAR (var, rvi)
1106 {
1107 if (decl_can_be_decomposed_p (var))
1108 {
1109 bitmap_set_bit (sra_candidates, DECL_UID (var));
1110 any_set = true;
1111 }
1112 }
1113
1114 return any_set;
1115 }
1116
1117 \f
1118 /* Phase Two: Scan all references to scalarizable variables. Count the
1119 number of times they are used or copied respectively. */
1120
1121 /* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
1122 considered a copy, because we can decompose the reference such that
1123 the sub-elements needn't be contiguous. */
1124
1125 static void
1126 scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
1127 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
1128 bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
1129 {
1130 elt->n_uses += 1;
1131 }
1132
1133 static void
1134 scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1135 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED)
1136 {
1137 lhs_elt->n_copies += 1;
1138 rhs_elt->n_copies += 1;
1139 }
1140
1141 static void
1142 scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
1143 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED)
1144 {
1145 lhs_elt->n_copies += 1;
1146 }
1147
1148 static void
1149 scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
1150 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
1151 bool is_output ATTRIBUTE_UNUSED)
1152 {
1153 elt->n_copies += 1;
1154 }
1155
1156 /* Dump the values we collected during the scanning phase. */
1157
1158 static void
1159 scan_dump (struct sra_elt *elt)
1160 {
1161 struct sra_elt *c;
1162
1163 dump_sra_elt_name (dump_file, elt);
1164 fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1165
1166 for (c = elt->children; c ; c = c->sibling)
1167 scan_dump (c);
1168
1169 for (c = elt->groups; c ; c = c->sibling)
1170 scan_dump (c);
1171 }
1172
1173 /* Entry point to phase 2. Scan the entire function, building up
1174 scalarization data structures, recording copies and uses. */
1175
1176 static void
1177 scan_function (void)
1178 {
1179 static const struct sra_walk_fns fns = {
1180 scan_use, scan_copy, scan_init, scan_ldst, true
1181 };
1182 bitmap_iterator bi;
1183
1184 sra_walk_function (&fns);
1185
1186 if (dump_file && (dump_flags & TDF_DETAILS))
1187 {
1188 unsigned i;
1189
1190 fputs ("\nScan results:\n", dump_file);
1191 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1192 {
1193 tree var = referenced_var (i);
1194 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1195 if (elt)
1196 scan_dump (elt);
1197 }
1198 fputc ('\n', dump_file);
1199 }
1200 }
1201 \f
1202 /* Phase Three: Make decisions about which variables to scalarize, if any.
1203 All elements to be scalarized have replacement variables made for them. */
1204
1205 /* A subroutine of build_element_name. Recursively build the element
1206 name on the obstack. */
1207
1208 static void
1209 build_element_name_1 (struct sra_elt *elt)
1210 {
1211 tree t;
1212 char buffer[32];
1213
1214 if (elt->parent)
1215 {
1216 build_element_name_1 (elt->parent);
1217 obstack_1grow (&sra_obstack, '$');
1218
1219 if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1220 {
1221 if (elt->element == integer_zero_node)
1222 obstack_grow (&sra_obstack, "real", 4);
1223 else
1224 obstack_grow (&sra_obstack, "imag", 4);
1225 return;
1226 }
1227 }
1228
1229 t = elt->element;
1230 if (TREE_CODE (t) == INTEGER_CST)
1231 {
1232 /* ??? Eh. Don't bother doing double-wide printing. */
1233 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1234 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1235 }
1236 else if (TREE_CODE (t) == BIT_FIELD_REF)
1237 {
1238 sprintf (buffer, "B" HOST_WIDE_INT_PRINT_DEC,
1239 tree_low_cst (TREE_OPERAND (t, 2), 1));
1240 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1241 sprintf (buffer, "F" HOST_WIDE_INT_PRINT_DEC,
1242 tree_low_cst (TREE_OPERAND (t, 1), 1));
1243 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1244 }
1245 else
1246 {
1247 tree name = DECL_NAME (t);
1248 if (name)
1249 obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1250 IDENTIFIER_LENGTH (name));
1251 else
1252 {
1253 sprintf (buffer, "D%u", DECL_UID (t));
1254 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1255 }
1256 }
1257 }
1258
1259 /* Construct a pretty variable name for an element's replacement variable.
1260 The name is built on the obstack. */
1261
1262 static char *
1263 build_element_name (struct sra_elt *elt)
1264 {
1265 build_element_name_1 (elt);
1266 obstack_1grow (&sra_obstack, '\0');
1267 return XOBFINISH (&sra_obstack, char *);
1268 }
1269
1270 /* Instantiate an element as an independent variable. */
1271
1272 static void
1273 instantiate_element (struct sra_elt *elt)
1274 {
1275 struct sra_elt *base_elt;
1276 tree var, base;
1277 bool nowarn = TREE_NO_WARNING (elt->element);
1278
1279 for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1280 if (!nowarn)
1281 nowarn = TREE_NO_WARNING (base_elt->parent->element);
1282 base = base_elt->element;
1283
1284 elt->replacement = var = make_rename_temp (elt->type, "SR");
1285
1286 if (DECL_P (elt->element)
1287 && !tree_int_cst_equal (DECL_SIZE (var), DECL_SIZE (elt->element)))
1288 {
1289 DECL_SIZE (var) = DECL_SIZE (elt->element);
1290 DECL_SIZE_UNIT (var) = DECL_SIZE_UNIT (elt->element);
1291
1292 elt->in_bitfld_block = 1;
1293 elt->replacement = fold_build3 (BIT_FIELD_REF, elt->type, var,
1294 DECL_SIZE (var),
1295 BYTES_BIG_ENDIAN
1296 ? size_binop (MINUS_EXPR,
1297 TYPE_SIZE (elt->type),
1298 DECL_SIZE (var))
1299 : bitsize_int (0));
1300 }
1301
1302 /* For vectors, if used on the left hand side with BIT_FIELD_REF,
1303 they are not a gimple register. */
1304 if (TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE && elt->is_vector_lhs)
1305 DECL_GIMPLE_REG_P (var) = 0;
1306
1307 DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1308 DECL_ARTIFICIAL (var) = 1;
1309
1310 if (TREE_THIS_VOLATILE (elt->type))
1311 {
1312 TREE_THIS_VOLATILE (var) = 1;
1313 TREE_SIDE_EFFECTS (var) = 1;
1314 }
1315
1316 if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1317 {
1318 char *pretty_name = build_element_name (elt);
1319 DECL_NAME (var) = get_identifier (pretty_name);
1320 obstack_free (&sra_obstack, pretty_name);
1321
1322 SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
1323 DECL_DEBUG_EXPR_IS_FROM (var) = 1;
1324
1325 DECL_IGNORED_P (var) = 0;
1326 TREE_NO_WARNING (var) = nowarn;
1327 }
1328 else
1329 {
1330 DECL_IGNORED_P (var) = 1;
1331 /* ??? We can't generate any warning that would be meaningful. */
1332 TREE_NO_WARNING (var) = 1;
1333 }
1334
1335 /* Zero-initialize bit-field scalarization variables, to avoid
1336 triggering undefined behavior. */
1337 if (TREE_CODE (elt->element) == BIT_FIELD_REF
1338 || (var != elt->replacement
1339 && TREE_CODE (elt->replacement) == BIT_FIELD_REF))
1340 {
1341 gimple_seq init = sra_build_assignment (var,
1342 fold_convert (TREE_TYPE (var),
1343 integer_zero_node)
1344 );
1345 insert_edge_copies_seq (init, ENTRY_BLOCK_PTR);
1346 mark_all_v_defs_seq (init);
1347 }
1348
1349 if (dump_file)
1350 {
1351 fputs (" ", dump_file);
1352 dump_sra_elt_name (dump_file, elt);
1353 fputs (" -> ", dump_file);
1354 print_generic_expr (dump_file, var, dump_flags);
1355 fputc ('\n', dump_file);
1356 }
1357 }
1358
1359 /* Make one pass across an element tree deciding whether or not it's
1360 profitable to instantiate individual leaf scalars.
1361
1362 PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1363 fields all the way up the tree. */
1364
1365 static void
1366 decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1367 unsigned int parent_copies)
1368 {
1369 if (dump_file && !elt->parent)
1370 {
1371 fputs ("Initial instantiation for ", dump_file);
1372 dump_sra_elt_name (dump_file, elt);
1373 fputc ('\n', dump_file);
1374 }
1375
1376 if (elt->cannot_scalarize)
1377 return;
1378
1379 if (elt->is_scalar)
1380 {
1381 /* The decision is simple: instantiate if we're used more frequently
1382 than the parent needs to be seen as a complete unit. */
1383 if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1384 instantiate_element (elt);
1385 }
1386 else
1387 {
1388 struct sra_elt *c, *group;
1389 unsigned int this_uses = elt->n_uses + parent_uses;
1390 unsigned int this_copies = elt->n_copies + parent_copies;
1391
1392 /* Consider groups of sub-elements as weighing in favour of
1393 instantiation whatever their size. */
1394 for (group = elt->groups; group ; group = group->sibling)
1395 FOR_EACH_ACTUAL_CHILD (c, group)
1396 {
1397 c->n_uses += group->n_uses;
1398 c->n_copies += group->n_copies;
1399 }
1400
1401 for (c = elt->children; c ; c = c->sibling)
1402 decide_instantiation_1 (c, this_uses, this_copies);
1403 }
1404 }
1405
1406 /* Compute the size and number of all instantiated elements below ELT.
1407 We will only care about this if the size of the complete structure
1408 fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
1409
1410 static unsigned int
1411 sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1412 {
1413 if (elt->replacement)
1414 {
1415 *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1416 return 1;
1417 }
1418 else
1419 {
1420 struct sra_elt *c;
1421 unsigned int count = 0;
1422
1423 for (c = elt->children; c ; c = c->sibling)
1424 count += sum_instantiated_sizes (c, sizep);
1425
1426 return count;
1427 }
1428 }
1429
1430 /* Instantiate fields in ELT->TYPE that are not currently present as
1431 children of ELT. */
1432
1433 static void instantiate_missing_elements (struct sra_elt *elt);
1434
1435 static struct sra_elt *
1436 instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1437 {
1438 struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1439 if (sub->is_scalar)
1440 {
1441 if (sub->replacement == NULL)
1442 instantiate_element (sub);
1443 }
1444 else
1445 instantiate_missing_elements (sub);
1446 return sub;
1447 }
1448
1449 /* Obtain the canonical type for field F of ELEMENT. */
1450
1451 static tree
1452 canon_type_for_field (tree f, tree element)
1453 {
1454 tree field_type = TREE_TYPE (f);
1455
1456 /* canonicalize_component_ref() unwidens some bit-field types (not
1457 marked as DECL_BIT_FIELD in C++), so we must do the same, lest we
1458 may introduce type mismatches. */
1459 if (INTEGRAL_TYPE_P (field_type)
1460 && DECL_MODE (f) != TYPE_MODE (field_type))
1461 field_type = TREE_TYPE (get_unwidened (build3 (COMPONENT_REF,
1462 field_type,
1463 element,
1464 f, NULL_TREE),
1465 NULL_TREE));
1466
1467 return field_type;
1468 }
1469
1470 /* Look for adjacent fields of ELT starting at F that we'd like to
1471 scalarize as a single variable. Return the last field of the
1472 group. */
1473
1474 static tree
1475 try_instantiate_multiple_fields (struct sra_elt *elt, tree f)
1476 {
1477 int count;
1478 unsigned HOST_WIDE_INT align, bit, size, alchk;
1479 enum machine_mode mode;
1480 tree first = f, prev;
1481 tree type, var;
1482 struct sra_elt *block;
1483
1484 /* Point fields are typically best handled as standalone entities. */
1485 if (POINTER_TYPE_P (TREE_TYPE (f)))
1486 return f;
1487
1488 if (!is_sra_scalar_type (TREE_TYPE (f))
1489 || !host_integerp (DECL_FIELD_OFFSET (f), 1)
1490 || !host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1491 || !host_integerp (DECL_SIZE (f), 1)
1492 || lookup_element (elt, f, NULL, NO_INSERT))
1493 return f;
1494
1495 block = elt;
1496
1497 /* For complex and array objects, there are going to be integer
1498 literals as child elements. In this case, we can't just take the
1499 alignment and mode of the decl, so we instead rely on the element
1500 type.
1501
1502 ??? We could try to infer additional alignment from the full
1503 object declaration and the location of the sub-elements we're
1504 accessing. */
1505 for (count = 0; !DECL_P (block->element); count++)
1506 block = block->parent;
1507
1508 align = DECL_ALIGN (block->element);
1509 alchk = GET_MODE_BITSIZE (DECL_MODE (block->element));
1510
1511 if (count)
1512 {
1513 type = TREE_TYPE (block->element);
1514 while (count--)
1515 type = TREE_TYPE (type);
1516
1517 align = TYPE_ALIGN (type);
1518 alchk = GET_MODE_BITSIZE (TYPE_MODE (type));
1519 }
1520
1521 if (align < alchk)
1522 align = alchk;
1523
1524 /* Coalescing wider fields is probably pointless and
1525 inefficient. */
1526 if (align > BITS_PER_WORD)
1527 align = BITS_PER_WORD;
1528
1529 bit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1530 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1531 size = tree_low_cst (DECL_SIZE (f), 1);
1532
1533 alchk = align - 1;
1534 alchk = ~alchk;
1535
1536 if ((bit & alchk) != ((bit + size - 1) & alchk))
1537 return f;
1538
1539 /* Find adjacent fields in the same alignment word. */
1540
1541 for (prev = f, f = TREE_CHAIN (f);
1542 f && TREE_CODE (f) == FIELD_DECL
1543 && is_sra_scalar_type (TREE_TYPE (f))
1544 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1545 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1546 && host_integerp (DECL_SIZE (f), 1)
1547 && !lookup_element (elt, f, NULL, NO_INSERT);
1548 prev = f, f = TREE_CHAIN (f))
1549 {
1550 unsigned HOST_WIDE_INT nbit, nsize;
1551
1552 nbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1553 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1554 nsize = tree_low_cst (DECL_SIZE (f), 1);
1555
1556 if (bit + size == nbit)
1557 {
1558 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1559 {
1560 /* If we're at an alignment boundary, don't bother
1561 growing alignment such that we can include this next
1562 field. */
1563 if ((nbit & alchk)
1564 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1565 break;
1566
1567 align = GET_MODE_BITSIZE (DECL_MODE (f));
1568 alchk = align - 1;
1569 alchk = ~alchk;
1570
1571 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1572 break;
1573 }
1574 size += nsize;
1575 }
1576 else if (nbit + nsize == bit)
1577 {
1578 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1579 {
1580 if ((bit & alchk)
1581 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1582 break;
1583
1584 align = GET_MODE_BITSIZE (DECL_MODE (f));
1585 alchk = align - 1;
1586 alchk = ~alchk;
1587
1588 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1589 break;
1590 }
1591 bit = nbit;
1592 size += nsize;
1593 }
1594 else
1595 break;
1596 }
1597
1598 f = prev;
1599
1600 if (f == first)
1601 return f;
1602
1603 gcc_assert ((bit & alchk) == ((bit + size - 1) & alchk));
1604
1605 /* Try to widen the bit range so as to cover padding bits as well. */
1606
1607 if ((bit & ~alchk) || size != align)
1608 {
1609 unsigned HOST_WIDE_INT mbit = bit & alchk;
1610 unsigned HOST_WIDE_INT msize = align;
1611
1612 for (f = TYPE_FIELDS (elt->type);
1613 f; f = TREE_CHAIN (f))
1614 {
1615 unsigned HOST_WIDE_INT fbit, fsize;
1616
1617 /* Skip the fields from first to prev. */
1618 if (f == first)
1619 {
1620 f = prev;
1621 continue;
1622 }
1623
1624 if (!(TREE_CODE (f) == FIELD_DECL
1625 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1626 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)))
1627 continue;
1628
1629 fbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1630 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1631
1632 /* If we're past the selected word, we're fine. */
1633 if ((bit & alchk) < (fbit & alchk))
1634 continue;
1635
1636 if (host_integerp (DECL_SIZE (f), 1))
1637 fsize = tree_low_cst (DECL_SIZE (f), 1);
1638 else
1639 /* Assume a variable-sized field takes up all space till
1640 the end of the word. ??? Endianness issues? */
1641 fsize = align - (fbit & alchk);
1642
1643 if ((fbit & alchk) < (bit & alchk))
1644 {
1645 /* A large field might start at a previous word and
1646 extend into the selected word. Exclude those
1647 bits. ??? Endianness issues? */
1648 HOST_WIDE_INT diff = fbit + fsize - mbit;
1649
1650 if (diff <= 0)
1651 continue;
1652
1653 mbit += diff;
1654 msize -= diff;
1655 }
1656 else
1657 {
1658 /* Non-overlapping, great. */
1659 if (fbit + fsize <= mbit
1660 || mbit + msize <= fbit)
1661 continue;
1662
1663 if (fbit <= mbit)
1664 {
1665 unsigned HOST_WIDE_INT diff = fbit + fsize - mbit;
1666 mbit += diff;
1667 msize -= diff;
1668 }
1669 else if (fbit > mbit)
1670 msize -= (mbit + msize - fbit);
1671 else
1672 gcc_unreachable ();
1673 }
1674 }
1675
1676 bit = mbit;
1677 size = msize;
1678 }
1679
1680 /* Now we know the bit range we're interested in. Find the smallest
1681 machine mode we can use to access it. */
1682
1683 for (mode = smallest_mode_for_size (size, MODE_INT);
1684 ;
1685 mode = GET_MODE_WIDER_MODE (mode))
1686 {
1687 gcc_assert (mode != VOIDmode);
1688
1689 alchk = GET_MODE_PRECISION (mode) - 1;
1690 alchk = ~alchk;
1691
1692 if ((bit & alchk) == ((bit + size - 1) & alchk))
1693 break;
1694 }
1695
1696 gcc_assert (~alchk < align);
1697
1698 /* Create the field group as a single variable. */
1699
1700 /* We used to create a type for the mode above, but size turns
1701 to be out not of mode-size. As we need a matching type
1702 to build a BIT_FIELD_REF, use a nonstandard integer type as
1703 fallback. */
1704 type = lang_hooks.types.type_for_size (size, 1);
1705 if (!type || TYPE_PRECISION (type) != size)
1706 type = build_nonstandard_integer_type (size, 1);
1707 gcc_assert (type);
1708 var = build3 (BIT_FIELD_REF, type, NULL_TREE,
1709 bitsize_int (size), bitsize_int (bit));
1710
1711 block = instantiate_missing_elements_1 (elt, var, type);
1712 gcc_assert (block && block->is_scalar);
1713
1714 var = block->replacement;
1715
1716 if ((bit & ~alchk)
1717 || (HOST_WIDE_INT)size != tree_low_cst (DECL_SIZE (var), 1))
1718 {
1719 block->replacement = fold_build3 (BIT_FIELD_REF,
1720 TREE_TYPE (block->element), var,
1721 bitsize_int (size),
1722 bitsize_int (bit & ~alchk));
1723 }
1724
1725 block->in_bitfld_block = 2;
1726
1727 /* Add the member fields to the group, such that they access
1728 portions of the group variable. */
1729
1730 for (f = first; f != TREE_CHAIN (prev); f = TREE_CHAIN (f))
1731 {
1732 tree field_type = canon_type_for_field (f, elt->element);
1733 struct sra_elt *fld = lookup_element (block, f, field_type, INSERT);
1734
1735 gcc_assert (fld && fld->is_scalar && !fld->replacement);
1736
1737 fld->replacement = fold_build3 (BIT_FIELD_REF, field_type, var,
1738 DECL_SIZE (f),
1739 bitsize_int
1740 ((TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f))
1741 * BITS_PER_UNIT
1742 + (TREE_INT_CST_LOW
1743 (DECL_FIELD_BIT_OFFSET (f))))
1744 & ~alchk));
1745 fld->in_bitfld_block = 1;
1746 }
1747
1748 return prev;
1749 }
1750
1751 static void
1752 instantiate_missing_elements (struct sra_elt *elt)
1753 {
1754 tree type = elt->type;
1755
1756 switch (TREE_CODE (type))
1757 {
1758 case RECORD_TYPE:
1759 {
1760 tree f;
1761 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1762 if (TREE_CODE (f) == FIELD_DECL)
1763 {
1764 tree last = try_instantiate_multiple_fields (elt, f);
1765
1766 if (last != f)
1767 {
1768 f = last;
1769 continue;
1770 }
1771
1772 instantiate_missing_elements_1 (elt, f,
1773 canon_type_for_field
1774 (f, elt->element));
1775 }
1776 break;
1777 }
1778
1779 case ARRAY_TYPE:
1780 {
1781 tree i, max, subtype;
1782
1783 i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1784 max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1785 subtype = TREE_TYPE (type);
1786
1787 while (1)
1788 {
1789 instantiate_missing_elements_1 (elt, i, subtype);
1790 if (tree_int_cst_equal (i, max))
1791 break;
1792 i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1793 }
1794
1795 break;
1796 }
1797
1798 case COMPLEX_TYPE:
1799 type = TREE_TYPE (type);
1800 instantiate_missing_elements_1 (elt, integer_zero_node, type);
1801 instantiate_missing_elements_1 (elt, integer_one_node, type);
1802 break;
1803
1804 default:
1805 gcc_unreachable ();
1806 }
1807 }
1808
1809 /* Return true if there is only one non aggregate field in the record, TYPE.
1810 Return false otherwise. */
1811
1812 static bool
1813 single_scalar_field_in_record_p (tree type)
1814 {
1815 int num_fields = 0;
1816 tree field;
1817 if (TREE_CODE (type) != RECORD_TYPE)
1818 return false;
1819
1820 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1821 if (TREE_CODE (field) == FIELD_DECL)
1822 {
1823 num_fields++;
1824
1825 if (num_fields == 2)
1826 return false;
1827
1828 if (AGGREGATE_TYPE_P (TREE_TYPE (field)))
1829 return false;
1830 }
1831
1832 return true;
1833 }
1834
1835 /* Make one pass across an element tree deciding whether to perform block
1836 or element copies. If we decide on element copies, instantiate all
1837 elements. Return true if there are any instantiated sub-elements. */
1838
1839 static bool
1840 decide_block_copy (struct sra_elt *elt)
1841 {
1842 struct sra_elt *c;
1843 bool any_inst;
1844
1845 /* We shouldn't be invoked on groups of sub-elements as they must
1846 behave like their parent as far as block copy is concerned. */
1847 gcc_assert (!elt->is_group);
1848
1849 /* If scalarization is disabled, respect it. */
1850 if (elt->cannot_scalarize)
1851 {
1852 elt->use_block_copy = 1;
1853
1854 if (dump_file)
1855 {
1856 fputs ("Scalarization disabled for ", dump_file);
1857 dump_sra_elt_name (dump_file, elt);
1858 fputc ('\n', dump_file);
1859 }
1860
1861 /* Disable scalarization of sub-elements */
1862 for (c = elt->children; c; c = c->sibling)
1863 {
1864 c->cannot_scalarize = 1;
1865 decide_block_copy (c);
1866 }
1867
1868 /* Groups behave like their parent. */
1869 for (c = elt->groups; c; c = c->sibling)
1870 {
1871 c->cannot_scalarize = 1;
1872 c->use_block_copy = 1;
1873 }
1874
1875 return false;
1876 }
1877
1878 /* Don't decide if we've no uses and no groups. */
1879 if (elt->n_uses == 0 && elt->n_copies == 0 && elt->groups == NULL)
1880 ;
1881
1882 else if (!elt->is_scalar)
1883 {
1884 tree size_tree = TYPE_SIZE_UNIT (elt->type);
1885 bool use_block_copy = true;
1886
1887 /* Tradeoffs for COMPLEX types pretty much always make it better
1888 to go ahead and split the components. */
1889 if (TREE_CODE (elt->type) == COMPLEX_TYPE)
1890 use_block_copy = false;
1891
1892 /* Don't bother trying to figure out the rest if the structure is
1893 so large we can't do easy arithmetic. This also forces block
1894 copies for variable sized structures. */
1895 else if (host_integerp (size_tree, 1))
1896 {
1897 unsigned HOST_WIDE_INT full_size, inst_size = 0;
1898 unsigned int max_size, max_count, inst_count, full_count;
1899
1900 /* If the sra-max-structure-size parameter is 0, then the
1901 user has not overridden the parameter and we can choose a
1902 sensible default. */
1903 max_size = SRA_MAX_STRUCTURE_SIZE
1904 ? SRA_MAX_STRUCTURE_SIZE
1905 : MOVE_RATIO * UNITS_PER_WORD;
1906 max_count = SRA_MAX_STRUCTURE_COUNT
1907 ? SRA_MAX_STRUCTURE_COUNT
1908 : MOVE_RATIO;
1909
1910 full_size = tree_low_cst (size_tree, 1);
1911 full_count = count_type_elements (elt->type, false);
1912 inst_count = sum_instantiated_sizes (elt, &inst_size);
1913
1914 /* If there is only one scalar field in the record, don't block copy. */
1915 if (single_scalar_field_in_record_p (elt->type))
1916 use_block_copy = false;
1917
1918 /* ??? What to do here. If there are two fields, and we've only
1919 instantiated one, then instantiating the other is clearly a win.
1920 If there are a large number of fields then the size of the copy
1921 is much more of a factor. */
1922
1923 /* If the structure is small, and we've made copies, go ahead
1924 and instantiate, hoping that the copies will go away. */
1925 if (full_size <= max_size
1926 && (full_count - inst_count) <= max_count
1927 && elt->n_copies > elt->n_uses)
1928 use_block_copy = false;
1929 else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
1930 && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
1931 use_block_copy = false;
1932
1933 /* In order to avoid block copy, we have to be able to instantiate
1934 all elements of the type. See if this is possible. */
1935 if (!use_block_copy
1936 && (!can_completely_scalarize_p (elt)
1937 || !type_can_instantiate_all_elements (elt->type)))
1938 use_block_copy = true;
1939 }
1940
1941 elt->use_block_copy = use_block_copy;
1942
1943 /* Groups behave like their parent. */
1944 for (c = elt->groups; c; c = c->sibling)
1945 c->use_block_copy = use_block_copy;
1946
1947 if (dump_file)
1948 {
1949 fprintf (dump_file, "Using %s for ",
1950 use_block_copy ? "block-copy" : "element-copy");
1951 dump_sra_elt_name (dump_file, elt);
1952 fputc ('\n', dump_file);
1953 }
1954
1955 if (!use_block_copy)
1956 {
1957 instantiate_missing_elements (elt);
1958 return true;
1959 }
1960 }
1961
1962 any_inst = elt->replacement != NULL;
1963
1964 for (c = elt->children; c ; c = c->sibling)
1965 any_inst |= decide_block_copy (c);
1966
1967 return any_inst;
1968 }
1969
1970 /* Entry point to phase 3. Instantiate scalar replacement variables. */
1971
1972 static void
1973 decide_instantiations (void)
1974 {
1975 unsigned int i;
1976 bool cleared_any;
1977 bitmap_head done_head;
1978 bitmap_iterator bi;
1979
1980 /* We cannot clear bits from a bitmap we're iterating over,
1981 so save up all the bits to clear until the end. */
1982 bitmap_initialize (&done_head, &bitmap_default_obstack);
1983 cleared_any = false;
1984
1985 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1986 {
1987 tree var = referenced_var (i);
1988 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1989 if (elt)
1990 {
1991 decide_instantiation_1 (elt, 0, 0);
1992 if (!decide_block_copy (elt))
1993 elt = NULL;
1994 }
1995 if (!elt)
1996 {
1997 bitmap_set_bit (&done_head, i);
1998 cleared_any = true;
1999 }
2000 }
2001
2002 if (cleared_any)
2003 {
2004 bitmap_and_compl_into (sra_candidates, &done_head);
2005 bitmap_and_compl_into (needs_copy_in, &done_head);
2006 }
2007 bitmap_clear (&done_head);
2008
2009 mark_set_for_renaming (sra_candidates);
2010
2011 if (dump_file)
2012 fputc ('\n', dump_file);
2013 }
2014
2015 \f
2016 /* Phase Four: Update the function to match the replacements created. */
2017
2018 /* Mark all the variables in VDEF/VUSE operators for STMT for
2019 renaming. This becomes necessary when we modify all of a
2020 non-scalar. */
2021
2022 static void
2023 mark_all_v_defs_stmt (gimple stmt)
2024 {
2025 tree sym;
2026 ssa_op_iter iter;
2027
2028 update_stmt_if_modified (stmt);
2029
2030 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
2031 {
2032 if (TREE_CODE (sym) == SSA_NAME)
2033 sym = SSA_NAME_VAR (sym);
2034 mark_sym_for_renaming (sym);
2035 }
2036 }
2037
2038
2039 /* Mark all the variables in virtual operands in all the statements in
2040 LIST for renaming. */
2041
2042 static void
2043 mark_all_v_defs_seq (gimple_seq seq)
2044 {
2045 gimple_stmt_iterator gsi;
2046
2047 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2048 mark_all_v_defs_stmt (gsi_stmt (gsi));
2049 }
2050
2051 /* Mark every replacement under ELT with TREE_NO_WARNING. */
2052
2053 static void
2054 mark_no_warning (struct sra_elt *elt)
2055 {
2056 if (!elt->all_no_warning)
2057 {
2058 if (elt->replacement)
2059 TREE_NO_WARNING (elt->replacement) = 1;
2060 else
2061 {
2062 struct sra_elt *c;
2063 FOR_EACH_ACTUAL_CHILD (c, elt)
2064 mark_no_warning (c);
2065 }
2066 elt->all_no_warning = true;
2067 }
2068 }
2069
2070 /* Build a single level component reference to ELT rooted at BASE. */
2071
2072 static tree
2073 generate_one_element_ref (struct sra_elt *elt, tree base)
2074 {
2075 switch (TREE_CODE (TREE_TYPE (base)))
2076 {
2077 case RECORD_TYPE:
2078 {
2079 tree field = elt->element;
2080
2081 /* We can't test elt->in_bitfld_block here because, when this is
2082 called from instantiate_element, we haven't set this field
2083 yet. */
2084 if (TREE_CODE (field) == BIT_FIELD_REF)
2085 {
2086 tree ret = unshare_expr (field);
2087 TREE_OPERAND (ret, 0) = base;
2088 return ret;
2089 }
2090
2091 /* Watch out for compatible records with differing field lists. */
2092 if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
2093 field = find_compatible_field (TREE_TYPE (base), field);
2094
2095 return build3 (COMPONENT_REF, elt->type, base, field, NULL);
2096 }
2097
2098 case ARRAY_TYPE:
2099 if (TREE_CODE (elt->element) == RANGE_EXPR)
2100 return build4 (ARRAY_RANGE_REF, elt->type, base,
2101 TREE_OPERAND (elt->element, 0), NULL, NULL);
2102 else
2103 return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
2104
2105 case COMPLEX_TYPE:
2106 if (elt->element == integer_zero_node)
2107 return build1 (REALPART_EXPR, elt->type, base);
2108 else
2109 return build1 (IMAGPART_EXPR, elt->type, base);
2110
2111 default:
2112 gcc_unreachable ();
2113 }
2114 }
2115
2116 /* Build a full component reference to ELT rooted at its native variable. */
2117
2118 static tree
2119 generate_element_ref (struct sra_elt *elt)
2120 {
2121 if (elt->parent)
2122 return generate_one_element_ref (elt, generate_element_ref (elt->parent));
2123 else
2124 return elt->element;
2125 }
2126
2127 /* Return true if BF is a bit-field that we can handle like a scalar. */
2128
2129 static bool
2130 scalar_bitfield_p (tree bf)
2131 {
2132 return (TREE_CODE (bf) == BIT_FIELD_REF
2133 && (is_gimple_reg (TREE_OPERAND (bf, 0))
2134 || (TYPE_MODE (TREE_TYPE (TREE_OPERAND (bf, 0))) != BLKmode
2135 && (!TREE_SIDE_EFFECTS (TREE_OPERAND (bf, 0))
2136 || (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE
2137 (TREE_OPERAND (bf, 0))))
2138 <= BITS_PER_WORD)))));
2139 }
2140
2141 /* Create an assignment statement from SRC to DST. */
2142
2143 static gimple_seq
2144 sra_build_assignment (tree dst, tree src)
2145 {
2146 gimple stmt;
2147 gimple_seq seq = NULL;
2148 /* Turning BIT_FIELD_REFs into bit operations enables other passes
2149 to do a much better job at optimizing the code.
2150 From dst = BIT_FIELD_REF <var, sz, off> we produce
2151
2152 SR.1 = (scalar type) var;
2153 SR.2 = SR.1 >> off;
2154 SR.3 = SR.2 & ((1 << sz) - 1);
2155 ... possible sign extension of SR.3 ...
2156 dst = (destination type) SR.3;
2157 */
2158 if (scalar_bitfield_p (src))
2159 {
2160 tree var, shift, width;
2161 tree utype, stype, stmp, utmp, dtmp;
2162 bool unsignedp = (INTEGRAL_TYPE_P (TREE_TYPE (src))
2163 ? TYPE_UNSIGNED (TREE_TYPE (src)) : true);
2164
2165 var = TREE_OPERAND (src, 0);
2166 width = TREE_OPERAND (src, 1);
2167 /* The offset needs to be adjusted to a right shift quantity
2168 depending on the endianness. */
2169 if (BYTES_BIG_ENDIAN)
2170 {
2171 tree tmp = size_binop (PLUS_EXPR, width, TREE_OPERAND (src, 2));
2172 shift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), tmp);
2173 }
2174 else
2175 shift = TREE_OPERAND (src, 2);
2176
2177 /* In weird cases we have non-integral types for the source or
2178 destination object.
2179 ??? For unknown reasons we also want an unsigned scalar type. */
2180 stype = TREE_TYPE (var);
2181 if (!INTEGRAL_TYPE_P (stype))
2182 stype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2183 (TYPE_SIZE (stype)), 1);
2184 else if (!TYPE_UNSIGNED (stype))
2185 stype = unsigned_type_for (stype);
2186
2187 utype = TREE_TYPE (dst);
2188 if (!INTEGRAL_TYPE_P (utype))
2189 utype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2190 (TYPE_SIZE (utype)), 1);
2191 else if (!TYPE_UNSIGNED (utype))
2192 utype = unsigned_type_for (utype);
2193
2194 stmp = make_rename_temp (stype, "SR");
2195
2196 /* Convert the base var of the BIT_FIELD_REF to the scalar type
2197 we use for computation if we cannot use it directly. */
2198 if (!useless_type_conversion_p (stype, TREE_TYPE (var)))
2199 {
2200 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2201 stmt = gimple_build_assign (stmp, fold_convert (stype, var));
2202 else
2203 stmt = gimple_build_assign (stmp, fold_build1 (VIEW_CONVERT_EXPR,
2204 stype, var));
2205 gimple_seq_add_stmt (&seq, stmt);
2206 var = stmp;
2207 }
2208
2209 if (!integer_zerop (shift))
2210 {
2211 stmt = gimple_build_assign (stmp, fold_build2 (RSHIFT_EXPR, stype,
2212 var, shift));
2213 gimple_seq_add_stmt (&seq, stmt);
2214 var = stmp;
2215 }
2216
2217 /* If we need a masking operation, produce one. */
2218 if (TREE_INT_CST_LOW (width) == TYPE_PRECISION (stype))
2219 unsignedp = true;
2220 else
2221 {
2222 tree one = build_int_cst_wide (stype, 1, 0);
2223 tree mask = int_const_binop (LSHIFT_EXPR, one, width, 0);
2224 mask = int_const_binop (MINUS_EXPR, mask, one, 0);
2225
2226 stmt = gimple_build_assign (stmp, fold_build2 (BIT_AND_EXPR, stype,
2227 var, mask));
2228 gimple_seq_add_stmt (&seq, stmt);
2229 var = stmp;
2230 }
2231
2232 /* After shifting and masking, convert to the target type. */
2233 utmp = stmp;
2234 if (!useless_type_conversion_p (utype, stype))
2235 {
2236 utmp = make_rename_temp (utype, "SR");
2237
2238 stmt = gimple_build_assign (utmp, fold_convert (utype, var));
2239 gimple_seq_add_stmt (&seq, stmt);
2240
2241 var = utmp;
2242 }
2243
2244 /* Perform sign extension, if required.
2245 ??? This should never be necessary. */
2246 if (!unsignedp)
2247 {
2248 tree signbit = int_const_binop (LSHIFT_EXPR,
2249 build_int_cst_wide (utype, 1, 0),
2250 size_binop (MINUS_EXPR, width,
2251 bitsize_int (1)), 0);
2252
2253 stmt = gimple_build_assign (utmp, fold_build2 (BIT_XOR_EXPR, utype,
2254 var, signbit));
2255 gimple_seq_add_stmt (&seq, stmt);
2256
2257 stmt = gimple_build_assign (utmp, fold_build2 (MINUS_EXPR, utype,
2258 utmp, signbit));
2259 gimple_seq_add_stmt (&seq, stmt);
2260
2261 var = utmp;
2262 }
2263
2264 /* fold_build3 (BIT_FIELD_REF, ...) sometimes returns a cast. */
2265 STRIP_NOPS (dst);
2266
2267 /* Finally, move and convert to the destination. */
2268 if (!useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (var)))
2269 {
2270 if (INTEGRAL_TYPE_P (TREE_TYPE (dst)))
2271 var = fold_convert (TREE_TYPE (dst), var);
2272 else
2273 var = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (dst), var);
2274
2275 /* If the destination is not a register the conversion needs
2276 to be a separate statement. */
2277 if (!is_gimple_reg (dst))
2278 {
2279 dtmp = make_rename_temp (TREE_TYPE (dst), "SR");
2280 stmt = gimple_build_assign (dtmp, var);
2281 gimple_seq_add_stmt (&seq, stmt);
2282 var = dtmp;
2283 }
2284 }
2285 stmt = gimple_build_assign (dst, var);
2286 gimple_seq_add_stmt (&seq, stmt);
2287
2288 return seq;
2289 }
2290
2291 /* fold_build3 (BIT_FIELD_REF, ...) sometimes returns a cast. */
2292 if (CONVERT_EXPR_P (dst))
2293 {
2294 STRIP_NOPS (dst);
2295 src = fold_convert (TREE_TYPE (dst), src);
2296 }
2297 /* It was hoped that we could perform some type sanity checking
2298 here, but since front-ends can emit accesses of fields in types
2299 different from their nominal types and copy structures containing
2300 them as a whole, we'd have to handle such differences here.
2301 Since such accesses under different types require compatibility
2302 anyway, there's little point in making tests and/or adding
2303 conversions to ensure the types of src and dst are the same.
2304 So we just assume type differences at this point are ok.
2305 The only exception we make here are pointer types, which can be different
2306 in e.g. structurally equal, but non-identical RECORD_TYPEs. */
2307 else if (POINTER_TYPE_P (TREE_TYPE (dst))
2308 && !useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (src)))
2309 src = fold_convert (TREE_TYPE (dst), src);
2310
2311 stmt = gimple_build_assign (dst, src);
2312 gimple_seq_add_stmt (&seq, stmt);
2313 return seq;
2314 }
2315
2316 /* BIT_FIELD_REFs must not be shared. sra_build_elt_assignment()
2317 takes care of assignments, but we must create copies for uses. */
2318 #define REPLDUP(t) (TREE_CODE (t) != BIT_FIELD_REF ? (t) : unshare_expr (t))
2319
2320 /* Emit an assignment from SRC to DST, but if DST is a scalarizable
2321 BIT_FIELD_REF, turn it into bit operations. */
2322
2323 static gimple_seq
2324 sra_build_bf_assignment (tree dst, tree src)
2325 {
2326 tree var, type, utype, tmp, tmp2, tmp3;
2327 gimple_seq seq;
2328 gimple stmt;
2329 tree cst, cst2, mask;
2330 tree minshift, maxshift;
2331
2332 if (TREE_CODE (dst) != BIT_FIELD_REF)
2333 return sra_build_assignment (dst, src);
2334
2335 var = TREE_OPERAND (dst, 0);
2336
2337 if (!scalar_bitfield_p (dst))
2338 return sra_build_assignment (REPLDUP (dst), src);
2339
2340 seq = NULL;
2341
2342 cst = fold_convert (bitsizetype, TREE_OPERAND (dst, 2));
2343 cst2 = size_binop (PLUS_EXPR,
2344 fold_convert (bitsizetype, TREE_OPERAND (dst, 1)),
2345 cst);
2346
2347 if (BYTES_BIG_ENDIAN)
2348 {
2349 maxshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst);
2350 minshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst2);
2351 }
2352 else
2353 {
2354 maxshift = cst2;
2355 minshift = cst;
2356 }
2357
2358 type = TREE_TYPE (var);
2359 if (!INTEGRAL_TYPE_P (type))
2360 type = lang_hooks.types.type_for_size
2361 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (var))), 1);
2362 if (TYPE_UNSIGNED (type))
2363 utype = type;
2364 else
2365 utype = unsigned_type_for (type);
2366
2367 mask = build_int_cst_wide (utype, 1, 0);
2368 if (TREE_INT_CST_LOW (maxshift) == TYPE_PRECISION (utype))
2369 cst = build_int_cst_wide (utype, 0, 0);
2370 else
2371 cst = int_const_binop (LSHIFT_EXPR, mask, maxshift, true);
2372 if (integer_zerop (minshift))
2373 cst2 = mask;
2374 else
2375 cst2 = int_const_binop (LSHIFT_EXPR, mask, minshift, true);
2376 mask = int_const_binop (MINUS_EXPR, cst, cst2, true);
2377 mask = fold_build1 (BIT_NOT_EXPR, utype, mask);
2378
2379 if (TYPE_MAIN_VARIANT (utype) != TYPE_MAIN_VARIANT (TREE_TYPE (var))
2380 && !integer_zerop (mask))
2381 {
2382 tmp = var;
2383 if (!is_gimple_variable (tmp))
2384 tmp = unshare_expr (var);
2385
2386 tmp2 = make_rename_temp (utype, "SR");
2387
2388 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2389 stmt = gimple_build_assign (tmp2, fold_convert (utype, tmp));
2390 else
2391 stmt = gimple_build_assign (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
2392 utype, tmp));
2393 gimple_seq_add_stmt (&seq, stmt);
2394 }
2395 else
2396 tmp2 = var;
2397
2398 if (!integer_zerop (mask))
2399 {
2400 tmp = make_rename_temp (utype, "SR");
2401 stmt = gimple_build_assign (tmp, fold_build2 (BIT_AND_EXPR, utype,
2402 tmp2, mask));
2403 gimple_seq_add_stmt (&seq, stmt);
2404 }
2405 else
2406 tmp = mask;
2407
2408 if (is_gimple_reg (src) && INTEGRAL_TYPE_P (TREE_TYPE (src)))
2409 tmp2 = src;
2410 else if (INTEGRAL_TYPE_P (TREE_TYPE (src)))
2411 {
2412 gimple_seq tmp_seq;
2413 tmp2 = make_rename_temp (TREE_TYPE (src), "SR");
2414 tmp_seq = sra_build_assignment (tmp2, src);
2415 gimple_seq_add_seq (&seq, tmp_seq);
2416 }
2417 else
2418 {
2419 gimple_seq tmp_seq;
2420 tmp2 = make_rename_temp
2421 (lang_hooks.types.type_for_size
2422 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (src))),
2423 1), "SR");
2424 tmp_seq = sra_build_assignment (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
2425 TREE_TYPE (tmp2), src));
2426 gimple_seq_add_seq (&seq, tmp_seq);
2427 }
2428
2429 if (!TYPE_UNSIGNED (TREE_TYPE (tmp2)))
2430 {
2431 gimple_seq tmp_seq;
2432 tree ut = unsigned_type_for (TREE_TYPE (tmp2));
2433 tmp3 = make_rename_temp (ut, "SR");
2434 tmp2 = fold_convert (ut, tmp2);
2435 tmp_seq = sra_build_assignment (tmp3, tmp2);
2436 gimple_seq_add_seq (&seq, tmp_seq);
2437
2438 tmp2 = fold_build1 (BIT_NOT_EXPR, utype, mask);
2439 tmp2 = int_const_binop (RSHIFT_EXPR, tmp2, minshift, true);
2440 tmp2 = fold_convert (ut, tmp2);
2441 tmp2 = fold_build2 (BIT_AND_EXPR, ut, tmp3, tmp2);
2442
2443 if (tmp3 != tmp2)
2444 {
2445 tmp3 = make_rename_temp (ut, "SR");
2446 tmp_seq = sra_build_assignment (tmp3, tmp2);
2447 gimple_seq_add_seq (&seq, tmp_seq);
2448 }
2449
2450 tmp2 = tmp3;
2451 }
2452
2453 if (TYPE_MAIN_VARIANT (TREE_TYPE (tmp2)) != TYPE_MAIN_VARIANT (utype))
2454 {
2455 gimple_seq tmp_seq;
2456 tmp3 = make_rename_temp (utype, "SR");
2457 tmp2 = fold_convert (utype, tmp2);
2458 tmp_seq = sra_build_assignment (tmp3, tmp2);
2459 gimple_seq_add_seq (&seq, tmp_seq);
2460 tmp2 = tmp3;
2461 }
2462
2463 if (!integer_zerop (minshift))
2464 {
2465 tmp3 = make_rename_temp (utype, "SR");
2466 stmt = gimple_build_assign (tmp3, fold_build2 (LSHIFT_EXPR, utype,
2467 tmp2, minshift));
2468 gimple_seq_add_stmt (&seq, stmt);
2469 tmp2 = tmp3;
2470 }
2471
2472 if (utype != TREE_TYPE (var))
2473 tmp3 = make_rename_temp (utype, "SR");
2474 else
2475 tmp3 = var;
2476 stmt = gimple_build_assign (tmp3, fold_build2 (BIT_IOR_EXPR, utype,
2477 tmp, tmp2));
2478 gimple_seq_add_stmt (&seq, stmt);
2479
2480 if (tmp3 != var)
2481 {
2482 if (TREE_TYPE (var) == type)
2483 stmt = gimple_build_assign (var, fold_convert (type, tmp3));
2484 else
2485 stmt = gimple_build_assign (var, fold_build1 (VIEW_CONVERT_EXPR,
2486 TREE_TYPE (var), tmp3));
2487 gimple_seq_add_stmt (&seq, stmt);
2488 }
2489
2490 return seq;
2491 }
2492
2493 /* Expand an assignment of SRC to the scalarized representation of
2494 ELT. If it is a field group, try to widen the assignment to cover
2495 the full variable. */
2496
2497 static gimple_seq
2498 sra_build_elt_assignment (struct sra_elt *elt, tree src)
2499 {
2500 tree dst = elt->replacement;
2501 tree var, tmp, cst, cst2;
2502 gimple stmt;
2503 gimple_seq seq;
2504
2505 if (TREE_CODE (dst) != BIT_FIELD_REF
2506 || !elt->in_bitfld_block)
2507 return sra_build_assignment (REPLDUP (dst), src);
2508
2509 var = TREE_OPERAND (dst, 0);
2510
2511 /* Try to widen the assignment to the entire variable.
2512 We need the source to be a BIT_FIELD_REF as well, such that, for
2513 BIT_FIELD_REF<d,sz,dp> = BIT_FIELD_REF<s,sz,sp>,
2514 by design, conditions are met such that we can turn it into
2515 d = BIT_FIELD_REF<s,dw,sp-dp>. */
2516 if (elt->in_bitfld_block == 2
2517 && TREE_CODE (src) == BIT_FIELD_REF)
2518 {
2519 tmp = src;
2520 cst = TYPE_SIZE (TREE_TYPE (var));
2521 cst2 = size_binop (MINUS_EXPR, TREE_OPERAND (src, 2),
2522 TREE_OPERAND (dst, 2));
2523
2524 src = TREE_OPERAND (src, 0);
2525
2526 /* Avoid full-width bit-fields. */
2527 if (integer_zerop (cst2)
2528 && tree_int_cst_equal (cst, TYPE_SIZE (TREE_TYPE (src))))
2529 {
2530 if (INTEGRAL_TYPE_P (TREE_TYPE (src))
2531 && !TYPE_UNSIGNED (TREE_TYPE (src)))
2532 src = fold_convert (unsigned_type_for (TREE_TYPE (src)), src);
2533
2534 /* If a single conversion won't do, we'll need a statement
2535 list. */
2536 if (TYPE_MAIN_VARIANT (TREE_TYPE (var))
2537 != TYPE_MAIN_VARIANT (TREE_TYPE (src)))
2538 {
2539 gimple_seq tmp_seq;
2540 seq = NULL;
2541
2542 if (!INTEGRAL_TYPE_P (TREE_TYPE (src)))
2543 src = fold_build1 (VIEW_CONVERT_EXPR,
2544 lang_hooks.types.type_for_size
2545 (TREE_INT_CST_LOW
2546 (TYPE_SIZE (TREE_TYPE (src))),
2547 1), src);
2548 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (src)));
2549
2550 tmp = make_rename_temp (TREE_TYPE (src), "SR");
2551 stmt = gimple_build_assign (tmp, src);
2552 gimple_seq_add_stmt (&seq, stmt);
2553
2554 tmp_seq = sra_build_assignment (var,
2555 fold_convert (TREE_TYPE (var),
2556 tmp));
2557 gimple_seq_add_seq (&seq, tmp_seq);
2558
2559 return seq;
2560 }
2561
2562 src = fold_convert (TREE_TYPE (var), src);
2563 }
2564 else
2565 {
2566 src = fold_convert (TREE_TYPE (var), tmp);
2567 }
2568
2569 return sra_build_assignment (var, src);
2570 }
2571
2572 return sra_build_bf_assignment (dst, src);
2573 }
2574
2575 /* Generate a set of assignment statements in *LIST_P to copy all
2576 instantiated elements under ELT to or from the equivalent structure
2577 rooted at EXPR. COPY_OUT controls the direction of the copy, with
2578 true meaning to copy out of EXPR into ELT. */
2579
2580 static void
2581 generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
2582 gimple_seq *seq_p)
2583 {
2584 struct sra_elt *c;
2585 gimple_seq tmp_seq;
2586 tree t;
2587
2588 if (!copy_out && TREE_CODE (expr) == SSA_NAME
2589 && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
2590 {
2591 tree r, i;
2592
2593 c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
2594 r = c->replacement;
2595 c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
2596 i = c->replacement;
2597
2598 t = build2 (COMPLEX_EXPR, elt->type, r, i);
2599 tmp_seq = sra_build_bf_assignment (expr, t);
2600 gcc_assert (gimple_seq_singleton_p (tmp_seq));
2601 SSA_NAME_DEF_STMT (expr) = gimple_seq_first_stmt (tmp_seq);
2602 gimple_seq_add_seq (seq_p, tmp_seq);
2603 }
2604 else if (elt->replacement)
2605 {
2606 if (copy_out)
2607 tmp_seq = sra_build_elt_assignment (elt, expr);
2608 else
2609 tmp_seq = sra_build_bf_assignment (expr, REPLDUP (elt->replacement));
2610 gimple_seq_add_seq (seq_p, tmp_seq);
2611 }
2612 else
2613 {
2614 FOR_EACH_ACTUAL_CHILD (c, elt)
2615 {
2616 t = generate_one_element_ref (c, unshare_expr (expr));
2617 generate_copy_inout (c, copy_out, t, seq_p);
2618 }
2619 }
2620 }
2621
2622 /* Generate a set of assignment statements in *LIST_P to copy all instantiated
2623 elements under SRC to their counterparts under DST. There must be a 1-1
2624 correspondence of instantiated elements. */
2625
2626 static void
2627 generate_element_copy (struct sra_elt *dst, struct sra_elt *src, gimple_seq *seq_p)
2628 {
2629 struct sra_elt *dc, *sc;
2630
2631 FOR_EACH_ACTUAL_CHILD (dc, dst)
2632 {
2633 sc = lookup_element (src, dc->element, NULL, NO_INSERT);
2634 if (!sc && dc->in_bitfld_block == 2)
2635 {
2636 struct sra_elt *dcs;
2637
2638 FOR_EACH_ACTUAL_CHILD (dcs, dc)
2639 {
2640 sc = lookup_element (src, dcs->element, NULL, NO_INSERT);
2641 gcc_assert (sc);
2642 generate_element_copy (dcs, sc, seq_p);
2643 }
2644
2645 continue;
2646 }
2647
2648 /* If DST and SRC are structs with the same elements, but do not have
2649 the same TYPE_MAIN_VARIANT, then lookup of DST FIELD_DECL in SRC
2650 will fail. Try harder by finding the corresponding FIELD_DECL
2651 in SRC. */
2652 if (!sc)
2653 {
2654 tree f;
2655
2656 gcc_assert (useless_type_conversion_p (dst->type, src->type));
2657 gcc_assert (TREE_CODE (dc->element) == FIELD_DECL);
2658 for (f = TYPE_FIELDS (src->type); f ; f = TREE_CHAIN (f))
2659 if (simple_cst_equal (DECL_FIELD_OFFSET (f),
2660 DECL_FIELD_OFFSET (dc->element)) > 0
2661 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (f),
2662 DECL_FIELD_BIT_OFFSET (dc->element)) > 0
2663 && simple_cst_equal (DECL_SIZE (f),
2664 DECL_SIZE (dc->element)) > 0
2665 && (useless_type_conversion_p (TREE_TYPE (dc->element),
2666 TREE_TYPE (f))
2667 || (POINTER_TYPE_P (TREE_TYPE (dc->element))
2668 && POINTER_TYPE_P (TREE_TYPE (f)))))
2669 break;
2670 gcc_assert (f != NULL_TREE);
2671 sc = lookup_element (src, f, NULL, NO_INSERT);
2672 }
2673
2674 generate_element_copy (dc, sc, seq_p);
2675 }
2676
2677 if (dst->replacement)
2678 {
2679 gimple_seq tmp_seq;
2680
2681 gcc_assert (src->replacement);
2682
2683 tmp_seq = sra_build_elt_assignment (dst, REPLDUP (src->replacement));
2684 gimple_seq_add_seq (seq_p, tmp_seq);
2685 }
2686 }
2687
2688 /* Generate a set of assignment statements in *LIST_P to zero all instantiated
2689 elements under ELT. In addition, do not assign to elements that have been
2690 marked VISITED but do reset the visited flag; this allows easy coordination
2691 with generate_element_init. */
2692
2693 static void
2694 generate_element_zero (struct sra_elt *elt, gimple_seq *seq_p)
2695 {
2696 struct sra_elt *c;
2697
2698 if (elt->visited)
2699 {
2700 elt->visited = false;
2701 return;
2702 }
2703
2704 if (!elt->in_bitfld_block)
2705 FOR_EACH_ACTUAL_CHILD (c, elt)
2706 generate_element_zero (c, seq_p);
2707
2708 if (elt->replacement)
2709 {
2710 tree t;
2711 gimple_seq tmp_seq;
2712
2713 gcc_assert (elt->is_scalar);
2714 t = fold_convert (elt->type, integer_zero_node);
2715
2716 tmp_seq = sra_build_elt_assignment (elt, t);
2717 gimple_seq_add_seq (seq_p, tmp_seq);
2718 }
2719 }
2720
2721 /* Generate an assignment VAR = INIT, where INIT may need gimplification.
2722 Add the result to *LIST_P. */
2723
2724 static void
2725 generate_one_element_init (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2726 {
2727 gimple_seq tmp_seq = sra_build_elt_assignment (elt, init);
2728 gimple_seq_add_seq (seq_p, tmp_seq);
2729 }
2730
2731 /* Generate a set of assignment statements in *LIST_P to set all instantiated
2732 elements under ELT with the contents of the initializer INIT. In addition,
2733 mark all assigned elements VISITED; this allows easy coordination with
2734 generate_element_zero. Return false if we found a case we couldn't
2735 handle. */
2736
2737 static bool
2738 generate_element_init_1 (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2739 {
2740 bool result = true;
2741 enum tree_code init_code;
2742 struct sra_elt *sub;
2743 tree t;
2744 unsigned HOST_WIDE_INT idx;
2745 tree value, purpose;
2746
2747 /* We can be passed DECL_INITIAL of a static variable. It might have a
2748 conversion, which we strip off here. */
2749 STRIP_USELESS_TYPE_CONVERSION (init);
2750 init_code = TREE_CODE (init);
2751
2752 if (elt->is_scalar)
2753 {
2754 if (elt->replacement)
2755 {
2756 generate_one_element_init (elt, init, seq_p);
2757 elt->visited = true;
2758 }
2759 return result;
2760 }
2761
2762 switch (init_code)
2763 {
2764 case COMPLEX_CST:
2765 case COMPLEX_EXPR:
2766 FOR_EACH_ACTUAL_CHILD (sub, elt)
2767 {
2768 if (sub->element == integer_zero_node)
2769 t = (init_code == COMPLEX_EXPR
2770 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
2771 else
2772 t = (init_code == COMPLEX_EXPR
2773 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
2774 result &= generate_element_init_1 (sub, t, seq_p);
2775 }
2776 break;
2777
2778 case CONSTRUCTOR:
2779 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
2780 {
2781 /* Array constructors are routinely created with NULL indices. */
2782 if (purpose == NULL_TREE)
2783 {
2784 result = false;
2785 break;
2786 }
2787 if (TREE_CODE (purpose) == RANGE_EXPR)
2788 {
2789 tree lower = TREE_OPERAND (purpose, 0);
2790 tree upper = TREE_OPERAND (purpose, 1);
2791
2792 while (1)
2793 {
2794 sub = lookup_element (elt, lower, NULL, NO_INSERT);
2795 if (sub != NULL)
2796 result &= generate_element_init_1 (sub, value, seq_p);
2797 if (tree_int_cst_equal (lower, upper))
2798 break;
2799 lower = int_const_binop (PLUS_EXPR, lower,
2800 integer_one_node, true);
2801 }
2802 }
2803 else
2804 {
2805 sub = lookup_element (elt, purpose, NULL, NO_INSERT);
2806 if (sub != NULL)
2807 result &= generate_element_init_1 (sub, value, seq_p);
2808 }
2809 }
2810 break;
2811
2812 default:
2813 elt->visited = true;
2814 result = false;
2815 }
2816
2817 return result;
2818 }
2819
2820 /* A wrapper function for generate_element_init_1 that handles cleanup after
2821 gimplification. */
2822
2823 static bool
2824 generate_element_init (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2825 {
2826 bool ret;
2827 struct gimplify_ctx gctx;
2828
2829 push_gimplify_context (&gctx);
2830 ret = generate_element_init_1 (elt, init, seq_p);
2831 pop_gimplify_context (NULL);
2832
2833 /* The replacement can expose previously unreferenced variables. */
2834 if (ret && *seq_p)
2835 {
2836 gimple_stmt_iterator i;
2837
2838 for (i = gsi_start (*seq_p); !gsi_end_p (i); gsi_next (&i))
2839 find_new_referenced_vars (gsi_stmt (i));
2840 }
2841
2842 return ret;
2843 }
2844
2845 /* Insert a gimple_seq SEQ on all the outgoing edges out of BB. Note that
2846 if BB has more than one edge, STMT will be replicated for each edge.
2847 Also, abnormal edges will be ignored. */
2848
2849 void
2850 insert_edge_copies_seq (gimple_seq seq, basic_block bb)
2851 {
2852 edge e;
2853 edge_iterator ei;
2854 unsigned n_copies = -1;
2855
2856 FOR_EACH_EDGE (e, ei, bb->succs)
2857 if (!(e->flags & EDGE_ABNORMAL))
2858 n_copies++;
2859
2860 FOR_EACH_EDGE (e, ei, bb->succs)
2861 if (!(e->flags & EDGE_ABNORMAL))
2862 gsi_insert_seq_on_edge (e, n_copies-- > 0 ? gimple_seq_copy (seq) : seq);
2863 }
2864
2865 /* Helper function to insert LIST before GSI, and set up line number info. */
2866
2867 void
2868 sra_insert_before (gimple_stmt_iterator *gsi, gimple_seq seq)
2869 {
2870 gimple stmt = gsi_stmt (*gsi);
2871
2872 if (gimple_has_location (stmt))
2873 annotate_all_with_location (seq, gimple_location (stmt));
2874 gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
2875 }
2876
2877 /* Similarly, but insert after GSI. Handles insertion onto edges as well. */
2878
2879 void
2880 sra_insert_after (gimple_stmt_iterator *gsi, gimple_seq seq)
2881 {
2882 gimple stmt = gsi_stmt (*gsi);
2883
2884 if (gimple_has_location (stmt))
2885 annotate_all_with_location (seq, gimple_location (stmt));
2886
2887 if (stmt_ends_bb_p (stmt))
2888 insert_edge_copies_seq (seq, gsi_bb (*gsi));
2889 else
2890 gsi_insert_seq_after (gsi, seq, GSI_SAME_STMT);
2891 }
2892
2893 /* Similarly, but replace the statement at GSI. */
2894
2895 static void
2896 sra_replace (gimple_stmt_iterator *gsi, gimple_seq seq)
2897 {
2898 sra_insert_before (gsi, seq);
2899 gsi_remove (gsi, false);
2900 if (gsi_end_p (*gsi))
2901 *gsi = gsi_last (gsi_seq (*gsi));
2902 else
2903 gsi_prev (gsi);
2904 }
2905
2906 /* Data structure that bitfield_overlaps_p fills in with information
2907 about the element passed in and how much of it overlaps with the
2908 bit-range passed it to. */
2909
2910 struct bitfield_overlap_info
2911 {
2912 /* The bit-length of an element. */
2913 tree field_len;
2914
2915 /* The bit-position of the element in its parent. */
2916 tree field_pos;
2917
2918 /* The number of bits of the element that overlap with the incoming
2919 bit range. */
2920 tree overlap_len;
2921
2922 /* The first bit of the element that overlaps with the incoming bit
2923 range. */
2924 tree overlap_pos;
2925 };
2926
2927 /* Return true if a BIT_FIELD_REF<(FLD->parent), BLEN, BPOS>
2928 expression (referenced as BF below) accesses any of the bits in FLD,
2929 false if it doesn't. If DATA is non-null, its field_len and
2930 field_pos are filled in such that BIT_FIELD_REF<(FLD->parent),
2931 field_len, field_pos> (referenced as BFLD below) represents the
2932 entire field FLD->element, and BIT_FIELD_REF<BFLD, overlap_len,
2933 overlap_pos> represents the portion of the entire field that
2934 overlaps with BF. */
2935
2936 static bool
2937 bitfield_overlaps_p (tree blen, tree bpos, struct sra_elt *fld,
2938 struct bitfield_overlap_info *data)
2939 {
2940 tree flen, fpos;
2941 bool ret;
2942
2943 if (TREE_CODE (fld->element) == FIELD_DECL)
2944 {
2945 flen = fold_convert (bitsizetype, DECL_SIZE (fld->element));
2946 fpos = fold_convert (bitsizetype, DECL_FIELD_OFFSET (fld->element));
2947 fpos = size_binop (MULT_EXPR, fpos, bitsize_int (BITS_PER_UNIT));
2948 fpos = size_binop (PLUS_EXPR, fpos, DECL_FIELD_BIT_OFFSET (fld->element));
2949 }
2950 else if (TREE_CODE (fld->element) == BIT_FIELD_REF)
2951 {
2952 flen = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 1));
2953 fpos = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 2));
2954 }
2955 else if (TREE_CODE (fld->element) == INTEGER_CST)
2956 {
2957 flen = fold_convert (bitsizetype, TYPE_SIZE (fld->type));
2958 fpos = fold_convert (bitsizetype, fld->element);
2959 fpos = size_binop (MULT_EXPR, flen, fpos);
2960 }
2961 else
2962 gcc_unreachable ();
2963
2964 gcc_assert (host_integerp (blen, 1)
2965 && host_integerp (bpos, 1)
2966 && host_integerp (flen, 1)
2967 && host_integerp (fpos, 1));
2968
2969 ret = ((!tree_int_cst_lt (fpos, bpos)
2970 && tree_int_cst_lt (size_binop (MINUS_EXPR, fpos, bpos),
2971 blen))
2972 || (!tree_int_cst_lt (bpos, fpos)
2973 && tree_int_cst_lt (size_binop (MINUS_EXPR, bpos, fpos),
2974 flen)));
2975
2976 if (!ret)
2977 return ret;
2978
2979 if (data)
2980 {
2981 tree bend, fend;
2982
2983 data->field_len = flen;
2984 data->field_pos = fpos;
2985
2986 fend = size_binop (PLUS_EXPR, fpos, flen);
2987 bend = size_binop (PLUS_EXPR, bpos, blen);
2988
2989 if (tree_int_cst_lt (bend, fend))
2990 data->overlap_len = size_binop (MINUS_EXPR, bend, fpos);
2991 else
2992 data->overlap_len = NULL;
2993
2994 if (tree_int_cst_lt (fpos, bpos))
2995 {
2996 data->overlap_pos = size_binop (MINUS_EXPR, bpos, fpos);
2997 data->overlap_len = size_binop (MINUS_EXPR,
2998 data->overlap_len
2999 ? data->overlap_len
3000 : data->field_len,
3001 data->overlap_pos);
3002 }
3003 else
3004 data->overlap_pos = NULL;
3005 }
3006
3007 return ret;
3008 }
3009
3010 /* Add to LISTP a sequence of statements that copies BLEN bits between
3011 VAR and the scalarized elements of ELT, starting a bit VPOS of VAR
3012 and at bit BPOS of ELT. The direction of the copy is given by
3013 TO_VAR. */
3014
3015 static void
3016 sra_explode_bitfield_assignment (tree var, tree vpos, bool to_var,
3017 gimple_seq *seq_p, tree blen, tree bpos,
3018 struct sra_elt *elt)
3019 {
3020 struct sra_elt *fld;
3021 struct bitfield_overlap_info flp;
3022
3023 FOR_EACH_ACTUAL_CHILD (fld, elt)
3024 {
3025 tree flen, fpos;
3026
3027 if (!bitfield_overlaps_p (blen, bpos, fld, &flp))
3028 continue;
3029
3030 flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3031 fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3032
3033 if (fld->replacement)
3034 {
3035 tree infld, invar, type;
3036 gimple_seq st;
3037
3038 infld = fld->replacement;
3039
3040 type = TREE_TYPE (infld);
3041 if (TYPE_PRECISION (type) != TREE_INT_CST_LOW (flen))
3042 type = lang_hooks.types.type_for_size (TREE_INT_CST_LOW (flen), 1);
3043 else
3044 type = unsigned_type_for (type);
3045
3046 if (TREE_CODE (infld) == BIT_FIELD_REF)
3047 {
3048 fpos = size_binop (PLUS_EXPR, fpos, TREE_OPERAND (infld, 2));
3049 infld = TREE_OPERAND (infld, 0);
3050 }
3051 else if (BYTES_BIG_ENDIAN && DECL_P (fld->element)
3052 && !tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (infld)),
3053 DECL_SIZE (fld->element)))
3054 {
3055 fpos = size_binop (PLUS_EXPR, fpos,
3056 TYPE_SIZE (TREE_TYPE (infld)));
3057 fpos = size_binop (MINUS_EXPR, fpos,
3058 DECL_SIZE (fld->element));
3059 }
3060
3061 infld = fold_build3 (BIT_FIELD_REF, type, infld, flen, fpos);
3062
3063 invar = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3064 if (flp.overlap_pos)
3065 invar = size_binop (PLUS_EXPR, invar, flp.overlap_pos);
3066 invar = size_binop (PLUS_EXPR, invar, vpos);
3067
3068 invar = fold_build3 (BIT_FIELD_REF, type, var, flen, invar);
3069
3070 if (to_var)
3071 st = sra_build_bf_assignment (invar, infld);
3072 else
3073 st = sra_build_bf_assignment (infld, invar);
3074
3075 gimple_seq_add_seq (seq_p, st);
3076 }
3077 else
3078 {
3079 tree sub = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3080 sub = size_binop (PLUS_EXPR, vpos, sub);
3081 if (flp.overlap_pos)
3082 sub = size_binop (PLUS_EXPR, sub, flp.overlap_pos);
3083
3084 sra_explode_bitfield_assignment (var, sub, to_var, seq_p,
3085 flen, fpos, fld);
3086 }
3087 }
3088 }
3089
3090 /* Add to LISTBEFOREP statements that copy scalarized members of ELT
3091 that overlap with BIT_FIELD_REF<(ELT->element), BLEN, BPOS> back
3092 into the full variable, and to LISTAFTERP, if non-NULL, statements
3093 that copy the (presumably modified) overlapping portions of the
3094 full variable back to the scalarized variables. */
3095
3096 static void
3097 sra_sync_for_bitfield_assignment (gimple_seq *seq_before_p,
3098 gimple_seq *seq_after_p,
3099 tree blen, tree bpos,
3100 struct sra_elt *elt)
3101 {
3102 struct sra_elt *fld;
3103 struct bitfield_overlap_info flp;
3104
3105 FOR_EACH_ACTUAL_CHILD (fld, elt)
3106 if (bitfield_overlaps_p (blen, bpos, fld, &flp))
3107 {
3108 if (fld->replacement || (!flp.overlap_len && !flp.overlap_pos))
3109 {
3110 generate_copy_inout (fld, false, generate_element_ref (fld),
3111 seq_before_p);
3112 mark_no_warning (fld);
3113 if (seq_after_p)
3114 generate_copy_inout (fld, true, generate_element_ref (fld),
3115 seq_after_p);
3116 }
3117 else
3118 {
3119 tree flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3120 tree fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3121
3122 sra_sync_for_bitfield_assignment (seq_before_p, seq_after_p,
3123 flen, fpos, fld);
3124 }
3125 }
3126 }
3127
3128 /* Scalarize a USE. To recap, this is either a simple reference to ELT,
3129 if elt is scalar, or some occurrence of ELT that requires a complete
3130 aggregate. IS_OUTPUT is true if ELT is being modified. */
3131
3132 static void
3133 scalarize_use (struct sra_elt *elt, tree *expr_p, gimple_stmt_iterator *gsi,
3134 bool is_output, bool use_all)
3135 {
3136 gimple stmt = gsi_stmt (*gsi);
3137 tree bfexpr;
3138
3139 if (elt->replacement)
3140 {
3141 tree replacement = elt->replacement;
3142
3143 /* If we have a replacement, then updating the reference is as
3144 simple as modifying the existing statement in place. */
3145 if (is_output
3146 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3147 && is_gimple_reg (TREE_OPERAND (elt->replacement, 0))
3148 && is_gimple_assign (stmt)
3149 && gimple_assign_lhs_ptr (stmt) == expr_p)
3150 {
3151 gimple_seq newseq;
3152 /* RHS must be a single operand. */
3153 gcc_assert (gimple_assign_single_p (stmt));
3154 newseq = sra_build_elt_assignment (elt, gimple_assign_rhs1 (stmt));
3155 sra_replace (gsi, newseq);
3156 return;
3157 }
3158 else if (!is_output
3159 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3160 && is_gimple_assign (stmt)
3161 && gimple_assign_rhs1_ptr (stmt) == expr_p)
3162 {
3163 tree tmp = make_rename_temp
3164 (TREE_TYPE (gimple_assign_lhs (stmt)), "SR");
3165 gimple_seq newseq = sra_build_assignment (tmp, REPLDUP (elt->replacement));
3166
3167 sra_insert_before (gsi, newseq);
3168 replacement = tmp;
3169 }
3170 if (is_output)
3171 mark_all_v_defs_stmt (stmt);
3172 *expr_p = REPLDUP (replacement);
3173 update_stmt (stmt);
3174 }
3175 else if (use_all && is_output
3176 && is_gimple_assign (stmt)
3177 && TREE_CODE (bfexpr
3178 = gimple_assign_lhs (stmt)) == BIT_FIELD_REF
3179 && &TREE_OPERAND (bfexpr, 0) == expr_p
3180 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3181 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3182 {
3183 gimple_seq seq_before = NULL;
3184 gimple_seq seq_after = NULL;
3185 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3186 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3187 bool update = false;
3188
3189 if (!elt->use_block_copy)
3190 {
3191 tree type = TREE_TYPE (bfexpr);
3192 tree var = make_rename_temp (type, "SR"), tmp, vpos;
3193 gimple st;
3194
3195 gimple_assign_set_lhs (stmt, var);
3196 update = true;
3197
3198 if (!TYPE_UNSIGNED (type))
3199 {
3200 type = unsigned_type_for (type);
3201 tmp = make_rename_temp (type, "SR");
3202 st = gimple_build_assign (tmp, fold_convert (type, var));
3203 gimple_seq_add_stmt (&seq_after, st);
3204 var = tmp;
3205 }
3206
3207 /* If VAR is wider than BLEN bits, it is padded at the
3208 most-significant end. We want to set VPOS such that
3209 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3210 least-significant BLEN bits of VAR. */
3211 if (BYTES_BIG_ENDIAN)
3212 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3213 else
3214 vpos = bitsize_int (0);
3215 sra_explode_bitfield_assignment
3216 (var, vpos, false, &seq_after, blen, bpos, elt);
3217 }
3218 else
3219 sra_sync_for_bitfield_assignment
3220 (&seq_before, &seq_after, blen, bpos, elt);
3221
3222 if (seq_before)
3223 {
3224 mark_all_v_defs_seq (seq_before);
3225 sra_insert_before (gsi, seq_before);
3226 }
3227 if (seq_after)
3228 {
3229 mark_all_v_defs_seq (seq_after);
3230 sra_insert_after (gsi, seq_after);
3231 }
3232
3233 if (update)
3234 update_stmt (stmt);
3235 }
3236 else if (use_all && !is_output
3237 && is_gimple_assign (stmt)
3238 && TREE_CODE (bfexpr
3239 = gimple_assign_rhs1 (stmt)) == BIT_FIELD_REF
3240 && &TREE_OPERAND (gimple_assign_rhs1 (stmt), 0) == expr_p
3241 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3242 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3243 {
3244 gimple_seq seq = NULL;
3245 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3246 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3247 bool update = false;
3248
3249 if (!elt->use_block_copy)
3250 {
3251 tree type = TREE_TYPE (bfexpr);
3252 tree var, vpos;
3253
3254 if (!TYPE_UNSIGNED (type))
3255 type = unsigned_type_for (type);
3256
3257 var = make_rename_temp (type, "SR");
3258
3259 gimple_seq_add_stmt (&seq,
3260 gimple_build_assign
3261 (var, build_int_cst_wide (type, 0, 0)));
3262
3263 /* If VAR is wider than BLEN bits, it is padded at the
3264 most-significant end. We want to set VPOS such that
3265 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3266 least-significant BLEN bits of VAR. */
3267 if (BYTES_BIG_ENDIAN)
3268 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3269 else
3270 vpos = bitsize_int (0);
3271 sra_explode_bitfield_assignment
3272 (var, vpos, true, &seq, blen, bpos, elt);
3273
3274 gimple_assign_set_rhs1 (stmt, var);
3275 update = true;
3276 }
3277 else
3278 sra_sync_for_bitfield_assignment
3279 (&seq, NULL, blen, bpos, elt);
3280
3281 if (seq)
3282 {
3283 mark_all_v_defs_seq (seq);
3284 sra_insert_before (gsi, seq);
3285 }
3286
3287 if (update)
3288 update_stmt (stmt);
3289 }
3290 else
3291 {
3292 gimple_seq seq = NULL;
3293
3294 /* Otherwise we need some copies. If ELT is being read, then we
3295 want to store all (modified) sub-elements back into the
3296 structure before the reference takes place. If ELT is being
3297 written, then we want to load the changed values back into
3298 our shadow variables. */
3299 /* ??? We don't check modified for reads, we just always write all of
3300 the values. We should be able to record the SSA number of the VOP
3301 for which the values were last read. If that number matches the
3302 SSA number of the VOP in the current statement, then we needn't
3303 emit an assignment. This would also eliminate double writes when
3304 a structure is passed as more than one argument to a function call.
3305 This optimization would be most effective if sra_walk_function
3306 processed the blocks in dominator order. */
3307
3308 generate_copy_inout (elt, is_output, generate_element_ref (elt), &seq);
3309 if (seq == NULL)
3310 return;
3311 mark_all_v_defs_seq (seq);
3312 if (is_output)
3313 sra_insert_after (gsi, seq);
3314 else
3315 {
3316 sra_insert_before (gsi, seq);
3317 if (use_all)
3318 mark_no_warning (elt);
3319 }
3320 }
3321 }
3322
3323 /* Scalarize a COPY. To recap, this is an assignment statement between
3324 two scalarizable references, LHS_ELT and RHS_ELT. */
3325
3326 static void
3327 scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
3328 gimple_stmt_iterator *gsi)
3329 {
3330 gimple_seq seq;
3331 gimple stmt;
3332
3333 if (lhs_elt->replacement && rhs_elt->replacement)
3334 {
3335 /* If we have two scalar operands, modify the existing statement. */
3336 stmt = gsi_stmt (*gsi);
3337
3338 /* See the commentary in sra_walk_function concerning
3339 RETURN_EXPR, and why we should never see one here. */
3340 gcc_assert (is_gimple_assign (stmt));
3341 gcc_assert (gimple_assign_copy_p (stmt));
3342
3343
3344 gimple_assign_set_lhs (stmt, lhs_elt->replacement);
3345 gimple_assign_set_rhs1 (stmt, REPLDUP (rhs_elt->replacement));
3346 update_stmt (stmt);
3347 }
3348 else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
3349 {
3350 /* If either side requires a block copy, then sync the RHS back
3351 to the original structure, leave the original assignment
3352 statement (which will perform the block copy), then load the
3353 LHS values out of its now-updated original structure. */
3354 /* ??? Could perform a modified pair-wise element copy. That
3355 would at least allow those elements that are instantiated in
3356 both structures to be optimized well. */
3357
3358 seq = NULL;
3359 generate_copy_inout (rhs_elt, false,
3360 generate_element_ref (rhs_elt), &seq);
3361 if (seq)
3362 {
3363 mark_all_v_defs_seq (seq);
3364 sra_insert_before (gsi, seq);
3365 }
3366
3367 seq = NULL;
3368 generate_copy_inout (lhs_elt, true,
3369 generate_element_ref (lhs_elt), &seq);
3370 if (seq)
3371 {
3372 mark_all_v_defs_seq (seq);
3373 sra_insert_after (gsi, seq);
3374 }
3375 }
3376 else
3377 {
3378 /* Otherwise both sides must be fully instantiated. In which
3379 case perform pair-wise element assignments and replace the
3380 original block copy statement. */
3381
3382 stmt = gsi_stmt (*gsi);
3383 mark_all_v_defs_stmt (stmt);
3384
3385 seq = NULL;
3386 generate_element_copy (lhs_elt, rhs_elt, &seq);
3387 gcc_assert (seq);
3388 mark_all_v_defs_seq (seq);
3389 sra_replace (gsi, seq);
3390 }
3391 }
3392
3393 /* Scalarize an INIT. To recap, this is an assignment to a scalarizable
3394 reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
3395 COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
3396 CONSTRUCTOR. */
3397
3398 static void
3399 scalarize_init (struct sra_elt *lhs_elt, tree rhs, gimple_stmt_iterator *gsi)
3400 {
3401 bool result = true;
3402 gimple_seq seq = NULL, init_seq = NULL;
3403
3404 /* Generate initialization statements for all members extant in the RHS. */
3405 if (rhs)
3406 {
3407 /* Unshare the expression just in case this is from a decl's initial. */
3408 rhs = unshare_expr (rhs);
3409 result = generate_element_init (lhs_elt, rhs, &init_seq);
3410 }
3411
3412 if (!result)
3413 {
3414 /* If we failed to convert the entire initializer, then we must
3415 leave the structure assignment in place and must load values
3416 from the structure into the slots for which we did not find
3417 constants. The easiest way to do this is to generate a complete
3418 copy-out, and then follow that with the constant assignments
3419 that we were able to build. DCE will clean things up. */
3420 gimple_seq seq0 = NULL;
3421 generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
3422 &seq0);
3423 gimple_seq_add_seq (&seq0, seq);
3424 seq = seq0;
3425 }
3426 else
3427 {
3428 /* CONSTRUCTOR is defined such that any member not mentioned is assigned
3429 a zero value. Initialize the rest of the instantiated elements. */
3430 generate_element_zero (lhs_elt, &seq);
3431 gimple_seq_add_seq (&seq, init_seq);
3432 }
3433
3434 if (lhs_elt->use_block_copy || !result)
3435 {
3436 /* Since LHS is not fully instantiated, we must leave the structure
3437 assignment in place. Treating this case differently from a USE
3438 exposes constants to later optimizations. */
3439 if (seq)
3440 {
3441 mark_all_v_defs_seq (seq);
3442 sra_insert_after (gsi, seq);
3443 }
3444 }
3445 else
3446 {
3447 /* The LHS is fully instantiated. The list of initializations
3448 replaces the original structure assignment. */
3449 gcc_assert (seq);
3450 mark_all_v_defs_stmt (gsi_stmt (*gsi));
3451 mark_all_v_defs_seq (seq);
3452 sra_replace (gsi, seq);
3453 }
3454 }
3455
3456 /* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
3457 on all INDIRECT_REFs. */
3458
3459 static tree
3460 mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3461 {
3462 tree t = *tp;
3463
3464 if (TREE_CODE (t) == INDIRECT_REF)
3465 {
3466 TREE_THIS_NOTRAP (t) = 1;
3467 *walk_subtrees = 0;
3468 }
3469 else if (IS_TYPE_OR_DECL_P (t))
3470 *walk_subtrees = 0;
3471
3472 return NULL;
3473 }
3474
3475 /* Scalarize a LDST. To recap, this is an assignment between one scalarizable
3476 reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
3477 if ELT is on the left-hand side. */
3478
3479 static void
3480 scalarize_ldst (struct sra_elt *elt, tree other,
3481 gimple_stmt_iterator *gsi, bool is_output)
3482 {
3483 /* Shouldn't have gotten called for a scalar. */
3484 gcc_assert (!elt->replacement);
3485
3486 if (elt->use_block_copy)
3487 {
3488 /* Since ELT is not fully instantiated, we have to leave the
3489 block copy in place. Treat this as a USE. */
3490 scalarize_use (elt, NULL, gsi, is_output, false);
3491 }
3492 else
3493 {
3494 /* The interesting case is when ELT is fully instantiated. In this
3495 case we can have each element stored/loaded directly to/from the
3496 corresponding slot in OTHER. This avoids a block copy. */
3497
3498 gimple_seq seq = NULL;
3499 gimple stmt = gsi_stmt (*gsi);
3500
3501 mark_all_v_defs_stmt (stmt);
3502 generate_copy_inout (elt, is_output, other, &seq);
3503 gcc_assert (seq);
3504 mark_all_v_defs_seq (seq);
3505
3506 /* Preserve EH semantics. */
3507 if (stmt_ends_bb_p (stmt))
3508 {
3509 gimple_stmt_iterator si;
3510 gimple first;
3511 gimple_seq blist = NULL;
3512 bool thr = stmt_could_throw_p (stmt);
3513
3514 /* If the last statement of this BB created an EH edge
3515 before scalarization, we have to locate the first
3516 statement that can throw in the new statement list and
3517 use that as the last statement of this BB, such that EH
3518 semantics is preserved. All statements up to this one
3519 are added to the same BB. All other statements in the
3520 list will be added to normal outgoing edges of the same
3521 BB. If they access any memory, it's the same memory, so
3522 we can assume they won't throw. */
3523 si = gsi_start (seq);
3524 for (first = gsi_stmt (si);
3525 thr && !gsi_end_p (si) && !stmt_could_throw_p (first);
3526 first = gsi_stmt (si))
3527 {
3528 gsi_remove (&si, false);
3529 gimple_seq_add_stmt (&blist, first);
3530 }
3531
3532 /* Extract the first remaining statement from LIST, this is
3533 the EH statement if there is one. */
3534 gsi_remove (&si, false);
3535
3536 if (blist)
3537 sra_insert_before (gsi, blist);
3538
3539 /* Replace the old statement with this new representative. */
3540 gsi_replace (gsi, first, true);
3541
3542 if (!gsi_end_p (si))
3543 {
3544 /* If any reference would trap, then they all would. And more
3545 to the point, the first would. Therefore none of the rest
3546 will trap since the first didn't. Indicate this by
3547 iterating over the remaining statements and set
3548 TREE_THIS_NOTRAP in all INDIRECT_REFs. */
3549 do
3550 {
3551 walk_gimple_stmt (&si, NULL, mark_notrap, NULL);
3552 gsi_next (&si);
3553 }
3554 while (!gsi_end_p (si));
3555
3556 insert_edge_copies_seq (seq, gsi_bb (*gsi));
3557 }
3558 }
3559 else
3560 sra_replace (gsi, seq);
3561 }
3562 }
3563
3564 /* Generate initializations for all scalarizable parameters. */
3565
3566 static void
3567 scalarize_parms (void)
3568 {
3569 gimple_seq seq = NULL;
3570 unsigned i;
3571 bitmap_iterator bi;
3572
3573 EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
3574 {
3575 tree var = referenced_var (i);
3576 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
3577 generate_copy_inout (elt, true, var, &seq);
3578 }
3579
3580 if (seq)
3581 {
3582 insert_edge_copies_seq (seq, ENTRY_BLOCK_PTR);
3583 mark_all_v_defs_seq (seq);
3584 }
3585 }
3586
3587 /* Entry point to phase 4. Update the function to match replacements. */
3588
3589 static void
3590 scalarize_function (void)
3591 {
3592 static const struct sra_walk_fns fns = {
3593 scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
3594 };
3595
3596 sra_walk_function (&fns);
3597 scalarize_parms ();
3598 gsi_commit_edge_inserts ();
3599 }
3600
3601 \f
3602 /* Debug helper function. Print ELT in a nice human-readable format. */
3603
3604 static void
3605 dump_sra_elt_name (FILE *f, struct sra_elt *elt)
3606 {
3607 if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
3608 {
3609 fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
3610 dump_sra_elt_name (f, elt->parent);
3611 }
3612 else
3613 {
3614 if (elt->parent)
3615 dump_sra_elt_name (f, elt->parent);
3616 if (DECL_P (elt->element))
3617 {
3618 if (TREE_CODE (elt->element) == FIELD_DECL)
3619 fputc ('.', f);
3620 print_generic_expr (f, elt->element, dump_flags);
3621 }
3622 else if (TREE_CODE (elt->element) == BIT_FIELD_REF)
3623 fprintf (f, "$B" HOST_WIDE_INT_PRINT_DEC "F" HOST_WIDE_INT_PRINT_DEC,
3624 tree_low_cst (TREE_OPERAND (elt->element, 2), 1),
3625 tree_low_cst (TREE_OPERAND (elt->element, 1), 1));
3626 else if (TREE_CODE (elt->element) == RANGE_EXPR)
3627 fprintf (f, "["HOST_WIDE_INT_PRINT_DEC".."HOST_WIDE_INT_PRINT_DEC"]",
3628 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 0)),
3629 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 1)));
3630 else
3631 fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
3632 TREE_INT_CST_LOW (elt->element));
3633 }
3634 }
3635
3636 /* Likewise, but callable from the debugger. */
3637
3638 void
3639 debug_sra_elt_name (struct sra_elt *elt)
3640 {
3641 dump_sra_elt_name (stderr, elt);
3642 fputc ('\n', stderr);
3643 }
3644
3645 void
3646 sra_init_cache (void)
3647 {
3648 if (sra_type_decomp_cache)
3649 return;
3650
3651 sra_type_decomp_cache = BITMAP_ALLOC (NULL);
3652 sra_type_inst_cache = BITMAP_ALLOC (NULL);
3653 }
3654
3655
3656 /* Main entry point. */
3657
3658 static unsigned int
3659 tree_sra (void)
3660 {
3661 /* Initialize local variables. */
3662 todoflags = 0;
3663 gcc_obstack_init (&sra_obstack);
3664 sra_candidates = BITMAP_ALLOC (NULL);
3665 needs_copy_in = BITMAP_ALLOC (NULL);
3666 sra_init_cache ();
3667 sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
3668
3669 /* Scan. If we find anything, instantiate and scalarize. */
3670 if (find_candidates_for_sra ())
3671 {
3672 scan_function ();
3673 decide_instantiations ();
3674 scalarize_function ();
3675 if (!bitmap_empty_p (sra_candidates))
3676 todoflags |= TODO_rebuild_alias;
3677 }
3678
3679 /* Free allocated memory. */
3680 htab_delete (sra_map);
3681 sra_map = NULL;
3682 BITMAP_FREE (sra_candidates);
3683 BITMAP_FREE (needs_copy_in);
3684 BITMAP_FREE (sra_type_decomp_cache);
3685 BITMAP_FREE (sra_type_inst_cache);
3686 obstack_free (&sra_obstack, NULL);
3687 return todoflags;
3688 }
3689
3690 static unsigned int
3691 tree_sra_early (void)
3692 {
3693 unsigned int ret;
3694
3695 early_sra = true;
3696 ret = tree_sra ();
3697 early_sra = false;
3698
3699 return ret & ~TODO_rebuild_alias;
3700 }
3701
3702 static bool
3703 gate_sra (void)
3704 {
3705 return flag_tree_sra != 0;
3706 }
3707
3708 struct gimple_opt_pass pass_sra_early =
3709 {
3710 {
3711 GIMPLE_PASS,
3712 "esra", /* name */
3713 gate_sra, /* gate */
3714 tree_sra_early, /* execute */
3715 NULL, /* sub */
3716 NULL, /* next */
3717 0, /* static_pass_number */
3718 TV_TREE_SRA, /* tv_id */
3719 PROP_cfg | PROP_ssa, /* properties_required */
3720 0, /* properties_provided */
3721 0, /* properties_destroyed */
3722 0, /* todo_flags_start */
3723 TODO_dump_func
3724 | TODO_update_ssa
3725 | TODO_ggc_collect
3726 | TODO_verify_ssa /* todo_flags_finish */
3727 }
3728 };
3729
3730 struct gimple_opt_pass pass_sra =
3731 {
3732 {
3733 GIMPLE_PASS,
3734 "sra", /* name */
3735 gate_sra, /* gate */
3736 tree_sra, /* execute */
3737 NULL, /* sub */
3738 NULL, /* next */
3739 0, /* static_pass_number */
3740 TV_TREE_SRA, /* tv_id */
3741 PROP_cfg | PROP_ssa, /* properties_required */
3742 0, /* properties_provided */
3743 0, /* properties_destroyed */
3744 0, /* todo_flags_start */
3745 TODO_dump_func
3746 | TODO_update_ssa
3747 | TODO_ggc_collect
3748 | TODO_verify_ssa /* todo_flags_finish */
3749 }
3750 };