re PR tree-optimization/50622 (ICE: verify_gimple failed for std::complex<double>)
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
27
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
32
33 Both passes operate in four stages:
34
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
38
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
46
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
50
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
55
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
60
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
64
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
67
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
73
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
94 #include "ipa-inline.h"
95
96 /* Enumeration of all aggregate reductions we can do. */
97 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
98 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
99 SRA_MODE_INTRA }; /* late intraprocedural SRA */
100
101 /* Global variable describing which aggregate reduction we are performing at
102 the moment. */
103 static enum sra_mode sra_mode;
104
105 struct assign_link;
106
107 /* ACCESS represents each access to an aggregate variable (as a whole or a
108 part). It can also represent a group of accesses that refer to exactly the
109 same fragment of an aggregate (i.e. those that have exactly the same offset
110 and size). Such representatives for a single aggregate, once determined,
111 are linked in a linked list and have the group fields set.
112
113 Moreover, when doing intraprocedural SRA, a tree is built from those
114 representatives (by the means of first_child and next_sibling pointers), in
115 which all items in a subtree are "within" the root, i.e. their offset is
116 greater or equal to offset of the root and offset+size is smaller or equal
117 to offset+size of the root. Children of an access are sorted by offset.
118
119 Note that accesses to parts of vector and complex number types always
120 represented by an access to the whole complex number or a vector. It is a
121 duty of the modifying functions to replace them appropriately. */
122
123 struct access
124 {
125 /* Values returned by `get_ref_base_and_extent' for each component reference
126 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
127 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
128 HOST_WIDE_INT offset;
129 HOST_WIDE_INT size;
130 tree base;
131
132 /* Expression. It is context dependent so do not use it to create new
133 expressions to access the original aggregate. See PR 42154 for a
134 testcase. */
135 tree expr;
136 /* Type. */
137 tree type;
138
139 /* The statement this access belongs to. */
140 gimple stmt;
141
142 /* Next group representative for this aggregate. */
143 struct access *next_grp;
144
145 /* Pointer to the group representative. Pointer to itself if the struct is
146 the representative. */
147 struct access *group_representative;
148
149 /* If this access has any children (in terms of the definition above), this
150 points to the first one. */
151 struct access *first_child;
152
153 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
154 described above. In IPA-SRA this is a pointer to the next access
155 belonging to the same group (having the same representative). */
156 struct access *next_sibling;
157
158 /* Pointers to the first and last element in the linked list of assign
159 links. */
160 struct assign_link *first_link, *last_link;
161
162 /* Pointer to the next access in the work queue. */
163 struct access *next_queued;
164
165 /* Replacement variable for this access "region." Never to be accessed
166 directly, always only by the means of get_access_replacement() and only
167 when grp_to_be_replaced flag is set. */
168 tree replacement_decl;
169
170 /* Is this particular access write access? */
171 unsigned write : 1;
172
173 /* Is this access an access to a non-addressable field? */
174 unsigned non_addressable : 1;
175
176 /* Is this access currently in the work queue? */
177 unsigned grp_queued : 1;
178
179 /* Does this group contain a write access? This flag is propagated down the
180 access tree. */
181 unsigned grp_write : 1;
182
183 /* Does this group contain a read access? This flag is propagated down the
184 access tree. */
185 unsigned grp_read : 1;
186
187 /* Does this group contain a read access that comes from an assignment
188 statement? This flag is propagated down the access tree. */
189 unsigned grp_assignment_read : 1;
190
191 /* Does this group contain a write access that comes from an assignment
192 statement? This flag is propagated down the access tree. */
193 unsigned grp_assignment_write : 1;
194
195 /* Does this group contain a read access through a scalar type? This flag is
196 not propagated in the access tree in any direction. */
197 unsigned grp_scalar_read : 1;
198
199 /* Does this group contain a write access through a scalar type? This flag
200 is not propagated in the access tree in any direction. */
201 unsigned grp_scalar_write : 1;
202
203 /* Is this access an artificial one created to scalarize some record
204 entirely? */
205 unsigned grp_total_scalarization : 1;
206
207 /* Other passes of the analysis use this bit to make function
208 analyze_access_subtree create scalar replacements for this group if
209 possible. */
210 unsigned grp_hint : 1;
211
212 /* Is the subtree rooted in this access fully covered by scalar
213 replacements? */
214 unsigned grp_covered : 1;
215
216 /* If set to true, this access and all below it in an access tree must not be
217 scalarized. */
218 unsigned grp_unscalarizable_region : 1;
219
220 /* Whether data have been written to parts of the aggregate covered by this
221 access which is not to be scalarized. This flag is propagated up in the
222 access tree. */
223 unsigned grp_unscalarized_data : 1;
224
225 /* Does this access and/or group contain a write access through a
226 BIT_FIELD_REF? */
227 unsigned grp_partial_lhs : 1;
228
229 /* Set when a scalar replacement should be created for this variable. We do
230 the decision and creation at different places because create_tmp_var
231 cannot be called from within FOR_EACH_REFERENCED_VAR. */
232 unsigned grp_to_be_replaced : 1;
233
234 /* Should TREE_NO_WARNING of a replacement be set? */
235 unsigned grp_no_warning : 1;
236
237 /* Is it possible that the group refers to data which might be (directly or
238 otherwise) modified? */
239 unsigned grp_maybe_modified : 1;
240
241 /* Set when this is a representative of a pointer to scalar (i.e. by
242 reference) parameter which we consider for turning into a plain scalar
243 (i.e. a by value parameter). */
244 unsigned grp_scalar_ptr : 1;
245
246 /* Set when we discover that this pointer is not safe to dereference in the
247 caller. */
248 unsigned grp_not_necessarilly_dereferenced : 1;
249 };
250
251 typedef struct access *access_p;
252
253 DEF_VEC_P (access_p);
254 DEF_VEC_ALLOC_P (access_p, heap);
255
256 /* Alloc pool for allocating access structures. */
257 static alloc_pool access_pool;
258
259 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
260 are used to propagate subaccesses from rhs to lhs as long as they don't
261 conflict with what is already there. */
262 struct assign_link
263 {
264 struct access *lacc, *racc;
265 struct assign_link *next;
266 };
267
268 /* Alloc pool for allocating assign link structures. */
269 static alloc_pool link_pool;
270
271 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
272 static struct pointer_map_t *base_access_vec;
273
274 /* Bitmap of candidates. */
275 static bitmap candidate_bitmap;
276
277 /* Bitmap of candidates which we should try to entirely scalarize away and
278 those which cannot be (because they are and need be used as a whole). */
279 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
280
281 /* Obstack for creation of fancy names. */
282 static struct obstack name_obstack;
283
284 /* Head of a linked list of accesses that need to have its subaccesses
285 propagated to their assignment counterparts. */
286 static struct access *work_queue_head;
287
288 /* Number of parameters of the analyzed function when doing early ipa SRA. */
289 static int func_param_count;
290
291 /* scan_function sets the following to true if it encounters a call to
292 __builtin_apply_args. */
293 static bool encountered_apply_args;
294
295 /* Set by scan_function when it finds a recursive call. */
296 static bool encountered_recursive_call;
297
298 /* Set by scan_function when it finds a recursive call with less actual
299 arguments than formal parameters.. */
300 static bool encountered_unchangable_recursive_call;
301
302 /* This is a table in which for each basic block and parameter there is a
303 distance (offset + size) in that parameter which is dereferenced and
304 accessed in that BB. */
305 static HOST_WIDE_INT *bb_dereferences;
306 /* Bitmap of BBs that can cause the function to "stop" progressing by
307 returning, throwing externally, looping infinitely or calling a function
308 which might abort etc.. */
309 static bitmap final_bbs;
310
311 /* Representative of no accesses at all. */
312 static struct access no_accesses_representant;
313
314 /* Predicate to test the special value. */
315
316 static inline bool
317 no_accesses_p (struct access *access)
318 {
319 return access == &no_accesses_representant;
320 }
321
322 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
323 representative fields are dumped, otherwise those which only describe the
324 individual access are. */
325
326 static struct
327 {
328 /* Number of processed aggregates is readily available in
329 analyze_all_variable_accesses and so is not stored here. */
330
331 /* Number of created scalar replacements. */
332 int replacements;
333
334 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
335 expression. */
336 int exprs;
337
338 /* Number of statements created by generate_subtree_copies. */
339 int subtree_copies;
340
341 /* Number of statements created by load_assign_lhs_subreplacements. */
342 int subreplacements;
343
344 /* Number of times sra_modify_assign has deleted a statement. */
345 int deleted;
346
347 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
348 RHS reparately due to type conversions or nonexistent matching
349 references. */
350 int separate_lhs_rhs_handling;
351
352 /* Number of parameters that were removed because they were unused. */
353 int deleted_unused_parameters;
354
355 /* Number of scalars passed as parameters by reference that have been
356 converted to be passed by value. */
357 int scalar_by_ref_to_by_val;
358
359 /* Number of aggregate parameters that were replaced by one or more of their
360 components. */
361 int aggregate_params_reduced;
362
363 /* Numbber of components created when splitting aggregate parameters. */
364 int param_reductions_created;
365 } sra_stats;
366
367 static void
368 dump_access (FILE *f, struct access *access, bool grp)
369 {
370 fprintf (f, "access { ");
371 fprintf (f, "base = (%d)'", DECL_UID (access->base));
372 print_generic_expr (f, access->base, 0);
373 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
374 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
375 fprintf (f, ", expr = ");
376 print_generic_expr (f, access->expr, 0);
377 fprintf (f, ", type = ");
378 print_generic_expr (f, access->type, 0);
379 if (grp)
380 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
381 "grp_assignment_write = %d, grp_scalar_read = %d, "
382 "grp_scalar_write = %d, grp_total_scalarization = %d, "
383 "grp_hint = %d, grp_covered = %d, "
384 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
385 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
386 "grp_maybe_modified = %d, "
387 "grp_not_necessarilly_dereferenced = %d\n",
388 access->grp_read, access->grp_write, access->grp_assignment_read,
389 access->grp_assignment_write, access->grp_scalar_read,
390 access->grp_scalar_write, access->grp_total_scalarization,
391 access->grp_hint, access->grp_covered,
392 access->grp_unscalarizable_region, access->grp_unscalarized_data,
393 access->grp_partial_lhs, access->grp_to_be_replaced,
394 access->grp_maybe_modified,
395 access->grp_not_necessarilly_dereferenced);
396 else
397 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
398 "grp_partial_lhs = %d\n",
399 access->write, access->grp_total_scalarization,
400 access->grp_partial_lhs);
401 }
402
403 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
404
405 static void
406 dump_access_tree_1 (FILE *f, struct access *access, int level)
407 {
408 do
409 {
410 int i;
411
412 for (i = 0; i < level; i++)
413 fputs ("* ", dump_file);
414
415 dump_access (f, access, true);
416
417 if (access->first_child)
418 dump_access_tree_1 (f, access->first_child, level + 1);
419
420 access = access->next_sibling;
421 }
422 while (access);
423 }
424
425 /* Dump all access trees for a variable, given the pointer to the first root in
426 ACCESS. */
427
428 static void
429 dump_access_tree (FILE *f, struct access *access)
430 {
431 for (; access; access = access->next_grp)
432 dump_access_tree_1 (f, access, 0);
433 }
434
435 /* Return true iff ACC is non-NULL and has subaccesses. */
436
437 static inline bool
438 access_has_children_p (struct access *acc)
439 {
440 return acc && acc->first_child;
441 }
442
443 /* Return a vector of pointers to accesses for the variable given in BASE or
444 NULL if there is none. */
445
446 static VEC (access_p, heap) *
447 get_base_access_vector (tree base)
448 {
449 void **slot;
450
451 slot = pointer_map_contains (base_access_vec, base);
452 if (!slot)
453 return NULL;
454 else
455 return *(VEC (access_p, heap) **) slot;
456 }
457
458 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
459 in ACCESS. Return NULL if it cannot be found. */
460
461 static struct access *
462 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
463 HOST_WIDE_INT size)
464 {
465 while (access && (access->offset != offset || access->size != size))
466 {
467 struct access *child = access->first_child;
468
469 while (child && (child->offset + child->size <= offset))
470 child = child->next_sibling;
471 access = child;
472 }
473
474 return access;
475 }
476
477 /* Return the first group representative for DECL or NULL if none exists. */
478
479 static struct access *
480 get_first_repr_for_decl (tree base)
481 {
482 VEC (access_p, heap) *access_vec;
483
484 access_vec = get_base_access_vector (base);
485 if (!access_vec)
486 return NULL;
487
488 return VEC_index (access_p, access_vec, 0);
489 }
490
491 /* Find an access representative for the variable BASE and given OFFSET and
492 SIZE. Requires that access trees have already been built. Return NULL if
493 it cannot be found. */
494
495 static struct access *
496 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
497 HOST_WIDE_INT size)
498 {
499 struct access *access;
500
501 access = get_first_repr_for_decl (base);
502 while (access && (access->offset + access->size <= offset))
503 access = access->next_grp;
504 if (!access)
505 return NULL;
506
507 return find_access_in_subtree (access, offset, size);
508 }
509
510 /* Add LINK to the linked list of assign links of RACC. */
511 static void
512 add_link_to_rhs (struct access *racc, struct assign_link *link)
513 {
514 gcc_assert (link->racc == racc);
515
516 if (!racc->first_link)
517 {
518 gcc_assert (!racc->last_link);
519 racc->first_link = link;
520 }
521 else
522 racc->last_link->next = link;
523
524 racc->last_link = link;
525 link->next = NULL;
526 }
527
528 /* Move all link structures in their linked list in OLD_RACC to the linked list
529 in NEW_RACC. */
530 static void
531 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
532 {
533 if (!old_racc->first_link)
534 {
535 gcc_assert (!old_racc->last_link);
536 return;
537 }
538
539 if (new_racc->first_link)
540 {
541 gcc_assert (!new_racc->last_link->next);
542 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
543
544 new_racc->last_link->next = old_racc->first_link;
545 new_racc->last_link = old_racc->last_link;
546 }
547 else
548 {
549 gcc_assert (!new_racc->last_link);
550
551 new_racc->first_link = old_racc->first_link;
552 new_racc->last_link = old_racc->last_link;
553 }
554 old_racc->first_link = old_racc->last_link = NULL;
555 }
556
557 /* Add ACCESS to the work queue (which is actually a stack). */
558
559 static void
560 add_access_to_work_queue (struct access *access)
561 {
562 if (!access->grp_queued)
563 {
564 gcc_assert (!access->next_queued);
565 access->next_queued = work_queue_head;
566 access->grp_queued = 1;
567 work_queue_head = access;
568 }
569 }
570
571 /* Pop an access from the work queue, and return it, assuming there is one. */
572
573 static struct access *
574 pop_access_from_work_queue (void)
575 {
576 struct access *access = work_queue_head;
577
578 work_queue_head = access->next_queued;
579 access->next_queued = NULL;
580 access->grp_queued = 0;
581 return access;
582 }
583
584
585 /* Allocate necessary structures. */
586
587 static void
588 sra_initialize (void)
589 {
590 candidate_bitmap = BITMAP_ALLOC (NULL);
591 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
592 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
593 gcc_obstack_init (&name_obstack);
594 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
595 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
596 base_access_vec = pointer_map_create ();
597 memset (&sra_stats, 0, sizeof (sra_stats));
598 encountered_apply_args = false;
599 encountered_recursive_call = false;
600 encountered_unchangable_recursive_call = false;
601 }
602
603 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
604
605 static bool
606 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
607 void *data ATTRIBUTE_UNUSED)
608 {
609 VEC (access_p, heap) *access_vec;
610 access_vec = (VEC (access_p, heap) *) *value;
611 VEC_free (access_p, heap, access_vec);
612
613 return true;
614 }
615
616 /* Deallocate all general structures. */
617
618 static void
619 sra_deinitialize (void)
620 {
621 BITMAP_FREE (candidate_bitmap);
622 BITMAP_FREE (should_scalarize_away_bitmap);
623 BITMAP_FREE (cannot_scalarize_away_bitmap);
624 free_alloc_pool (access_pool);
625 free_alloc_pool (link_pool);
626 obstack_free (&name_obstack, NULL);
627
628 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
629 pointer_map_destroy (base_access_vec);
630 }
631
632 /* Remove DECL from candidates for SRA and write REASON to the dump file if
633 there is one. */
634 static void
635 disqualify_candidate (tree decl, const char *reason)
636 {
637 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
638
639 if (dump_file && (dump_flags & TDF_DETAILS))
640 {
641 fprintf (dump_file, "! Disqualifying ");
642 print_generic_expr (dump_file, decl, 0);
643 fprintf (dump_file, " - %s\n", reason);
644 }
645 }
646
647 /* Return true iff the type contains a field or an element which does not allow
648 scalarization. */
649
650 static bool
651 type_internals_preclude_sra_p (tree type, const char **msg)
652 {
653 tree fld;
654 tree et;
655
656 switch (TREE_CODE (type))
657 {
658 case RECORD_TYPE:
659 case UNION_TYPE:
660 case QUAL_UNION_TYPE:
661 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
662 if (TREE_CODE (fld) == FIELD_DECL)
663 {
664 tree ft = TREE_TYPE (fld);
665
666 if (TREE_THIS_VOLATILE (fld))
667 {
668 *msg = "volatile structure field";
669 return true;
670 }
671 if (!DECL_FIELD_OFFSET (fld))
672 {
673 *msg = "no structure field offset";
674 return true;
675 }
676 if (!DECL_SIZE (fld))
677 {
678 *msg = "zero structure field size";
679 return true;
680 }
681 if (!host_integerp (DECL_FIELD_OFFSET (fld), 1))
682 {
683 *msg = "structure field offset not fixed";
684 return true;
685 }
686 if (!host_integerp (DECL_SIZE (fld), 1))
687 {
688 *msg = "structure field size not fixed";
689 return true;
690 }
691 if (AGGREGATE_TYPE_P (ft)
692 && int_bit_position (fld) % BITS_PER_UNIT != 0)
693 {
694 *msg = "structure field is bit field";
695 return true;
696 }
697
698 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
699 return true;
700 }
701
702 return false;
703
704 case ARRAY_TYPE:
705 et = TREE_TYPE (type);
706
707 if (TYPE_VOLATILE (et))
708 {
709 *msg = "element type is volatile";
710 return true;
711 }
712
713 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
714 return true;
715
716 return false;
717
718 default:
719 return false;
720 }
721 }
722
723 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
724 base variable if it is. Return T if it is not an SSA_NAME. */
725
726 static tree
727 get_ssa_base_param (tree t)
728 {
729 if (TREE_CODE (t) == SSA_NAME)
730 {
731 if (SSA_NAME_IS_DEFAULT_DEF (t))
732 return SSA_NAME_VAR (t);
733 else
734 return NULL_TREE;
735 }
736 return t;
737 }
738
739 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
740 belongs to, unless the BB has already been marked as a potentially
741 final. */
742
743 static void
744 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
745 {
746 basic_block bb = gimple_bb (stmt);
747 int idx, parm_index = 0;
748 tree parm;
749
750 if (bitmap_bit_p (final_bbs, bb->index))
751 return;
752
753 for (parm = DECL_ARGUMENTS (current_function_decl);
754 parm && parm != base;
755 parm = DECL_CHAIN (parm))
756 parm_index++;
757
758 gcc_assert (parm_index < func_param_count);
759
760 idx = bb->index * func_param_count + parm_index;
761 if (bb_dereferences[idx] < dist)
762 bb_dereferences[idx] = dist;
763 }
764
765 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
766 the three fields. Also add it to the vector of accesses corresponding to
767 the base. Finally, return the new access. */
768
769 static struct access *
770 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
771 {
772 VEC (access_p, heap) *vec;
773 struct access *access;
774 void **slot;
775
776 access = (struct access *) pool_alloc (access_pool);
777 memset (access, 0, sizeof (struct access));
778 access->base = base;
779 access->offset = offset;
780 access->size = size;
781
782 slot = pointer_map_contains (base_access_vec, base);
783 if (slot)
784 vec = (VEC (access_p, heap) *) *slot;
785 else
786 vec = VEC_alloc (access_p, heap, 32);
787
788 VEC_safe_push (access_p, heap, vec, access);
789
790 *((struct VEC (access_p,heap) **)
791 pointer_map_insert (base_access_vec, base)) = vec;
792
793 return access;
794 }
795
796 /* Create and insert access for EXPR. Return created access, or NULL if it is
797 not possible. */
798
799 static struct access *
800 create_access (tree expr, gimple stmt, bool write)
801 {
802 struct access *access;
803 HOST_WIDE_INT offset, size, max_size;
804 tree base = expr;
805 bool ptr, unscalarizable_region = false;
806
807 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
808
809 if (sra_mode == SRA_MODE_EARLY_IPA
810 && TREE_CODE (base) == MEM_REF)
811 {
812 base = get_ssa_base_param (TREE_OPERAND (base, 0));
813 if (!base)
814 return NULL;
815 ptr = true;
816 }
817 else
818 ptr = false;
819
820 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
821 return NULL;
822
823 if (sra_mode == SRA_MODE_EARLY_IPA)
824 {
825 if (size < 0 || size != max_size)
826 {
827 disqualify_candidate (base, "Encountered a variable sized access.");
828 return NULL;
829 }
830 if (TREE_CODE (expr) == COMPONENT_REF
831 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
832 {
833 disqualify_candidate (base, "Encountered a bit-field access.");
834 return NULL;
835 }
836 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
837
838 if (ptr)
839 mark_parm_dereference (base, offset + size, stmt);
840 }
841 else
842 {
843 if (size != max_size)
844 {
845 size = max_size;
846 unscalarizable_region = true;
847 }
848 if (size < 0)
849 {
850 disqualify_candidate (base, "Encountered an unconstrained access.");
851 return NULL;
852 }
853 }
854
855 access = create_access_1 (base, offset, size);
856 access->expr = expr;
857 access->type = TREE_TYPE (expr);
858 access->write = write;
859 access->grp_unscalarizable_region = unscalarizable_region;
860 access->stmt = stmt;
861
862 if (TREE_CODE (expr) == COMPONENT_REF
863 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
864 access->non_addressable = 1;
865
866 return access;
867 }
868
869
870 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
871 register types or (recursively) records with only these two kinds of fields.
872 It also returns false if any of these records contains a bit-field. */
873
874 static bool
875 type_consists_of_records_p (tree type)
876 {
877 tree fld;
878
879 if (TREE_CODE (type) != RECORD_TYPE)
880 return false;
881
882 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
883 if (TREE_CODE (fld) == FIELD_DECL)
884 {
885 tree ft = TREE_TYPE (fld);
886
887 if (DECL_BIT_FIELD (fld))
888 return false;
889
890 if (!is_gimple_reg_type (ft)
891 && !type_consists_of_records_p (ft))
892 return false;
893 }
894
895 return true;
896 }
897
898 /* Create total_scalarization accesses for all scalar type fields in DECL that
899 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
900 must be the top-most VAR_DECL representing the variable, OFFSET must be the
901 offset of DECL within BASE. REF must be the memory reference expression for
902 the given decl. */
903
904 static void
905 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
906 tree ref)
907 {
908 tree fld, decl_type = TREE_TYPE (decl);
909
910 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
911 if (TREE_CODE (fld) == FIELD_DECL)
912 {
913 HOST_WIDE_INT pos = offset + int_bit_position (fld);
914 tree ft = TREE_TYPE (fld);
915 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
916 NULL_TREE);
917
918 if (is_gimple_reg_type (ft))
919 {
920 struct access *access;
921 HOST_WIDE_INT size;
922
923 size = tree_low_cst (DECL_SIZE (fld), 1);
924 access = create_access_1 (base, pos, size);
925 access->expr = nref;
926 access->type = ft;
927 access->grp_total_scalarization = 1;
928 /* Accesses for intraprocedural SRA can have their stmt NULL. */
929 }
930 else
931 completely_scalarize_record (base, fld, pos, nref);
932 }
933 }
934
935 /* Create total_scalarization accesses for all scalar type fields in VAR and
936 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
937 type_consists_of_records_p. */
938
939 static void
940 completely_scalarize_var (tree var)
941 {
942 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1);
943 struct access *access;
944
945 access = create_access_1 (var, 0, size);
946 access->expr = var;
947 access->type = TREE_TYPE (var);
948 access->grp_total_scalarization = 1;
949
950 completely_scalarize_record (var, var, 0, var);
951 }
952
953 /* Search the given tree for a declaration by skipping handled components and
954 exclude it from the candidates. */
955
956 static void
957 disqualify_base_of_expr (tree t, const char *reason)
958 {
959 t = get_base_address (t);
960 if (sra_mode == SRA_MODE_EARLY_IPA
961 && TREE_CODE (t) == MEM_REF)
962 t = get_ssa_base_param (TREE_OPERAND (t, 0));
963
964 if (t && DECL_P (t))
965 disqualify_candidate (t, reason);
966 }
967
968 /* Scan expression EXPR and create access structures for all accesses to
969 candidates for scalarization. Return the created access or NULL if none is
970 created. */
971
972 static struct access *
973 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
974 {
975 struct access *ret = NULL;
976 bool partial_ref;
977
978 if (TREE_CODE (expr) == BIT_FIELD_REF
979 || TREE_CODE (expr) == IMAGPART_EXPR
980 || TREE_CODE (expr) == REALPART_EXPR)
981 {
982 expr = TREE_OPERAND (expr, 0);
983 partial_ref = true;
984 }
985 else
986 partial_ref = false;
987
988 /* We need to dive through V_C_Es in order to get the size of its parameter
989 and not the result type. Ada produces such statements. We are also
990 capable of handling the topmost V_C_E but not any of those buried in other
991 handled components. */
992 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
993 expr = TREE_OPERAND (expr, 0);
994
995 if (contains_view_convert_expr_p (expr))
996 {
997 disqualify_base_of_expr (expr, "V_C_E under a different handled "
998 "component.");
999 return NULL;
1000 }
1001
1002 switch (TREE_CODE (expr))
1003 {
1004 case MEM_REF:
1005 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1006 && sra_mode != SRA_MODE_EARLY_IPA)
1007 return NULL;
1008 /* fall through */
1009 case VAR_DECL:
1010 case PARM_DECL:
1011 case RESULT_DECL:
1012 case COMPONENT_REF:
1013 case ARRAY_REF:
1014 case ARRAY_RANGE_REF:
1015 ret = create_access (expr, stmt, write);
1016 break;
1017
1018 default:
1019 break;
1020 }
1021
1022 if (write && partial_ref && ret)
1023 ret->grp_partial_lhs = 1;
1024
1025 return ret;
1026 }
1027
1028 /* Scan expression EXPR and create access structures for all accesses to
1029 candidates for scalarization. Return true if any access has been inserted.
1030 STMT must be the statement from which the expression is taken, WRITE must be
1031 true if the expression is a store and false otherwise. */
1032
1033 static bool
1034 build_access_from_expr (tree expr, gimple stmt, bool write)
1035 {
1036 struct access *access;
1037
1038 access = build_access_from_expr_1 (expr, stmt, write);
1039 if (access)
1040 {
1041 /* This means the aggregate is accesses as a whole in a way other than an
1042 assign statement and thus cannot be removed even if we had a scalar
1043 replacement for everything. */
1044 if (cannot_scalarize_away_bitmap)
1045 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1046 return true;
1047 }
1048 return false;
1049 }
1050
1051 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1052 modes in which it matters, return true iff they have been disqualified. RHS
1053 may be NULL, in that case ignore it. If we scalarize an aggregate in
1054 intra-SRA we may need to add statements after each statement. This is not
1055 possible if a statement unconditionally has to end the basic block. */
1056 static bool
1057 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1058 {
1059 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1060 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1061 {
1062 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1063 if (rhs)
1064 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1065 return true;
1066 }
1067 return false;
1068 }
1069
1070 /* Return true iff type of EXP is not sufficiently aligned. */
1071
1072 static bool
1073 tree_non_mode_aligned_mem_p (tree exp)
1074 {
1075 enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
1076 unsigned int align;
1077
1078 if (TREE_CODE (exp) == VIEW_CONVERT_EXPR)
1079 exp = TREE_OPERAND (exp, 0);
1080
1081 if (TREE_CODE (exp) == SSA_NAME
1082 || TREE_CODE (exp) == MEM_REF
1083 || mode == BLKmode
1084 || is_gimple_min_invariant (exp)
1085 || !STRICT_ALIGNMENT)
1086 return false;
1087
1088 align = get_object_alignment (exp);
1089 if (GET_MODE_ALIGNMENT (mode) > align)
1090 return true;
1091
1092 return false;
1093 }
1094
1095 /* Scan expressions occuring in STMT, create access structures for all accesses
1096 to candidates for scalarization and remove those candidates which occur in
1097 statements or expressions that prevent them from being split apart. Return
1098 true if any access has been inserted. */
1099
1100 static bool
1101 build_accesses_from_assign (gimple stmt)
1102 {
1103 tree lhs, rhs;
1104 struct access *lacc, *racc;
1105
1106 if (!gimple_assign_single_p (stmt)
1107 /* Scope clobbers don't influence scalarization. */
1108 || gimple_clobber_p (stmt))
1109 return false;
1110
1111 lhs = gimple_assign_lhs (stmt);
1112 rhs = gimple_assign_rhs1 (stmt);
1113
1114 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1115 return false;
1116
1117 racc = build_access_from_expr_1 (rhs, stmt, false);
1118 lacc = build_access_from_expr_1 (lhs, stmt, true);
1119
1120 if (lacc)
1121 {
1122 lacc->grp_assignment_write = 1;
1123 lacc->grp_unscalarizable_region |= tree_non_mode_aligned_mem_p (rhs);
1124 }
1125
1126 if (racc)
1127 {
1128 racc->grp_assignment_read = 1;
1129 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1130 && !is_gimple_reg_type (racc->type))
1131 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1132 racc->grp_unscalarizable_region |= tree_non_mode_aligned_mem_p (lhs);
1133 }
1134
1135 if (lacc && racc
1136 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1137 && !lacc->grp_unscalarizable_region
1138 && !racc->grp_unscalarizable_region
1139 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1140 /* FIXME: Turn the following line into an assert after PR 40058 is
1141 fixed. */
1142 && lacc->size == racc->size
1143 && useless_type_conversion_p (lacc->type, racc->type))
1144 {
1145 struct assign_link *link;
1146
1147 link = (struct assign_link *) pool_alloc (link_pool);
1148 memset (link, 0, sizeof (struct assign_link));
1149
1150 link->lacc = lacc;
1151 link->racc = racc;
1152
1153 add_link_to_rhs (racc, link);
1154 }
1155
1156 return lacc || racc;
1157 }
1158
1159 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1160 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1161
1162 static bool
1163 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1164 void *data ATTRIBUTE_UNUSED)
1165 {
1166 op = get_base_address (op);
1167 if (op
1168 && DECL_P (op))
1169 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1170
1171 return false;
1172 }
1173
1174 /* Return true iff callsite CALL has at least as many actual arguments as there
1175 are formal parameters of the function currently processed by IPA-SRA. */
1176
1177 static inline bool
1178 callsite_has_enough_arguments_p (gimple call)
1179 {
1180 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1181 }
1182
1183 /* Scan function and look for interesting expressions and create access
1184 structures for them. Return true iff any access is created. */
1185
1186 static bool
1187 scan_function (void)
1188 {
1189 basic_block bb;
1190 bool ret = false;
1191
1192 FOR_EACH_BB (bb)
1193 {
1194 gimple_stmt_iterator gsi;
1195 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1196 {
1197 gimple stmt = gsi_stmt (gsi);
1198 tree t;
1199 unsigned i;
1200
1201 if (final_bbs && stmt_can_throw_external (stmt))
1202 bitmap_set_bit (final_bbs, bb->index);
1203 switch (gimple_code (stmt))
1204 {
1205 case GIMPLE_RETURN:
1206 t = gimple_return_retval (stmt);
1207 if (t != NULL_TREE)
1208 ret |= build_access_from_expr (t, stmt, false);
1209 if (final_bbs)
1210 bitmap_set_bit (final_bbs, bb->index);
1211 break;
1212
1213 case GIMPLE_ASSIGN:
1214 ret |= build_accesses_from_assign (stmt);
1215 break;
1216
1217 case GIMPLE_CALL:
1218 for (i = 0; i < gimple_call_num_args (stmt); i++)
1219 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1220 stmt, false);
1221
1222 if (sra_mode == SRA_MODE_EARLY_IPA)
1223 {
1224 tree dest = gimple_call_fndecl (stmt);
1225 int flags = gimple_call_flags (stmt);
1226
1227 if (dest)
1228 {
1229 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1230 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1231 encountered_apply_args = true;
1232 if (cgraph_get_node (dest)
1233 == cgraph_get_node (current_function_decl))
1234 {
1235 encountered_recursive_call = true;
1236 if (!callsite_has_enough_arguments_p (stmt))
1237 encountered_unchangable_recursive_call = true;
1238 }
1239 }
1240
1241 if (final_bbs
1242 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1243 bitmap_set_bit (final_bbs, bb->index);
1244 }
1245
1246 t = gimple_call_lhs (stmt);
1247 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1248 ret |= build_access_from_expr (t, stmt, true);
1249 break;
1250
1251 case GIMPLE_ASM:
1252 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1253 asm_visit_addr);
1254 if (final_bbs)
1255 bitmap_set_bit (final_bbs, bb->index);
1256
1257 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1258 {
1259 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1260 ret |= build_access_from_expr (t, stmt, false);
1261 }
1262 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1263 {
1264 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1265 ret |= build_access_from_expr (t, stmt, true);
1266 }
1267 break;
1268
1269 default:
1270 break;
1271 }
1272 }
1273 }
1274
1275 return ret;
1276 }
1277
1278 /* Helper of QSORT function. There are pointers to accesses in the array. An
1279 access is considered smaller than another if it has smaller offset or if the
1280 offsets are the same but is size is bigger. */
1281
1282 static int
1283 compare_access_positions (const void *a, const void *b)
1284 {
1285 const access_p *fp1 = (const access_p *) a;
1286 const access_p *fp2 = (const access_p *) b;
1287 const access_p f1 = *fp1;
1288 const access_p f2 = *fp2;
1289
1290 if (f1->offset != f2->offset)
1291 return f1->offset < f2->offset ? -1 : 1;
1292
1293 if (f1->size == f2->size)
1294 {
1295 if (f1->type == f2->type)
1296 return 0;
1297 /* Put any non-aggregate type before any aggregate type. */
1298 else if (!is_gimple_reg_type (f1->type)
1299 && is_gimple_reg_type (f2->type))
1300 return 1;
1301 else if (is_gimple_reg_type (f1->type)
1302 && !is_gimple_reg_type (f2->type))
1303 return -1;
1304 /* Put any complex or vector type before any other scalar type. */
1305 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1306 && TREE_CODE (f1->type) != VECTOR_TYPE
1307 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1308 || TREE_CODE (f2->type) == VECTOR_TYPE))
1309 return 1;
1310 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1311 || TREE_CODE (f1->type) == VECTOR_TYPE)
1312 && TREE_CODE (f2->type) != COMPLEX_TYPE
1313 && TREE_CODE (f2->type) != VECTOR_TYPE)
1314 return -1;
1315 /* Put the integral type with the bigger precision first. */
1316 else if (INTEGRAL_TYPE_P (f1->type)
1317 && INTEGRAL_TYPE_P (f2->type))
1318 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1319 /* Put any integral type with non-full precision last. */
1320 else if (INTEGRAL_TYPE_P (f1->type)
1321 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1322 != TYPE_PRECISION (f1->type)))
1323 return 1;
1324 else if (INTEGRAL_TYPE_P (f2->type)
1325 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1326 != TYPE_PRECISION (f2->type)))
1327 return -1;
1328 /* Stabilize the sort. */
1329 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1330 }
1331
1332 /* We want the bigger accesses first, thus the opposite operator in the next
1333 line: */
1334 return f1->size > f2->size ? -1 : 1;
1335 }
1336
1337
1338 /* Append a name of the declaration to the name obstack. A helper function for
1339 make_fancy_name. */
1340
1341 static void
1342 make_fancy_decl_name (tree decl)
1343 {
1344 char buffer[32];
1345
1346 tree name = DECL_NAME (decl);
1347 if (name)
1348 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1349 IDENTIFIER_LENGTH (name));
1350 else
1351 {
1352 sprintf (buffer, "D%u", DECL_UID (decl));
1353 obstack_grow (&name_obstack, buffer, strlen (buffer));
1354 }
1355 }
1356
1357 /* Helper for make_fancy_name. */
1358
1359 static void
1360 make_fancy_name_1 (tree expr)
1361 {
1362 char buffer[32];
1363 tree index;
1364
1365 if (DECL_P (expr))
1366 {
1367 make_fancy_decl_name (expr);
1368 return;
1369 }
1370
1371 switch (TREE_CODE (expr))
1372 {
1373 case COMPONENT_REF:
1374 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1375 obstack_1grow (&name_obstack, '$');
1376 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1377 break;
1378
1379 case ARRAY_REF:
1380 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1381 obstack_1grow (&name_obstack, '$');
1382 /* Arrays with only one element may not have a constant as their
1383 index. */
1384 index = TREE_OPERAND (expr, 1);
1385 if (TREE_CODE (index) != INTEGER_CST)
1386 break;
1387 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1388 obstack_grow (&name_obstack, buffer, strlen (buffer));
1389 break;
1390
1391 case ADDR_EXPR:
1392 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1393 break;
1394
1395 case MEM_REF:
1396 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1397 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1398 {
1399 obstack_1grow (&name_obstack, '$');
1400 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1401 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1402 obstack_grow (&name_obstack, buffer, strlen (buffer));
1403 }
1404 break;
1405
1406 case BIT_FIELD_REF:
1407 case REALPART_EXPR:
1408 case IMAGPART_EXPR:
1409 gcc_unreachable (); /* we treat these as scalars. */
1410 break;
1411 default:
1412 break;
1413 }
1414 }
1415
1416 /* Create a human readable name for replacement variable of ACCESS. */
1417
1418 static char *
1419 make_fancy_name (tree expr)
1420 {
1421 make_fancy_name_1 (expr);
1422 obstack_1grow (&name_obstack, '\0');
1423 return XOBFINISH (&name_obstack, char *);
1424 }
1425
1426 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1427 EXP_TYPE at the given OFFSET. If BASE is something for which
1428 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1429 to insert new statements either before or below the current one as specified
1430 by INSERT_AFTER. This function is not capable of handling bitfields. */
1431
1432 tree
1433 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1434 tree exp_type, gimple_stmt_iterator *gsi,
1435 bool insert_after)
1436 {
1437 tree prev_base = base;
1438 tree off;
1439 HOST_WIDE_INT base_offset;
1440
1441 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1442
1443 base = get_addr_base_and_unit_offset (base, &base_offset);
1444
1445 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1446 offset such as array[var_index]. */
1447 if (!base)
1448 {
1449 gimple stmt;
1450 tree tmp, addr;
1451
1452 gcc_checking_assert (gsi);
1453 tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1454 add_referenced_var (tmp);
1455 tmp = make_ssa_name (tmp, NULL);
1456 addr = build_fold_addr_expr (unshare_expr (prev_base));
1457 STRIP_USELESS_TYPE_CONVERSION (addr);
1458 stmt = gimple_build_assign (tmp, addr);
1459 gimple_set_location (stmt, loc);
1460 SSA_NAME_DEF_STMT (tmp) = stmt;
1461 if (insert_after)
1462 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1463 else
1464 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1465 update_stmt (stmt);
1466
1467 off = build_int_cst (reference_alias_ptr_type (prev_base),
1468 offset / BITS_PER_UNIT);
1469 base = tmp;
1470 }
1471 else if (TREE_CODE (base) == MEM_REF)
1472 {
1473 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1474 base_offset + offset / BITS_PER_UNIT);
1475 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1476 base = unshare_expr (TREE_OPERAND (base, 0));
1477 }
1478 else
1479 {
1480 off = build_int_cst (reference_alias_ptr_type (base),
1481 base_offset + offset / BITS_PER_UNIT);
1482 base = build_fold_addr_expr (unshare_expr (base));
1483 }
1484
1485 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1486 }
1487
1488 /* Construct a memory reference to a part of an aggregate BASE at the given
1489 OFFSET and of the same type as MODEL. In case this is a reference to a
1490 component, the function will replicate the last COMPONENT_REF of model's
1491 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1492 build_ref_for_offset. */
1493
1494 static tree
1495 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1496 struct access *model, gimple_stmt_iterator *gsi,
1497 bool insert_after)
1498 {
1499 if (TREE_CODE (model->expr) == COMPONENT_REF)
1500 {
1501 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1502 tree cr_offset = component_ref_field_offset (model->expr);
1503
1504 gcc_assert (cr_offset && host_integerp (cr_offset, 1));
1505 offset -= TREE_INT_CST_LOW (cr_offset) * BITS_PER_UNIT;
1506 offset -= TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (fld));
1507 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1508 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1509 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1510 TREE_OPERAND (model->expr, 2));
1511 }
1512 else
1513 return build_ref_for_offset (loc, base, offset, model->type,
1514 gsi, insert_after);
1515 }
1516
1517 /* Construct a memory reference consisting of component_refs and array_refs to
1518 a part of an aggregate *RES (which is of type TYPE). The requested part
1519 should have type EXP_TYPE at be the given OFFSET. This function might not
1520 succeed, it returns true when it does and only then *RES points to something
1521 meaningful. This function should be used only to build expressions that we
1522 might need to present to user (e.g. in warnings). In all other situations,
1523 build_ref_for_model or build_ref_for_offset should be used instead. */
1524
1525 static bool
1526 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1527 tree exp_type)
1528 {
1529 while (1)
1530 {
1531 tree fld;
1532 tree tr_size, index, minidx;
1533 HOST_WIDE_INT el_size;
1534
1535 if (offset == 0 && exp_type
1536 && types_compatible_p (exp_type, type))
1537 return true;
1538
1539 switch (TREE_CODE (type))
1540 {
1541 case UNION_TYPE:
1542 case QUAL_UNION_TYPE:
1543 case RECORD_TYPE:
1544 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1545 {
1546 HOST_WIDE_INT pos, size;
1547 tree expr, *expr_ptr;
1548
1549 if (TREE_CODE (fld) != FIELD_DECL)
1550 continue;
1551
1552 pos = int_bit_position (fld);
1553 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1554 tr_size = DECL_SIZE (fld);
1555 if (!tr_size || !host_integerp (tr_size, 1))
1556 continue;
1557 size = tree_low_cst (tr_size, 1);
1558 if (size == 0)
1559 {
1560 if (pos != offset)
1561 continue;
1562 }
1563 else if (pos > offset || (pos + size) <= offset)
1564 continue;
1565
1566 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1567 NULL_TREE);
1568 expr_ptr = &expr;
1569 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1570 offset - pos, exp_type))
1571 {
1572 *res = expr;
1573 return true;
1574 }
1575 }
1576 return false;
1577
1578 case ARRAY_TYPE:
1579 tr_size = TYPE_SIZE (TREE_TYPE (type));
1580 if (!tr_size || !host_integerp (tr_size, 1))
1581 return false;
1582 el_size = tree_low_cst (tr_size, 1);
1583
1584 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1585 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1586 return false;
1587 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1588 if (!integer_zerop (minidx))
1589 index = int_const_binop (PLUS_EXPR, index, minidx);
1590 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1591 NULL_TREE, NULL_TREE);
1592 offset = offset % el_size;
1593 type = TREE_TYPE (type);
1594 break;
1595
1596 default:
1597 if (offset != 0)
1598 return false;
1599
1600 if (exp_type)
1601 return false;
1602 else
1603 return true;
1604 }
1605 }
1606 }
1607
1608 /* Return true iff TYPE is stdarg va_list type. */
1609
1610 static inline bool
1611 is_va_list_type (tree type)
1612 {
1613 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1614 }
1615
1616 /* Print message to dump file why a variable was rejected. */
1617
1618 static void
1619 reject (tree var, const char *msg)
1620 {
1621 if (dump_file && (dump_flags & TDF_DETAILS))
1622 {
1623 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1624 print_generic_expr (dump_file, var, 0);
1625 fprintf (dump_file, "\n");
1626 }
1627 }
1628
1629 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1630 those with type which is suitable for scalarization. */
1631
1632 static bool
1633 find_var_candidates (void)
1634 {
1635 tree var, type;
1636 referenced_var_iterator rvi;
1637 bool ret = false;
1638 const char *msg;
1639
1640 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1641 {
1642 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1643 continue;
1644 type = TREE_TYPE (var);
1645
1646 if (!AGGREGATE_TYPE_P (type))
1647 {
1648 reject (var, "not aggregate");
1649 continue;
1650 }
1651 if (needs_to_live_in_memory (var))
1652 {
1653 reject (var, "needs to live in memory");
1654 continue;
1655 }
1656 if (TREE_THIS_VOLATILE (var))
1657 {
1658 reject (var, "is volatile");
1659 continue;
1660 }
1661 if (!COMPLETE_TYPE_P (type))
1662 {
1663 reject (var, "has incomplete type");
1664 continue;
1665 }
1666 if (!host_integerp (TYPE_SIZE (type), 1))
1667 {
1668 reject (var, "type size not fixed");
1669 continue;
1670 }
1671 if (tree_low_cst (TYPE_SIZE (type), 1) == 0)
1672 {
1673 reject (var, "type size is zero");
1674 continue;
1675 }
1676 if (type_internals_preclude_sra_p (type, &msg))
1677 {
1678 reject (var, msg);
1679 continue;
1680 }
1681 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1682 we also want to schedule it rather late. Thus we ignore it in
1683 the early pass. */
1684 (sra_mode == SRA_MODE_EARLY_INTRA
1685 && is_va_list_type (type)))
1686 {
1687 reject (var, "is va_list");
1688 continue;
1689 }
1690
1691 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1692
1693 if (dump_file && (dump_flags & TDF_DETAILS))
1694 {
1695 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1696 print_generic_expr (dump_file, var, 0);
1697 fprintf (dump_file, "\n");
1698 }
1699 ret = true;
1700 }
1701
1702 return ret;
1703 }
1704
1705 /* Sort all accesses for the given variable, check for partial overlaps and
1706 return NULL if there are any. If there are none, pick a representative for
1707 each combination of offset and size and create a linked list out of them.
1708 Return the pointer to the first representative and make sure it is the first
1709 one in the vector of accesses. */
1710
1711 static struct access *
1712 sort_and_splice_var_accesses (tree var)
1713 {
1714 int i, j, access_count;
1715 struct access *res, **prev_acc_ptr = &res;
1716 VEC (access_p, heap) *access_vec;
1717 bool first = true;
1718 HOST_WIDE_INT low = -1, high = 0;
1719
1720 access_vec = get_base_access_vector (var);
1721 if (!access_vec)
1722 return NULL;
1723 access_count = VEC_length (access_p, access_vec);
1724
1725 /* Sort by <OFFSET, SIZE>. */
1726 VEC_qsort (access_p, access_vec, compare_access_positions);
1727
1728 i = 0;
1729 while (i < access_count)
1730 {
1731 struct access *access = VEC_index (access_p, access_vec, i);
1732 bool grp_write = access->write;
1733 bool grp_read = !access->write;
1734 bool grp_scalar_write = access->write
1735 && is_gimple_reg_type (access->type);
1736 bool grp_scalar_read = !access->write
1737 && is_gimple_reg_type (access->type);
1738 bool grp_assignment_read = access->grp_assignment_read;
1739 bool grp_assignment_write = access->grp_assignment_write;
1740 bool multiple_scalar_reads = false;
1741 bool total_scalarization = access->grp_total_scalarization;
1742 bool grp_partial_lhs = access->grp_partial_lhs;
1743 bool first_scalar = is_gimple_reg_type (access->type);
1744 bool unscalarizable_region = access->grp_unscalarizable_region;
1745
1746 if (first || access->offset >= high)
1747 {
1748 first = false;
1749 low = access->offset;
1750 high = access->offset + access->size;
1751 }
1752 else if (access->offset > low && access->offset + access->size > high)
1753 return NULL;
1754 else
1755 gcc_assert (access->offset >= low
1756 && access->offset + access->size <= high);
1757
1758 j = i + 1;
1759 while (j < access_count)
1760 {
1761 struct access *ac2 = VEC_index (access_p, access_vec, j);
1762 if (ac2->offset != access->offset || ac2->size != access->size)
1763 break;
1764 if (ac2->write)
1765 {
1766 grp_write = true;
1767 grp_scalar_write = (grp_scalar_write
1768 || is_gimple_reg_type (ac2->type));
1769 }
1770 else
1771 {
1772 grp_read = true;
1773 if (is_gimple_reg_type (ac2->type))
1774 {
1775 if (grp_scalar_read)
1776 multiple_scalar_reads = true;
1777 else
1778 grp_scalar_read = true;
1779 }
1780 }
1781 grp_assignment_read |= ac2->grp_assignment_read;
1782 grp_assignment_write |= ac2->grp_assignment_write;
1783 grp_partial_lhs |= ac2->grp_partial_lhs;
1784 unscalarizable_region |= ac2->grp_unscalarizable_region;
1785 total_scalarization |= ac2->grp_total_scalarization;
1786 relink_to_new_repr (access, ac2);
1787
1788 /* If there are both aggregate-type and scalar-type accesses with
1789 this combination of size and offset, the comparison function
1790 should have put the scalars first. */
1791 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1792 ac2->group_representative = access;
1793 j++;
1794 }
1795
1796 i = j;
1797
1798 access->group_representative = access;
1799 access->grp_write = grp_write;
1800 access->grp_read = grp_read;
1801 access->grp_scalar_read = grp_scalar_read;
1802 access->grp_scalar_write = grp_scalar_write;
1803 access->grp_assignment_read = grp_assignment_read;
1804 access->grp_assignment_write = grp_assignment_write;
1805 access->grp_hint = multiple_scalar_reads || total_scalarization;
1806 access->grp_total_scalarization = total_scalarization;
1807 access->grp_partial_lhs = grp_partial_lhs;
1808 access->grp_unscalarizable_region = unscalarizable_region;
1809 if (access->first_link)
1810 add_access_to_work_queue (access);
1811
1812 *prev_acc_ptr = access;
1813 prev_acc_ptr = &access->next_grp;
1814 }
1815
1816 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1817 return res;
1818 }
1819
1820 /* Create a variable for the given ACCESS which determines the type, name and a
1821 few other properties. Return the variable declaration and store it also to
1822 ACCESS->replacement. */
1823
1824 static tree
1825 create_access_replacement (struct access *access, bool rename)
1826 {
1827 tree repl;
1828
1829 repl = create_tmp_var (access->type, "SR");
1830 add_referenced_var (repl);
1831 if (rename)
1832 mark_sym_for_renaming (repl);
1833
1834 if (!access->grp_partial_lhs
1835 && (TREE_CODE (access->type) == COMPLEX_TYPE
1836 || TREE_CODE (access->type) == VECTOR_TYPE))
1837 DECL_GIMPLE_REG_P (repl) = 1;
1838
1839 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1840 DECL_ARTIFICIAL (repl) = 1;
1841 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1842
1843 if (DECL_NAME (access->base)
1844 && !DECL_IGNORED_P (access->base)
1845 && !DECL_ARTIFICIAL (access->base))
1846 {
1847 char *pretty_name = make_fancy_name (access->expr);
1848 tree debug_expr = unshare_expr (access->expr), d;
1849
1850 DECL_NAME (repl) = get_identifier (pretty_name);
1851 obstack_free (&name_obstack, pretty_name);
1852
1853 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1854 as DECL_DEBUG_EXPR isn't considered when looking for still
1855 used SSA_NAMEs and thus they could be freed. All debug info
1856 generation cares is whether something is constant or variable
1857 and that get_ref_base_and_extent works properly on the
1858 expression. */
1859 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1860 switch (TREE_CODE (d))
1861 {
1862 case ARRAY_REF:
1863 case ARRAY_RANGE_REF:
1864 if (TREE_OPERAND (d, 1)
1865 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1866 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1867 if (TREE_OPERAND (d, 3)
1868 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1869 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1870 /* FALLTHRU */
1871 case COMPONENT_REF:
1872 if (TREE_OPERAND (d, 2)
1873 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1874 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1875 break;
1876 default:
1877 break;
1878 }
1879 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1880 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1881 if (access->grp_no_warning)
1882 TREE_NO_WARNING (repl) = 1;
1883 else
1884 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1885 }
1886 else
1887 TREE_NO_WARNING (repl) = 1;
1888
1889 if (dump_file)
1890 {
1891 fprintf (dump_file, "Created a replacement for ");
1892 print_generic_expr (dump_file, access->base, 0);
1893 fprintf (dump_file, " offset: %u, size: %u: ",
1894 (unsigned) access->offset, (unsigned) access->size);
1895 print_generic_expr (dump_file, repl, 0);
1896 fprintf (dump_file, "\n");
1897 }
1898 sra_stats.replacements++;
1899
1900 return repl;
1901 }
1902
1903 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1904
1905 static inline tree
1906 get_access_replacement (struct access *access)
1907 {
1908 gcc_assert (access->grp_to_be_replaced);
1909
1910 if (!access->replacement_decl)
1911 access->replacement_decl = create_access_replacement (access, true);
1912 return access->replacement_decl;
1913 }
1914
1915 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
1916 not mark it for renaming. */
1917
1918 static inline tree
1919 get_unrenamed_access_replacement (struct access *access)
1920 {
1921 gcc_assert (!access->grp_to_be_replaced);
1922
1923 if (!access->replacement_decl)
1924 access->replacement_decl = create_access_replacement (access, false);
1925 return access->replacement_decl;
1926 }
1927
1928
1929 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1930 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1931 to it is not "within" the root. Return false iff some accesses partially
1932 overlap. */
1933
1934 static bool
1935 build_access_subtree (struct access **access)
1936 {
1937 struct access *root = *access, *last_child = NULL;
1938 HOST_WIDE_INT limit = root->offset + root->size;
1939
1940 *access = (*access)->next_grp;
1941 while (*access && (*access)->offset + (*access)->size <= limit)
1942 {
1943 if (!last_child)
1944 root->first_child = *access;
1945 else
1946 last_child->next_sibling = *access;
1947 last_child = *access;
1948
1949 if (!build_access_subtree (access))
1950 return false;
1951 }
1952
1953 if (*access && (*access)->offset < limit)
1954 return false;
1955
1956 return true;
1957 }
1958
1959 /* Build a tree of access representatives, ACCESS is the pointer to the first
1960 one, others are linked in a list by the next_grp field. Return false iff
1961 some accesses partially overlap. */
1962
1963 static bool
1964 build_access_trees (struct access *access)
1965 {
1966 while (access)
1967 {
1968 struct access *root = access;
1969
1970 if (!build_access_subtree (&access))
1971 return false;
1972 root->next_grp = access;
1973 }
1974 return true;
1975 }
1976
1977 /* Return true if expr contains some ARRAY_REFs into a variable bounded
1978 array. */
1979
1980 static bool
1981 expr_with_var_bounded_array_refs_p (tree expr)
1982 {
1983 while (handled_component_p (expr))
1984 {
1985 if (TREE_CODE (expr) == ARRAY_REF
1986 && !host_integerp (array_ref_low_bound (expr), 0))
1987 return true;
1988 expr = TREE_OPERAND (expr, 0);
1989 }
1990 return false;
1991 }
1992
1993 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
1994 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
1995 sorts of access flags appropriately along the way, notably always set
1996 grp_read and grp_assign_read according to MARK_READ and grp_write when
1997 MARK_WRITE is true.
1998
1999 Creating a replacement for a scalar access is considered beneficial if its
2000 grp_hint is set (this means we are either attempting total scalarization or
2001 there is more than one direct read access) or according to the following
2002 table:
2003
2004 Access written to through a scalar type (once or more times)
2005 |
2006 | Written to in an assignment statement
2007 | |
2008 | | Access read as scalar _once_
2009 | | |
2010 | | | Read in an assignment statement
2011 | | | |
2012 | | | | Scalarize Comment
2013 -----------------------------------------------------------------------------
2014 0 0 0 0 No access for the scalar
2015 0 0 0 1 No access for the scalar
2016 0 0 1 0 No Single read - won't help
2017 0 0 1 1 No The same case
2018 0 1 0 0 No access for the scalar
2019 0 1 0 1 No access for the scalar
2020 0 1 1 0 Yes s = *g; return s.i;
2021 0 1 1 1 Yes The same case as above
2022 1 0 0 0 No Won't help
2023 1 0 0 1 Yes s.i = 1; *g = s;
2024 1 0 1 0 Yes s.i = 5; g = s.i;
2025 1 0 1 1 Yes The same case as above
2026 1 1 0 0 No Won't help.
2027 1 1 0 1 Yes s.i = 1; *g = s;
2028 1 1 1 0 Yes s = *g; return s.i;
2029 1 1 1 1 Yes Any of the above yeses */
2030
2031 static bool
2032 analyze_access_subtree (struct access *root, struct access *parent,
2033 bool allow_replacements)
2034 {
2035 struct access *child;
2036 HOST_WIDE_INT limit = root->offset + root->size;
2037 HOST_WIDE_INT covered_to = root->offset;
2038 bool scalar = is_gimple_reg_type (root->type);
2039 bool hole = false, sth_created = false;
2040
2041 if (parent)
2042 {
2043 if (parent->grp_read)
2044 root->grp_read = 1;
2045 if (parent->grp_assignment_read)
2046 root->grp_assignment_read = 1;
2047 if (parent->grp_write)
2048 root->grp_write = 1;
2049 if (parent->grp_assignment_write)
2050 root->grp_assignment_write = 1;
2051 if (parent->grp_total_scalarization)
2052 root->grp_total_scalarization = 1;
2053 }
2054
2055 if (root->grp_unscalarizable_region)
2056 allow_replacements = false;
2057
2058 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2059 allow_replacements = false;
2060
2061 for (child = root->first_child; child; child = child->next_sibling)
2062 {
2063 hole |= covered_to < child->offset;
2064 sth_created |= analyze_access_subtree (child, root,
2065 allow_replacements && !scalar);
2066
2067 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2068 root->grp_total_scalarization &= child->grp_total_scalarization;
2069 if (child->grp_covered)
2070 covered_to += child->size;
2071 else
2072 hole = true;
2073 }
2074
2075 if (allow_replacements && scalar && !root->first_child
2076 && (root->grp_hint
2077 || ((root->grp_scalar_read || root->grp_assignment_read)
2078 && (root->grp_scalar_write || root->grp_assignment_write))))
2079 {
2080 bool new_integer_type;
2081 if (TREE_CODE (root->type) == ENUMERAL_TYPE)
2082 {
2083 tree rt = root->type;
2084 root->type = build_nonstandard_integer_type (TYPE_PRECISION (rt),
2085 TYPE_UNSIGNED (rt));
2086 new_integer_type = true;
2087 }
2088 else
2089 new_integer_type = false;
2090
2091 if (dump_file && (dump_flags & TDF_DETAILS))
2092 {
2093 fprintf (dump_file, "Marking ");
2094 print_generic_expr (dump_file, root->base, 0);
2095 fprintf (dump_file, " offset: %u, size: %u ",
2096 (unsigned) root->offset, (unsigned) root->size);
2097 fprintf (dump_file, " to be replaced%s.\n",
2098 new_integer_type ? " with an integer": "");
2099 }
2100
2101 root->grp_to_be_replaced = 1;
2102 sth_created = true;
2103 hole = false;
2104 }
2105 else
2106 {
2107 if (covered_to < limit)
2108 hole = true;
2109 if (scalar)
2110 root->grp_total_scalarization = 0;
2111 }
2112
2113 if (sth_created
2114 && (!hole || root->grp_total_scalarization))
2115 {
2116 root->grp_covered = 1;
2117 return true;
2118 }
2119 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2120 root->grp_unscalarized_data = 1; /* not covered and written to */
2121 if (sth_created)
2122 return true;
2123 return false;
2124 }
2125
2126 /* Analyze all access trees linked by next_grp by the means of
2127 analyze_access_subtree. */
2128 static bool
2129 analyze_access_trees (struct access *access)
2130 {
2131 bool ret = false;
2132
2133 while (access)
2134 {
2135 if (analyze_access_subtree (access, NULL, true))
2136 ret = true;
2137 access = access->next_grp;
2138 }
2139
2140 return ret;
2141 }
2142
2143 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2144 SIZE would conflict with an already existing one. If exactly such a child
2145 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2146
2147 static bool
2148 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2149 HOST_WIDE_INT size, struct access **exact_match)
2150 {
2151 struct access *child;
2152
2153 for (child = lacc->first_child; child; child = child->next_sibling)
2154 {
2155 if (child->offset == norm_offset && child->size == size)
2156 {
2157 *exact_match = child;
2158 return true;
2159 }
2160
2161 if (child->offset < norm_offset + size
2162 && child->offset + child->size > norm_offset)
2163 return true;
2164 }
2165
2166 return false;
2167 }
2168
2169 /* Create a new child access of PARENT, with all properties just like MODEL
2170 except for its offset and with its grp_write false and grp_read true.
2171 Return the new access or NULL if it cannot be created. Note that this access
2172 is created long after all splicing and sorting, it's not located in any
2173 access vector and is automatically a representative of its group. */
2174
2175 static struct access *
2176 create_artificial_child_access (struct access *parent, struct access *model,
2177 HOST_WIDE_INT new_offset)
2178 {
2179 struct access *access;
2180 struct access **child;
2181 tree expr = parent->base;
2182
2183 gcc_assert (!model->grp_unscalarizable_region);
2184
2185 access = (struct access *) pool_alloc (access_pool);
2186 memset (access, 0, sizeof (struct access));
2187 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2188 model->type))
2189 {
2190 access->grp_no_warning = true;
2191 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2192 new_offset, model, NULL, false);
2193 }
2194
2195 access->base = parent->base;
2196 access->expr = expr;
2197 access->offset = new_offset;
2198 access->size = model->size;
2199 access->type = model->type;
2200 access->grp_write = true;
2201 access->grp_read = false;
2202
2203 child = &parent->first_child;
2204 while (*child && (*child)->offset < new_offset)
2205 child = &(*child)->next_sibling;
2206
2207 access->next_sibling = *child;
2208 *child = access;
2209
2210 return access;
2211 }
2212
2213
2214 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2215 true if any new subaccess was created. Additionally, if RACC is a scalar
2216 access but LACC is not, change the type of the latter, if possible. */
2217
2218 static bool
2219 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2220 {
2221 struct access *rchild;
2222 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2223 bool ret = false;
2224
2225 if (is_gimple_reg_type (lacc->type)
2226 || lacc->grp_unscalarizable_region
2227 || racc->grp_unscalarizable_region)
2228 return false;
2229
2230 if (!lacc->first_child && !racc->first_child
2231 && is_gimple_reg_type (racc->type))
2232 {
2233 tree t = lacc->base;
2234
2235 lacc->type = racc->type;
2236 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t), lacc->offset,
2237 racc->type))
2238 lacc->expr = t;
2239 else
2240 {
2241 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2242 lacc->base, lacc->offset,
2243 racc, NULL, false);
2244 lacc->grp_no_warning = true;
2245 }
2246 return false;
2247 }
2248
2249 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2250 {
2251 struct access *new_acc = NULL;
2252 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2253
2254 if (rchild->grp_unscalarizable_region)
2255 continue;
2256
2257 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2258 &new_acc))
2259 {
2260 if (new_acc)
2261 {
2262 rchild->grp_hint = 1;
2263 new_acc->grp_hint |= new_acc->grp_read;
2264 if (rchild->first_child)
2265 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2266 }
2267 continue;
2268 }
2269
2270 rchild->grp_hint = 1;
2271 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2272 if (new_acc)
2273 {
2274 ret = true;
2275 if (racc->first_child)
2276 propagate_subaccesses_across_link (new_acc, rchild);
2277 }
2278 }
2279
2280 return ret;
2281 }
2282
2283 /* Propagate all subaccesses across assignment links. */
2284
2285 static void
2286 propagate_all_subaccesses (void)
2287 {
2288 while (work_queue_head)
2289 {
2290 struct access *racc = pop_access_from_work_queue ();
2291 struct assign_link *link;
2292
2293 gcc_assert (racc->first_link);
2294
2295 for (link = racc->first_link; link; link = link->next)
2296 {
2297 struct access *lacc = link->lacc;
2298
2299 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2300 continue;
2301 lacc = lacc->group_representative;
2302 if (propagate_subaccesses_across_link (lacc, racc)
2303 && lacc->first_link)
2304 add_access_to_work_queue (lacc);
2305 }
2306 }
2307 }
2308
2309 /* Go through all accesses collected throughout the (intraprocedural) analysis
2310 stage, exclude overlapping ones, identify representatives and build trees
2311 out of them, making decisions about scalarization on the way. Return true
2312 iff there are any to-be-scalarized variables after this stage. */
2313
2314 static bool
2315 analyze_all_variable_accesses (void)
2316 {
2317 int res = 0;
2318 bitmap tmp = BITMAP_ALLOC (NULL);
2319 bitmap_iterator bi;
2320 unsigned i, max_total_scalarization_size;
2321
2322 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2323 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2324
2325 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2326 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2327 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2328 {
2329 tree var = referenced_var (i);
2330
2331 if (TREE_CODE (var) == VAR_DECL
2332 && type_consists_of_records_p (TREE_TYPE (var)))
2333 {
2334 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2335 <= max_total_scalarization_size)
2336 {
2337 completely_scalarize_var (var);
2338 if (dump_file && (dump_flags & TDF_DETAILS))
2339 {
2340 fprintf (dump_file, "Will attempt to totally scalarize ");
2341 print_generic_expr (dump_file, var, 0);
2342 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2343 }
2344 }
2345 else if (dump_file && (dump_flags & TDF_DETAILS))
2346 {
2347 fprintf (dump_file, "Too big to totally scalarize: ");
2348 print_generic_expr (dump_file, var, 0);
2349 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2350 }
2351 }
2352 }
2353
2354 bitmap_copy (tmp, candidate_bitmap);
2355 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2356 {
2357 tree var = referenced_var (i);
2358 struct access *access;
2359
2360 access = sort_and_splice_var_accesses (var);
2361 if (!access || !build_access_trees (access))
2362 disqualify_candidate (var,
2363 "No or inhibitingly overlapping accesses.");
2364 }
2365
2366 propagate_all_subaccesses ();
2367
2368 bitmap_copy (tmp, candidate_bitmap);
2369 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2370 {
2371 tree var = referenced_var (i);
2372 struct access *access = get_first_repr_for_decl (var);
2373
2374 if (analyze_access_trees (access))
2375 {
2376 res++;
2377 if (dump_file && (dump_flags & TDF_DETAILS))
2378 {
2379 fprintf (dump_file, "\nAccess trees for ");
2380 print_generic_expr (dump_file, var, 0);
2381 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2382 dump_access_tree (dump_file, access);
2383 fprintf (dump_file, "\n");
2384 }
2385 }
2386 else
2387 disqualify_candidate (var, "No scalar replacements to be created.");
2388 }
2389
2390 BITMAP_FREE (tmp);
2391
2392 if (res)
2393 {
2394 statistics_counter_event (cfun, "Scalarized aggregates", res);
2395 return true;
2396 }
2397 else
2398 return false;
2399 }
2400
2401 /* Generate statements copying scalar replacements of accesses within a subtree
2402 into or out of AGG. ACCESS, all its children, siblings and their children
2403 are to be processed. AGG is an aggregate type expression (can be a
2404 declaration but does not have to be, it can for example also be a mem_ref or
2405 a series of handled components). TOP_OFFSET is the offset of the processed
2406 subtree which has to be subtracted from offsets of individual accesses to
2407 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2408 replacements in the interval <start_offset, start_offset + chunk_size>,
2409 otherwise copy all. GSI is a statement iterator used to place the new
2410 statements. WRITE should be true when the statements should write from AGG
2411 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2412 statements will be added after the current statement in GSI, they will be
2413 added before the statement otherwise. */
2414
2415 static void
2416 generate_subtree_copies (struct access *access, tree agg,
2417 HOST_WIDE_INT top_offset,
2418 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2419 gimple_stmt_iterator *gsi, bool write,
2420 bool insert_after, location_t loc)
2421 {
2422 do
2423 {
2424 if (chunk_size && access->offset >= start_offset + chunk_size)
2425 return;
2426
2427 if (access->grp_to_be_replaced
2428 && (chunk_size == 0
2429 || access->offset + access->size > start_offset))
2430 {
2431 tree expr, repl = get_access_replacement (access);
2432 gimple stmt;
2433
2434 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2435 access, gsi, insert_after);
2436
2437 if (write)
2438 {
2439 if (access->grp_partial_lhs)
2440 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2441 !insert_after,
2442 insert_after ? GSI_NEW_STMT
2443 : GSI_SAME_STMT);
2444 stmt = gimple_build_assign (repl, expr);
2445 }
2446 else
2447 {
2448 TREE_NO_WARNING (repl) = 1;
2449 if (access->grp_partial_lhs)
2450 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2451 !insert_after,
2452 insert_after ? GSI_NEW_STMT
2453 : GSI_SAME_STMT);
2454 stmt = gimple_build_assign (expr, repl);
2455 }
2456 gimple_set_location (stmt, loc);
2457
2458 if (insert_after)
2459 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2460 else
2461 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2462 update_stmt (stmt);
2463 sra_stats.subtree_copies++;
2464 }
2465
2466 if (access->first_child)
2467 generate_subtree_copies (access->first_child, agg, top_offset,
2468 start_offset, chunk_size, gsi,
2469 write, insert_after, loc);
2470
2471 access = access->next_sibling;
2472 }
2473 while (access);
2474 }
2475
2476 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2477 the root of the subtree to be processed. GSI is the statement iterator used
2478 for inserting statements which are added after the current statement if
2479 INSERT_AFTER is true or before it otherwise. */
2480
2481 static void
2482 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2483 bool insert_after, location_t loc)
2484
2485 {
2486 struct access *child;
2487
2488 if (access->grp_to_be_replaced)
2489 {
2490 gimple stmt;
2491
2492 stmt = gimple_build_assign (get_access_replacement (access),
2493 build_zero_cst (access->type));
2494 if (insert_after)
2495 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2496 else
2497 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2498 update_stmt (stmt);
2499 gimple_set_location (stmt, loc);
2500 }
2501
2502 for (child = access->first_child; child; child = child->next_sibling)
2503 init_subtree_with_zero (child, gsi, insert_after, loc);
2504 }
2505
2506 /* Search for an access representative for the given expression EXPR and
2507 return it or NULL if it cannot be found. */
2508
2509 static struct access *
2510 get_access_for_expr (tree expr)
2511 {
2512 HOST_WIDE_INT offset, size, max_size;
2513 tree base;
2514
2515 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2516 a different size than the size of its argument and we need the latter
2517 one. */
2518 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2519 expr = TREE_OPERAND (expr, 0);
2520
2521 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2522 if (max_size == -1 || !DECL_P (base))
2523 return NULL;
2524
2525 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2526 return NULL;
2527
2528 return get_var_base_offset_size_access (base, offset, max_size);
2529 }
2530
2531 /* Replace the expression EXPR with a scalar replacement if there is one and
2532 generate other statements to do type conversion or subtree copying if
2533 necessary. GSI is used to place newly created statements, WRITE is true if
2534 the expression is being written to (it is on a LHS of a statement or output
2535 in an assembly statement). */
2536
2537 static bool
2538 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2539 {
2540 location_t loc;
2541 struct access *access;
2542 tree type, bfr;
2543
2544 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2545 {
2546 bfr = *expr;
2547 expr = &TREE_OPERAND (*expr, 0);
2548 }
2549 else
2550 bfr = NULL_TREE;
2551
2552 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2553 expr = &TREE_OPERAND (*expr, 0);
2554 access = get_access_for_expr (*expr);
2555 if (!access)
2556 return false;
2557 type = TREE_TYPE (*expr);
2558
2559 loc = gimple_location (gsi_stmt (*gsi));
2560 if (access->grp_to_be_replaced)
2561 {
2562 tree repl = get_access_replacement (access);
2563 /* If we replace a non-register typed access simply use the original
2564 access expression to extract the scalar component afterwards.
2565 This happens if scalarizing a function return value or parameter
2566 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2567 gcc.c-torture/compile/20011217-1.c.
2568
2569 We also want to use this when accessing a complex or vector which can
2570 be accessed as a different type too, potentially creating a need for
2571 type conversion (see PR42196) and when scalarized unions are involved
2572 in assembler statements (see PR42398). */
2573 if (!useless_type_conversion_p (type, access->type))
2574 {
2575 tree ref;
2576
2577 ref = build_ref_for_model (loc, access->base, access->offset, access,
2578 NULL, false);
2579
2580 if (write)
2581 {
2582 gimple stmt;
2583
2584 if (access->grp_partial_lhs)
2585 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2586 false, GSI_NEW_STMT);
2587 stmt = gimple_build_assign (repl, ref);
2588 gimple_set_location (stmt, loc);
2589 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2590 }
2591 else
2592 {
2593 gimple stmt;
2594
2595 if (access->grp_partial_lhs)
2596 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2597 true, GSI_SAME_STMT);
2598 stmt = gimple_build_assign (ref, repl);
2599 gimple_set_location (stmt, loc);
2600 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2601 }
2602 }
2603 else
2604 *expr = repl;
2605 sra_stats.exprs++;
2606 }
2607
2608 if (access->first_child)
2609 {
2610 HOST_WIDE_INT start_offset, chunk_size;
2611 if (bfr
2612 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2613 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2614 {
2615 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2616 start_offset = access->offset
2617 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2618 }
2619 else
2620 start_offset = chunk_size = 0;
2621
2622 generate_subtree_copies (access->first_child, access->base, 0,
2623 start_offset, chunk_size, gsi, write, write,
2624 loc);
2625 }
2626 return true;
2627 }
2628
2629 /* Where scalar replacements of the RHS have been written to when a replacement
2630 of a LHS of an assigments cannot be direclty loaded from a replacement of
2631 the RHS. */
2632 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2633 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2634 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2635
2636 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2637 base aggregate if there are unscalarized data or directly to LHS of the
2638 statement that is pointed to by GSI otherwise. */
2639
2640 static enum unscalarized_data_handling
2641 handle_unscalarized_data_in_subtree (struct access *top_racc,
2642 gimple_stmt_iterator *gsi)
2643 {
2644 if (top_racc->grp_unscalarized_data)
2645 {
2646 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2647 gsi, false, false,
2648 gimple_location (gsi_stmt (*gsi)));
2649 return SRA_UDH_RIGHT;
2650 }
2651 else
2652 {
2653 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2654 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2655 0, 0, gsi, false, false,
2656 gimple_location (gsi_stmt (*gsi)));
2657 return SRA_UDH_LEFT;
2658 }
2659 }
2660
2661
2662 /* Try to generate statements to load all sub-replacements in an access subtree
2663 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2664 If that is not possible, refresh the TOP_RACC base aggregate and load the
2665 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2666 copied. NEW_GSI is stmt iterator used for statement insertions after the
2667 original assignment, OLD_GSI is used to insert statements before the
2668 assignment. *REFRESHED keeps the information whether we have needed to
2669 refresh replacements of the LHS and from which side of the assignments this
2670 takes place. */
2671
2672 static void
2673 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2674 HOST_WIDE_INT left_offset,
2675 gimple_stmt_iterator *old_gsi,
2676 gimple_stmt_iterator *new_gsi,
2677 enum unscalarized_data_handling *refreshed)
2678 {
2679 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2680 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2681 {
2682 if (lacc->grp_to_be_replaced)
2683 {
2684 struct access *racc;
2685 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2686 gimple stmt;
2687 tree rhs;
2688
2689 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2690 if (racc && racc->grp_to_be_replaced)
2691 {
2692 rhs = get_access_replacement (racc);
2693 if (!useless_type_conversion_p (lacc->type, racc->type))
2694 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2695
2696 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2697 rhs = force_gimple_operand_gsi (old_gsi, rhs, true, NULL_TREE,
2698 true, GSI_SAME_STMT);
2699 }
2700 else
2701 {
2702 /* No suitable access on the right hand side, need to load from
2703 the aggregate. See if we have to update it first... */
2704 if (*refreshed == SRA_UDH_NONE)
2705 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2706 old_gsi);
2707
2708 if (*refreshed == SRA_UDH_LEFT)
2709 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2710 new_gsi, true);
2711 else
2712 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2713 new_gsi, true);
2714 }
2715
2716 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2717 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2718 gimple_set_location (stmt, loc);
2719 update_stmt (stmt);
2720 sra_stats.subreplacements++;
2721 }
2722 else if (*refreshed == SRA_UDH_NONE
2723 && lacc->grp_read && !lacc->grp_covered)
2724 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2725 old_gsi);
2726
2727 if (lacc->first_child)
2728 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2729 old_gsi, new_gsi, refreshed);
2730 }
2731 }
2732
2733 /* Result code for SRA assignment modification. */
2734 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2735 SRA_AM_MODIFIED, /* stmt changed but not
2736 removed */
2737 SRA_AM_REMOVED }; /* stmt eliminated */
2738
2739 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2740 to the assignment and GSI is the statement iterator pointing at it. Returns
2741 the same values as sra_modify_assign. */
2742
2743 static enum assignment_mod_result
2744 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2745 {
2746 tree lhs = gimple_assign_lhs (*stmt);
2747 struct access *acc;
2748 location_t loc;
2749
2750 acc = get_access_for_expr (lhs);
2751 if (!acc)
2752 return SRA_AM_NONE;
2753
2754 loc = gimple_location (*stmt);
2755 if (VEC_length (constructor_elt,
2756 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2757 {
2758 /* I have never seen this code path trigger but if it can happen the
2759 following should handle it gracefully. */
2760 if (access_has_children_p (acc))
2761 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2762 true, true, loc);
2763 return SRA_AM_MODIFIED;
2764 }
2765
2766 if (acc->grp_covered)
2767 {
2768 init_subtree_with_zero (acc, gsi, false, loc);
2769 unlink_stmt_vdef (*stmt);
2770 gsi_remove (gsi, true);
2771 return SRA_AM_REMOVED;
2772 }
2773 else
2774 {
2775 init_subtree_with_zero (acc, gsi, true, loc);
2776 return SRA_AM_MODIFIED;
2777 }
2778 }
2779
2780 /* Create and return a new suitable default definition SSA_NAME for RACC which
2781 is an access describing an uninitialized part of an aggregate that is being
2782 loaded. */
2783
2784 static tree
2785 get_repl_default_def_ssa_name (struct access *racc)
2786 {
2787 tree repl, decl;
2788
2789 decl = get_unrenamed_access_replacement (racc);
2790
2791 repl = gimple_default_def (cfun, decl);
2792 if (!repl)
2793 {
2794 repl = make_ssa_name (decl, gimple_build_nop ());
2795 set_default_def (decl, repl);
2796 }
2797
2798 return repl;
2799 }
2800
2801 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2802 somewhere in it. */
2803
2804 static inline bool
2805 contains_bitfld_comp_ref_p (const_tree ref)
2806 {
2807 while (handled_component_p (ref))
2808 {
2809 if (TREE_CODE (ref) == COMPONENT_REF
2810 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2811 return true;
2812 ref = TREE_OPERAND (ref, 0);
2813 }
2814
2815 return false;
2816 }
2817
2818 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2819 bit-field field declaration somewhere in it. */
2820
2821 static inline bool
2822 contains_vce_or_bfcref_p (const_tree ref)
2823 {
2824 while (handled_component_p (ref))
2825 {
2826 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2827 || (TREE_CODE (ref) == COMPONENT_REF
2828 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2829 return true;
2830 ref = TREE_OPERAND (ref, 0);
2831 }
2832
2833 return false;
2834 }
2835
2836 /* Examine both sides of the assignment statement pointed to by STMT, replace
2837 them with a scalare replacement if there is one and generate copying of
2838 replacements if scalarized aggregates have been used in the assignment. GSI
2839 is used to hold generated statements for type conversions and subtree
2840 copying. */
2841
2842 static enum assignment_mod_result
2843 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2844 {
2845 struct access *lacc, *racc;
2846 tree lhs, rhs;
2847 bool modify_this_stmt = false;
2848 bool force_gimple_rhs = false;
2849 location_t loc;
2850 gimple_stmt_iterator orig_gsi = *gsi;
2851
2852 if (!gimple_assign_single_p (*stmt))
2853 return SRA_AM_NONE;
2854 lhs = gimple_assign_lhs (*stmt);
2855 rhs = gimple_assign_rhs1 (*stmt);
2856
2857 if (TREE_CODE (rhs) == CONSTRUCTOR)
2858 return sra_modify_constructor_assign (stmt, gsi);
2859
2860 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2861 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2862 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2863 {
2864 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2865 gsi, false);
2866 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2867 gsi, true);
2868 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2869 }
2870
2871 lacc = get_access_for_expr (lhs);
2872 racc = get_access_for_expr (rhs);
2873 if (!lacc && !racc)
2874 return SRA_AM_NONE;
2875
2876 loc = gimple_location (*stmt);
2877 if (lacc && lacc->grp_to_be_replaced)
2878 {
2879 lhs = get_access_replacement (lacc);
2880 gimple_assign_set_lhs (*stmt, lhs);
2881 modify_this_stmt = true;
2882 if (lacc->grp_partial_lhs)
2883 force_gimple_rhs = true;
2884 sra_stats.exprs++;
2885 }
2886
2887 if (racc && racc->grp_to_be_replaced)
2888 {
2889 rhs = get_access_replacement (racc);
2890 modify_this_stmt = true;
2891 if (racc->grp_partial_lhs)
2892 force_gimple_rhs = true;
2893 sra_stats.exprs++;
2894 }
2895
2896 if (modify_this_stmt)
2897 {
2898 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2899 {
2900 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2901 ??? This should move to fold_stmt which we simply should
2902 call after building a VIEW_CONVERT_EXPR here. */
2903 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2904 && !contains_bitfld_comp_ref_p (lhs)
2905 && !access_has_children_p (lacc))
2906 {
2907 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
2908 gimple_assign_set_lhs (*stmt, lhs);
2909 }
2910 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2911 && !contains_vce_or_bfcref_p (rhs)
2912 && !access_has_children_p (racc))
2913 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
2914
2915 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2916 {
2917 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
2918 rhs);
2919 if (is_gimple_reg_type (TREE_TYPE (lhs))
2920 && TREE_CODE (lhs) != SSA_NAME)
2921 force_gimple_rhs = true;
2922 }
2923 }
2924 }
2925
2926 /* From this point on, the function deals with assignments in between
2927 aggregates when at least one has scalar reductions of some of its
2928 components. There are three possible scenarios: Both the LHS and RHS have
2929 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2930
2931 In the first case, we would like to load the LHS components from RHS
2932 components whenever possible. If that is not possible, we would like to
2933 read it directly from the RHS (after updating it by storing in it its own
2934 components). If there are some necessary unscalarized data in the LHS,
2935 those will be loaded by the original assignment too. If neither of these
2936 cases happen, the original statement can be removed. Most of this is done
2937 by load_assign_lhs_subreplacements.
2938
2939 In the second case, we would like to store all RHS scalarized components
2940 directly into LHS and if they cover the aggregate completely, remove the
2941 statement too. In the third case, we want the LHS components to be loaded
2942 directly from the RHS (DSE will remove the original statement if it
2943 becomes redundant).
2944
2945 This is a bit complex but manageable when types match and when unions do
2946 not cause confusion in a way that we cannot really load a component of LHS
2947 from the RHS or vice versa (the access representing this level can have
2948 subaccesses that are accessible only through a different union field at a
2949 higher level - different from the one used in the examined expression).
2950 Unions are fun.
2951
2952 Therefore, I specially handle a fourth case, happening when there is a
2953 specific type cast or it is impossible to locate a scalarized subaccess on
2954 the other side of the expression. If that happens, I simply "refresh" the
2955 RHS by storing in it is scalarized components leave the original statement
2956 there to do the copying and then load the scalar replacements of the LHS.
2957 This is what the first branch does. */
2958
2959 if (modify_this_stmt
2960 || gimple_has_volatile_ops (*stmt)
2961 || contains_vce_or_bfcref_p (rhs)
2962 || contains_vce_or_bfcref_p (lhs))
2963 {
2964 if (access_has_children_p (racc))
2965 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
2966 gsi, false, false, loc);
2967 if (access_has_children_p (lacc))
2968 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
2969 gsi, true, true, loc);
2970 sra_stats.separate_lhs_rhs_handling++;
2971 }
2972 else
2973 {
2974 if (access_has_children_p (lacc) && access_has_children_p (racc))
2975 {
2976 gimple_stmt_iterator orig_gsi = *gsi;
2977 enum unscalarized_data_handling refreshed;
2978
2979 if (lacc->grp_read && !lacc->grp_covered)
2980 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
2981 else
2982 refreshed = SRA_UDH_NONE;
2983
2984 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
2985 &orig_gsi, gsi, &refreshed);
2986 if (refreshed != SRA_UDH_RIGHT)
2987 {
2988 gsi_next (gsi);
2989 unlink_stmt_vdef (*stmt);
2990 gsi_remove (&orig_gsi, true);
2991 sra_stats.deleted++;
2992 return SRA_AM_REMOVED;
2993 }
2994 }
2995 else
2996 {
2997 if (racc)
2998 {
2999 if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data)
3000 {
3001 if (dump_file)
3002 {
3003 fprintf (dump_file, "Removing load: ");
3004 print_gimple_stmt (dump_file, *stmt, 0, 0);
3005 }
3006
3007 if (TREE_CODE (lhs) == SSA_NAME)
3008 {
3009 rhs = get_repl_default_def_ssa_name (racc);
3010 if (!useless_type_conversion_p (TREE_TYPE (lhs),
3011 TREE_TYPE (rhs)))
3012 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
3013 TREE_TYPE (lhs), rhs);
3014 }
3015 else
3016 {
3017 if (racc->first_child)
3018 generate_subtree_copies (racc->first_child, lhs,
3019 racc->offset, 0, 0, gsi,
3020 false, false, loc);
3021
3022 gcc_assert (*stmt == gsi_stmt (*gsi));
3023 unlink_stmt_vdef (*stmt);
3024 gsi_remove (gsi, true);
3025 sra_stats.deleted++;
3026 return SRA_AM_REMOVED;
3027 }
3028 }
3029 else if (racc->first_child)
3030 generate_subtree_copies (racc->first_child, lhs, racc->offset,
3031 0, 0, gsi, false, true, loc);
3032 }
3033 if (access_has_children_p (lacc))
3034 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3035 0, 0, gsi, true, true, loc);
3036 }
3037 }
3038
3039 /* This gimplification must be done after generate_subtree_copies, lest we
3040 insert the subtree copies in the middle of the gimplified sequence. */
3041 if (force_gimple_rhs)
3042 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3043 true, GSI_SAME_STMT);
3044 if (gimple_assign_rhs1 (*stmt) != rhs)
3045 {
3046 modify_this_stmt = true;
3047 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3048 gcc_assert (*stmt == gsi_stmt (orig_gsi));
3049 }
3050
3051 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3052 }
3053
3054 /* Traverse the function body and all modifications as decided in
3055 analyze_all_variable_accesses. Return true iff the CFG has been
3056 changed. */
3057
3058 static bool
3059 sra_modify_function_body (void)
3060 {
3061 bool cfg_changed = false;
3062 basic_block bb;
3063
3064 FOR_EACH_BB (bb)
3065 {
3066 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3067 while (!gsi_end_p (gsi))
3068 {
3069 gimple stmt = gsi_stmt (gsi);
3070 enum assignment_mod_result assign_result;
3071 bool modified = false, deleted = false;
3072 tree *t;
3073 unsigned i;
3074
3075 switch (gimple_code (stmt))
3076 {
3077 case GIMPLE_RETURN:
3078 t = gimple_return_retval_ptr (stmt);
3079 if (*t != NULL_TREE)
3080 modified |= sra_modify_expr (t, &gsi, false);
3081 break;
3082
3083 case GIMPLE_ASSIGN:
3084 assign_result = sra_modify_assign (&stmt, &gsi);
3085 modified |= assign_result == SRA_AM_MODIFIED;
3086 deleted = assign_result == SRA_AM_REMOVED;
3087 break;
3088
3089 case GIMPLE_CALL:
3090 /* Operands must be processed before the lhs. */
3091 for (i = 0; i < gimple_call_num_args (stmt); i++)
3092 {
3093 t = gimple_call_arg_ptr (stmt, i);
3094 modified |= sra_modify_expr (t, &gsi, false);
3095 }
3096
3097 if (gimple_call_lhs (stmt))
3098 {
3099 t = gimple_call_lhs_ptr (stmt);
3100 modified |= sra_modify_expr (t, &gsi, true);
3101 }
3102 break;
3103
3104 case GIMPLE_ASM:
3105 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3106 {
3107 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3108 modified |= sra_modify_expr (t, &gsi, false);
3109 }
3110 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3111 {
3112 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3113 modified |= sra_modify_expr (t, &gsi, true);
3114 }
3115 break;
3116
3117 default:
3118 break;
3119 }
3120
3121 if (modified)
3122 {
3123 update_stmt (stmt);
3124 if (maybe_clean_eh_stmt (stmt)
3125 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3126 cfg_changed = true;
3127 }
3128 if (!deleted)
3129 gsi_next (&gsi);
3130 }
3131 }
3132
3133 return cfg_changed;
3134 }
3135
3136 /* Generate statements initializing scalar replacements of parts of function
3137 parameters. */
3138
3139 static void
3140 initialize_parameter_reductions (void)
3141 {
3142 gimple_stmt_iterator gsi;
3143 gimple_seq seq = NULL;
3144 tree parm;
3145
3146 for (parm = DECL_ARGUMENTS (current_function_decl);
3147 parm;
3148 parm = DECL_CHAIN (parm))
3149 {
3150 VEC (access_p, heap) *access_vec;
3151 struct access *access;
3152
3153 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3154 continue;
3155 access_vec = get_base_access_vector (parm);
3156 if (!access_vec)
3157 continue;
3158
3159 if (!seq)
3160 {
3161 seq = gimple_seq_alloc ();
3162 gsi = gsi_start (seq);
3163 }
3164
3165 for (access = VEC_index (access_p, access_vec, 0);
3166 access;
3167 access = access->next_grp)
3168 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3169 EXPR_LOCATION (parm));
3170 }
3171
3172 if (seq)
3173 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3174 }
3175
3176 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3177 it reveals there are components of some aggregates to be scalarized, it runs
3178 the required transformations. */
3179 static unsigned int
3180 perform_intra_sra (void)
3181 {
3182 int ret = 0;
3183 sra_initialize ();
3184
3185 if (!find_var_candidates ())
3186 goto out;
3187
3188 if (!scan_function ())
3189 goto out;
3190
3191 if (!analyze_all_variable_accesses ())
3192 goto out;
3193
3194 if (sra_modify_function_body ())
3195 ret = TODO_update_ssa | TODO_cleanup_cfg;
3196 else
3197 ret = TODO_update_ssa;
3198 initialize_parameter_reductions ();
3199
3200 statistics_counter_event (cfun, "Scalar replacements created",
3201 sra_stats.replacements);
3202 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3203 statistics_counter_event (cfun, "Subtree copy stmts",
3204 sra_stats.subtree_copies);
3205 statistics_counter_event (cfun, "Subreplacement stmts",
3206 sra_stats.subreplacements);
3207 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3208 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3209 sra_stats.separate_lhs_rhs_handling);
3210
3211 out:
3212 sra_deinitialize ();
3213 return ret;
3214 }
3215
3216 /* Perform early intraprocedural SRA. */
3217 static unsigned int
3218 early_intra_sra (void)
3219 {
3220 sra_mode = SRA_MODE_EARLY_INTRA;
3221 return perform_intra_sra ();
3222 }
3223
3224 /* Perform "late" intraprocedural SRA. */
3225 static unsigned int
3226 late_intra_sra (void)
3227 {
3228 sra_mode = SRA_MODE_INTRA;
3229 return perform_intra_sra ();
3230 }
3231
3232
3233 static bool
3234 gate_intra_sra (void)
3235 {
3236 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3237 }
3238
3239
3240 struct gimple_opt_pass pass_sra_early =
3241 {
3242 {
3243 GIMPLE_PASS,
3244 "esra", /* name */
3245 gate_intra_sra, /* gate */
3246 early_intra_sra, /* execute */
3247 NULL, /* sub */
3248 NULL, /* next */
3249 0, /* static_pass_number */
3250 TV_TREE_SRA, /* tv_id */
3251 PROP_cfg | PROP_ssa, /* properties_required */
3252 0, /* properties_provided */
3253 0, /* properties_destroyed */
3254 0, /* todo_flags_start */
3255 TODO_update_ssa
3256 | TODO_ggc_collect
3257 | TODO_verify_ssa /* todo_flags_finish */
3258 }
3259 };
3260
3261 struct gimple_opt_pass pass_sra =
3262 {
3263 {
3264 GIMPLE_PASS,
3265 "sra", /* name */
3266 gate_intra_sra, /* gate */
3267 late_intra_sra, /* execute */
3268 NULL, /* sub */
3269 NULL, /* next */
3270 0, /* static_pass_number */
3271 TV_TREE_SRA, /* tv_id */
3272 PROP_cfg | PROP_ssa, /* properties_required */
3273 0, /* properties_provided */
3274 0, /* properties_destroyed */
3275 TODO_update_address_taken, /* todo_flags_start */
3276 TODO_update_ssa
3277 | TODO_ggc_collect
3278 | TODO_verify_ssa /* todo_flags_finish */
3279 }
3280 };
3281
3282
3283 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3284 parameter. */
3285
3286 static bool
3287 is_unused_scalar_param (tree parm)
3288 {
3289 tree name;
3290 return (is_gimple_reg (parm)
3291 && (!(name = gimple_default_def (cfun, parm))
3292 || has_zero_uses (name)));
3293 }
3294
3295 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3296 examine whether there are any direct or otherwise infeasible ones. If so,
3297 return true, otherwise return false. PARM must be a gimple register with a
3298 non-NULL default definition. */
3299
3300 static bool
3301 ptr_parm_has_direct_uses (tree parm)
3302 {
3303 imm_use_iterator ui;
3304 gimple stmt;
3305 tree name = gimple_default_def (cfun, parm);
3306 bool ret = false;
3307
3308 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3309 {
3310 int uses_ok = 0;
3311 use_operand_p use_p;
3312
3313 if (is_gimple_debug (stmt))
3314 continue;
3315
3316 /* Valid uses include dereferences on the lhs and the rhs. */
3317 if (gimple_has_lhs (stmt))
3318 {
3319 tree lhs = gimple_get_lhs (stmt);
3320 while (handled_component_p (lhs))
3321 lhs = TREE_OPERAND (lhs, 0);
3322 if (TREE_CODE (lhs) == MEM_REF
3323 && TREE_OPERAND (lhs, 0) == name
3324 && integer_zerop (TREE_OPERAND (lhs, 1))
3325 && types_compatible_p (TREE_TYPE (lhs),
3326 TREE_TYPE (TREE_TYPE (name)))
3327 && !TREE_THIS_VOLATILE (lhs))
3328 uses_ok++;
3329 }
3330 if (gimple_assign_single_p (stmt))
3331 {
3332 tree rhs = gimple_assign_rhs1 (stmt);
3333 while (handled_component_p (rhs))
3334 rhs = TREE_OPERAND (rhs, 0);
3335 if (TREE_CODE (rhs) == MEM_REF
3336 && TREE_OPERAND (rhs, 0) == name
3337 && integer_zerop (TREE_OPERAND (rhs, 1))
3338 && types_compatible_p (TREE_TYPE (rhs),
3339 TREE_TYPE (TREE_TYPE (name)))
3340 && !TREE_THIS_VOLATILE (rhs))
3341 uses_ok++;
3342 }
3343 else if (is_gimple_call (stmt))
3344 {
3345 unsigned i;
3346 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3347 {
3348 tree arg = gimple_call_arg (stmt, i);
3349 while (handled_component_p (arg))
3350 arg = TREE_OPERAND (arg, 0);
3351 if (TREE_CODE (arg) == MEM_REF
3352 && TREE_OPERAND (arg, 0) == name
3353 && integer_zerop (TREE_OPERAND (arg, 1))
3354 && types_compatible_p (TREE_TYPE (arg),
3355 TREE_TYPE (TREE_TYPE (name)))
3356 && !TREE_THIS_VOLATILE (arg))
3357 uses_ok++;
3358 }
3359 }
3360
3361 /* If the number of valid uses does not match the number of
3362 uses in this stmt there is an unhandled use. */
3363 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3364 --uses_ok;
3365
3366 if (uses_ok != 0)
3367 ret = true;
3368
3369 if (ret)
3370 BREAK_FROM_IMM_USE_STMT (ui);
3371 }
3372
3373 return ret;
3374 }
3375
3376 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3377 them in candidate_bitmap. Note that these do not necessarily include
3378 parameter which are unused and thus can be removed. Return true iff any
3379 such candidate has been found. */
3380
3381 static bool
3382 find_param_candidates (void)
3383 {
3384 tree parm;
3385 int count = 0;
3386 bool ret = false;
3387 const char *msg;
3388
3389 for (parm = DECL_ARGUMENTS (current_function_decl);
3390 parm;
3391 parm = DECL_CHAIN (parm))
3392 {
3393 tree type = TREE_TYPE (parm);
3394
3395 count++;
3396
3397 if (TREE_THIS_VOLATILE (parm)
3398 || TREE_ADDRESSABLE (parm)
3399 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3400 continue;
3401
3402 if (is_unused_scalar_param (parm))
3403 {
3404 ret = true;
3405 continue;
3406 }
3407
3408 if (POINTER_TYPE_P (type))
3409 {
3410 type = TREE_TYPE (type);
3411
3412 if (TREE_CODE (type) == FUNCTION_TYPE
3413 || TYPE_VOLATILE (type)
3414 || (TREE_CODE (type) == ARRAY_TYPE
3415 && TYPE_NONALIASED_COMPONENT (type))
3416 || !is_gimple_reg (parm)
3417 || is_va_list_type (type)
3418 || ptr_parm_has_direct_uses (parm))
3419 continue;
3420 }
3421 else if (!AGGREGATE_TYPE_P (type))
3422 continue;
3423
3424 if (!COMPLETE_TYPE_P (type)
3425 || !host_integerp (TYPE_SIZE (type), 1)
3426 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3427 || (AGGREGATE_TYPE_P (type)
3428 && type_internals_preclude_sra_p (type, &msg)))
3429 continue;
3430
3431 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3432 ret = true;
3433 if (dump_file && (dump_flags & TDF_DETAILS))
3434 {
3435 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3436 print_generic_expr (dump_file, parm, 0);
3437 fprintf (dump_file, "\n");
3438 }
3439 }
3440
3441 func_param_count = count;
3442 return ret;
3443 }
3444
3445 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3446 maybe_modified. */
3447
3448 static bool
3449 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3450 void *data)
3451 {
3452 struct access *repr = (struct access *) data;
3453
3454 repr->grp_maybe_modified = 1;
3455 return true;
3456 }
3457
3458 /* Analyze what representatives (in linked lists accessible from
3459 REPRESENTATIVES) can be modified by side effects of statements in the
3460 current function. */
3461
3462 static void
3463 analyze_modified_params (VEC (access_p, heap) *representatives)
3464 {
3465 int i;
3466
3467 for (i = 0; i < func_param_count; i++)
3468 {
3469 struct access *repr;
3470
3471 for (repr = VEC_index (access_p, representatives, i);
3472 repr;
3473 repr = repr->next_grp)
3474 {
3475 struct access *access;
3476 bitmap visited;
3477 ao_ref ar;
3478
3479 if (no_accesses_p (repr))
3480 continue;
3481 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3482 || repr->grp_maybe_modified)
3483 continue;
3484
3485 ao_ref_init (&ar, repr->expr);
3486 visited = BITMAP_ALLOC (NULL);
3487 for (access = repr; access; access = access->next_sibling)
3488 {
3489 /* All accesses are read ones, otherwise grp_maybe_modified would
3490 be trivially set. */
3491 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3492 mark_maybe_modified, repr, &visited);
3493 if (repr->grp_maybe_modified)
3494 break;
3495 }
3496 BITMAP_FREE (visited);
3497 }
3498 }
3499 }
3500
3501 /* Propagate distances in bb_dereferences in the opposite direction than the
3502 control flow edges, in each step storing the maximum of the current value
3503 and the minimum of all successors. These steps are repeated until the table
3504 stabilizes. Note that BBs which might terminate the functions (according to
3505 final_bbs bitmap) never updated in this way. */
3506
3507 static void
3508 propagate_dereference_distances (void)
3509 {
3510 VEC (basic_block, heap) *queue;
3511 basic_block bb;
3512
3513 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3514 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3515 FOR_EACH_BB (bb)
3516 {
3517 VEC_quick_push (basic_block, queue, bb);
3518 bb->aux = bb;
3519 }
3520
3521 while (!VEC_empty (basic_block, queue))
3522 {
3523 edge_iterator ei;
3524 edge e;
3525 bool change = false;
3526 int i;
3527
3528 bb = VEC_pop (basic_block, queue);
3529 bb->aux = NULL;
3530
3531 if (bitmap_bit_p (final_bbs, bb->index))
3532 continue;
3533
3534 for (i = 0; i < func_param_count; i++)
3535 {
3536 int idx = bb->index * func_param_count + i;
3537 bool first = true;
3538 HOST_WIDE_INT inh = 0;
3539
3540 FOR_EACH_EDGE (e, ei, bb->succs)
3541 {
3542 int succ_idx = e->dest->index * func_param_count + i;
3543
3544 if (e->src == EXIT_BLOCK_PTR)
3545 continue;
3546
3547 if (first)
3548 {
3549 first = false;
3550 inh = bb_dereferences [succ_idx];
3551 }
3552 else if (bb_dereferences [succ_idx] < inh)
3553 inh = bb_dereferences [succ_idx];
3554 }
3555
3556 if (!first && bb_dereferences[idx] < inh)
3557 {
3558 bb_dereferences[idx] = inh;
3559 change = true;
3560 }
3561 }
3562
3563 if (change && !bitmap_bit_p (final_bbs, bb->index))
3564 FOR_EACH_EDGE (e, ei, bb->preds)
3565 {
3566 if (e->src->aux)
3567 continue;
3568
3569 e->src->aux = e->src;
3570 VEC_quick_push (basic_block, queue, e->src);
3571 }
3572 }
3573
3574 VEC_free (basic_block, heap, queue);
3575 }
3576
3577 /* Dump a dereferences TABLE with heading STR to file F. */
3578
3579 static void
3580 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3581 {
3582 basic_block bb;
3583
3584 fprintf (dump_file, str);
3585 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3586 {
3587 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3588 if (bb != EXIT_BLOCK_PTR)
3589 {
3590 int i;
3591 for (i = 0; i < func_param_count; i++)
3592 {
3593 int idx = bb->index * func_param_count + i;
3594 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3595 }
3596 }
3597 fprintf (f, "\n");
3598 }
3599 fprintf (dump_file, "\n");
3600 }
3601
3602 /* Determine what (parts of) parameters passed by reference that are not
3603 assigned to are not certainly dereferenced in this function and thus the
3604 dereferencing cannot be safely moved to the caller without potentially
3605 introducing a segfault. Mark such REPRESENTATIVES as
3606 grp_not_necessarilly_dereferenced.
3607
3608 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3609 part is calculated rather than simple booleans are calculated for each
3610 pointer parameter to handle cases when only a fraction of the whole
3611 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3612 an example).
3613
3614 The maximum dereference distances for each pointer parameter and BB are
3615 already stored in bb_dereference. This routine simply propagates these
3616 values upwards by propagate_dereference_distances and then compares the
3617 distances of individual parameters in the ENTRY BB to the equivalent
3618 distances of each representative of a (fraction of a) parameter. */
3619
3620 static void
3621 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3622 {
3623 int i;
3624
3625 if (dump_file && (dump_flags & TDF_DETAILS))
3626 dump_dereferences_table (dump_file,
3627 "Dereference table before propagation:\n",
3628 bb_dereferences);
3629
3630 propagate_dereference_distances ();
3631
3632 if (dump_file && (dump_flags & TDF_DETAILS))
3633 dump_dereferences_table (dump_file,
3634 "Dereference table after propagation:\n",
3635 bb_dereferences);
3636
3637 for (i = 0; i < func_param_count; i++)
3638 {
3639 struct access *repr = VEC_index (access_p, representatives, i);
3640 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3641
3642 if (!repr || no_accesses_p (repr))
3643 continue;
3644
3645 do
3646 {
3647 if ((repr->offset + repr->size) > bb_dereferences[idx])
3648 repr->grp_not_necessarilly_dereferenced = 1;
3649 repr = repr->next_grp;
3650 }
3651 while (repr);
3652 }
3653 }
3654
3655 /* Return the representative access for the parameter declaration PARM if it is
3656 a scalar passed by reference which is not written to and the pointer value
3657 is not used directly. Thus, if it is legal to dereference it in the caller
3658 and we can rule out modifications through aliases, such parameter should be
3659 turned into one passed by value. Return NULL otherwise. */
3660
3661 static struct access *
3662 unmodified_by_ref_scalar_representative (tree parm)
3663 {
3664 int i, access_count;
3665 struct access *repr;
3666 VEC (access_p, heap) *access_vec;
3667
3668 access_vec = get_base_access_vector (parm);
3669 gcc_assert (access_vec);
3670 repr = VEC_index (access_p, access_vec, 0);
3671 if (repr->write)
3672 return NULL;
3673 repr->group_representative = repr;
3674
3675 access_count = VEC_length (access_p, access_vec);
3676 for (i = 1; i < access_count; i++)
3677 {
3678 struct access *access = VEC_index (access_p, access_vec, i);
3679 if (access->write)
3680 return NULL;
3681 access->group_representative = repr;
3682 access->next_sibling = repr->next_sibling;
3683 repr->next_sibling = access;
3684 }
3685
3686 repr->grp_read = 1;
3687 repr->grp_scalar_ptr = 1;
3688 return repr;
3689 }
3690
3691 /* Return true iff this access precludes IPA-SRA of the parameter it is
3692 associated with. */
3693
3694 static bool
3695 access_precludes_ipa_sra_p (struct access *access)
3696 {
3697 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3698 is incompatible assign in a call statement (and possibly even in asm
3699 statements). This can be relaxed by using a new temporary but only for
3700 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3701 intraprocedural SRA we deal with this by keeping the old aggregate around,
3702 something we cannot do in IPA-SRA.) */
3703 if (access->write
3704 && (is_gimple_call (access->stmt)
3705 || gimple_code (access->stmt) == GIMPLE_ASM))
3706 return true;
3707
3708 if (tree_non_mode_aligned_mem_p (access->expr))
3709 return true;
3710
3711 return false;
3712 }
3713
3714
3715 /* Sort collected accesses for parameter PARM, identify representatives for
3716 each accessed region and link them together. Return NULL if there are
3717 different but overlapping accesses, return the special ptr value meaning
3718 there are no accesses for this parameter if that is the case and return the
3719 first representative otherwise. Set *RO_GRP if there is a group of accesses
3720 with only read (i.e. no write) accesses. */
3721
3722 static struct access *
3723 splice_param_accesses (tree parm, bool *ro_grp)
3724 {
3725 int i, j, access_count, group_count;
3726 int agg_size, total_size = 0;
3727 struct access *access, *res, **prev_acc_ptr = &res;
3728 VEC (access_p, heap) *access_vec;
3729
3730 access_vec = get_base_access_vector (parm);
3731 if (!access_vec)
3732 return &no_accesses_representant;
3733 access_count = VEC_length (access_p, access_vec);
3734
3735 VEC_qsort (access_p, access_vec, compare_access_positions);
3736
3737 i = 0;
3738 total_size = 0;
3739 group_count = 0;
3740 while (i < access_count)
3741 {
3742 bool modification;
3743 tree a1_alias_type;
3744 access = VEC_index (access_p, access_vec, i);
3745 modification = access->write;
3746 if (access_precludes_ipa_sra_p (access))
3747 return NULL;
3748 a1_alias_type = reference_alias_ptr_type (access->expr);
3749
3750 /* Access is about to become group representative unless we find some
3751 nasty overlap which would preclude us from breaking this parameter
3752 apart. */
3753
3754 j = i + 1;
3755 while (j < access_count)
3756 {
3757 struct access *ac2 = VEC_index (access_p, access_vec, j);
3758 if (ac2->offset != access->offset)
3759 {
3760 /* All or nothing law for parameters. */
3761 if (access->offset + access->size > ac2->offset)
3762 return NULL;
3763 else
3764 break;
3765 }
3766 else if (ac2->size != access->size)
3767 return NULL;
3768
3769 if (access_precludes_ipa_sra_p (ac2)
3770 || (ac2->type != access->type
3771 && (TREE_ADDRESSABLE (ac2->type)
3772 || TREE_ADDRESSABLE (access->type)))
3773 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
3774 return NULL;
3775
3776 modification |= ac2->write;
3777 ac2->group_representative = access;
3778 ac2->next_sibling = access->next_sibling;
3779 access->next_sibling = ac2;
3780 j++;
3781 }
3782
3783 group_count++;
3784 access->grp_maybe_modified = modification;
3785 if (!modification)
3786 *ro_grp = true;
3787 *prev_acc_ptr = access;
3788 prev_acc_ptr = &access->next_grp;
3789 total_size += access->size;
3790 i = j;
3791 }
3792
3793 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3794 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3795 else
3796 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3797 if (total_size >= agg_size)
3798 return NULL;
3799
3800 gcc_assert (group_count > 0);
3801 return res;
3802 }
3803
3804 /* Decide whether parameters with representative accesses given by REPR should
3805 be reduced into components. */
3806
3807 static int
3808 decide_one_param_reduction (struct access *repr)
3809 {
3810 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3811 bool by_ref;
3812 tree parm;
3813
3814 parm = repr->base;
3815 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3816 gcc_assert (cur_parm_size > 0);
3817
3818 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3819 {
3820 by_ref = true;
3821 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3822 }
3823 else
3824 {
3825 by_ref = false;
3826 agg_size = cur_parm_size;
3827 }
3828
3829 if (dump_file)
3830 {
3831 struct access *acc;
3832 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3833 print_generic_expr (dump_file, parm, 0);
3834 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3835 for (acc = repr; acc; acc = acc->next_grp)
3836 dump_access (dump_file, acc, true);
3837 }
3838
3839 total_size = 0;
3840 new_param_count = 0;
3841
3842 for (; repr; repr = repr->next_grp)
3843 {
3844 gcc_assert (parm == repr->base);
3845
3846 /* Taking the address of a non-addressable field is verboten. */
3847 if (by_ref && repr->non_addressable)
3848 return 0;
3849
3850 if (!by_ref || (!repr->grp_maybe_modified
3851 && !repr->grp_not_necessarilly_dereferenced))
3852 total_size += repr->size;
3853 else
3854 total_size += cur_parm_size;
3855
3856 new_param_count++;
3857 }
3858
3859 gcc_assert (new_param_count > 0);
3860
3861 if (optimize_function_for_size_p (cfun))
3862 parm_size_limit = cur_parm_size;
3863 else
3864 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3865 * cur_parm_size);
3866
3867 if (total_size < agg_size
3868 && total_size <= parm_size_limit)
3869 {
3870 if (dump_file)
3871 fprintf (dump_file, " ....will be split into %i components\n",
3872 new_param_count);
3873 return new_param_count;
3874 }
3875 else
3876 return 0;
3877 }
3878
3879 /* The order of the following enums is important, we need to do extra work for
3880 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3881 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3882 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3883
3884 /* Identify representatives of all accesses to all candidate parameters for
3885 IPA-SRA. Return result based on what representatives have been found. */
3886
3887 static enum ipa_splicing_result
3888 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3889 {
3890 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3891 tree parm;
3892 struct access *repr;
3893
3894 *representatives = VEC_alloc (access_p, heap, func_param_count);
3895
3896 for (parm = DECL_ARGUMENTS (current_function_decl);
3897 parm;
3898 parm = DECL_CHAIN (parm))
3899 {
3900 if (is_unused_scalar_param (parm))
3901 {
3902 VEC_quick_push (access_p, *representatives,
3903 &no_accesses_representant);
3904 if (result == NO_GOOD_ACCESS)
3905 result = UNUSED_PARAMS;
3906 }
3907 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3908 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3909 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3910 {
3911 repr = unmodified_by_ref_scalar_representative (parm);
3912 VEC_quick_push (access_p, *representatives, repr);
3913 if (repr)
3914 result = UNMODIF_BY_REF_ACCESSES;
3915 }
3916 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3917 {
3918 bool ro_grp = false;
3919 repr = splice_param_accesses (parm, &ro_grp);
3920 VEC_quick_push (access_p, *representatives, repr);
3921
3922 if (repr && !no_accesses_p (repr))
3923 {
3924 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3925 {
3926 if (ro_grp)
3927 result = UNMODIF_BY_REF_ACCESSES;
3928 else if (result < MODIF_BY_REF_ACCESSES)
3929 result = MODIF_BY_REF_ACCESSES;
3930 }
3931 else if (result < BY_VAL_ACCESSES)
3932 result = BY_VAL_ACCESSES;
3933 }
3934 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3935 result = UNUSED_PARAMS;
3936 }
3937 else
3938 VEC_quick_push (access_p, *representatives, NULL);
3939 }
3940
3941 if (result == NO_GOOD_ACCESS)
3942 {
3943 VEC_free (access_p, heap, *representatives);
3944 *representatives = NULL;
3945 return NO_GOOD_ACCESS;
3946 }
3947
3948 return result;
3949 }
3950
3951 /* Return the index of BASE in PARMS. Abort if it is not found. */
3952
3953 static inline int
3954 get_param_index (tree base, VEC(tree, heap) *parms)
3955 {
3956 int i, len;
3957
3958 len = VEC_length (tree, parms);
3959 for (i = 0; i < len; i++)
3960 if (VEC_index (tree, parms, i) == base)
3961 return i;
3962 gcc_unreachable ();
3963 }
3964
3965 /* Convert the decisions made at the representative level into compact
3966 parameter adjustments. REPRESENTATIVES are pointers to first
3967 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
3968 final number of adjustments. */
3969
3970 static ipa_parm_adjustment_vec
3971 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
3972 int adjustments_count)
3973 {
3974 VEC (tree, heap) *parms;
3975 ipa_parm_adjustment_vec adjustments;
3976 tree parm;
3977 int i;
3978
3979 gcc_assert (adjustments_count > 0);
3980 parms = ipa_get_vector_of_formal_parms (current_function_decl);
3981 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
3982 parm = DECL_ARGUMENTS (current_function_decl);
3983 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
3984 {
3985 struct access *repr = VEC_index (access_p, representatives, i);
3986
3987 if (!repr || no_accesses_p (repr))
3988 {
3989 struct ipa_parm_adjustment *adj;
3990
3991 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
3992 memset (adj, 0, sizeof (*adj));
3993 adj->base_index = get_param_index (parm, parms);
3994 adj->base = parm;
3995 if (!repr)
3996 adj->copy_param = 1;
3997 else
3998 adj->remove_param = 1;
3999 }
4000 else
4001 {
4002 struct ipa_parm_adjustment *adj;
4003 int index = get_param_index (parm, parms);
4004
4005 for (; repr; repr = repr->next_grp)
4006 {
4007 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4008 memset (adj, 0, sizeof (*adj));
4009 gcc_assert (repr->base == parm);
4010 adj->base_index = index;
4011 adj->base = repr->base;
4012 adj->type = repr->type;
4013 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
4014 adj->offset = repr->offset;
4015 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4016 && (repr->grp_maybe_modified
4017 || repr->grp_not_necessarilly_dereferenced));
4018
4019 }
4020 }
4021 }
4022 VEC_free (tree, heap, parms);
4023 return adjustments;
4024 }
4025
4026 /* Analyze the collected accesses and produce a plan what to do with the
4027 parameters in the form of adjustments, NULL meaning nothing. */
4028
4029 static ipa_parm_adjustment_vec
4030 analyze_all_param_acesses (void)
4031 {
4032 enum ipa_splicing_result repr_state;
4033 bool proceed = false;
4034 int i, adjustments_count = 0;
4035 VEC (access_p, heap) *representatives;
4036 ipa_parm_adjustment_vec adjustments;
4037
4038 repr_state = splice_all_param_accesses (&representatives);
4039 if (repr_state == NO_GOOD_ACCESS)
4040 return NULL;
4041
4042 /* If there are any parameters passed by reference which are not modified
4043 directly, we need to check whether they can be modified indirectly. */
4044 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4045 {
4046 analyze_caller_dereference_legality (representatives);
4047 analyze_modified_params (representatives);
4048 }
4049
4050 for (i = 0; i < func_param_count; i++)
4051 {
4052 struct access *repr = VEC_index (access_p, representatives, i);
4053
4054 if (repr && !no_accesses_p (repr))
4055 {
4056 if (repr->grp_scalar_ptr)
4057 {
4058 adjustments_count++;
4059 if (repr->grp_not_necessarilly_dereferenced
4060 || repr->grp_maybe_modified)
4061 VEC_replace (access_p, representatives, i, NULL);
4062 else
4063 {
4064 proceed = true;
4065 sra_stats.scalar_by_ref_to_by_val++;
4066 }
4067 }
4068 else
4069 {
4070 int new_components = decide_one_param_reduction (repr);
4071
4072 if (new_components == 0)
4073 {
4074 VEC_replace (access_p, representatives, i, NULL);
4075 adjustments_count++;
4076 }
4077 else
4078 {
4079 adjustments_count += new_components;
4080 sra_stats.aggregate_params_reduced++;
4081 sra_stats.param_reductions_created += new_components;
4082 proceed = true;
4083 }
4084 }
4085 }
4086 else
4087 {
4088 if (no_accesses_p (repr))
4089 {
4090 proceed = true;
4091 sra_stats.deleted_unused_parameters++;
4092 }
4093 adjustments_count++;
4094 }
4095 }
4096
4097 if (!proceed && dump_file)
4098 fprintf (dump_file, "NOT proceeding to change params.\n");
4099
4100 if (proceed)
4101 adjustments = turn_representatives_into_adjustments (representatives,
4102 adjustments_count);
4103 else
4104 adjustments = NULL;
4105
4106 VEC_free (access_p, heap, representatives);
4107 return adjustments;
4108 }
4109
4110 /* If a parameter replacement identified by ADJ does not yet exist in the form
4111 of declaration, create it and record it, otherwise return the previously
4112 created one. */
4113
4114 static tree
4115 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4116 {
4117 tree repl;
4118 if (!adj->new_ssa_base)
4119 {
4120 char *pretty_name = make_fancy_name (adj->base);
4121
4122 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4123 DECL_NAME (repl) = get_identifier (pretty_name);
4124 obstack_free (&name_obstack, pretty_name);
4125
4126 add_referenced_var (repl);
4127 adj->new_ssa_base = repl;
4128 }
4129 else
4130 repl = adj->new_ssa_base;
4131 return repl;
4132 }
4133
4134 /* Find the first adjustment for a particular parameter BASE in a vector of
4135 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4136 adjustment. */
4137
4138 static struct ipa_parm_adjustment *
4139 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4140 {
4141 int i, len;
4142
4143 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4144 for (i = 0; i < len; i++)
4145 {
4146 struct ipa_parm_adjustment *adj;
4147
4148 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4149 if (!adj->copy_param && adj->base == base)
4150 return adj;
4151 }
4152
4153 return NULL;
4154 }
4155
4156 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4157 removed because its value is not used, replace the SSA_NAME with a one
4158 relating to a created VAR_DECL together all of its uses and return true.
4159 ADJUSTMENTS is a pointer to an adjustments vector. */
4160
4161 static bool
4162 replace_removed_params_ssa_names (gimple stmt,
4163 ipa_parm_adjustment_vec adjustments)
4164 {
4165 struct ipa_parm_adjustment *adj;
4166 tree lhs, decl, repl, name;
4167
4168 if (gimple_code (stmt) == GIMPLE_PHI)
4169 lhs = gimple_phi_result (stmt);
4170 else if (is_gimple_assign (stmt))
4171 lhs = gimple_assign_lhs (stmt);
4172 else if (is_gimple_call (stmt))
4173 lhs = gimple_call_lhs (stmt);
4174 else
4175 gcc_unreachable ();
4176
4177 if (TREE_CODE (lhs) != SSA_NAME)
4178 return false;
4179 decl = SSA_NAME_VAR (lhs);
4180 if (TREE_CODE (decl) != PARM_DECL)
4181 return false;
4182
4183 adj = get_adjustment_for_base (adjustments, decl);
4184 if (!adj)
4185 return false;
4186
4187 repl = get_replaced_param_substitute (adj);
4188 name = make_ssa_name (repl, stmt);
4189
4190 if (dump_file)
4191 {
4192 fprintf (dump_file, "replacing an SSA name of a removed param ");
4193 print_generic_expr (dump_file, lhs, 0);
4194 fprintf (dump_file, " with ");
4195 print_generic_expr (dump_file, name, 0);
4196 fprintf (dump_file, "\n");
4197 }
4198
4199 if (is_gimple_assign (stmt))
4200 gimple_assign_set_lhs (stmt, name);
4201 else if (is_gimple_call (stmt))
4202 gimple_call_set_lhs (stmt, name);
4203 else
4204 gimple_phi_set_result (stmt, name);
4205
4206 replace_uses_by (lhs, name);
4207 release_ssa_name (lhs);
4208 return true;
4209 }
4210
4211 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4212 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4213 specifies whether the function should care about type incompatibility the
4214 current and new expressions. If it is false, the function will leave
4215 incompatibility issues to the caller. Return true iff the expression
4216 was modified. */
4217
4218 static bool
4219 sra_ipa_modify_expr (tree *expr, bool convert,
4220 ipa_parm_adjustment_vec adjustments)
4221 {
4222 int i, len;
4223 struct ipa_parm_adjustment *adj, *cand = NULL;
4224 HOST_WIDE_INT offset, size, max_size;
4225 tree base, src;
4226
4227 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4228
4229 if (TREE_CODE (*expr) == BIT_FIELD_REF
4230 || TREE_CODE (*expr) == IMAGPART_EXPR
4231 || TREE_CODE (*expr) == REALPART_EXPR)
4232 {
4233 expr = &TREE_OPERAND (*expr, 0);
4234 convert = true;
4235 }
4236
4237 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4238 if (!base || size == -1 || max_size == -1)
4239 return false;
4240
4241 if (TREE_CODE (base) == MEM_REF)
4242 {
4243 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4244 base = TREE_OPERAND (base, 0);
4245 }
4246
4247 base = get_ssa_base_param (base);
4248 if (!base || TREE_CODE (base) != PARM_DECL)
4249 return false;
4250
4251 for (i = 0; i < len; i++)
4252 {
4253 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4254
4255 if (adj->base == base &&
4256 (adj->offset == offset || adj->remove_param))
4257 {
4258 cand = adj;
4259 break;
4260 }
4261 }
4262 if (!cand || cand->copy_param || cand->remove_param)
4263 return false;
4264
4265 if (cand->by_ref)
4266 src = build_simple_mem_ref (cand->reduction);
4267 else
4268 src = cand->reduction;
4269
4270 if (dump_file && (dump_flags & TDF_DETAILS))
4271 {
4272 fprintf (dump_file, "About to replace expr ");
4273 print_generic_expr (dump_file, *expr, 0);
4274 fprintf (dump_file, " with ");
4275 print_generic_expr (dump_file, src, 0);
4276 fprintf (dump_file, "\n");
4277 }
4278
4279 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4280 {
4281 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4282 *expr = vce;
4283 }
4284 else
4285 *expr = src;
4286 return true;
4287 }
4288
4289 /* If the statement pointed to by STMT_PTR contains any expressions that need
4290 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4291 potential type incompatibilities (GSI is used to accommodate conversion
4292 statements and must point to the statement). Return true iff the statement
4293 was modified. */
4294
4295 static bool
4296 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4297 ipa_parm_adjustment_vec adjustments)
4298 {
4299 gimple stmt = *stmt_ptr;
4300 tree *lhs_p, *rhs_p;
4301 bool any;
4302
4303 if (!gimple_assign_single_p (stmt))
4304 return false;
4305
4306 rhs_p = gimple_assign_rhs1_ptr (stmt);
4307 lhs_p = gimple_assign_lhs_ptr (stmt);
4308
4309 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4310 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4311 if (any)
4312 {
4313 tree new_rhs = NULL_TREE;
4314
4315 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4316 {
4317 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4318 {
4319 /* V_C_Es of constructors can cause trouble (PR 42714). */
4320 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4321 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4322 else
4323 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4324 }
4325 else
4326 new_rhs = fold_build1_loc (gimple_location (stmt),
4327 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4328 *rhs_p);
4329 }
4330 else if (REFERENCE_CLASS_P (*rhs_p)
4331 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4332 && !is_gimple_reg (*lhs_p))
4333 /* This can happen when an assignment in between two single field
4334 structures is turned into an assignment in between two pointers to
4335 scalars (PR 42237). */
4336 new_rhs = *rhs_p;
4337
4338 if (new_rhs)
4339 {
4340 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4341 true, GSI_SAME_STMT);
4342
4343 gimple_assign_set_rhs_from_tree (gsi, tmp);
4344 }
4345
4346 return true;
4347 }
4348
4349 return false;
4350 }
4351
4352 /* Traverse the function body and all modifications as described in
4353 ADJUSTMENTS. Return true iff the CFG has been changed. */
4354
4355 static bool
4356 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4357 {
4358 bool cfg_changed = false;
4359 basic_block bb;
4360
4361 FOR_EACH_BB (bb)
4362 {
4363 gimple_stmt_iterator gsi;
4364
4365 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4366 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4367
4368 gsi = gsi_start_bb (bb);
4369 while (!gsi_end_p (gsi))
4370 {
4371 gimple stmt = gsi_stmt (gsi);
4372 bool modified = false;
4373 tree *t;
4374 unsigned i;
4375
4376 switch (gimple_code (stmt))
4377 {
4378 case GIMPLE_RETURN:
4379 t = gimple_return_retval_ptr (stmt);
4380 if (*t != NULL_TREE)
4381 modified |= sra_ipa_modify_expr (t, true, adjustments);
4382 break;
4383
4384 case GIMPLE_ASSIGN:
4385 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4386 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4387 break;
4388
4389 case GIMPLE_CALL:
4390 /* Operands must be processed before the lhs. */
4391 for (i = 0; i < gimple_call_num_args (stmt); i++)
4392 {
4393 t = gimple_call_arg_ptr (stmt, i);
4394 modified |= sra_ipa_modify_expr (t, true, adjustments);
4395 }
4396
4397 if (gimple_call_lhs (stmt))
4398 {
4399 t = gimple_call_lhs_ptr (stmt);
4400 modified |= sra_ipa_modify_expr (t, false, adjustments);
4401 modified |= replace_removed_params_ssa_names (stmt,
4402 adjustments);
4403 }
4404 break;
4405
4406 case GIMPLE_ASM:
4407 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4408 {
4409 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4410 modified |= sra_ipa_modify_expr (t, true, adjustments);
4411 }
4412 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4413 {
4414 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4415 modified |= sra_ipa_modify_expr (t, false, adjustments);
4416 }
4417 break;
4418
4419 default:
4420 break;
4421 }
4422
4423 if (modified)
4424 {
4425 update_stmt (stmt);
4426 if (maybe_clean_eh_stmt (stmt)
4427 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4428 cfg_changed = true;
4429 }
4430 gsi_next (&gsi);
4431 }
4432 }
4433
4434 return cfg_changed;
4435 }
4436
4437 /* Call gimple_debug_bind_reset_value on all debug statements describing
4438 gimple register parameters that are being removed or replaced. */
4439
4440 static void
4441 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4442 {
4443 int i, len;
4444 gimple_stmt_iterator *gsip = NULL, gsi;
4445
4446 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR))
4447 {
4448 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
4449 gsip = &gsi;
4450 }
4451 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4452 for (i = 0; i < len; i++)
4453 {
4454 struct ipa_parm_adjustment *adj;
4455 imm_use_iterator ui;
4456 gimple stmt, def_temp;
4457 tree name, vexpr, copy = NULL_TREE;
4458 use_operand_p use_p;
4459
4460 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4461 if (adj->copy_param || !is_gimple_reg (adj->base))
4462 continue;
4463 name = gimple_default_def (cfun, adj->base);
4464 vexpr = NULL;
4465 if (name)
4466 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4467 {
4468 /* All other users must have been removed by
4469 ipa_sra_modify_function_body. */
4470 gcc_assert (is_gimple_debug (stmt));
4471 if (vexpr == NULL && gsip != NULL)
4472 {
4473 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4474 vexpr = make_node (DEBUG_EXPR_DECL);
4475 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4476 NULL);
4477 DECL_ARTIFICIAL (vexpr) = 1;
4478 TREE_TYPE (vexpr) = TREE_TYPE (name);
4479 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4480 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4481 }
4482 if (vexpr)
4483 {
4484 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4485 SET_USE (use_p, vexpr);
4486 }
4487 else
4488 gimple_debug_bind_reset_value (stmt);
4489 update_stmt (stmt);
4490 }
4491 /* Create a VAR_DECL for debug info purposes. */
4492 if (!DECL_IGNORED_P (adj->base))
4493 {
4494 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4495 VAR_DECL, DECL_NAME (adj->base),
4496 TREE_TYPE (adj->base));
4497 if (DECL_PT_UID_SET_P (adj->base))
4498 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4499 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4500 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4501 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4502 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4503 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4504 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4505 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4506 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4507 SET_DECL_RTL (copy, 0);
4508 TREE_USED (copy) = 1;
4509 DECL_CONTEXT (copy) = current_function_decl;
4510 add_referenced_var (copy);
4511 add_local_decl (cfun, copy);
4512 DECL_CHAIN (copy) =
4513 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4514 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4515 }
4516 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4517 {
4518 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4519 if (vexpr)
4520 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4521 else
4522 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4523 NULL);
4524 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4525 }
4526 }
4527 }
4528
4529 /* Return false iff all callers have at least as many actual arguments as there
4530 are formal parameters in the current function. */
4531
4532 static bool
4533 not_all_callers_have_enough_arguments_p (struct cgraph_node *node,
4534 void *data ATTRIBUTE_UNUSED)
4535 {
4536 struct cgraph_edge *cs;
4537 for (cs = node->callers; cs; cs = cs->next_caller)
4538 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4539 return true;
4540
4541 return false;
4542 }
4543
4544 /* Convert all callers of NODE. */
4545
4546 static bool
4547 convert_callers_for_node (struct cgraph_node *node,
4548 void *data)
4549 {
4550 ipa_parm_adjustment_vec adjustments = (ipa_parm_adjustment_vec)data;
4551 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4552 struct cgraph_edge *cs;
4553
4554 for (cs = node->callers; cs; cs = cs->next_caller)
4555 {
4556 current_function_decl = cs->caller->decl;
4557 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4558
4559 if (dump_file)
4560 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4561 cs->caller->uid, cs->callee->uid,
4562 cgraph_node_name (cs->caller),
4563 cgraph_node_name (cs->callee));
4564
4565 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4566
4567 pop_cfun ();
4568 }
4569
4570 for (cs = node->callers; cs; cs = cs->next_caller)
4571 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4572 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4573 compute_inline_parameters (cs->caller, true);
4574 BITMAP_FREE (recomputed_callers);
4575
4576 return true;
4577 }
4578
4579 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4580
4581 static void
4582 convert_callers (struct cgraph_node *node, tree old_decl,
4583 ipa_parm_adjustment_vec adjustments)
4584 {
4585 tree old_cur_fndecl = current_function_decl;
4586 basic_block this_block;
4587
4588 cgraph_for_node_and_aliases (node, convert_callers_for_node,
4589 adjustments, false);
4590
4591 current_function_decl = old_cur_fndecl;
4592
4593 if (!encountered_recursive_call)
4594 return;
4595
4596 FOR_EACH_BB (this_block)
4597 {
4598 gimple_stmt_iterator gsi;
4599
4600 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4601 {
4602 gimple stmt = gsi_stmt (gsi);
4603 tree call_fndecl;
4604 if (gimple_code (stmt) != GIMPLE_CALL)
4605 continue;
4606 call_fndecl = gimple_call_fndecl (stmt);
4607 if (call_fndecl == old_decl)
4608 {
4609 if (dump_file)
4610 fprintf (dump_file, "Adjusting recursive call");
4611 gimple_call_set_fndecl (stmt, node->decl);
4612 ipa_modify_call_arguments (NULL, stmt, adjustments);
4613 }
4614 }
4615 }
4616
4617 return;
4618 }
4619
4620 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4621 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4622
4623 static bool
4624 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4625 {
4626 struct cgraph_node *new_node;
4627 bool cfg_changed;
4628 VEC (cgraph_edge_p, heap) * redirect_callers = collect_callers_of_node (node);
4629
4630 rebuild_cgraph_edges ();
4631 free_dominance_info (CDI_DOMINATORS);
4632 pop_cfun ();
4633 current_function_decl = NULL_TREE;
4634
4635 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4636 NULL, NULL, "isra");
4637 current_function_decl = new_node->decl;
4638 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4639
4640 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4641 cfg_changed = ipa_sra_modify_function_body (adjustments);
4642 sra_ipa_reset_debug_stmts (adjustments);
4643 convert_callers (new_node, node->decl, adjustments);
4644 cgraph_make_node_local (new_node);
4645 return cfg_changed;
4646 }
4647
4648 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4649 attributes, return true otherwise. NODE is the cgraph node of the current
4650 function. */
4651
4652 static bool
4653 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4654 {
4655 if (!cgraph_node_can_be_local_p (node))
4656 {
4657 if (dump_file)
4658 fprintf (dump_file, "Function not local to this compilation unit.\n");
4659 return false;
4660 }
4661
4662 if (!node->local.can_change_signature)
4663 {
4664 if (dump_file)
4665 fprintf (dump_file, "Function can not change signature.\n");
4666 return false;
4667 }
4668
4669 if (!tree_versionable_function_p (node->decl))
4670 {
4671 if (dump_file)
4672 fprintf (dump_file, "Function is not versionable.\n");
4673 return false;
4674 }
4675
4676 if (DECL_VIRTUAL_P (current_function_decl))
4677 {
4678 if (dump_file)
4679 fprintf (dump_file, "Function is a virtual method.\n");
4680 return false;
4681 }
4682
4683 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4684 && inline_summary(node)->size >= MAX_INLINE_INSNS_AUTO)
4685 {
4686 if (dump_file)
4687 fprintf (dump_file, "Function too big to be made truly local.\n");
4688 return false;
4689 }
4690
4691 if (!node->callers)
4692 {
4693 if (dump_file)
4694 fprintf (dump_file,
4695 "Function has no callers in this compilation unit.\n");
4696 return false;
4697 }
4698
4699 if (cfun->stdarg)
4700 {
4701 if (dump_file)
4702 fprintf (dump_file, "Function uses stdarg. \n");
4703 return false;
4704 }
4705
4706 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4707 return false;
4708
4709 return true;
4710 }
4711
4712 /* Perform early interprocedural SRA. */
4713
4714 static unsigned int
4715 ipa_early_sra (void)
4716 {
4717 struct cgraph_node *node = cgraph_get_node (current_function_decl);
4718 ipa_parm_adjustment_vec adjustments;
4719 int ret = 0;
4720
4721 if (!ipa_sra_preliminary_function_checks (node))
4722 return 0;
4723
4724 sra_initialize ();
4725 sra_mode = SRA_MODE_EARLY_IPA;
4726
4727 if (!find_param_candidates ())
4728 {
4729 if (dump_file)
4730 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4731 goto simple_out;
4732 }
4733
4734 if (cgraph_for_node_and_aliases (node, not_all_callers_have_enough_arguments_p,
4735 NULL, true))
4736 {
4737 if (dump_file)
4738 fprintf (dump_file, "There are callers with insufficient number of "
4739 "arguments.\n");
4740 goto simple_out;
4741 }
4742
4743 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4744 func_param_count
4745 * last_basic_block_for_function (cfun));
4746 final_bbs = BITMAP_ALLOC (NULL);
4747
4748 scan_function ();
4749 if (encountered_apply_args)
4750 {
4751 if (dump_file)
4752 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4753 goto out;
4754 }
4755
4756 if (encountered_unchangable_recursive_call)
4757 {
4758 if (dump_file)
4759 fprintf (dump_file, "Function calls itself with insufficient "
4760 "number of arguments.\n");
4761 goto out;
4762 }
4763
4764 adjustments = analyze_all_param_acesses ();
4765 if (!adjustments)
4766 goto out;
4767 if (dump_file)
4768 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4769
4770 if (modify_function (node, adjustments))
4771 ret = TODO_update_ssa | TODO_cleanup_cfg;
4772 else
4773 ret = TODO_update_ssa;
4774 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4775
4776 statistics_counter_event (cfun, "Unused parameters deleted",
4777 sra_stats.deleted_unused_parameters);
4778 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4779 sra_stats.scalar_by_ref_to_by_val);
4780 statistics_counter_event (cfun, "Aggregate parameters broken up",
4781 sra_stats.aggregate_params_reduced);
4782 statistics_counter_event (cfun, "Aggregate parameter components created",
4783 sra_stats.param_reductions_created);
4784
4785 out:
4786 BITMAP_FREE (final_bbs);
4787 free (bb_dereferences);
4788 simple_out:
4789 sra_deinitialize ();
4790 return ret;
4791 }
4792
4793 /* Return if early ipa sra shall be performed. */
4794 static bool
4795 ipa_early_sra_gate (void)
4796 {
4797 return flag_ipa_sra && dbg_cnt (eipa_sra);
4798 }
4799
4800 struct gimple_opt_pass pass_early_ipa_sra =
4801 {
4802 {
4803 GIMPLE_PASS,
4804 "eipa_sra", /* name */
4805 ipa_early_sra_gate, /* gate */
4806 ipa_early_sra, /* execute */
4807 NULL, /* sub */
4808 NULL, /* next */
4809 0, /* static_pass_number */
4810 TV_IPA_SRA, /* tv_id */
4811 0, /* properties_required */
4812 0, /* properties_provided */
4813 0, /* properties_destroyed */
4814 0, /* todo_flags_start */
4815 TODO_dump_cgraph /* todo_flags_finish */
4816 }
4817 };