re PR tree-optimization/51624 (Assert_Failure atree.adb:808 during stage 3)
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
27
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
32
33 Both passes operate in four stages:
34
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
38
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
46
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
50
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
55
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
60
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
64
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
67
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
73
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "alloc-pool.h"
78 #include "tm.h"
79 #include "tree.h"
80 #include "gimple.h"
81 #include "cgraph.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "tree-pretty-print.h"
85 #include "statistics.h"
86 #include "tree-dump.h"
87 #include "timevar.h"
88 #include "params.h"
89 #include "target.h"
90 #include "flags.h"
91 #include "dbgcnt.h"
92 #include "tree-inline.h"
93 #include "gimple-pretty-print.h"
94 #include "ipa-inline.h"
95
96 /* Enumeration of all aggregate reductions we can do. */
97 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
98 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
99 SRA_MODE_INTRA }; /* late intraprocedural SRA */
100
101 /* Global variable describing which aggregate reduction we are performing at
102 the moment. */
103 static enum sra_mode sra_mode;
104
105 struct assign_link;
106
107 /* ACCESS represents each access to an aggregate variable (as a whole or a
108 part). It can also represent a group of accesses that refer to exactly the
109 same fragment of an aggregate (i.e. those that have exactly the same offset
110 and size). Such representatives for a single aggregate, once determined,
111 are linked in a linked list and have the group fields set.
112
113 Moreover, when doing intraprocedural SRA, a tree is built from those
114 representatives (by the means of first_child and next_sibling pointers), in
115 which all items in a subtree are "within" the root, i.e. their offset is
116 greater or equal to offset of the root and offset+size is smaller or equal
117 to offset+size of the root. Children of an access are sorted by offset.
118
119 Note that accesses to parts of vector and complex number types always
120 represented by an access to the whole complex number or a vector. It is a
121 duty of the modifying functions to replace them appropriately. */
122
123 struct access
124 {
125 /* Values returned by `get_ref_base_and_extent' for each component reference
126 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
127 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
128 HOST_WIDE_INT offset;
129 HOST_WIDE_INT size;
130 tree base;
131
132 /* Expression. It is context dependent so do not use it to create new
133 expressions to access the original aggregate. See PR 42154 for a
134 testcase. */
135 tree expr;
136 /* Type. */
137 tree type;
138
139 /* The statement this access belongs to. */
140 gimple stmt;
141
142 /* Next group representative for this aggregate. */
143 struct access *next_grp;
144
145 /* Pointer to the group representative. Pointer to itself if the struct is
146 the representative. */
147 struct access *group_representative;
148
149 /* If this access has any children (in terms of the definition above), this
150 points to the first one. */
151 struct access *first_child;
152
153 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
154 described above. In IPA-SRA this is a pointer to the next access
155 belonging to the same group (having the same representative). */
156 struct access *next_sibling;
157
158 /* Pointers to the first and last element in the linked list of assign
159 links. */
160 struct assign_link *first_link, *last_link;
161
162 /* Pointer to the next access in the work queue. */
163 struct access *next_queued;
164
165 /* Replacement variable for this access "region." Never to be accessed
166 directly, always only by the means of get_access_replacement() and only
167 when grp_to_be_replaced flag is set. */
168 tree replacement_decl;
169
170 /* Is this particular access write access? */
171 unsigned write : 1;
172
173 /* Is this access an access to a non-addressable field? */
174 unsigned non_addressable : 1;
175
176 /* Is this access currently in the work queue? */
177 unsigned grp_queued : 1;
178
179 /* Does this group contain a write access? This flag is propagated down the
180 access tree. */
181 unsigned grp_write : 1;
182
183 /* Does this group contain a read access? This flag is propagated down the
184 access tree. */
185 unsigned grp_read : 1;
186
187 /* Does this group contain a read access that comes from an assignment
188 statement? This flag is propagated down the access tree. */
189 unsigned grp_assignment_read : 1;
190
191 /* Does this group contain a write access that comes from an assignment
192 statement? This flag is propagated down the access tree. */
193 unsigned grp_assignment_write : 1;
194
195 /* Does this group contain a read access through a scalar type? This flag is
196 not propagated in the access tree in any direction. */
197 unsigned grp_scalar_read : 1;
198
199 /* Does this group contain a write access through a scalar type? This flag
200 is not propagated in the access tree in any direction. */
201 unsigned grp_scalar_write : 1;
202
203 /* Is this access an artificial one created to scalarize some record
204 entirely? */
205 unsigned grp_total_scalarization : 1;
206
207 /* Other passes of the analysis use this bit to make function
208 analyze_access_subtree create scalar replacements for this group if
209 possible. */
210 unsigned grp_hint : 1;
211
212 /* Is the subtree rooted in this access fully covered by scalar
213 replacements? */
214 unsigned grp_covered : 1;
215
216 /* If set to true, this access and all below it in an access tree must not be
217 scalarized. */
218 unsigned grp_unscalarizable_region : 1;
219
220 /* Whether data have been written to parts of the aggregate covered by this
221 access which is not to be scalarized. This flag is propagated up in the
222 access tree. */
223 unsigned grp_unscalarized_data : 1;
224
225 /* Does this access and/or group contain a write access through a
226 BIT_FIELD_REF? */
227 unsigned grp_partial_lhs : 1;
228
229 /* Set when a scalar replacement should be created for this variable. We do
230 the decision and creation at different places because create_tmp_var
231 cannot be called from within FOR_EACH_REFERENCED_VAR. */
232 unsigned grp_to_be_replaced : 1;
233
234 /* Should TREE_NO_WARNING of a replacement be set? */
235 unsigned grp_no_warning : 1;
236
237 /* Is it possible that the group refers to data which might be (directly or
238 otherwise) modified? */
239 unsigned grp_maybe_modified : 1;
240
241 /* Set when this is a representative of a pointer to scalar (i.e. by
242 reference) parameter which we consider for turning into a plain scalar
243 (i.e. a by value parameter). */
244 unsigned grp_scalar_ptr : 1;
245
246 /* Set when we discover that this pointer is not safe to dereference in the
247 caller. */
248 unsigned grp_not_necessarilly_dereferenced : 1;
249 };
250
251 typedef struct access *access_p;
252
253 DEF_VEC_P (access_p);
254 DEF_VEC_ALLOC_P (access_p, heap);
255
256 /* Alloc pool for allocating access structures. */
257 static alloc_pool access_pool;
258
259 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
260 are used to propagate subaccesses from rhs to lhs as long as they don't
261 conflict with what is already there. */
262 struct assign_link
263 {
264 struct access *lacc, *racc;
265 struct assign_link *next;
266 };
267
268 /* Alloc pool for allocating assign link structures. */
269 static alloc_pool link_pool;
270
271 /* Base (tree) -> Vector (VEC(access_p,heap) *) map. */
272 static struct pointer_map_t *base_access_vec;
273
274 /* Bitmap of candidates. */
275 static bitmap candidate_bitmap;
276
277 /* Bitmap of candidates which we should try to entirely scalarize away and
278 those which cannot be (because they are and need be used as a whole). */
279 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
280
281 /* Obstack for creation of fancy names. */
282 static struct obstack name_obstack;
283
284 /* Head of a linked list of accesses that need to have its subaccesses
285 propagated to their assignment counterparts. */
286 static struct access *work_queue_head;
287
288 /* Number of parameters of the analyzed function when doing early ipa SRA. */
289 static int func_param_count;
290
291 /* scan_function sets the following to true if it encounters a call to
292 __builtin_apply_args. */
293 static bool encountered_apply_args;
294
295 /* Set by scan_function when it finds a recursive call. */
296 static bool encountered_recursive_call;
297
298 /* Set by scan_function when it finds a recursive call with less actual
299 arguments than formal parameters.. */
300 static bool encountered_unchangable_recursive_call;
301
302 /* This is a table in which for each basic block and parameter there is a
303 distance (offset + size) in that parameter which is dereferenced and
304 accessed in that BB. */
305 static HOST_WIDE_INT *bb_dereferences;
306 /* Bitmap of BBs that can cause the function to "stop" progressing by
307 returning, throwing externally, looping infinitely or calling a function
308 which might abort etc.. */
309 static bitmap final_bbs;
310
311 /* Representative of no accesses at all. */
312 static struct access no_accesses_representant;
313
314 /* Predicate to test the special value. */
315
316 static inline bool
317 no_accesses_p (struct access *access)
318 {
319 return access == &no_accesses_representant;
320 }
321
322 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
323 representative fields are dumped, otherwise those which only describe the
324 individual access are. */
325
326 static struct
327 {
328 /* Number of processed aggregates is readily available in
329 analyze_all_variable_accesses and so is not stored here. */
330
331 /* Number of created scalar replacements. */
332 int replacements;
333
334 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
335 expression. */
336 int exprs;
337
338 /* Number of statements created by generate_subtree_copies. */
339 int subtree_copies;
340
341 /* Number of statements created by load_assign_lhs_subreplacements. */
342 int subreplacements;
343
344 /* Number of times sra_modify_assign has deleted a statement. */
345 int deleted;
346
347 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
348 RHS reparately due to type conversions or nonexistent matching
349 references. */
350 int separate_lhs_rhs_handling;
351
352 /* Number of parameters that were removed because they were unused. */
353 int deleted_unused_parameters;
354
355 /* Number of scalars passed as parameters by reference that have been
356 converted to be passed by value. */
357 int scalar_by_ref_to_by_val;
358
359 /* Number of aggregate parameters that were replaced by one or more of their
360 components. */
361 int aggregate_params_reduced;
362
363 /* Numbber of components created when splitting aggregate parameters. */
364 int param_reductions_created;
365 } sra_stats;
366
367 static void
368 dump_access (FILE *f, struct access *access, bool grp)
369 {
370 fprintf (f, "access { ");
371 fprintf (f, "base = (%d)'", DECL_UID (access->base));
372 print_generic_expr (f, access->base, 0);
373 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
374 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
375 fprintf (f, ", expr = ");
376 print_generic_expr (f, access->expr, 0);
377 fprintf (f, ", type = ");
378 print_generic_expr (f, access->type, 0);
379 if (grp)
380 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
381 "grp_assignment_write = %d, grp_scalar_read = %d, "
382 "grp_scalar_write = %d, grp_total_scalarization = %d, "
383 "grp_hint = %d, grp_covered = %d, "
384 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
385 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
386 "grp_maybe_modified = %d, "
387 "grp_not_necessarilly_dereferenced = %d\n",
388 access->grp_read, access->grp_write, access->grp_assignment_read,
389 access->grp_assignment_write, access->grp_scalar_read,
390 access->grp_scalar_write, access->grp_total_scalarization,
391 access->grp_hint, access->grp_covered,
392 access->grp_unscalarizable_region, access->grp_unscalarized_data,
393 access->grp_partial_lhs, access->grp_to_be_replaced,
394 access->grp_maybe_modified,
395 access->grp_not_necessarilly_dereferenced);
396 else
397 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
398 "grp_partial_lhs = %d\n",
399 access->write, access->grp_total_scalarization,
400 access->grp_partial_lhs);
401 }
402
403 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
404
405 static void
406 dump_access_tree_1 (FILE *f, struct access *access, int level)
407 {
408 do
409 {
410 int i;
411
412 for (i = 0; i < level; i++)
413 fputs ("* ", dump_file);
414
415 dump_access (f, access, true);
416
417 if (access->first_child)
418 dump_access_tree_1 (f, access->first_child, level + 1);
419
420 access = access->next_sibling;
421 }
422 while (access);
423 }
424
425 /* Dump all access trees for a variable, given the pointer to the first root in
426 ACCESS. */
427
428 static void
429 dump_access_tree (FILE *f, struct access *access)
430 {
431 for (; access; access = access->next_grp)
432 dump_access_tree_1 (f, access, 0);
433 }
434
435 /* Return true iff ACC is non-NULL and has subaccesses. */
436
437 static inline bool
438 access_has_children_p (struct access *acc)
439 {
440 return acc && acc->first_child;
441 }
442
443 /* Return a vector of pointers to accesses for the variable given in BASE or
444 NULL if there is none. */
445
446 static VEC (access_p, heap) *
447 get_base_access_vector (tree base)
448 {
449 void **slot;
450
451 slot = pointer_map_contains (base_access_vec, base);
452 if (!slot)
453 return NULL;
454 else
455 return *(VEC (access_p, heap) **) slot;
456 }
457
458 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
459 in ACCESS. Return NULL if it cannot be found. */
460
461 static struct access *
462 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
463 HOST_WIDE_INT size)
464 {
465 while (access && (access->offset != offset || access->size != size))
466 {
467 struct access *child = access->first_child;
468
469 while (child && (child->offset + child->size <= offset))
470 child = child->next_sibling;
471 access = child;
472 }
473
474 return access;
475 }
476
477 /* Return the first group representative for DECL or NULL if none exists. */
478
479 static struct access *
480 get_first_repr_for_decl (tree base)
481 {
482 VEC (access_p, heap) *access_vec;
483
484 access_vec = get_base_access_vector (base);
485 if (!access_vec)
486 return NULL;
487
488 return VEC_index (access_p, access_vec, 0);
489 }
490
491 /* Find an access representative for the variable BASE and given OFFSET and
492 SIZE. Requires that access trees have already been built. Return NULL if
493 it cannot be found. */
494
495 static struct access *
496 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
497 HOST_WIDE_INT size)
498 {
499 struct access *access;
500
501 access = get_first_repr_for_decl (base);
502 while (access && (access->offset + access->size <= offset))
503 access = access->next_grp;
504 if (!access)
505 return NULL;
506
507 return find_access_in_subtree (access, offset, size);
508 }
509
510 /* Add LINK to the linked list of assign links of RACC. */
511 static void
512 add_link_to_rhs (struct access *racc, struct assign_link *link)
513 {
514 gcc_assert (link->racc == racc);
515
516 if (!racc->first_link)
517 {
518 gcc_assert (!racc->last_link);
519 racc->first_link = link;
520 }
521 else
522 racc->last_link->next = link;
523
524 racc->last_link = link;
525 link->next = NULL;
526 }
527
528 /* Move all link structures in their linked list in OLD_RACC to the linked list
529 in NEW_RACC. */
530 static void
531 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
532 {
533 if (!old_racc->first_link)
534 {
535 gcc_assert (!old_racc->last_link);
536 return;
537 }
538
539 if (new_racc->first_link)
540 {
541 gcc_assert (!new_racc->last_link->next);
542 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
543
544 new_racc->last_link->next = old_racc->first_link;
545 new_racc->last_link = old_racc->last_link;
546 }
547 else
548 {
549 gcc_assert (!new_racc->last_link);
550
551 new_racc->first_link = old_racc->first_link;
552 new_racc->last_link = old_racc->last_link;
553 }
554 old_racc->first_link = old_racc->last_link = NULL;
555 }
556
557 /* Add ACCESS to the work queue (which is actually a stack). */
558
559 static void
560 add_access_to_work_queue (struct access *access)
561 {
562 if (!access->grp_queued)
563 {
564 gcc_assert (!access->next_queued);
565 access->next_queued = work_queue_head;
566 access->grp_queued = 1;
567 work_queue_head = access;
568 }
569 }
570
571 /* Pop an access from the work queue, and return it, assuming there is one. */
572
573 static struct access *
574 pop_access_from_work_queue (void)
575 {
576 struct access *access = work_queue_head;
577
578 work_queue_head = access->next_queued;
579 access->next_queued = NULL;
580 access->grp_queued = 0;
581 return access;
582 }
583
584
585 /* Allocate necessary structures. */
586
587 static void
588 sra_initialize (void)
589 {
590 candidate_bitmap = BITMAP_ALLOC (NULL);
591 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
592 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
593 gcc_obstack_init (&name_obstack);
594 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
595 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
596 base_access_vec = pointer_map_create ();
597 memset (&sra_stats, 0, sizeof (sra_stats));
598 encountered_apply_args = false;
599 encountered_recursive_call = false;
600 encountered_unchangable_recursive_call = false;
601 }
602
603 /* Hook fed to pointer_map_traverse, deallocate stored vectors. */
604
605 static bool
606 delete_base_accesses (const void *key ATTRIBUTE_UNUSED, void **value,
607 void *data ATTRIBUTE_UNUSED)
608 {
609 VEC (access_p, heap) *access_vec;
610 access_vec = (VEC (access_p, heap) *) *value;
611 VEC_free (access_p, heap, access_vec);
612
613 return true;
614 }
615
616 /* Deallocate all general structures. */
617
618 static void
619 sra_deinitialize (void)
620 {
621 BITMAP_FREE (candidate_bitmap);
622 BITMAP_FREE (should_scalarize_away_bitmap);
623 BITMAP_FREE (cannot_scalarize_away_bitmap);
624 free_alloc_pool (access_pool);
625 free_alloc_pool (link_pool);
626 obstack_free (&name_obstack, NULL);
627
628 pointer_map_traverse (base_access_vec, delete_base_accesses, NULL);
629 pointer_map_destroy (base_access_vec);
630 }
631
632 /* Remove DECL from candidates for SRA and write REASON to the dump file if
633 there is one. */
634 static void
635 disqualify_candidate (tree decl, const char *reason)
636 {
637 bitmap_clear_bit (candidate_bitmap, DECL_UID (decl));
638
639 if (dump_file && (dump_flags & TDF_DETAILS))
640 {
641 fprintf (dump_file, "! Disqualifying ");
642 print_generic_expr (dump_file, decl, 0);
643 fprintf (dump_file, " - %s\n", reason);
644 }
645 }
646
647 /* Return true iff the type contains a field or an element which does not allow
648 scalarization. */
649
650 static bool
651 type_internals_preclude_sra_p (tree type, const char **msg)
652 {
653 tree fld;
654 tree et;
655
656 switch (TREE_CODE (type))
657 {
658 case RECORD_TYPE:
659 case UNION_TYPE:
660 case QUAL_UNION_TYPE:
661 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
662 if (TREE_CODE (fld) == FIELD_DECL)
663 {
664 tree ft = TREE_TYPE (fld);
665
666 if (TREE_THIS_VOLATILE (fld))
667 {
668 *msg = "volatile structure field";
669 return true;
670 }
671 if (!DECL_FIELD_OFFSET (fld))
672 {
673 *msg = "no structure field offset";
674 return true;
675 }
676 if (!DECL_SIZE (fld))
677 {
678 *msg = "zero structure field size";
679 return true;
680 }
681 if (!host_integerp (DECL_FIELD_OFFSET (fld), 1))
682 {
683 *msg = "structure field offset not fixed";
684 return true;
685 }
686 if (!host_integerp (DECL_SIZE (fld), 1))
687 {
688 *msg = "structure field size not fixed";
689 return true;
690 }
691 if (AGGREGATE_TYPE_P (ft)
692 && int_bit_position (fld) % BITS_PER_UNIT != 0)
693 {
694 *msg = "structure field is bit field";
695 return true;
696 }
697
698 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
699 return true;
700 }
701
702 return false;
703
704 case ARRAY_TYPE:
705 et = TREE_TYPE (type);
706
707 if (TYPE_VOLATILE (et))
708 {
709 *msg = "element type is volatile";
710 return true;
711 }
712
713 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
714 return true;
715
716 return false;
717
718 default:
719 return false;
720 }
721 }
722
723 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
724 base variable if it is. Return T if it is not an SSA_NAME. */
725
726 static tree
727 get_ssa_base_param (tree t)
728 {
729 if (TREE_CODE (t) == SSA_NAME)
730 {
731 if (SSA_NAME_IS_DEFAULT_DEF (t))
732 return SSA_NAME_VAR (t);
733 else
734 return NULL_TREE;
735 }
736 return t;
737 }
738
739 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
740 belongs to, unless the BB has already been marked as a potentially
741 final. */
742
743 static void
744 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
745 {
746 basic_block bb = gimple_bb (stmt);
747 int idx, parm_index = 0;
748 tree parm;
749
750 if (bitmap_bit_p (final_bbs, bb->index))
751 return;
752
753 for (parm = DECL_ARGUMENTS (current_function_decl);
754 parm && parm != base;
755 parm = DECL_CHAIN (parm))
756 parm_index++;
757
758 gcc_assert (parm_index < func_param_count);
759
760 idx = bb->index * func_param_count + parm_index;
761 if (bb_dereferences[idx] < dist)
762 bb_dereferences[idx] = dist;
763 }
764
765 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
766 the three fields. Also add it to the vector of accesses corresponding to
767 the base. Finally, return the new access. */
768
769 static struct access *
770 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
771 {
772 VEC (access_p, heap) *vec;
773 struct access *access;
774 void **slot;
775
776 access = (struct access *) pool_alloc (access_pool);
777 memset (access, 0, sizeof (struct access));
778 access->base = base;
779 access->offset = offset;
780 access->size = size;
781
782 slot = pointer_map_contains (base_access_vec, base);
783 if (slot)
784 vec = (VEC (access_p, heap) *) *slot;
785 else
786 vec = VEC_alloc (access_p, heap, 32);
787
788 VEC_safe_push (access_p, heap, vec, access);
789
790 *((struct VEC (access_p,heap) **)
791 pointer_map_insert (base_access_vec, base)) = vec;
792
793 return access;
794 }
795
796 /* Create and insert access for EXPR. Return created access, or NULL if it is
797 not possible. */
798
799 static struct access *
800 create_access (tree expr, gimple stmt, bool write)
801 {
802 struct access *access;
803 HOST_WIDE_INT offset, size, max_size;
804 tree base = expr;
805 bool ptr, unscalarizable_region = false;
806
807 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
808
809 if (sra_mode == SRA_MODE_EARLY_IPA
810 && TREE_CODE (base) == MEM_REF)
811 {
812 base = get_ssa_base_param (TREE_OPERAND (base, 0));
813 if (!base)
814 return NULL;
815 ptr = true;
816 }
817 else
818 ptr = false;
819
820 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
821 return NULL;
822
823 if (sra_mode == SRA_MODE_EARLY_IPA)
824 {
825 if (size < 0 || size != max_size)
826 {
827 disqualify_candidate (base, "Encountered a variable sized access.");
828 return NULL;
829 }
830 if (TREE_CODE (expr) == COMPONENT_REF
831 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
832 {
833 disqualify_candidate (base, "Encountered a bit-field access.");
834 return NULL;
835 }
836 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
837
838 if (ptr)
839 mark_parm_dereference (base, offset + size, stmt);
840 }
841 else
842 {
843 if (size != max_size)
844 {
845 size = max_size;
846 unscalarizable_region = true;
847 }
848 if (size < 0)
849 {
850 disqualify_candidate (base, "Encountered an unconstrained access.");
851 return NULL;
852 }
853 }
854
855 access = create_access_1 (base, offset, size);
856 access->expr = expr;
857 access->type = TREE_TYPE (expr);
858 access->write = write;
859 access->grp_unscalarizable_region = unscalarizable_region;
860 access->stmt = stmt;
861
862 if (TREE_CODE (expr) == COMPONENT_REF
863 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
864 access->non_addressable = 1;
865
866 return access;
867 }
868
869
870 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
871 register types or (recursively) records with only these two kinds of fields.
872 It also returns false if any of these records contains a bit-field. */
873
874 static bool
875 type_consists_of_records_p (tree type)
876 {
877 tree fld;
878
879 if (TREE_CODE (type) != RECORD_TYPE)
880 return false;
881
882 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
883 if (TREE_CODE (fld) == FIELD_DECL)
884 {
885 tree ft = TREE_TYPE (fld);
886
887 if (DECL_BIT_FIELD (fld))
888 return false;
889
890 if (!is_gimple_reg_type (ft)
891 && !type_consists_of_records_p (ft))
892 return false;
893 }
894
895 return true;
896 }
897
898 /* Create total_scalarization accesses for all scalar type fields in DECL that
899 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
900 must be the top-most VAR_DECL representing the variable, OFFSET must be the
901 offset of DECL within BASE. REF must be the memory reference expression for
902 the given decl. */
903
904 static void
905 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
906 tree ref)
907 {
908 tree fld, decl_type = TREE_TYPE (decl);
909
910 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
911 if (TREE_CODE (fld) == FIELD_DECL)
912 {
913 HOST_WIDE_INT pos = offset + int_bit_position (fld);
914 tree ft = TREE_TYPE (fld);
915 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
916 NULL_TREE);
917
918 if (is_gimple_reg_type (ft))
919 {
920 struct access *access;
921 HOST_WIDE_INT size;
922
923 size = tree_low_cst (DECL_SIZE (fld), 1);
924 access = create_access_1 (base, pos, size);
925 access->expr = nref;
926 access->type = ft;
927 access->grp_total_scalarization = 1;
928 /* Accesses for intraprocedural SRA can have their stmt NULL. */
929 }
930 else
931 completely_scalarize_record (base, fld, pos, nref);
932 }
933 }
934
935 /* Create total_scalarization accesses for all scalar type fields in VAR and
936 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
937 type_consists_of_records_p. */
938
939 static void
940 completely_scalarize_var (tree var)
941 {
942 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (var), 1);
943 struct access *access;
944
945 access = create_access_1 (var, 0, size);
946 access->expr = var;
947 access->type = TREE_TYPE (var);
948 access->grp_total_scalarization = 1;
949
950 completely_scalarize_record (var, var, 0, var);
951 }
952
953 /* Search the given tree for a declaration by skipping handled components and
954 exclude it from the candidates. */
955
956 static void
957 disqualify_base_of_expr (tree t, const char *reason)
958 {
959 t = get_base_address (t);
960 if (sra_mode == SRA_MODE_EARLY_IPA
961 && TREE_CODE (t) == MEM_REF)
962 t = get_ssa_base_param (TREE_OPERAND (t, 0));
963
964 if (t && DECL_P (t))
965 disqualify_candidate (t, reason);
966 }
967
968 /* Scan expression EXPR and create access structures for all accesses to
969 candidates for scalarization. Return the created access or NULL if none is
970 created. */
971
972 static struct access *
973 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
974 {
975 struct access *ret = NULL;
976 bool partial_ref;
977
978 if (TREE_CODE (expr) == BIT_FIELD_REF
979 || TREE_CODE (expr) == IMAGPART_EXPR
980 || TREE_CODE (expr) == REALPART_EXPR)
981 {
982 expr = TREE_OPERAND (expr, 0);
983 partial_ref = true;
984 }
985 else
986 partial_ref = false;
987
988 /* We need to dive through V_C_Es in order to get the size of its parameter
989 and not the result type. Ada produces such statements. We are also
990 capable of handling the topmost V_C_E but not any of those buried in other
991 handled components. */
992 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
993 expr = TREE_OPERAND (expr, 0);
994
995 if (contains_view_convert_expr_p (expr))
996 {
997 disqualify_base_of_expr (expr, "V_C_E under a different handled "
998 "component.");
999 return NULL;
1000 }
1001
1002 switch (TREE_CODE (expr))
1003 {
1004 case MEM_REF:
1005 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1006 && sra_mode != SRA_MODE_EARLY_IPA)
1007 return NULL;
1008 /* fall through */
1009 case VAR_DECL:
1010 case PARM_DECL:
1011 case RESULT_DECL:
1012 case COMPONENT_REF:
1013 case ARRAY_REF:
1014 case ARRAY_RANGE_REF:
1015 ret = create_access (expr, stmt, write);
1016 break;
1017
1018 default:
1019 break;
1020 }
1021
1022 if (write && partial_ref && ret)
1023 ret->grp_partial_lhs = 1;
1024
1025 return ret;
1026 }
1027
1028 /* Scan expression EXPR and create access structures for all accesses to
1029 candidates for scalarization. Return true if any access has been inserted.
1030 STMT must be the statement from which the expression is taken, WRITE must be
1031 true if the expression is a store and false otherwise. */
1032
1033 static bool
1034 build_access_from_expr (tree expr, gimple stmt, bool write)
1035 {
1036 struct access *access;
1037
1038 access = build_access_from_expr_1 (expr, stmt, write);
1039 if (access)
1040 {
1041 /* This means the aggregate is accesses as a whole in a way other than an
1042 assign statement and thus cannot be removed even if we had a scalar
1043 replacement for everything. */
1044 if (cannot_scalarize_away_bitmap)
1045 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1046 return true;
1047 }
1048 return false;
1049 }
1050
1051 /* Disqualify LHS and RHS for scalarization if STMT must end its basic block in
1052 modes in which it matters, return true iff they have been disqualified. RHS
1053 may be NULL, in that case ignore it. If we scalarize an aggregate in
1054 intra-SRA we may need to add statements after each statement. This is not
1055 possible if a statement unconditionally has to end the basic block. */
1056 static bool
1057 disqualify_ops_if_throwing_stmt (gimple stmt, tree lhs, tree rhs)
1058 {
1059 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1060 && (stmt_can_throw_internal (stmt) || stmt_ends_bb_p (stmt)))
1061 {
1062 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1063 if (rhs)
1064 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1065 return true;
1066 }
1067 return false;
1068 }
1069
1070 /* Return true if EXP is a memory reference less aligned than ALIGN. This is
1071 invoked only on strict-alignment targets. */
1072
1073 static bool
1074 tree_non_aligned_mem_p (tree exp, unsigned int align)
1075 {
1076 unsigned int exp_align;
1077
1078 if (TREE_CODE (exp) == VIEW_CONVERT_EXPR)
1079 exp = TREE_OPERAND (exp, 0);
1080
1081 if (TREE_CODE (exp) == SSA_NAME || is_gimple_min_invariant (exp))
1082 return false;
1083
1084 /* get_object_alignment will fall back to BITS_PER_UNIT if it cannot
1085 compute an explicit alignment. Pretend that dereferenced pointers
1086 are always aligned on strict-alignment targets. */
1087 if (TREE_CODE (exp) == MEM_REF || TREE_CODE (exp) == TARGET_MEM_REF)
1088 exp_align = get_object_or_type_alignment (exp);
1089 else
1090 exp_align = get_object_alignment (exp);
1091
1092 if (exp_align < align)
1093 return true;
1094
1095 return false;
1096 }
1097
1098 /* Scan expressions occuring in STMT, create access structures for all accesses
1099 to candidates for scalarization and remove those candidates which occur in
1100 statements or expressions that prevent them from being split apart. Return
1101 true if any access has been inserted. */
1102
1103 static bool
1104 build_accesses_from_assign (gimple stmt)
1105 {
1106 tree lhs, rhs;
1107 struct access *lacc, *racc;
1108
1109 if (!gimple_assign_single_p (stmt)
1110 /* Scope clobbers don't influence scalarization. */
1111 || gimple_clobber_p (stmt))
1112 return false;
1113
1114 lhs = gimple_assign_lhs (stmt);
1115 rhs = gimple_assign_rhs1 (stmt);
1116
1117 if (disqualify_ops_if_throwing_stmt (stmt, lhs, rhs))
1118 return false;
1119
1120 racc = build_access_from_expr_1 (rhs, stmt, false);
1121 lacc = build_access_from_expr_1 (lhs, stmt, true);
1122
1123 if (lacc)
1124 {
1125 lacc->grp_assignment_write = 1;
1126 if (STRICT_ALIGNMENT
1127 && tree_non_aligned_mem_p (rhs, get_object_alignment (lhs)))
1128 lacc->grp_unscalarizable_region = 1;
1129 }
1130
1131 if (racc)
1132 {
1133 racc->grp_assignment_read = 1;
1134 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1135 && !is_gimple_reg_type (racc->type))
1136 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1137 if (STRICT_ALIGNMENT
1138 && tree_non_aligned_mem_p (lhs, get_object_alignment (rhs)))
1139 racc->grp_unscalarizable_region = 1;
1140 }
1141
1142 if (lacc && racc
1143 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1144 && !lacc->grp_unscalarizable_region
1145 && !racc->grp_unscalarizable_region
1146 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1147 /* FIXME: Turn the following line into an assert after PR 40058 is
1148 fixed. */
1149 && lacc->size == racc->size
1150 && useless_type_conversion_p (lacc->type, racc->type))
1151 {
1152 struct assign_link *link;
1153
1154 link = (struct assign_link *) pool_alloc (link_pool);
1155 memset (link, 0, sizeof (struct assign_link));
1156
1157 link->lacc = lacc;
1158 link->racc = racc;
1159
1160 add_link_to_rhs (racc, link);
1161 }
1162
1163 return lacc || racc;
1164 }
1165
1166 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1167 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1168
1169 static bool
1170 asm_visit_addr (gimple stmt ATTRIBUTE_UNUSED, tree op,
1171 void *data ATTRIBUTE_UNUSED)
1172 {
1173 op = get_base_address (op);
1174 if (op
1175 && DECL_P (op))
1176 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1177
1178 return false;
1179 }
1180
1181 /* Return true iff callsite CALL has at least as many actual arguments as there
1182 are formal parameters of the function currently processed by IPA-SRA. */
1183
1184 static inline bool
1185 callsite_has_enough_arguments_p (gimple call)
1186 {
1187 return gimple_call_num_args (call) >= (unsigned) func_param_count;
1188 }
1189
1190 /* Scan function and look for interesting expressions and create access
1191 structures for them. Return true iff any access is created. */
1192
1193 static bool
1194 scan_function (void)
1195 {
1196 basic_block bb;
1197 bool ret = false;
1198
1199 FOR_EACH_BB (bb)
1200 {
1201 gimple_stmt_iterator gsi;
1202 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1203 {
1204 gimple stmt = gsi_stmt (gsi);
1205 tree t;
1206 unsigned i;
1207
1208 if (final_bbs && stmt_can_throw_external (stmt))
1209 bitmap_set_bit (final_bbs, bb->index);
1210 switch (gimple_code (stmt))
1211 {
1212 case GIMPLE_RETURN:
1213 t = gimple_return_retval (stmt);
1214 if (t != NULL_TREE)
1215 ret |= build_access_from_expr (t, stmt, false);
1216 if (final_bbs)
1217 bitmap_set_bit (final_bbs, bb->index);
1218 break;
1219
1220 case GIMPLE_ASSIGN:
1221 ret |= build_accesses_from_assign (stmt);
1222 break;
1223
1224 case GIMPLE_CALL:
1225 for (i = 0; i < gimple_call_num_args (stmt); i++)
1226 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1227 stmt, false);
1228
1229 if (sra_mode == SRA_MODE_EARLY_IPA)
1230 {
1231 tree dest = gimple_call_fndecl (stmt);
1232 int flags = gimple_call_flags (stmt);
1233
1234 if (dest)
1235 {
1236 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1237 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1238 encountered_apply_args = true;
1239 if (cgraph_get_node (dest)
1240 == cgraph_get_node (current_function_decl))
1241 {
1242 encountered_recursive_call = true;
1243 if (!callsite_has_enough_arguments_p (stmt))
1244 encountered_unchangable_recursive_call = true;
1245 }
1246 }
1247
1248 if (final_bbs
1249 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1250 bitmap_set_bit (final_bbs, bb->index);
1251 }
1252
1253 t = gimple_call_lhs (stmt);
1254 if (t && !disqualify_ops_if_throwing_stmt (stmt, t, NULL))
1255 ret |= build_access_from_expr (t, stmt, true);
1256 break;
1257
1258 case GIMPLE_ASM:
1259 walk_stmt_load_store_addr_ops (stmt, NULL, NULL, NULL,
1260 asm_visit_addr);
1261 if (final_bbs)
1262 bitmap_set_bit (final_bbs, bb->index);
1263
1264 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1265 {
1266 t = TREE_VALUE (gimple_asm_input_op (stmt, i));
1267 ret |= build_access_from_expr (t, stmt, false);
1268 }
1269 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
1270 {
1271 t = TREE_VALUE (gimple_asm_output_op (stmt, i));
1272 ret |= build_access_from_expr (t, stmt, true);
1273 }
1274 break;
1275
1276 default:
1277 break;
1278 }
1279 }
1280 }
1281
1282 return ret;
1283 }
1284
1285 /* Helper of QSORT function. There are pointers to accesses in the array. An
1286 access is considered smaller than another if it has smaller offset or if the
1287 offsets are the same but is size is bigger. */
1288
1289 static int
1290 compare_access_positions (const void *a, const void *b)
1291 {
1292 const access_p *fp1 = (const access_p *) a;
1293 const access_p *fp2 = (const access_p *) b;
1294 const access_p f1 = *fp1;
1295 const access_p f2 = *fp2;
1296
1297 if (f1->offset != f2->offset)
1298 return f1->offset < f2->offset ? -1 : 1;
1299
1300 if (f1->size == f2->size)
1301 {
1302 if (f1->type == f2->type)
1303 return 0;
1304 /* Put any non-aggregate type before any aggregate type. */
1305 else if (!is_gimple_reg_type (f1->type)
1306 && is_gimple_reg_type (f2->type))
1307 return 1;
1308 else if (is_gimple_reg_type (f1->type)
1309 && !is_gimple_reg_type (f2->type))
1310 return -1;
1311 /* Put any complex or vector type before any other scalar type. */
1312 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1313 && TREE_CODE (f1->type) != VECTOR_TYPE
1314 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1315 || TREE_CODE (f2->type) == VECTOR_TYPE))
1316 return 1;
1317 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1318 || TREE_CODE (f1->type) == VECTOR_TYPE)
1319 && TREE_CODE (f2->type) != COMPLEX_TYPE
1320 && TREE_CODE (f2->type) != VECTOR_TYPE)
1321 return -1;
1322 /* Put the integral type with the bigger precision first. */
1323 else if (INTEGRAL_TYPE_P (f1->type)
1324 && INTEGRAL_TYPE_P (f2->type))
1325 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1326 /* Put any integral type with non-full precision last. */
1327 else if (INTEGRAL_TYPE_P (f1->type)
1328 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1329 != TYPE_PRECISION (f1->type)))
1330 return 1;
1331 else if (INTEGRAL_TYPE_P (f2->type)
1332 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1333 != TYPE_PRECISION (f2->type)))
1334 return -1;
1335 /* Stabilize the sort. */
1336 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1337 }
1338
1339 /* We want the bigger accesses first, thus the opposite operator in the next
1340 line: */
1341 return f1->size > f2->size ? -1 : 1;
1342 }
1343
1344
1345 /* Append a name of the declaration to the name obstack. A helper function for
1346 make_fancy_name. */
1347
1348 static void
1349 make_fancy_decl_name (tree decl)
1350 {
1351 char buffer[32];
1352
1353 tree name = DECL_NAME (decl);
1354 if (name)
1355 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1356 IDENTIFIER_LENGTH (name));
1357 else
1358 {
1359 sprintf (buffer, "D%u", DECL_UID (decl));
1360 obstack_grow (&name_obstack, buffer, strlen (buffer));
1361 }
1362 }
1363
1364 /* Helper for make_fancy_name. */
1365
1366 static void
1367 make_fancy_name_1 (tree expr)
1368 {
1369 char buffer[32];
1370 tree index;
1371
1372 if (DECL_P (expr))
1373 {
1374 make_fancy_decl_name (expr);
1375 return;
1376 }
1377
1378 switch (TREE_CODE (expr))
1379 {
1380 case COMPONENT_REF:
1381 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1382 obstack_1grow (&name_obstack, '$');
1383 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1384 break;
1385
1386 case ARRAY_REF:
1387 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1388 obstack_1grow (&name_obstack, '$');
1389 /* Arrays with only one element may not have a constant as their
1390 index. */
1391 index = TREE_OPERAND (expr, 1);
1392 if (TREE_CODE (index) != INTEGER_CST)
1393 break;
1394 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1395 obstack_grow (&name_obstack, buffer, strlen (buffer));
1396 break;
1397
1398 case ADDR_EXPR:
1399 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1400 break;
1401
1402 case MEM_REF:
1403 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1404 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1405 {
1406 obstack_1grow (&name_obstack, '$');
1407 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1408 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1409 obstack_grow (&name_obstack, buffer, strlen (buffer));
1410 }
1411 break;
1412
1413 case BIT_FIELD_REF:
1414 case REALPART_EXPR:
1415 case IMAGPART_EXPR:
1416 gcc_unreachable (); /* we treat these as scalars. */
1417 break;
1418 default:
1419 break;
1420 }
1421 }
1422
1423 /* Create a human readable name for replacement variable of ACCESS. */
1424
1425 static char *
1426 make_fancy_name (tree expr)
1427 {
1428 make_fancy_name_1 (expr);
1429 obstack_1grow (&name_obstack, '\0');
1430 return XOBFINISH (&name_obstack, char *);
1431 }
1432
1433 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1434 EXP_TYPE at the given OFFSET. If BASE is something for which
1435 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1436 to insert new statements either before or below the current one as specified
1437 by INSERT_AFTER. This function is not capable of handling bitfields. */
1438
1439 tree
1440 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1441 tree exp_type, gimple_stmt_iterator *gsi,
1442 bool insert_after)
1443 {
1444 tree prev_base = base;
1445 tree off;
1446 HOST_WIDE_INT base_offset;
1447
1448 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1449
1450 base = get_addr_base_and_unit_offset (base, &base_offset);
1451
1452 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1453 offset such as array[var_index]. */
1454 if (!base)
1455 {
1456 gimple stmt;
1457 tree tmp, addr;
1458
1459 gcc_checking_assert (gsi);
1460 tmp = create_tmp_reg (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1461 add_referenced_var (tmp);
1462 tmp = make_ssa_name (tmp, NULL);
1463 addr = build_fold_addr_expr (unshare_expr (prev_base));
1464 STRIP_USELESS_TYPE_CONVERSION (addr);
1465 stmt = gimple_build_assign (tmp, addr);
1466 gimple_set_location (stmt, loc);
1467 SSA_NAME_DEF_STMT (tmp) = stmt;
1468 if (insert_after)
1469 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1470 else
1471 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1472 update_stmt (stmt);
1473
1474 off = build_int_cst (reference_alias_ptr_type (prev_base),
1475 offset / BITS_PER_UNIT);
1476 base = tmp;
1477 }
1478 else if (TREE_CODE (base) == MEM_REF)
1479 {
1480 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1481 base_offset + offset / BITS_PER_UNIT);
1482 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1483 base = unshare_expr (TREE_OPERAND (base, 0));
1484 }
1485 else
1486 {
1487 off = build_int_cst (reference_alias_ptr_type (base),
1488 base_offset + offset / BITS_PER_UNIT);
1489 base = build_fold_addr_expr (unshare_expr (base));
1490 }
1491
1492 return fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1493 }
1494
1495 DEF_VEC_ALLOC_P_STACK (tree);
1496 #define VEC_tree_stack_alloc(alloc) VEC_stack_alloc (tree, alloc)
1497
1498 /* Construct a memory reference to a part of an aggregate BASE at the given
1499 OFFSET and of the type of MODEL. In case this is a chain of references
1500 to component, the function will replicate the chain of COMPONENT_REFs of
1501 the expression of MODEL to access it. GSI and INSERT_AFTER have the same
1502 meaning as in build_ref_for_offset. */
1503
1504 static tree
1505 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1506 struct access *model, gimple_stmt_iterator *gsi,
1507 bool insert_after)
1508 {
1509 tree type = model->type, t;
1510 VEC(tree,stack) *cr_stack = NULL;
1511
1512 if (TREE_CODE (model->expr) == COMPONENT_REF)
1513 {
1514 tree expr = model->expr;
1515
1516 /* Create a stack of the COMPONENT_REFs so later we can walk them in
1517 order from inner to outer. */
1518 cr_stack = VEC_alloc (tree, stack, 6);
1519
1520 do {
1521 tree field = TREE_OPERAND (expr, 1);
1522 tree cr_offset = component_ref_field_offset (expr);
1523 HOST_WIDE_INT bit_pos
1524 = tree_low_cst (cr_offset, 1) * BITS_PER_UNIT
1525 + TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));
1526
1527 /* We can be called with a model different from the one associated
1528 with BASE so we need to avoid going up the chain too far. */
1529 if (offset - bit_pos < 0)
1530 break;
1531
1532 offset -= bit_pos;
1533 VEC_safe_push (tree, stack, cr_stack, expr);
1534
1535 expr = TREE_OPERAND (expr, 0);
1536 type = TREE_TYPE (expr);
1537 } while (TREE_CODE (expr) == COMPONENT_REF);
1538 }
1539
1540 t = build_ref_for_offset (loc, base, offset, type, gsi, insert_after);
1541
1542 if (TREE_CODE (model->expr) == COMPONENT_REF)
1543 {
1544 unsigned i;
1545 tree expr;
1546
1547 /* Now replicate the chain of COMPONENT_REFs from inner to outer. */
1548 FOR_EACH_VEC_ELT_REVERSE (tree, cr_stack, i, expr)
1549 {
1550 tree field = TREE_OPERAND (expr, 1);
1551 t = fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (field), t, field,
1552 TREE_OPERAND (expr, 2));
1553 }
1554
1555 VEC_free (tree, stack, cr_stack);
1556 }
1557
1558 return t;
1559 }
1560
1561 /* Construct a memory reference consisting of component_refs and array_refs to
1562 a part of an aggregate *RES (which is of type TYPE). The requested part
1563 should have type EXP_TYPE at be the given OFFSET. This function might not
1564 succeed, it returns true when it does and only then *RES points to something
1565 meaningful. This function should be used only to build expressions that we
1566 might need to present to user (e.g. in warnings). In all other situations,
1567 build_ref_for_model or build_ref_for_offset should be used instead. */
1568
1569 static bool
1570 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1571 tree exp_type)
1572 {
1573 while (1)
1574 {
1575 tree fld;
1576 tree tr_size, index, minidx;
1577 HOST_WIDE_INT el_size;
1578
1579 if (offset == 0 && exp_type
1580 && types_compatible_p (exp_type, type))
1581 return true;
1582
1583 switch (TREE_CODE (type))
1584 {
1585 case UNION_TYPE:
1586 case QUAL_UNION_TYPE:
1587 case RECORD_TYPE:
1588 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1589 {
1590 HOST_WIDE_INT pos, size;
1591 tree expr, *expr_ptr;
1592
1593 if (TREE_CODE (fld) != FIELD_DECL)
1594 continue;
1595
1596 pos = int_bit_position (fld);
1597 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1598 tr_size = DECL_SIZE (fld);
1599 if (!tr_size || !host_integerp (tr_size, 1))
1600 continue;
1601 size = tree_low_cst (tr_size, 1);
1602 if (size == 0)
1603 {
1604 if (pos != offset)
1605 continue;
1606 }
1607 else if (pos > offset || (pos + size) <= offset)
1608 continue;
1609
1610 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1611 NULL_TREE);
1612 expr_ptr = &expr;
1613 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1614 offset - pos, exp_type))
1615 {
1616 *res = expr;
1617 return true;
1618 }
1619 }
1620 return false;
1621
1622 case ARRAY_TYPE:
1623 tr_size = TYPE_SIZE (TREE_TYPE (type));
1624 if (!tr_size || !host_integerp (tr_size, 1))
1625 return false;
1626 el_size = tree_low_cst (tr_size, 1);
1627
1628 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1629 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1630 return false;
1631 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1632 if (!integer_zerop (minidx))
1633 index = int_const_binop (PLUS_EXPR, index, minidx);
1634 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1635 NULL_TREE, NULL_TREE);
1636 offset = offset % el_size;
1637 type = TREE_TYPE (type);
1638 break;
1639
1640 default:
1641 if (offset != 0)
1642 return false;
1643
1644 if (exp_type)
1645 return false;
1646 else
1647 return true;
1648 }
1649 }
1650 }
1651
1652 /* Return true iff TYPE is stdarg va_list type. */
1653
1654 static inline bool
1655 is_va_list_type (tree type)
1656 {
1657 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1658 }
1659
1660 /* Print message to dump file why a variable was rejected. */
1661
1662 static void
1663 reject (tree var, const char *msg)
1664 {
1665 if (dump_file && (dump_flags & TDF_DETAILS))
1666 {
1667 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1668 print_generic_expr (dump_file, var, 0);
1669 fprintf (dump_file, "\n");
1670 }
1671 }
1672
1673 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1674 those with type which is suitable for scalarization. */
1675
1676 static bool
1677 find_var_candidates (void)
1678 {
1679 tree var, type;
1680 referenced_var_iterator rvi;
1681 bool ret = false;
1682 const char *msg;
1683
1684 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
1685 {
1686 if (TREE_CODE (var) != VAR_DECL && TREE_CODE (var) != PARM_DECL)
1687 continue;
1688 type = TREE_TYPE (var);
1689
1690 if (!AGGREGATE_TYPE_P (type))
1691 {
1692 reject (var, "not aggregate");
1693 continue;
1694 }
1695 if (needs_to_live_in_memory (var))
1696 {
1697 reject (var, "needs to live in memory");
1698 continue;
1699 }
1700 if (TREE_THIS_VOLATILE (var))
1701 {
1702 reject (var, "is volatile");
1703 continue;
1704 }
1705 if (!COMPLETE_TYPE_P (type))
1706 {
1707 reject (var, "has incomplete type");
1708 continue;
1709 }
1710 if (!host_integerp (TYPE_SIZE (type), 1))
1711 {
1712 reject (var, "type size not fixed");
1713 continue;
1714 }
1715 if (tree_low_cst (TYPE_SIZE (type), 1) == 0)
1716 {
1717 reject (var, "type size is zero");
1718 continue;
1719 }
1720 if (type_internals_preclude_sra_p (type, &msg))
1721 {
1722 reject (var, msg);
1723 continue;
1724 }
1725 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1726 we also want to schedule it rather late. Thus we ignore it in
1727 the early pass. */
1728 (sra_mode == SRA_MODE_EARLY_INTRA
1729 && is_va_list_type (type)))
1730 {
1731 reject (var, "is va_list");
1732 continue;
1733 }
1734
1735 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1736
1737 if (dump_file && (dump_flags & TDF_DETAILS))
1738 {
1739 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1740 print_generic_expr (dump_file, var, 0);
1741 fprintf (dump_file, "\n");
1742 }
1743 ret = true;
1744 }
1745
1746 return ret;
1747 }
1748
1749 /* Sort all accesses for the given variable, check for partial overlaps and
1750 return NULL if there are any. If there are none, pick a representative for
1751 each combination of offset and size and create a linked list out of them.
1752 Return the pointer to the first representative and make sure it is the first
1753 one in the vector of accesses. */
1754
1755 static struct access *
1756 sort_and_splice_var_accesses (tree var)
1757 {
1758 int i, j, access_count;
1759 struct access *res, **prev_acc_ptr = &res;
1760 VEC (access_p, heap) *access_vec;
1761 bool first = true;
1762 HOST_WIDE_INT low = -1, high = 0;
1763
1764 access_vec = get_base_access_vector (var);
1765 if (!access_vec)
1766 return NULL;
1767 access_count = VEC_length (access_p, access_vec);
1768
1769 /* Sort by <OFFSET, SIZE>. */
1770 VEC_qsort (access_p, access_vec, compare_access_positions);
1771
1772 i = 0;
1773 while (i < access_count)
1774 {
1775 struct access *access = VEC_index (access_p, access_vec, i);
1776 bool grp_write = access->write;
1777 bool grp_read = !access->write;
1778 bool grp_scalar_write = access->write
1779 && is_gimple_reg_type (access->type);
1780 bool grp_scalar_read = !access->write
1781 && is_gimple_reg_type (access->type);
1782 bool grp_assignment_read = access->grp_assignment_read;
1783 bool grp_assignment_write = access->grp_assignment_write;
1784 bool multiple_scalar_reads = false;
1785 bool total_scalarization = access->grp_total_scalarization;
1786 bool grp_partial_lhs = access->grp_partial_lhs;
1787 bool first_scalar = is_gimple_reg_type (access->type);
1788 bool unscalarizable_region = access->grp_unscalarizable_region;
1789
1790 if (first || access->offset >= high)
1791 {
1792 first = false;
1793 low = access->offset;
1794 high = access->offset + access->size;
1795 }
1796 else if (access->offset > low && access->offset + access->size > high)
1797 return NULL;
1798 else
1799 gcc_assert (access->offset >= low
1800 && access->offset + access->size <= high);
1801
1802 j = i + 1;
1803 while (j < access_count)
1804 {
1805 struct access *ac2 = VEC_index (access_p, access_vec, j);
1806 if (ac2->offset != access->offset || ac2->size != access->size)
1807 break;
1808 if (ac2->write)
1809 {
1810 grp_write = true;
1811 grp_scalar_write = (grp_scalar_write
1812 || is_gimple_reg_type (ac2->type));
1813 }
1814 else
1815 {
1816 grp_read = true;
1817 if (is_gimple_reg_type (ac2->type))
1818 {
1819 if (grp_scalar_read)
1820 multiple_scalar_reads = true;
1821 else
1822 grp_scalar_read = true;
1823 }
1824 }
1825 grp_assignment_read |= ac2->grp_assignment_read;
1826 grp_assignment_write |= ac2->grp_assignment_write;
1827 grp_partial_lhs |= ac2->grp_partial_lhs;
1828 unscalarizable_region |= ac2->grp_unscalarizable_region;
1829 total_scalarization |= ac2->grp_total_scalarization;
1830 relink_to_new_repr (access, ac2);
1831
1832 /* If there are both aggregate-type and scalar-type accesses with
1833 this combination of size and offset, the comparison function
1834 should have put the scalars first. */
1835 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1836 ac2->group_representative = access;
1837 j++;
1838 }
1839
1840 i = j;
1841
1842 access->group_representative = access;
1843 access->grp_write = grp_write;
1844 access->grp_read = grp_read;
1845 access->grp_scalar_read = grp_scalar_read;
1846 access->grp_scalar_write = grp_scalar_write;
1847 access->grp_assignment_read = grp_assignment_read;
1848 access->grp_assignment_write = grp_assignment_write;
1849 access->grp_hint = multiple_scalar_reads || total_scalarization;
1850 access->grp_total_scalarization = total_scalarization;
1851 access->grp_partial_lhs = grp_partial_lhs;
1852 access->grp_unscalarizable_region = unscalarizable_region;
1853 if (access->first_link)
1854 add_access_to_work_queue (access);
1855
1856 *prev_acc_ptr = access;
1857 prev_acc_ptr = &access->next_grp;
1858 }
1859
1860 gcc_assert (res == VEC_index (access_p, access_vec, 0));
1861 return res;
1862 }
1863
1864 /* Create a variable for the given ACCESS which determines the type, name and a
1865 few other properties. Return the variable declaration and store it also to
1866 ACCESS->replacement. */
1867
1868 static tree
1869 create_access_replacement (struct access *access, bool rename)
1870 {
1871 tree repl;
1872
1873 repl = create_tmp_var (access->type, "SR");
1874 add_referenced_var (repl);
1875 if (rename)
1876 mark_sym_for_renaming (repl);
1877
1878 if (!access->grp_partial_lhs
1879 && (TREE_CODE (access->type) == COMPLEX_TYPE
1880 || TREE_CODE (access->type) == VECTOR_TYPE))
1881 DECL_GIMPLE_REG_P (repl) = 1;
1882
1883 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
1884 DECL_ARTIFICIAL (repl) = 1;
1885 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
1886
1887 if (DECL_NAME (access->base)
1888 && !DECL_IGNORED_P (access->base)
1889 && !DECL_ARTIFICIAL (access->base))
1890 {
1891 char *pretty_name = make_fancy_name (access->expr);
1892 tree debug_expr = unshare_expr (access->expr), d;
1893
1894 DECL_NAME (repl) = get_identifier (pretty_name);
1895 obstack_free (&name_obstack, pretty_name);
1896
1897 /* Get rid of any SSA_NAMEs embedded in debug_expr,
1898 as DECL_DEBUG_EXPR isn't considered when looking for still
1899 used SSA_NAMEs and thus they could be freed. All debug info
1900 generation cares is whether something is constant or variable
1901 and that get_ref_base_and_extent works properly on the
1902 expression. */
1903 for (d = debug_expr; handled_component_p (d); d = TREE_OPERAND (d, 0))
1904 switch (TREE_CODE (d))
1905 {
1906 case ARRAY_REF:
1907 case ARRAY_RANGE_REF:
1908 if (TREE_OPERAND (d, 1)
1909 && TREE_CODE (TREE_OPERAND (d, 1)) == SSA_NAME)
1910 TREE_OPERAND (d, 1) = SSA_NAME_VAR (TREE_OPERAND (d, 1));
1911 if (TREE_OPERAND (d, 3)
1912 && TREE_CODE (TREE_OPERAND (d, 3)) == SSA_NAME)
1913 TREE_OPERAND (d, 3) = SSA_NAME_VAR (TREE_OPERAND (d, 3));
1914 /* FALLTHRU */
1915 case COMPONENT_REF:
1916 if (TREE_OPERAND (d, 2)
1917 && TREE_CODE (TREE_OPERAND (d, 2)) == SSA_NAME)
1918 TREE_OPERAND (d, 2) = SSA_NAME_VAR (TREE_OPERAND (d, 2));
1919 break;
1920 default:
1921 break;
1922 }
1923 SET_DECL_DEBUG_EXPR (repl, debug_expr);
1924 DECL_DEBUG_EXPR_IS_FROM (repl) = 1;
1925 if (access->grp_no_warning)
1926 TREE_NO_WARNING (repl) = 1;
1927 else
1928 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
1929 }
1930 else
1931 TREE_NO_WARNING (repl) = 1;
1932
1933 if (dump_file)
1934 {
1935 fprintf (dump_file, "Created a replacement for ");
1936 print_generic_expr (dump_file, access->base, 0);
1937 fprintf (dump_file, " offset: %u, size: %u: ",
1938 (unsigned) access->offset, (unsigned) access->size);
1939 print_generic_expr (dump_file, repl, 0);
1940 fprintf (dump_file, "\n");
1941 }
1942 sra_stats.replacements++;
1943
1944 return repl;
1945 }
1946
1947 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
1948
1949 static inline tree
1950 get_access_replacement (struct access *access)
1951 {
1952 gcc_assert (access->grp_to_be_replaced);
1953
1954 if (!access->replacement_decl)
1955 access->replacement_decl = create_access_replacement (access, true);
1956 return access->replacement_decl;
1957 }
1958
1959 /* Return ACCESS scalar replacement, create it if it does not exist yet but do
1960 not mark it for renaming. */
1961
1962 static inline tree
1963 get_unrenamed_access_replacement (struct access *access)
1964 {
1965 gcc_assert (!access->grp_to_be_replaced);
1966
1967 if (!access->replacement_decl)
1968 access->replacement_decl = create_access_replacement (access, false);
1969 return access->replacement_decl;
1970 }
1971
1972
1973 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
1974 linked list along the way. Stop when *ACCESS is NULL or the access pointed
1975 to it is not "within" the root. Return false iff some accesses partially
1976 overlap. */
1977
1978 static bool
1979 build_access_subtree (struct access **access)
1980 {
1981 struct access *root = *access, *last_child = NULL;
1982 HOST_WIDE_INT limit = root->offset + root->size;
1983
1984 *access = (*access)->next_grp;
1985 while (*access && (*access)->offset + (*access)->size <= limit)
1986 {
1987 if (!last_child)
1988 root->first_child = *access;
1989 else
1990 last_child->next_sibling = *access;
1991 last_child = *access;
1992
1993 if (!build_access_subtree (access))
1994 return false;
1995 }
1996
1997 if (*access && (*access)->offset < limit)
1998 return false;
1999
2000 return true;
2001 }
2002
2003 /* Build a tree of access representatives, ACCESS is the pointer to the first
2004 one, others are linked in a list by the next_grp field. Return false iff
2005 some accesses partially overlap. */
2006
2007 static bool
2008 build_access_trees (struct access *access)
2009 {
2010 while (access)
2011 {
2012 struct access *root = access;
2013
2014 if (!build_access_subtree (&access))
2015 return false;
2016 root->next_grp = access;
2017 }
2018 return true;
2019 }
2020
2021 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2022 array. */
2023
2024 static bool
2025 expr_with_var_bounded_array_refs_p (tree expr)
2026 {
2027 while (handled_component_p (expr))
2028 {
2029 if (TREE_CODE (expr) == ARRAY_REF
2030 && !host_integerp (array_ref_low_bound (expr), 0))
2031 return true;
2032 expr = TREE_OPERAND (expr, 0);
2033 }
2034 return false;
2035 }
2036
2037 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2038 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2039 sorts of access flags appropriately along the way, notably always set
2040 grp_read and grp_assign_read according to MARK_READ and grp_write when
2041 MARK_WRITE is true.
2042
2043 Creating a replacement for a scalar access is considered beneficial if its
2044 grp_hint is set (this means we are either attempting total scalarization or
2045 there is more than one direct read access) or according to the following
2046 table:
2047
2048 Access written to through a scalar type (once or more times)
2049 |
2050 | Written to in an assignment statement
2051 | |
2052 | | Access read as scalar _once_
2053 | | |
2054 | | | Read in an assignment statement
2055 | | | |
2056 | | | | Scalarize Comment
2057 -----------------------------------------------------------------------------
2058 0 0 0 0 No access for the scalar
2059 0 0 0 1 No access for the scalar
2060 0 0 1 0 No Single read - won't help
2061 0 0 1 1 No The same case
2062 0 1 0 0 No access for the scalar
2063 0 1 0 1 No access for the scalar
2064 0 1 1 0 Yes s = *g; return s.i;
2065 0 1 1 1 Yes The same case as above
2066 1 0 0 0 No Won't help
2067 1 0 0 1 Yes s.i = 1; *g = s;
2068 1 0 1 0 Yes s.i = 5; g = s.i;
2069 1 0 1 1 Yes The same case as above
2070 1 1 0 0 No Won't help.
2071 1 1 0 1 Yes s.i = 1; *g = s;
2072 1 1 1 0 Yes s = *g; return s.i;
2073 1 1 1 1 Yes Any of the above yeses */
2074
2075 static bool
2076 analyze_access_subtree (struct access *root, struct access *parent,
2077 bool allow_replacements)
2078 {
2079 struct access *child;
2080 HOST_WIDE_INT limit = root->offset + root->size;
2081 HOST_WIDE_INT covered_to = root->offset;
2082 bool scalar = is_gimple_reg_type (root->type);
2083 bool hole = false, sth_created = false;
2084
2085 if (parent)
2086 {
2087 if (parent->grp_read)
2088 root->grp_read = 1;
2089 if (parent->grp_assignment_read)
2090 root->grp_assignment_read = 1;
2091 if (parent->grp_write)
2092 root->grp_write = 1;
2093 if (parent->grp_assignment_write)
2094 root->grp_assignment_write = 1;
2095 if (parent->grp_total_scalarization)
2096 root->grp_total_scalarization = 1;
2097 }
2098
2099 if (root->grp_unscalarizable_region)
2100 allow_replacements = false;
2101
2102 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2103 allow_replacements = false;
2104
2105 for (child = root->first_child; child; child = child->next_sibling)
2106 {
2107 hole |= covered_to < child->offset;
2108 sth_created |= analyze_access_subtree (child, root,
2109 allow_replacements && !scalar);
2110
2111 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2112 root->grp_total_scalarization &= child->grp_total_scalarization;
2113 if (child->grp_covered)
2114 covered_to += child->size;
2115 else
2116 hole = true;
2117 }
2118
2119 if (allow_replacements && scalar && !root->first_child
2120 && (root->grp_hint
2121 || ((root->grp_scalar_read || root->grp_assignment_read)
2122 && (root->grp_scalar_write || root->grp_assignment_write))))
2123 {
2124 bool new_integer_type;
2125 if (TREE_CODE (root->type) == ENUMERAL_TYPE)
2126 {
2127 tree rt = root->type;
2128 root->type = build_nonstandard_integer_type (TYPE_PRECISION (rt),
2129 TYPE_UNSIGNED (rt));
2130 new_integer_type = true;
2131 }
2132 else
2133 new_integer_type = false;
2134
2135 if (dump_file && (dump_flags & TDF_DETAILS))
2136 {
2137 fprintf (dump_file, "Marking ");
2138 print_generic_expr (dump_file, root->base, 0);
2139 fprintf (dump_file, " offset: %u, size: %u ",
2140 (unsigned) root->offset, (unsigned) root->size);
2141 fprintf (dump_file, " to be replaced%s.\n",
2142 new_integer_type ? " with an integer": "");
2143 }
2144
2145 root->grp_to_be_replaced = 1;
2146 sth_created = true;
2147 hole = false;
2148 }
2149 else
2150 {
2151 if (covered_to < limit)
2152 hole = true;
2153 if (scalar)
2154 root->grp_total_scalarization = 0;
2155 }
2156
2157 if (sth_created
2158 && (!hole || root->grp_total_scalarization))
2159 {
2160 root->grp_covered = 1;
2161 return true;
2162 }
2163 if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2164 root->grp_unscalarized_data = 1; /* not covered and written to */
2165 if (sth_created)
2166 return true;
2167 return false;
2168 }
2169
2170 /* Analyze all access trees linked by next_grp by the means of
2171 analyze_access_subtree. */
2172 static bool
2173 analyze_access_trees (struct access *access)
2174 {
2175 bool ret = false;
2176
2177 while (access)
2178 {
2179 if (analyze_access_subtree (access, NULL, true))
2180 ret = true;
2181 access = access->next_grp;
2182 }
2183
2184 return ret;
2185 }
2186
2187 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2188 SIZE would conflict with an already existing one. If exactly such a child
2189 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2190
2191 static bool
2192 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2193 HOST_WIDE_INT size, struct access **exact_match)
2194 {
2195 struct access *child;
2196
2197 for (child = lacc->first_child; child; child = child->next_sibling)
2198 {
2199 if (child->offset == norm_offset && child->size == size)
2200 {
2201 *exact_match = child;
2202 return true;
2203 }
2204
2205 if (child->offset < norm_offset + size
2206 && child->offset + child->size > norm_offset)
2207 return true;
2208 }
2209
2210 return false;
2211 }
2212
2213 /* Create a new child access of PARENT, with all properties just like MODEL
2214 except for its offset and with its grp_write false and grp_read true.
2215 Return the new access or NULL if it cannot be created. Note that this access
2216 is created long after all splicing and sorting, it's not located in any
2217 access vector and is automatically a representative of its group. */
2218
2219 static struct access *
2220 create_artificial_child_access (struct access *parent, struct access *model,
2221 HOST_WIDE_INT new_offset)
2222 {
2223 struct access *access;
2224 struct access **child;
2225 tree expr = parent->base;
2226
2227 gcc_assert (!model->grp_unscalarizable_region);
2228
2229 access = (struct access *) pool_alloc (access_pool);
2230 memset (access, 0, sizeof (struct access));
2231 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2232 model->type))
2233 {
2234 access->grp_no_warning = true;
2235 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2236 new_offset, model, NULL, false);
2237 }
2238
2239 access->base = parent->base;
2240 access->expr = expr;
2241 access->offset = new_offset;
2242 access->size = model->size;
2243 access->type = model->type;
2244 access->grp_write = true;
2245 access->grp_read = false;
2246
2247 child = &parent->first_child;
2248 while (*child && (*child)->offset < new_offset)
2249 child = &(*child)->next_sibling;
2250
2251 access->next_sibling = *child;
2252 *child = access;
2253
2254 return access;
2255 }
2256
2257
2258 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2259 true if any new subaccess was created. Additionally, if RACC is a scalar
2260 access but LACC is not, change the type of the latter, if possible. */
2261
2262 static bool
2263 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2264 {
2265 struct access *rchild;
2266 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2267 bool ret = false;
2268
2269 if (is_gimple_reg_type (lacc->type)
2270 || lacc->grp_unscalarizable_region
2271 || racc->grp_unscalarizable_region)
2272 return false;
2273
2274 if (is_gimple_reg_type (racc->type))
2275 {
2276 if (!lacc->first_child && !racc->first_child)
2277 {
2278 tree t = lacc->base;
2279
2280 lacc->type = racc->type;
2281 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2282 lacc->offset, racc->type))
2283 lacc->expr = t;
2284 else
2285 {
2286 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2287 lacc->base, lacc->offset,
2288 racc, NULL, false);
2289 lacc->grp_no_warning = true;
2290 }
2291 }
2292 return false;
2293 }
2294
2295 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2296 {
2297 struct access *new_acc = NULL;
2298 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2299
2300 if (rchild->grp_unscalarizable_region)
2301 continue;
2302
2303 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2304 &new_acc))
2305 {
2306 if (new_acc)
2307 {
2308 rchild->grp_hint = 1;
2309 new_acc->grp_hint |= new_acc->grp_read;
2310 if (rchild->first_child)
2311 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2312 }
2313 continue;
2314 }
2315
2316 rchild->grp_hint = 1;
2317 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2318 if (new_acc)
2319 {
2320 ret = true;
2321 if (racc->first_child)
2322 propagate_subaccesses_across_link (new_acc, rchild);
2323 }
2324 }
2325
2326 return ret;
2327 }
2328
2329 /* Propagate all subaccesses across assignment links. */
2330
2331 static void
2332 propagate_all_subaccesses (void)
2333 {
2334 while (work_queue_head)
2335 {
2336 struct access *racc = pop_access_from_work_queue ();
2337 struct assign_link *link;
2338
2339 gcc_assert (racc->first_link);
2340
2341 for (link = racc->first_link; link; link = link->next)
2342 {
2343 struct access *lacc = link->lacc;
2344
2345 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2346 continue;
2347 lacc = lacc->group_representative;
2348 if (propagate_subaccesses_across_link (lacc, racc)
2349 && lacc->first_link)
2350 add_access_to_work_queue (lacc);
2351 }
2352 }
2353 }
2354
2355 /* Go through all accesses collected throughout the (intraprocedural) analysis
2356 stage, exclude overlapping ones, identify representatives and build trees
2357 out of them, making decisions about scalarization on the way. Return true
2358 iff there are any to-be-scalarized variables after this stage. */
2359
2360 static bool
2361 analyze_all_variable_accesses (void)
2362 {
2363 int res = 0;
2364 bitmap tmp = BITMAP_ALLOC (NULL);
2365 bitmap_iterator bi;
2366 unsigned i, max_total_scalarization_size;
2367
2368 max_total_scalarization_size = UNITS_PER_WORD * BITS_PER_UNIT
2369 * MOVE_RATIO (optimize_function_for_speed_p (cfun));
2370
2371 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2372 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2373 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2374 {
2375 tree var = referenced_var (i);
2376
2377 if (TREE_CODE (var) == VAR_DECL
2378 && type_consists_of_records_p (TREE_TYPE (var)))
2379 {
2380 if ((unsigned) tree_low_cst (TYPE_SIZE (TREE_TYPE (var)), 1)
2381 <= max_total_scalarization_size)
2382 {
2383 completely_scalarize_var (var);
2384 if (dump_file && (dump_flags & TDF_DETAILS))
2385 {
2386 fprintf (dump_file, "Will attempt to totally scalarize ");
2387 print_generic_expr (dump_file, var, 0);
2388 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2389 }
2390 }
2391 else if (dump_file && (dump_flags & TDF_DETAILS))
2392 {
2393 fprintf (dump_file, "Too big to totally scalarize: ");
2394 print_generic_expr (dump_file, var, 0);
2395 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2396 }
2397 }
2398 }
2399
2400 bitmap_copy (tmp, candidate_bitmap);
2401 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2402 {
2403 tree var = referenced_var (i);
2404 struct access *access;
2405
2406 access = sort_and_splice_var_accesses (var);
2407 if (!access || !build_access_trees (access))
2408 disqualify_candidate (var,
2409 "No or inhibitingly overlapping accesses.");
2410 }
2411
2412 propagate_all_subaccesses ();
2413
2414 bitmap_copy (tmp, candidate_bitmap);
2415 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2416 {
2417 tree var = referenced_var (i);
2418 struct access *access = get_first_repr_for_decl (var);
2419
2420 if (analyze_access_trees (access))
2421 {
2422 res++;
2423 if (dump_file && (dump_flags & TDF_DETAILS))
2424 {
2425 fprintf (dump_file, "\nAccess trees for ");
2426 print_generic_expr (dump_file, var, 0);
2427 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2428 dump_access_tree (dump_file, access);
2429 fprintf (dump_file, "\n");
2430 }
2431 }
2432 else
2433 disqualify_candidate (var, "No scalar replacements to be created.");
2434 }
2435
2436 BITMAP_FREE (tmp);
2437
2438 if (res)
2439 {
2440 statistics_counter_event (cfun, "Scalarized aggregates", res);
2441 return true;
2442 }
2443 else
2444 return false;
2445 }
2446
2447 /* Generate statements copying scalar replacements of accesses within a subtree
2448 into or out of AGG. ACCESS, all its children, siblings and their children
2449 are to be processed. AGG is an aggregate type expression (can be a
2450 declaration but does not have to be, it can for example also be a mem_ref or
2451 a series of handled components). TOP_OFFSET is the offset of the processed
2452 subtree which has to be subtracted from offsets of individual accesses to
2453 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2454 replacements in the interval <start_offset, start_offset + chunk_size>,
2455 otherwise copy all. GSI is a statement iterator used to place the new
2456 statements. WRITE should be true when the statements should write from AGG
2457 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2458 statements will be added after the current statement in GSI, they will be
2459 added before the statement otherwise. */
2460
2461 static void
2462 generate_subtree_copies (struct access *access, tree agg,
2463 HOST_WIDE_INT top_offset,
2464 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2465 gimple_stmt_iterator *gsi, bool write,
2466 bool insert_after, location_t loc)
2467 {
2468 do
2469 {
2470 if (chunk_size && access->offset >= start_offset + chunk_size)
2471 return;
2472
2473 if (access->grp_to_be_replaced
2474 && (chunk_size == 0
2475 || access->offset + access->size > start_offset))
2476 {
2477 tree expr, repl = get_access_replacement (access);
2478 gimple stmt;
2479
2480 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2481 access, gsi, insert_after);
2482
2483 if (write)
2484 {
2485 if (access->grp_partial_lhs)
2486 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2487 !insert_after,
2488 insert_after ? GSI_NEW_STMT
2489 : GSI_SAME_STMT);
2490 stmt = gimple_build_assign (repl, expr);
2491 }
2492 else
2493 {
2494 TREE_NO_WARNING (repl) = 1;
2495 if (access->grp_partial_lhs)
2496 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2497 !insert_after,
2498 insert_after ? GSI_NEW_STMT
2499 : GSI_SAME_STMT);
2500 stmt = gimple_build_assign (expr, repl);
2501 }
2502 gimple_set_location (stmt, loc);
2503
2504 if (insert_after)
2505 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2506 else
2507 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2508 update_stmt (stmt);
2509 sra_stats.subtree_copies++;
2510 }
2511
2512 if (access->first_child)
2513 generate_subtree_copies (access->first_child, agg, top_offset,
2514 start_offset, chunk_size, gsi,
2515 write, insert_after, loc);
2516
2517 access = access->next_sibling;
2518 }
2519 while (access);
2520 }
2521
2522 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2523 the root of the subtree to be processed. GSI is the statement iterator used
2524 for inserting statements which are added after the current statement if
2525 INSERT_AFTER is true or before it otherwise. */
2526
2527 static void
2528 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2529 bool insert_after, location_t loc)
2530
2531 {
2532 struct access *child;
2533
2534 if (access->grp_to_be_replaced)
2535 {
2536 gimple stmt;
2537
2538 stmt = gimple_build_assign (get_access_replacement (access),
2539 build_zero_cst (access->type));
2540 if (insert_after)
2541 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2542 else
2543 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2544 update_stmt (stmt);
2545 gimple_set_location (stmt, loc);
2546 }
2547
2548 for (child = access->first_child; child; child = child->next_sibling)
2549 init_subtree_with_zero (child, gsi, insert_after, loc);
2550 }
2551
2552 /* Search for an access representative for the given expression EXPR and
2553 return it or NULL if it cannot be found. */
2554
2555 static struct access *
2556 get_access_for_expr (tree expr)
2557 {
2558 HOST_WIDE_INT offset, size, max_size;
2559 tree base;
2560
2561 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2562 a different size than the size of its argument and we need the latter
2563 one. */
2564 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2565 expr = TREE_OPERAND (expr, 0);
2566
2567 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2568 if (max_size == -1 || !DECL_P (base))
2569 return NULL;
2570
2571 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2572 return NULL;
2573
2574 return get_var_base_offset_size_access (base, offset, max_size);
2575 }
2576
2577 /* Replace the expression EXPR with a scalar replacement if there is one and
2578 generate other statements to do type conversion or subtree copying if
2579 necessary. GSI is used to place newly created statements, WRITE is true if
2580 the expression is being written to (it is on a LHS of a statement or output
2581 in an assembly statement). */
2582
2583 static bool
2584 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2585 {
2586 location_t loc;
2587 struct access *access;
2588 tree type, bfr;
2589
2590 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2591 {
2592 bfr = *expr;
2593 expr = &TREE_OPERAND (*expr, 0);
2594 }
2595 else
2596 bfr = NULL_TREE;
2597
2598 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2599 expr = &TREE_OPERAND (*expr, 0);
2600 access = get_access_for_expr (*expr);
2601 if (!access)
2602 return false;
2603 type = TREE_TYPE (*expr);
2604
2605 loc = gimple_location (gsi_stmt (*gsi));
2606 if (access->grp_to_be_replaced)
2607 {
2608 tree repl = get_access_replacement (access);
2609 /* If we replace a non-register typed access simply use the original
2610 access expression to extract the scalar component afterwards.
2611 This happens if scalarizing a function return value or parameter
2612 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2613 gcc.c-torture/compile/20011217-1.c.
2614
2615 We also want to use this when accessing a complex or vector which can
2616 be accessed as a different type too, potentially creating a need for
2617 type conversion (see PR42196) and when scalarized unions are involved
2618 in assembler statements (see PR42398). */
2619 if (!useless_type_conversion_p (type, access->type))
2620 {
2621 tree ref;
2622
2623 ref = build_ref_for_model (loc, access->base, access->offset, access,
2624 NULL, false);
2625
2626 if (write)
2627 {
2628 gimple stmt;
2629
2630 if (access->grp_partial_lhs)
2631 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2632 false, GSI_NEW_STMT);
2633 stmt = gimple_build_assign (repl, ref);
2634 gimple_set_location (stmt, loc);
2635 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2636 }
2637 else
2638 {
2639 gimple stmt;
2640
2641 if (access->grp_partial_lhs)
2642 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2643 true, GSI_SAME_STMT);
2644 stmt = gimple_build_assign (ref, repl);
2645 gimple_set_location (stmt, loc);
2646 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2647 }
2648 }
2649 else
2650 *expr = repl;
2651 sra_stats.exprs++;
2652 }
2653
2654 if (access->first_child)
2655 {
2656 HOST_WIDE_INT start_offset, chunk_size;
2657 if (bfr
2658 && host_integerp (TREE_OPERAND (bfr, 1), 1)
2659 && host_integerp (TREE_OPERAND (bfr, 2), 1))
2660 {
2661 chunk_size = tree_low_cst (TREE_OPERAND (bfr, 1), 1);
2662 start_offset = access->offset
2663 + tree_low_cst (TREE_OPERAND (bfr, 2), 1);
2664 }
2665 else
2666 start_offset = chunk_size = 0;
2667
2668 generate_subtree_copies (access->first_child, access->base, 0,
2669 start_offset, chunk_size, gsi, write, write,
2670 loc);
2671 }
2672 return true;
2673 }
2674
2675 /* Where scalar replacements of the RHS have been written to when a replacement
2676 of a LHS of an assigments cannot be direclty loaded from a replacement of
2677 the RHS. */
2678 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2679 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2680 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2681
2682 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2683 base aggregate if there are unscalarized data or directly to LHS of the
2684 statement that is pointed to by GSI otherwise. */
2685
2686 static enum unscalarized_data_handling
2687 handle_unscalarized_data_in_subtree (struct access *top_racc,
2688 gimple_stmt_iterator *gsi)
2689 {
2690 if (top_racc->grp_unscalarized_data)
2691 {
2692 generate_subtree_copies (top_racc->first_child, top_racc->base, 0, 0, 0,
2693 gsi, false, false,
2694 gimple_location (gsi_stmt (*gsi)));
2695 return SRA_UDH_RIGHT;
2696 }
2697 else
2698 {
2699 tree lhs = gimple_assign_lhs (gsi_stmt (*gsi));
2700 generate_subtree_copies (top_racc->first_child, lhs, top_racc->offset,
2701 0, 0, gsi, false, false,
2702 gimple_location (gsi_stmt (*gsi)));
2703 return SRA_UDH_LEFT;
2704 }
2705 }
2706
2707
2708 /* Try to generate statements to load all sub-replacements in an access subtree
2709 formed by children of LACC from scalar replacements in the TOP_RACC subtree.
2710 If that is not possible, refresh the TOP_RACC base aggregate and load the
2711 accesses from it. LEFT_OFFSET is the offset of the left whole subtree being
2712 copied. NEW_GSI is stmt iterator used for statement insertions after the
2713 original assignment, OLD_GSI is used to insert statements before the
2714 assignment. *REFRESHED keeps the information whether we have needed to
2715 refresh replacements of the LHS and from which side of the assignments this
2716 takes place. */
2717
2718 static void
2719 load_assign_lhs_subreplacements (struct access *lacc, struct access *top_racc,
2720 HOST_WIDE_INT left_offset,
2721 gimple_stmt_iterator *old_gsi,
2722 gimple_stmt_iterator *new_gsi,
2723 enum unscalarized_data_handling *refreshed)
2724 {
2725 location_t loc = gimple_location (gsi_stmt (*old_gsi));
2726 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2727 {
2728 if (lacc->grp_to_be_replaced)
2729 {
2730 struct access *racc;
2731 HOST_WIDE_INT offset = lacc->offset - left_offset + top_racc->offset;
2732 gimple stmt;
2733 tree rhs;
2734
2735 racc = find_access_in_subtree (top_racc, offset, lacc->size);
2736 if (racc && racc->grp_to_be_replaced)
2737 {
2738 rhs = get_access_replacement (racc);
2739 if (!useless_type_conversion_p (lacc->type, racc->type))
2740 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, lacc->type, rhs);
2741
2742 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2743 rhs = force_gimple_operand_gsi (old_gsi, rhs, true, NULL_TREE,
2744 true, GSI_SAME_STMT);
2745 }
2746 else
2747 {
2748 /* No suitable access on the right hand side, need to load from
2749 the aggregate. See if we have to update it first... */
2750 if (*refreshed == SRA_UDH_NONE)
2751 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2752 old_gsi);
2753
2754 if (*refreshed == SRA_UDH_LEFT)
2755 rhs = build_ref_for_model (loc, lacc->base, lacc->offset, lacc,
2756 new_gsi, true);
2757 else
2758 rhs = build_ref_for_model (loc, top_racc->base, offset, lacc,
2759 new_gsi, true);
2760 if (lacc->grp_partial_lhs)
2761 rhs = force_gimple_operand_gsi (new_gsi, rhs, true, NULL_TREE,
2762 false, GSI_NEW_STMT);
2763 }
2764
2765 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2766 gsi_insert_after (new_gsi, stmt, GSI_NEW_STMT);
2767 gimple_set_location (stmt, loc);
2768 update_stmt (stmt);
2769 sra_stats.subreplacements++;
2770 }
2771 else if (*refreshed == SRA_UDH_NONE
2772 && lacc->grp_read && !lacc->grp_covered)
2773 *refreshed = handle_unscalarized_data_in_subtree (top_racc,
2774 old_gsi);
2775
2776 if (lacc->first_child)
2777 load_assign_lhs_subreplacements (lacc, top_racc, left_offset,
2778 old_gsi, new_gsi, refreshed);
2779 }
2780 }
2781
2782 /* Result code for SRA assignment modification. */
2783 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
2784 SRA_AM_MODIFIED, /* stmt changed but not
2785 removed */
2786 SRA_AM_REMOVED }; /* stmt eliminated */
2787
2788 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
2789 to the assignment and GSI is the statement iterator pointing at it. Returns
2790 the same values as sra_modify_assign. */
2791
2792 static enum assignment_mod_result
2793 sra_modify_constructor_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2794 {
2795 tree lhs = gimple_assign_lhs (*stmt);
2796 struct access *acc;
2797 location_t loc;
2798
2799 acc = get_access_for_expr (lhs);
2800 if (!acc)
2801 return SRA_AM_NONE;
2802
2803 loc = gimple_location (*stmt);
2804 if (VEC_length (constructor_elt,
2805 CONSTRUCTOR_ELTS (gimple_assign_rhs1 (*stmt))) > 0)
2806 {
2807 /* I have never seen this code path trigger but if it can happen the
2808 following should handle it gracefully. */
2809 if (access_has_children_p (acc))
2810 generate_subtree_copies (acc->first_child, acc->base, 0, 0, 0, gsi,
2811 true, true, loc);
2812 return SRA_AM_MODIFIED;
2813 }
2814
2815 if (acc->grp_covered)
2816 {
2817 init_subtree_with_zero (acc, gsi, false, loc);
2818 unlink_stmt_vdef (*stmt);
2819 gsi_remove (gsi, true);
2820 return SRA_AM_REMOVED;
2821 }
2822 else
2823 {
2824 init_subtree_with_zero (acc, gsi, true, loc);
2825 return SRA_AM_MODIFIED;
2826 }
2827 }
2828
2829 /* Create and return a new suitable default definition SSA_NAME for RACC which
2830 is an access describing an uninitialized part of an aggregate that is being
2831 loaded. */
2832
2833 static tree
2834 get_repl_default_def_ssa_name (struct access *racc)
2835 {
2836 tree repl, decl;
2837
2838 decl = get_unrenamed_access_replacement (racc);
2839
2840 repl = gimple_default_def (cfun, decl);
2841 if (!repl)
2842 {
2843 repl = make_ssa_name (decl, gimple_build_nop ());
2844 set_default_def (decl, repl);
2845 }
2846
2847 return repl;
2848 }
2849
2850 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
2851 somewhere in it. */
2852
2853 static inline bool
2854 contains_bitfld_comp_ref_p (const_tree ref)
2855 {
2856 while (handled_component_p (ref))
2857 {
2858 if (TREE_CODE (ref) == COMPONENT_REF
2859 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2860 return true;
2861 ref = TREE_OPERAND (ref, 0);
2862 }
2863
2864 return false;
2865 }
2866
2867 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
2868 bit-field field declaration somewhere in it. */
2869
2870 static inline bool
2871 contains_vce_or_bfcref_p (const_tree ref)
2872 {
2873 while (handled_component_p (ref))
2874 {
2875 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
2876 || (TREE_CODE (ref) == COMPONENT_REF
2877 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
2878 return true;
2879 ref = TREE_OPERAND (ref, 0);
2880 }
2881
2882 return false;
2883 }
2884
2885 /* Examine both sides of the assignment statement pointed to by STMT, replace
2886 them with a scalare replacement if there is one and generate copying of
2887 replacements if scalarized aggregates have been used in the assignment. GSI
2888 is used to hold generated statements for type conversions and subtree
2889 copying. */
2890
2891 static enum assignment_mod_result
2892 sra_modify_assign (gimple *stmt, gimple_stmt_iterator *gsi)
2893 {
2894 struct access *lacc, *racc;
2895 tree lhs, rhs;
2896 bool modify_this_stmt = false;
2897 bool force_gimple_rhs = false;
2898 location_t loc;
2899 gimple_stmt_iterator orig_gsi = *gsi;
2900
2901 if (!gimple_assign_single_p (*stmt))
2902 return SRA_AM_NONE;
2903 lhs = gimple_assign_lhs (*stmt);
2904 rhs = gimple_assign_rhs1 (*stmt);
2905
2906 if (TREE_CODE (rhs) == CONSTRUCTOR)
2907 return sra_modify_constructor_assign (stmt, gsi);
2908
2909 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
2910 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
2911 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
2912 {
2913 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (*stmt),
2914 gsi, false);
2915 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (*stmt),
2916 gsi, true);
2917 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
2918 }
2919
2920 lacc = get_access_for_expr (lhs);
2921 racc = get_access_for_expr (rhs);
2922 if (!lacc && !racc)
2923 return SRA_AM_NONE;
2924
2925 loc = gimple_location (*stmt);
2926 if (lacc && lacc->grp_to_be_replaced)
2927 {
2928 lhs = get_access_replacement (lacc);
2929 gimple_assign_set_lhs (*stmt, lhs);
2930 modify_this_stmt = true;
2931 if (lacc->grp_partial_lhs)
2932 force_gimple_rhs = true;
2933 sra_stats.exprs++;
2934 }
2935
2936 if (racc && racc->grp_to_be_replaced)
2937 {
2938 rhs = get_access_replacement (racc);
2939 modify_this_stmt = true;
2940 if (racc->grp_partial_lhs)
2941 force_gimple_rhs = true;
2942 sra_stats.exprs++;
2943 }
2944
2945 if (modify_this_stmt)
2946 {
2947 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2948 {
2949 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
2950 ??? This should move to fold_stmt which we simply should
2951 call after building a VIEW_CONVERT_EXPR here. */
2952 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
2953 && !contains_bitfld_comp_ref_p (lhs)
2954 && !access_has_children_p (lacc))
2955 {
2956 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
2957 gimple_assign_set_lhs (*stmt, lhs);
2958 }
2959 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
2960 && !contains_vce_or_bfcref_p (rhs)
2961 && !access_has_children_p (racc))
2962 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
2963
2964 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2965 {
2966 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
2967 rhs);
2968 if (is_gimple_reg_type (TREE_TYPE (lhs))
2969 && TREE_CODE (lhs) != SSA_NAME)
2970 force_gimple_rhs = true;
2971 }
2972 }
2973 }
2974
2975 /* From this point on, the function deals with assignments in between
2976 aggregates when at least one has scalar reductions of some of its
2977 components. There are three possible scenarios: Both the LHS and RHS have
2978 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
2979
2980 In the first case, we would like to load the LHS components from RHS
2981 components whenever possible. If that is not possible, we would like to
2982 read it directly from the RHS (after updating it by storing in it its own
2983 components). If there are some necessary unscalarized data in the LHS,
2984 those will be loaded by the original assignment too. If neither of these
2985 cases happen, the original statement can be removed. Most of this is done
2986 by load_assign_lhs_subreplacements.
2987
2988 In the second case, we would like to store all RHS scalarized components
2989 directly into LHS and if they cover the aggregate completely, remove the
2990 statement too. In the third case, we want the LHS components to be loaded
2991 directly from the RHS (DSE will remove the original statement if it
2992 becomes redundant).
2993
2994 This is a bit complex but manageable when types match and when unions do
2995 not cause confusion in a way that we cannot really load a component of LHS
2996 from the RHS or vice versa (the access representing this level can have
2997 subaccesses that are accessible only through a different union field at a
2998 higher level - different from the one used in the examined expression).
2999 Unions are fun.
3000
3001 Therefore, I specially handle a fourth case, happening when there is a
3002 specific type cast or it is impossible to locate a scalarized subaccess on
3003 the other side of the expression. If that happens, I simply "refresh" the
3004 RHS by storing in it is scalarized components leave the original statement
3005 there to do the copying and then load the scalar replacements of the LHS.
3006 This is what the first branch does. */
3007
3008 if (modify_this_stmt
3009 || gimple_has_volatile_ops (*stmt)
3010 || contains_vce_or_bfcref_p (rhs)
3011 || contains_vce_or_bfcref_p (lhs))
3012 {
3013 if (access_has_children_p (racc))
3014 generate_subtree_copies (racc->first_child, racc->base, 0, 0, 0,
3015 gsi, false, false, loc);
3016 if (access_has_children_p (lacc))
3017 generate_subtree_copies (lacc->first_child, lacc->base, 0, 0, 0,
3018 gsi, true, true, loc);
3019 sra_stats.separate_lhs_rhs_handling++;
3020 }
3021 else
3022 {
3023 if (access_has_children_p (lacc) && access_has_children_p (racc))
3024 {
3025 gimple_stmt_iterator orig_gsi = *gsi;
3026 enum unscalarized_data_handling refreshed;
3027
3028 if (lacc->grp_read && !lacc->grp_covered)
3029 refreshed = handle_unscalarized_data_in_subtree (racc, gsi);
3030 else
3031 refreshed = SRA_UDH_NONE;
3032
3033 load_assign_lhs_subreplacements (lacc, racc, lacc->offset,
3034 &orig_gsi, gsi, &refreshed);
3035 if (refreshed != SRA_UDH_RIGHT)
3036 {
3037 gsi_next (gsi);
3038 unlink_stmt_vdef (*stmt);
3039 gsi_remove (&orig_gsi, true);
3040 sra_stats.deleted++;
3041 return SRA_AM_REMOVED;
3042 }
3043 }
3044 else
3045 {
3046 if (racc)
3047 {
3048 if (!racc->grp_to_be_replaced && !racc->grp_unscalarized_data)
3049 {
3050 if (dump_file)
3051 {
3052 fprintf (dump_file, "Removing load: ");
3053 print_gimple_stmt (dump_file, *stmt, 0, 0);
3054 }
3055
3056 if (TREE_CODE (lhs) == SSA_NAME)
3057 {
3058 rhs = get_repl_default_def_ssa_name (racc);
3059 if (!useless_type_conversion_p (TREE_TYPE (lhs),
3060 TREE_TYPE (rhs)))
3061 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
3062 TREE_TYPE (lhs), rhs);
3063 }
3064 else
3065 {
3066 if (racc->first_child)
3067 generate_subtree_copies (racc->first_child, lhs,
3068 racc->offset, 0, 0, gsi,
3069 false, false, loc);
3070
3071 gcc_assert (*stmt == gsi_stmt (*gsi));
3072 unlink_stmt_vdef (*stmt);
3073 gsi_remove (gsi, true);
3074 sra_stats.deleted++;
3075 return SRA_AM_REMOVED;
3076 }
3077 }
3078 else if (racc->first_child)
3079 generate_subtree_copies (racc->first_child, lhs, racc->offset,
3080 0, 0, gsi, false, true, loc);
3081 }
3082 if (access_has_children_p (lacc))
3083 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3084 0, 0, gsi, true, true, loc);
3085 }
3086 }
3087
3088 /* This gimplification must be done after generate_subtree_copies, lest we
3089 insert the subtree copies in the middle of the gimplified sequence. */
3090 if (force_gimple_rhs)
3091 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3092 true, GSI_SAME_STMT);
3093 if (gimple_assign_rhs1 (*stmt) != rhs)
3094 {
3095 modify_this_stmt = true;
3096 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3097 gcc_assert (*stmt == gsi_stmt (orig_gsi));
3098 }
3099
3100 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3101 }
3102
3103 /* Traverse the function body and all modifications as decided in
3104 analyze_all_variable_accesses. Return true iff the CFG has been
3105 changed. */
3106
3107 static bool
3108 sra_modify_function_body (void)
3109 {
3110 bool cfg_changed = false;
3111 basic_block bb;
3112
3113 FOR_EACH_BB (bb)
3114 {
3115 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3116 while (!gsi_end_p (gsi))
3117 {
3118 gimple stmt = gsi_stmt (gsi);
3119 enum assignment_mod_result assign_result;
3120 bool modified = false, deleted = false;
3121 tree *t;
3122 unsigned i;
3123
3124 switch (gimple_code (stmt))
3125 {
3126 case GIMPLE_RETURN:
3127 t = gimple_return_retval_ptr (stmt);
3128 if (*t != NULL_TREE)
3129 modified |= sra_modify_expr (t, &gsi, false);
3130 break;
3131
3132 case GIMPLE_ASSIGN:
3133 assign_result = sra_modify_assign (&stmt, &gsi);
3134 modified |= assign_result == SRA_AM_MODIFIED;
3135 deleted = assign_result == SRA_AM_REMOVED;
3136 break;
3137
3138 case GIMPLE_CALL:
3139 /* Operands must be processed before the lhs. */
3140 for (i = 0; i < gimple_call_num_args (stmt); i++)
3141 {
3142 t = gimple_call_arg_ptr (stmt, i);
3143 modified |= sra_modify_expr (t, &gsi, false);
3144 }
3145
3146 if (gimple_call_lhs (stmt))
3147 {
3148 t = gimple_call_lhs_ptr (stmt);
3149 modified |= sra_modify_expr (t, &gsi, true);
3150 }
3151 break;
3152
3153 case GIMPLE_ASM:
3154 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
3155 {
3156 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
3157 modified |= sra_modify_expr (t, &gsi, false);
3158 }
3159 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
3160 {
3161 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
3162 modified |= sra_modify_expr (t, &gsi, true);
3163 }
3164 break;
3165
3166 default:
3167 break;
3168 }
3169
3170 if (modified)
3171 {
3172 update_stmt (stmt);
3173 if (maybe_clean_eh_stmt (stmt)
3174 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3175 cfg_changed = true;
3176 }
3177 if (!deleted)
3178 gsi_next (&gsi);
3179 }
3180 }
3181
3182 return cfg_changed;
3183 }
3184
3185 /* Generate statements initializing scalar replacements of parts of function
3186 parameters. */
3187
3188 static void
3189 initialize_parameter_reductions (void)
3190 {
3191 gimple_stmt_iterator gsi;
3192 gimple_seq seq = NULL;
3193 tree parm;
3194
3195 for (parm = DECL_ARGUMENTS (current_function_decl);
3196 parm;
3197 parm = DECL_CHAIN (parm))
3198 {
3199 VEC (access_p, heap) *access_vec;
3200 struct access *access;
3201
3202 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3203 continue;
3204 access_vec = get_base_access_vector (parm);
3205 if (!access_vec)
3206 continue;
3207
3208 if (!seq)
3209 {
3210 seq = gimple_seq_alloc ();
3211 gsi = gsi_start (seq);
3212 }
3213
3214 for (access = VEC_index (access_p, access_vec, 0);
3215 access;
3216 access = access->next_grp)
3217 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3218 EXPR_LOCATION (parm));
3219 }
3220
3221 if (seq)
3222 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR), seq);
3223 }
3224
3225 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3226 it reveals there are components of some aggregates to be scalarized, it runs
3227 the required transformations. */
3228 static unsigned int
3229 perform_intra_sra (void)
3230 {
3231 int ret = 0;
3232 sra_initialize ();
3233
3234 if (!find_var_candidates ())
3235 goto out;
3236
3237 if (!scan_function ())
3238 goto out;
3239
3240 if (!analyze_all_variable_accesses ())
3241 goto out;
3242
3243 if (sra_modify_function_body ())
3244 ret = TODO_update_ssa | TODO_cleanup_cfg;
3245 else
3246 ret = TODO_update_ssa;
3247 initialize_parameter_reductions ();
3248
3249 statistics_counter_event (cfun, "Scalar replacements created",
3250 sra_stats.replacements);
3251 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3252 statistics_counter_event (cfun, "Subtree copy stmts",
3253 sra_stats.subtree_copies);
3254 statistics_counter_event (cfun, "Subreplacement stmts",
3255 sra_stats.subreplacements);
3256 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3257 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3258 sra_stats.separate_lhs_rhs_handling);
3259
3260 out:
3261 sra_deinitialize ();
3262 return ret;
3263 }
3264
3265 /* Perform early intraprocedural SRA. */
3266 static unsigned int
3267 early_intra_sra (void)
3268 {
3269 sra_mode = SRA_MODE_EARLY_INTRA;
3270 return perform_intra_sra ();
3271 }
3272
3273 /* Perform "late" intraprocedural SRA. */
3274 static unsigned int
3275 late_intra_sra (void)
3276 {
3277 sra_mode = SRA_MODE_INTRA;
3278 return perform_intra_sra ();
3279 }
3280
3281
3282 static bool
3283 gate_intra_sra (void)
3284 {
3285 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3286 }
3287
3288
3289 struct gimple_opt_pass pass_sra_early =
3290 {
3291 {
3292 GIMPLE_PASS,
3293 "esra", /* name */
3294 gate_intra_sra, /* gate */
3295 early_intra_sra, /* execute */
3296 NULL, /* sub */
3297 NULL, /* next */
3298 0, /* static_pass_number */
3299 TV_TREE_SRA, /* tv_id */
3300 PROP_cfg | PROP_ssa, /* properties_required */
3301 0, /* properties_provided */
3302 0, /* properties_destroyed */
3303 0, /* todo_flags_start */
3304 TODO_update_ssa
3305 | TODO_ggc_collect
3306 | TODO_verify_ssa /* todo_flags_finish */
3307 }
3308 };
3309
3310 struct gimple_opt_pass pass_sra =
3311 {
3312 {
3313 GIMPLE_PASS,
3314 "sra", /* name */
3315 gate_intra_sra, /* gate */
3316 late_intra_sra, /* execute */
3317 NULL, /* sub */
3318 NULL, /* next */
3319 0, /* static_pass_number */
3320 TV_TREE_SRA, /* tv_id */
3321 PROP_cfg | PROP_ssa, /* properties_required */
3322 0, /* properties_provided */
3323 0, /* properties_destroyed */
3324 TODO_update_address_taken, /* todo_flags_start */
3325 TODO_update_ssa
3326 | TODO_ggc_collect
3327 | TODO_verify_ssa /* todo_flags_finish */
3328 }
3329 };
3330
3331
3332 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3333 parameter. */
3334
3335 static bool
3336 is_unused_scalar_param (tree parm)
3337 {
3338 tree name;
3339 return (is_gimple_reg (parm)
3340 && (!(name = gimple_default_def (cfun, parm))
3341 || has_zero_uses (name)));
3342 }
3343
3344 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3345 examine whether there are any direct or otherwise infeasible ones. If so,
3346 return true, otherwise return false. PARM must be a gimple register with a
3347 non-NULL default definition. */
3348
3349 static bool
3350 ptr_parm_has_direct_uses (tree parm)
3351 {
3352 imm_use_iterator ui;
3353 gimple stmt;
3354 tree name = gimple_default_def (cfun, parm);
3355 bool ret = false;
3356
3357 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3358 {
3359 int uses_ok = 0;
3360 use_operand_p use_p;
3361
3362 if (is_gimple_debug (stmt))
3363 continue;
3364
3365 /* Valid uses include dereferences on the lhs and the rhs. */
3366 if (gimple_has_lhs (stmt))
3367 {
3368 tree lhs = gimple_get_lhs (stmt);
3369 while (handled_component_p (lhs))
3370 lhs = TREE_OPERAND (lhs, 0);
3371 if (TREE_CODE (lhs) == MEM_REF
3372 && TREE_OPERAND (lhs, 0) == name
3373 && integer_zerop (TREE_OPERAND (lhs, 1))
3374 && types_compatible_p (TREE_TYPE (lhs),
3375 TREE_TYPE (TREE_TYPE (name)))
3376 && !TREE_THIS_VOLATILE (lhs))
3377 uses_ok++;
3378 }
3379 if (gimple_assign_single_p (stmt))
3380 {
3381 tree rhs = gimple_assign_rhs1 (stmt);
3382 while (handled_component_p (rhs))
3383 rhs = TREE_OPERAND (rhs, 0);
3384 if (TREE_CODE (rhs) == MEM_REF
3385 && TREE_OPERAND (rhs, 0) == name
3386 && integer_zerop (TREE_OPERAND (rhs, 1))
3387 && types_compatible_p (TREE_TYPE (rhs),
3388 TREE_TYPE (TREE_TYPE (name)))
3389 && !TREE_THIS_VOLATILE (rhs))
3390 uses_ok++;
3391 }
3392 else if (is_gimple_call (stmt))
3393 {
3394 unsigned i;
3395 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3396 {
3397 tree arg = gimple_call_arg (stmt, i);
3398 while (handled_component_p (arg))
3399 arg = TREE_OPERAND (arg, 0);
3400 if (TREE_CODE (arg) == MEM_REF
3401 && TREE_OPERAND (arg, 0) == name
3402 && integer_zerop (TREE_OPERAND (arg, 1))
3403 && types_compatible_p (TREE_TYPE (arg),
3404 TREE_TYPE (TREE_TYPE (name)))
3405 && !TREE_THIS_VOLATILE (arg))
3406 uses_ok++;
3407 }
3408 }
3409
3410 /* If the number of valid uses does not match the number of
3411 uses in this stmt there is an unhandled use. */
3412 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3413 --uses_ok;
3414
3415 if (uses_ok != 0)
3416 ret = true;
3417
3418 if (ret)
3419 BREAK_FROM_IMM_USE_STMT (ui);
3420 }
3421
3422 return ret;
3423 }
3424
3425 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3426 them in candidate_bitmap. Note that these do not necessarily include
3427 parameter which are unused and thus can be removed. Return true iff any
3428 such candidate has been found. */
3429
3430 static bool
3431 find_param_candidates (void)
3432 {
3433 tree parm;
3434 int count = 0;
3435 bool ret = false;
3436 const char *msg;
3437
3438 for (parm = DECL_ARGUMENTS (current_function_decl);
3439 parm;
3440 parm = DECL_CHAIN (parm))
3441 {
3442 tree type = TREE_TYPE (parm);
3443
3444 count++;
3445
3446 if (TREE_THIS_VOLATILE (parm)
3447 || TREE_ADDRESSABLE (parm)
3448 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3449 continue;
3450
3451 if (is_unused_scalar_param (parm))
3452 {
3453 ret = true;
3454 continue;
3455 }
3456
3457 if (POINTER_TYPE_P (type))
3458 {
3459 type = TREE_TYPE (type);
3460
3461 if (TREE_CODE (type) == FUNCTION_TYPE
3462 || TYPE_VOLATILE (type)
3463 || (TREE_CODE (type) == ARRAY_TYPE
3464 && TYPE_NONALIASED_COMPONENT (type))
3465 || !is_gimple_reg (parm)
3466 || is_va_list_type (type)
3467 || ptr_parm_has_direct_uses (parm))
3468 continue;
3469 }
3470 else if (!AGGREGATE_TYPE_P (type))
3471 continue;
3472
3473 if (!COMPLETE_TYPE_P (type)
3474 || !host_integerp (TYPE_SIZE (type), 1)
3475 || tree_low_cst (TYPE_SIZE (type), 1) == 0
3476 || (AGGREGATE_TYPE_P (type)
3477 && type_internals_preclude_sra_p (type, &msg)))
3478 continue;
3479
3480 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3481 ret = true;
3482 if (dump_file && (dump_flags & TDF_DETAILS))
3483 {
3484 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3485 print_generic_expr (dump_file, parm, 0);
3486 fprintf (dump_file, "\n");
3487 }
3488 }
3489
3490 func_param_count = count;
3491 return ret;
3492 }
3493
3494 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3495 maybe_modified. */
3496
3497 static bool
3498 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3499 void *data)
3500 {
3501 struct access *repr = (struct access *) data;
3502
3503 repr->grp_maybe_modified = 1;
3504 return true;
3505 }
3506
3507 /* Analyze what representatives (in linked lists accessible from
3508 REPRESENTATIVES) can be modified by side effects of statements in the
3509 current function. */
3510
3511 static void
3512 analyze_modified_params (VEC (access_p, heap) *representatives)
3513 {
3514 int i;
3515
3516 for (i = 0; i < func_param_count; i++)
3517 {
3518 struct access *repr;
3519
3520 for (repr = VEC_index (access_p, representatives, i);
3521 repr;
3522 repr = repr->next_grp)
3523 {
3524 struct access *access;
3525 bitmap visited;
3526 ao_ref ar;
3527
3528 if (no_accesses_p (repr))
3529 continue;
3530 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3531 || repr->grp_maybe_modified)
3532 continue;
3533
3534 ao_ref_init (&ar, repr->expr);
3535 visited = BITMAP_ALLOC (NULL);
3536 for (access = repr; access; access = access->next_sibling)
3537 {
3538 /* All accesses are read ones, otherwise grp_maybe_modified would
3539 be trivially set. */
3540 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3541 mark_maybe_modified, repr, &visited);
3542 if (repr->grp_maybe_modified)
3543 break;
3544 }
3545 BITMAP_FREE (visited);
3546 }
3547 }
3548 }
3549
3550 /* Propagate distances in bb_dereferences in the opposite direction than the
3551 control flow edges, in each step storing the maximum of the current value
3552 and the minimum of all successors. These steps are repeated until the table
3553 stabilizes. Note that BBs which might terminate the functions (according to
3554 final_bbs bitmap) never updated in this way. */
3555
3556 static void
3557 propagate_dereference_distances (void)
3558 {
3559 VEC (basic_block, heap) *queue;
3560 basic_block bb;
3561
3562 queue = VEC_alloc (basic_block, heap, last_basic_block_for_function (cfun));
3563 VEC_quick_push (basic_block, queue, ENTRY_BLOCK_PTR);
3564 FOR_EACH_BB (bb)
3565 {
3566 VEC_quick_push (basic_block, queue, bb);
3567 bb->aux = bb;
3568 }
3569
3570 while (!VEC_empty (basic_block, queue))
3571 {
3572 edge_iterator ei;
3573 edge e;
3574 bool change = false;
3575 int i;
3576
3577 bb = VEC_pop (basic_block, queue);
3578 bb->aux = NULL;
3579
3580 if (bitmap_bit_p (final_bbs, bb->index))
3581 continue;
3582
3583 for (i = 0; i < func_param_count; i++)
3584 {
3585 int idx = bb->index * func_param_count + i;
3586 bool first = true;
3587 HOST_WIDE_INT inh = 0;
3588
3589 FOR_EACH_EDGE (e, ei, bb->succs)
3590 {
3591 int succ_idx = e->dest->index * func_param_count + i;
3592
3593 if (e->src == EXIT_BLOCK_PTR)
3594 continue;
3595
3596 if (first)
3597 {
3598 first = false;
3599 inh = bb_dereferences [succ_idx];
3600 }
3601 else if (bb_dereferences [succ_idx] < inh)
3602 inh = bb_dereferences [succ_idx];
3603 }
3604
3605 if (!first && bb_dereferences[idx] < inh)
3606 {
3607 bb_dereferences[idx] = inh;
3608 change = true;
3609 }
3610 }
3611
3612 if (change && !bitmap_bit_p (final_bbs, bb->index))
3613 FOR_EACH_EDGE (e, ei, bb->preds)
3614 {
3615 if (e->src->aux)
3616 continue;
3617
3618 e->src->aux = e->src;
3619 VEC_quick_push (basic_block, queue, e->src);
3620 }
3621 }
3622
3623 VEC_free (basic_block, heap, queue);
3624 }
3625
3626 /* Dump a dereferences TABLE with heading STR to file F. */
3627
3628 static void
3629 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3630 {
3631 basic_block bb;
3632
3633 fprintf (dump_file, str);
3634 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
3635 {
3636 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3637 if (bb != EXIT_BLOCK_PTR)
3638 {
3639 int i;
3640 for (i = 0; i < func_param_count; i++)
3641 {
3642 int idx = bb->index * func_param_count + i;
3643 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3644 }
3645 }
3646 fprintf (f, "\n");
3647 }
3648 fprintf (dump_file, "\n");
3649 }
3650
3651 /* Determine what (parts of) parameters passed by reference that are not
3652 assigned to are not certainly dereferenced in this function and thus the
3653 dereferencing cannot be safely moved to the caller without potentially
3654 introducing a segfault. Mark such REPRESENTATIVES as
3655 grp_not_necessarilly_dereferenced.
3656
3657 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3658 part is calculated rather than simple booleans are calculated for each
3659 pointer parameter to handle cases when only a fraction of the whole
3660 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3661 an example).
3662
3663 The maximum dereference distances for each pointer parameter and BB are
3664 already stored in bb_dereference. This routine simply propagates these
3665 values upwards by propagate_dereference_distances and then compares the
3666 distances of individual parameters in the ENTRY BB to the equivalent
3667 distances of each representative of a (fraction of a) parameter. */
3668
3669 static void
3670 analyze_caller_dereference_legality (VEC (access_p, heap) *representatives)
3671 {
3672 int i;
3673
3674 if (dump_file && (dump_flags & TDF_DETAILS))
3675 dump_dereferences_table (dump_file,
3676 "Dereference table before propagation:\n",
3677 bb_dereferences);
3678
3679 propagate_dereference_distances ();
3680
3681 if (dump_file && (dump_flags & TDF_DETAILS))
3682 dump_dereferences_table (dump_file,
3683 "Dereference table after propagation:\n",
3684 bb_dereferences);
3685
3686 for (i = 0; i < func_param_count; i++)
3687 {
3688 struct access *repr = VEC_index (access_p, representatives, i);
3689 int idx = ENTRY_BLOCK_PTR->index * func_param_count + i;
3690
3691 if (!repr || no_accesses_p (repr))
3692 continue;
3693
3694 do
3695 {
3696 if ((repr->offset + repr->size) > bb_dereferences[idx])
3697 repr->grp_not_necessarilly_dereferenced = 1;
3698 repr = repr->next_grp;
3699 }
3700 while (repr);
3701 }
3702 }
3703
3704 /* Return the representative access for the parameter declaration PARM if it is
3705 a scalar passed by reference which is not written to and the pointer value
3706 is not used directly. Thus, if it is legal to dereference it in the caller
3707 and we can rule out modifications through aliases, such parameter should be
3708 turned into one passed by value. Return NULL otherwise. */
3709
3710 static struct access *
3711 unmodified_by_ref_scalar_representative (tree parm)
3712 {
3713 int i, access_count;
3714 struct access *repr;
3715 VEC (access_p, heap) *access_vec;
3716
3717 access_vec = get_base_access_vector (parm);
3718 gcc_assert (access_vec);
3719 repr = VEC_index (access_p, access_vec, 0);
3720 if (repr->write)
3721 return NULL;
3722 repr->group_representative = repr;
3723
3724 access_count = VEC_length (access_p, access_vec);
3725 for (i = 1; i < access_count; i++)
3726 {
3727 struct access *access = VEC_index (access_p, access_vec, i);
3728 if (access->write)
3729 return NULL;
3730 access->group_representative = repr;
3731 access->next_sibling = repr->next_sibling;
3732 repr->next_sibling = access;
3733 }
3734
3735 repr->grp_read = 1;
3736 repr->grp_scalar_ptr = 1;
3737 return repr;
3738 }
3739
3740 /* Return true iff this access precludes IPA-SRA of the parameter it is
3741 associated with. */
3742
3743 static bool
3744 access_precludes_ipa_sra_p (struct access *access)
3745 {
3746 /* Avoid issues such as the second simple testcase in PR 42025. The problem
3747 is incompatible assign in a call statement (and possibly even in asm
3748 statements). This can be relaxed by using a new temporary but only for
3749 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
3750 intraprocedural SRA we deal with this by keeping the old aggregate around,
3751 something we cannot do in IPA-SRA.) */
3752 if (access->write
3753 && (is_gimple_call (access->stmt)
3754 || gimple_code (access->stmt) == GIMPLE_ASM))
3755 return true;
3756
3757 if (STRICT_ALIGNMENT
3758 && tree_non_aligned_mem_p (access->expr, TYPE_ALIGN (access->type)))
3759 return true;
3760
3761 return false;
3762 }
3763
3764
3765 /* Sort collected accesses for parameter PARM, identify representatives for
3766 each accessed region and link them together. Return NULL if there are
3767 different but overlapping accesses, return the special ptr value meaning
3768 there are no accesses for this parameter if that is the case and return the
3769 first representative otherwise. Set *RO_GRP if there is a group of accesses
3770 with only read (i.e. no write) accesses. */
3771
3772 static struct access *
3773 splice_param_accesses (tree parm, bool *ro_grp)
3774 {
3775 int i, j, access_count, group_count;
3776 int agg_size, total_size = 0;
3777 struct access *access, *res, **prev_acc_ptr = &res;
3778 VEC (access_p, heap) *access_vec;
3779
3780 access_vec = get_base_access_vector (parm);
3781 if (!access_vec)
3782 return &no_accesses_representant;
3783 access_count = VEC_length (access_p, access_vec);
3784
3785 VEC_qsort (access_p, access_vec, compare_access_positions);
3786
3787 i = 0;
3788 total_size = 0;
3789 group_count = 0;
3790 while (i < access_count)
3791 {
3792 bool modification;
3793 tree a1_alias_type;
3794 access = VEC_index (access_p, access_vec, i);
3795 modification = access->write;
3796 if (access_precludes_ipa_sra_p (access))
3797 return NULL;
3798 a1_alias_type = reference_alias_ptr_type (access->expr);
3799
3800 /* Access is about to become group representative unless we find some
3801 nasty overlap which would preclude us from breaking this parameter
3802 apart. */
3803
3804 j = i + 1;
3805 while (j < access_count)
3806 {
3807 struct access *ac2 = VEC_index (access_p, access_vec, j);
3808 if (ac2->offset != access->offset)
3809 {
3810 /* All or nothing law for parameters. */
3811 if (access->offset + access->size > ac2->offset)
3812 return NULL;
3813 else
3814 break;
3815 }
3816 else if (ac2->size != access->size)
3817 return NULL;
3818
3819 if (access_precludes_ipa_sra_p (ac2)
3820 || (ac2->type != access->type
3821 && (TREE_ADDRESSABLE (ac2->type)
3822 || TREE_ADDRESSABLE (access->type)))
3823 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
3824 return NULL;
3825
3826 modification |= ac2->write;
3827 ac2->group_representative = access;
3828 ac2->next_sibling = access->next_sibling;
3829 access->next_sibling = ac2;
3830 j++;
3831 }
3832
3833 group_count++;
3834 access->grp_maybe_modified = modification;
3835 if (!modification)
3836 *ro_grp = true;
3837 *prev_acc_ptr = access;
3838 prev_acc_ptr = &access->next_grp;
3839 total_size += access->size;
3840 i = j;
3841 }
3842
3843 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3844 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3845 else
3846 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3847 if (total_size >= agg_size)
3848 return NULL;
3849
3850 gcc_assert (group_count > 0);
3851 return res;
3852 }
3853
3854 /* Decide whether parameters with representative accesses given by REPR should
3855 be reduced into components. */
3856
3857 static int
3858 decide_one_param_reduction (struct access *repr)
3859 {
3860 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
3861 bool by_ref;
3862 tree parm;
3863
3864 parm = repr->base;
3865 cur_parm_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (parm)), 1);
3866 gcc_assert (cur_parm_size > 0);
3867
3868 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3869 {
3870 by_ref = true;
3871 agg_size = tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))), 1);
3872 }
3873 else
3874 {
3875 by_ref = false;
3876 agg_size = cur_parm_size;
3877 }
3878
3879 if (dump_file)
3880 {
3881 struct access *acc;
3882 fprintf (dump_file, "Evaluating PARAM group sizes for ");
3883 print_generic_expr (dump_file, parm, 0);
3884 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
3885 for (acc = repr; acc; acc = acc->next_grp)
3886 dump_access (dump_file, acc, true);
3887 }
3888
3889 total_size = 0;
3890 new_param_count = 0;
3891
3892 for (; repr; repr = repr->next_grp)
3893 {
3894 gcc_assert (parm == repr->base);
3895
3896 /* Taking the address of a non-addressable field is verboten. */
3897 if (by_ref && repr->non_addressable)
3898 return 0;
3899
3900 if (!by_ref || (!repr->grp_maybe_modified
3901 && !repr->grp_not_necessarilly_dereferenced))
3902 total_size += repr->size;
3903 else
3904 total_size += cur_parm_size;
3905
3906 new_param_count++;
3907 }
3908
3909 gcc_assert (new_param_count > 0);
3910
3911 if (optimize_function_for_size_p (cfun))
3912 parm_size_limit = cur_parm_size;
3913 else
3914 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
3915 * cur_parm_size);
3916
3917 if (total_size < agg_size
3918 && total_size <= parm_size_limit)
3919 {
3920 if (dump_file)
3921 fprintf (dump_file, " ....will be split into %i components\n",
3922 new_param_count);
3923 return new_param_count;
3924 }
3925 else
3926 return 0;
3927 }
3928
3929 /* The order of the following enums is important, we need to do extra work for
3930 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
3931 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
3932 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
3933
3934 /* Identify representatives of all accesses to all candidate parameters for
3935 IPA-SRA. Return result based on what representatives have been found. */
3936
3937 static enum ipa_splicing_result
3938 splice_all_param_accesses (VEC (access_p, heap) **representatives)
3939 {
3940 enum ipa_splicing_result result = NO_GOOD_ACCESS;
3941 tree parm;
3942 struct access *repr;
3943
3944 *representatives = VEC_alloc (access_p, heap, func_param_count);
3945
3946 for (parm = DECL_ARGUMENTS (current_function_decl);
3947 parm;
3948 parm = DECL_CHAIN (parm))
3949 {
3950 if (is_unused_scalar_param (parm))
3951 {
3952 VEC_quick_push (access_p, *representatives,
3953 &no_accesses_representant);
3954 if (result == NO_GOOD_ACCESS)
3955 result = UNUSED_PARAMS;
3956 }
3957 else if (POINTER_TYPE_P (TREE_TYPE (parm))
3958 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
3959 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3960 {
3961 repr = unmodified_by_ref_scalar_representative (parm);
3962 VEC_quick_push (access_p, *representatives, repr);
3963 if (repr)
3964 result = UNMODIF_BY_REF_ACCESSES;
3965 }
3966 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3967 {
3968 bool ro_grp = false;
3969 repr = splice_param_accesses (parm, &ro_grp);
3970 VEC_quick_push (access_p, *representatives, repr);
3971
3972 if (repr && !no_accesses_p (repr))
3973 {
3974 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3975 {
3976 if (ro_grp)
3977 result = UNMODIF_BY_REF_ACCESSES;
3978 else if (result < MODIF_BY_REF_ACCESSES)
3979 result = MODIF_BY_REF_ACCESSES;
3980 }
3981 else if (result < BY_VAL_ACCESSES)
3982 result = BY_VAL_ACCESSES;
3983 }
3984 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
3985 result = UNUSED_PARAMS;
3986 }
3987 else
3988 VEC_quick_push (access_p, *representatives, NULL);
3989 }
3990
3991 if (result == NO_GOOD_ACCESS)
3992 {
3993 VEC_free (access_p, heap, *representatives);
3994 *representatives = NULL;
3995 return NO_GOOD_ACCESS;
3996 }
3997
3998 return result;
3999 }
4000
4001 /* Return the index of BASE in PARMS. Abort if it is not found. */
4002
4003 static inline int
4004 get_param_index (tree base, VEC(tree, heap) *parms)
4005 {
4006 int i, len;
4007
4008 len = VEC_length (tree, parms);
4009 for (i = 0; i < len; i++)
4010 if (VEC_index (tree, parms, i) == base)
4011 return i;
4012 gcc_unreachable ();
4013 }
4014
4015 /* Convert the decisions made at the representative level into compact
4016 parameter adjustments. REPRESENTATIVES are pointers to first
4017 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4018 final number of adjustments. */
4019
4020 static ipa_parm_adjustment_vec
4021 turn_representatives_into_adjustments (VEC (access_p, heap) *representatives,
4022 int adjustments_count)
4023 {
4024 VEC (tree, heap) *parms;
4025 ipa_parm_adjustment_vec adjustments;
4026 tree parm;
4027 int i;
4028
4029 gcc_assert (adjustments_count > 0);
4030 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4031 adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, adjustments_count);
4032 parm = DECL_ARGUMENTS (current_function_decl);
4033 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
4034 {
4035 struct access *repr = VEC_index (access_p, representatives, i);
4036
4037 if (!repr || no_accesses_p (repr))
4038 {
4039 struct ipa_parm_adjustment *adj;
4040
4041 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4042 memset (adj, 0, sizeof (*adj));
4043 adj->base_index = get_param_index (parm, parms);
4044 adj->base = parm;
4045 if (!repr)
4046 adj->copy_param = 1;
4047 else
4048 adj->remove_param = 1;
4049 }
4050 else
4051 {
4052 struct ipa_parm_adjustment *adj;
4053 int index = get_param_index (parm, parms);
4054
4055 for (; repr; repr = repr->next_grp)
4056 {
4057 adj = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
4058 memset (adj, 0, sizeof (*adj));
4059 gcc_assert (repr->base == parm);
4060 adj->base_index = index;
4061 adj->base = repr->base;
4062 adj->type = repr->type;
4063 adj->alias_ptr_type = reference_alias_ptr_type (repr->expr);
4064 adj->offset = repr->offset;
4065 adj->by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4066 && (repr->grp_maybe_modified
4067 || repr->grp_not_necessarilly_dereferenced));
4068
4069 }
4070 }
4071 }
4072 VEC_free (tree, heap, parms);
4073 return adjustments;
4074 }
4075
4076 /* Analyze the collected accesses and produce a plan what to do with the
4077 parameters in the form of adjustments, NULL meaning nothing. */
4078
4079 static ipa_parm_adjustment_vec
4080 analyze_all_param_acesses (void)
4081 {
4082 enum ipa_splicing_result repr_state;
4083 bool proceed = false;
4084 int i, adjustments_count = 0;
4085 VEC (access_p, heap) *representatives;
4086 ipa_parm_adjustment_vec adjustments;
4087
4088 repr_state = splice_all_param_accesses (&representatives);
4089 if (repr_state == NO_GOOD_ACCESS)
4090 return NULL;
4091
4092 /* If there are any parameters passed by reference which are not modified
4093 directly, we need to check whether they can be modified indirectly. */
4094 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4095 {
4096 analyze_caller_dereference_legality (representatives);
4097 analyze_modified_params (representatives);
4098 }
4099
4100 for (i = 0; i < func_param_count; i++)
4101 {
4102 struct access *repr = VEC_index (access_p, representatives, i);
4103
4104 if (repr && !no_accesses_p (repr))
4105 {
4106 if (repr->grp_scalar_ptr)
4107 {
4108 adjustments_count++;
4109 if (repr->grp_not_necessarilly_dereferenced
4110 || repr->grp_maybe_modified)
4111 VEC_replace (access_p, representatives, i, NULL);
4112 else
4113 {
4114 proceed = true;
4115 sra_stats.scalar_by_ref_to_by_val++;
4116 }
4117 }
4118 else
4119 {
4120 int new_components = decide_one_param_reduction (repr);
4121
4122 if (new_components == 0)
4123 {
4124 VEC_replace (access_p, representatives, i, NULL);
4125 adjustments_count++;
4126 }
4127 else
4128 {
4129 adjustments_count += new_components;
4130 sra_stats.aggregate_params_reduced++;
4131 sra_stats.param_reductions_created += new_components;
4132 proceed = true;
4133 }
4134 }
4135 }
4136 else
4137 {
4138 if (no_accesses_p (repr))
4139 {
4140 proceed = true;
4141 sra_stats.deleted_unused_parameters++;
4142 }
4143 adjustments_count++;
4144 }
4145 }
4146
4147 if (!proceed && dump_file)
4148 fprintf (dump_file, "NOT proceeding to change params.\n");
4149
4150 if (proceed)
4151 adjustments = turn_representatives_into_adjustments (representatives,
4152 adjustments_count);
4153 else
4154 adjustments = NULL;
4155
4156 VEC_free (access_p, heap, representatives);
4157 return adjustments;
4158 }
4159
4160 /* If a parameter replacement identified by ADJ does not yet exist in the form
4161 of declaration, create it and record it, otherwise return the previously
4162 created one. */
4163
4164 static tree
4165 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4166 {
4167 tree repl;
4168 if (!adj->new_ssa_base)
4169 {
4170 char *pretty_name = make_fancy_name (adj->base);
4171
4172 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4173 DECL_NAME (repl) = get_identifier (pretty_name);
4174 obstack_free (&name_obstack, pretty_name);
4175
4176 add_referenced_var (repl);
4177 adj->new_ssa_base = repl;
4178 }
4179 else
4180 repl = adj->new_ssa_base;
4181 return repl;
4182 }
4183
4184 /* Find the first adjustment for a particular parameter BASE in a vector of
4185 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4186 adjustment. */
4187
4188 static struct ipa_parm_adjustment *
4189 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4190 {
4191 int i, len;
4192
4193 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4194 for (i = 0; i < len; i++)
4195 {
4196 struct ipa_parm_adjustment *adj;
4197
4198 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4199 if (!adj->copy_param && adj->base == base)
4200 return adj;
4201 }
4202
4203 return NULL;
4204 }
4205
4206 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4207 removed because its value is not used, replace the SSA_NAME with a one
4208 relating to a created VAR_DECL together all of its uses and return true.
4209 ADJUSTMENTS is a pointer to an adjustments vector. */
4210
4211 static bool
4212 replace_removed_params_ssa_names (gimple stmt,
4213 ipa_parm_adjustment_vec adjustments)
4214 {
4215 struct ipa_parm_adjustment *adj;
4216 tree lhs, decl, repl, name;
4217
4218 if (gimple_code (stmt) == GIMPLE_PHI)
4219 lhs = gimple_phi_result (stmt);
4220 else if (is_gimple_assign (stmt))
4221 lhs = gimple_assign_lhs (stmt);
4222 else if (is_gimple_call (stmt))
4223 lhs = gimple_call_lhs (stmt);
4224 else
4225 gcc_unreachable ();
4226
4227 if (TREE_CODE (lhs) != SSA_NAME)
4228 return false;
4229 decl = SSA_NAME_VAR (lhs);
4230 if (TREE_CODE (decl) != PARM_DECL)
4231 return false;
4232
4233 adj = get_adjustment_for_base (adjustments, decl);
4234 if (!adj)
4235 return false;
4236
4237 repl = get_replaced_param_substitute (adj);
4238 name = make_ssa_name (repl, stmt);
4239
4240 if (dump_file)
4241 {
4242 fprintf (dump_file, "replacing an SSA name of a removed param ");
4243 print_generic_expr (dump_file, lhs, 0);
4244 fprintf (dump_file, " with ");
4245 print_generic_expr (dump_file, name, 0);
4246 fprintf (dump_file, "\n");
4247 }
4248
4249 if (is_gimple_assign (stmt))
4250 gimple_assign_set_lhs (stmt, name);
4251 else if (is_gimple_call (stmt))
4252 gimple_call_set_lhs (stmt, name);
4253 else
4254 gimple_phi_set_result (stmt, name);
4255
4256 replace_uses_by (lhs, name);
4257 release_ssa_name (lhs);
4258 return true;
4259 }
4260
4261 /* If the expression *EXPR should be replaced by a reduction of a parameter, do
4262 so. ADJUSTMENTS is a pointer to a vector of adjustments. CONVERT
4263 specifies whether the function should care about type incompatibility the
4264 current and new expressions. If it is false, the function will leave
4265 incompatibility issues to the caller. Return true iff the expression
4266 was modified. */
4267
4268 static bool
4269 sra_ipa_modify_expr (tree *expr, bool convert,
4270 ipa_parm_adjustment_vec adjustments)
4271 {
4272 int i, len;
4273 struct ipa_parm_adjustment *adj, *cand = NULL;
4274 HOST_WIDE_INT offset, size, max_size;
4275 tree base, src;
4276
4277 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4278
4279 if (TREE_CODE (*expr) == BIT_FIELD_REF
4280 || TREE_CODE (*expr) == IMAGPART_EXPR
4281 || TREE_CODE (*expr) == REALPART_EXPR)
4282 {
4283 expr = &TREE_OPERAND (*expr, 0);
4284 convert = true;
4285 }
4286
4287 base = get_ref_base_and_extent (*expr, &offset, &size, &max_size);
4288 if (!base || size == -1 || max_size == -1)
4289 return false;
4290
4291 if (TREE_CODE (base) == MEM_REF)
4292 {
4293 offset += mem_ref_offset (base).low * BITS_PER_UNIT;
4294 base = TREE_OPERAND (base, 0);
4295 }
4296
4297 base = get_ssa_base_param (base);
4298 if (!base || TREE_CODE (base) != PARM_DECL)
4299 return false;
4300
4301 for (i = 0; i < len; i++)
4302 {
4303 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4304
4305 if (adj->base == base &&
4306 (adj->offset == offset || adj->remove_param))
4307 {
4308 cand = adj;
4309 break;
4310 }
4311 }
4312 if (!cand || cand->copy_param || cand->remove_param)
4313 return false;
4314
4315 if (cand->by_ref)
4316 src = build_simple_mem_ref (cand->reduction);
4317 else
4318 src = cand->reduction;
4319
4320 if (dump_file && (dump_flags & TDF_DETAILS))
4321 {
4322 fprintf (dump_file, "About to replace expr ");
4323 print_generic_expr (dump_file, *expr, 0);
4324 fprintf (dump_file, " with ");
4325 print_generic_expr (dump_file, src, 0);
4326 fprintf (dump_file, "\n");
4327 }
4328
4329 if (convert && !useless_type_conversion_p (TREE_TYPE (*expr), cand->type))
4330 {
4331 tree vce = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (*expr), src);
4332 *expr = vce;
4333 }
4334 else
4335 *expr = src;
4336 return true;
4337 }
4338
4339 /* If the statement pointed to by STMT_PTR contains any expressions that need
4340 to replaced with a different one as noted by ADJUSTMENTS, do so. Handle any
4341 potential type incompatibilities (GSI is used to accommodate conversion
4342 statements and must point to the statement). Return true iff the statement
4343 was modified. */
4344
4345 static bool
4346 sra_ipa_modify_assign (gimple *stmt_ptr, gimple_stmt_iterator *gsi,
4347 ipa_parm_adjustment_vec adjustments)
4348 {
4349 gimple stmt = *stmt_ptr;
4350 tree *lhs_p, *rhs_p;
4351 bool any;
4352
4353 if (!gimple_assign_single_p (stmt))
4354 return false;
4355
4356 rhs_p = gimple_assign_rhs1_ptr (stmt);
4357 lhs_p = gimple_assign_lhs_ptr (stmt);
4358
4359 any = sra_ipa_modify_expr (rhs_p, false, adjustments);
4360 any |= sra_ipa_modify_expr (lhs_p, false, adjustments);
4361 if (any)
4362 {
4363 tree new_rhs = NULL_TREE;
4364
4365 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4366 {
4367 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4368 {
4369 /* V_C_Es of constructors can cause trouble (PR 42714). */
4370 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4371 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4372 else
4373 *rhs_p = build_constructor (TREE_TYPE (*lhs_p), 0);
4374 }
4375 else
4376 new_rhs = fold_build1_loc (gimple_location (stmt),
4377 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4378 *rhs_p);
4379 }
4380 else if (REFERENCE_CLASS_P (*rhs_p)
4381 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4382 && !is_gimple_reg (*lhs_p))
4383 /* This can happen when an assignment in between two single field
4384 structures is turned into an assignment in between two pointers to
4385 scalars (PR 42237). */
4386 new_rhs = *rhs_p;
4387
4388 if (new_rhs)
4389 {
4390 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4391 true, GSI_SAME_STMT);
4392
4393 gimple_assign_set_rhs_from_tree (gsi, tmp);
4394 }
4395
4396 return true;
4397 }
4398
4399 return false;
4400 }
4401
4402 /* Traverse the function body and all modifications as described in
4403 ADJUSTMENTS. Return true iff the CFG has been changed. */
4404
4405 static bool
4406 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4407 {
4408 bool cfg_changed = false;
4409 basic_block bb;
4410
4411 FOR_EACH_BB (bb)
4412 {
4413 gimple_stmt_iterator gsi;
4414
4415 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4416 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4417
4418 gsi = gsi_start_bb (bb);
4419 while (!gsi_end_p (gsi))
4420 {
4421 gimple stmt = gsi_stmt (gsi);
4422 bool modified = false;
4423 tree *t;
4424 unsigned i;
4425
4426 switch (gimple_code (stmt))
4427 {
4428 case GIMPLE_RETURN:
4429 t = gimple_return_retval_ptr (stmt);
4430 if (*t != NULL_TREE)
4431 modified |= sra_ipa_modify_expr (t, true, adjustments);
4432 break;
4433
4434 case GIMPLE_ASSIGN:
4435 modified |= sra_ipa_modify_assign (&stmt, &gsi, adjustments);
4436 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4437 break;
4438
4439 case GIMPLE_CALL:
4440 /* Operands must be processed before the lhs. */
4441 for (i = 0; i < gimple_call_num_args (stmt); i++)
4442 {
4443 t = gimple_call_arg_ptr (stmt, i);
4444 modified |= sra_ipa_modify_expr (t, true, adjustments);
4445 }
4446
4447 if (gimple_call_lhs (stmt))
4448 {
4449 t = gimple_call_lhs_ptr (stmt);
4450 modified |= sra_ipa_modify_expr (t, false, adjustments);
4451 modified |= replace_removed_params_ssa_names (stmt,
4452 adjustments);
4453 }
4454 break;
4455
4456 case GIMPLE_ASM:
4457 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
4458 {
4459 t = &TREE_VALUE (gimple_asm_input_op (stmt, i));
4460 modified |= sra_ipa_modify_expr (t, true, adjustments);
4461 }
4462 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
4463 {
4464 t = &TREE_VALUE (gimple_asm_output_op (stmt, i));
4465 modified |= sra_ipa_modify_expr (t, false, adjustments);
4466 }
4467 break;
4468
4469 default:
4470 break;
4471 }
4472
4473 if (modified)
4474 {
4475 update_stmt (stmt);
4476 if (maybe_clean_eh_stmt (stmt)
4477 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4478 cfg_changed = true;
4479 }
4480 gsi_next (&gsi);
4481 }
4482 }
4483
4484 return cfg_changed;
4485 }
4486
4487 /* Call gimple_debug_bind_reset_value on all debug statements describing
4488 gimple register parameters that are being removed or replaced. */
4489
4490 static void
4491 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4492 {
4493 int i, len;
4494 gimple_stmt_iterator *gsip = NULL, gsi;
4495
4496 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR))
4497 {
4498 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
4499 gsip = &gsi;
4500 }
4501 len = VEC_length (ipa_parm_adjustment_t, adjustments);
4502 for (i = 0; i < len; i++)
4503 {
4504 struct ipa_parm_adjustment *adj;
4505 imm_use_iterator ui;
4506 gimple stmt, def_temp;
4507 tree name, vexpr, copy = NULL_TREE;
4508 use_operand_p use_p;
4509
4510 adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
4511 if (adj->copy_param || !is_gimple_reg (adj->base))
4512 continue;
4513 name = gimple_default_def (cfun, adj->base);
4514 vexpr = NULL;
4515 if (name)
4516 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4517 {
4518 /* All other users must have been removed by
4519 ipa_sra_modify_function_body. */
4520 gcc_assert (is_gimple_debug (stmt));
4521 if (vexpr == NULL && gsip != NULL)
4522 {
4523 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4524 vexpr = make_node (DEBUG_EXPR_DECL);
4525 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4526 NULL);
4527 DECL_ARTIFICIAL (vexpr) = 1;
4528 TREE_TYPE (vexpr) = TREE_TYPE (name);
4529 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4530 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4531 }
4532 if (vexpr)
4533 {
4534 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4535 SET_USE (use_p, vexpr);
4536 }
4537 else
4538 gimple_debug_bind_reset_value (stmt);
4539 update_stmt (stmt);
4540 }
4541 /* Create a VAR_DECL for debug info purposes. */
4542 if (!DECL_IGNORED_P (adj->base))
4543 {
4544 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4545 VAR_DECL, DECL_NAME (adj->base),
4546 TREE_TYPE (adj->base));
4547 if (DECL_PT_UID_SET_P (adj->base))
4548 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4549 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4550 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4551 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4552 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4553 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4554 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4555 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4556 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4557 SET_DECL_RTL (copy, 0);
4558 TREE_USED (copy) = 1;
4559 DECL_CONTEXT (copy) = current_function_decl;
4560 add_referenced_var (copy);
4561 add_local_decl (cfun, copy);
4562 DECL_CHAIN (copy) =
4563 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4564 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4565 }
4566 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4567 {
4568 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4569 if (vexpr)
4570 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4571 else
4572 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4573 NULL);
4574 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4575 }
4576 }
4577 }
4578
4579 /* Return false iff all callers have at least as many actual arguments as there
4580 are formal parameters in the current function. */
4581
4582 static bool
4583 not_all_callers_have_enough_arguments_p (struct cgraph_node *node,
4584 void *data ATTRIBUTE_UNUSED)
4585 {
4586 struct cgraph_edge *cs;
4587 for (cs = node->callers; cs; cs = cs->next_caller)
4588 if (!callsite_has_enough_arguments_p (cs->call_stmt))
4589 return true;
4590
4591 return false;
4592 }
4593
4594 /* Convert all callers of NODE. */
4595
4596 static bool
4597 convert_callers_for_node (struct cgraph_node *node,
4598 void *data)
4599 {
4600 ipa_parm_adjustment_vec adjustments = (ipa_parm_adjustment_vec)data;
4601 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4602 struct cgraph_edge *cs;
4603
4604 for (cs = node->callers; cs; cs = cs->next_caller)
4605 {
4606 current_function_decl = cs->caller->decl;
4607 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4608
4609 if (dump_file)
4610 fprintf (dump_file, "Adjusting call (%i -> %i) %s -> %s\n",
4611 cs->caller->uid, cs->callee->uid,
4612 cgraph_node_name (cs->caller),
4613 cgraph_node_name (cs->callee));
4614
4615 ipa_modify_call_arguments (cs, cs->call_stmt, adjustments);
4616
4617 pop_cfun ();
4618 }
4619
4620 for (cs = node->callers; cs; cs = cs->next_caller)
4621 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4622 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4623 compute_inline_parameters (cs->caller, true);
4624 BITMAP_FREE (recomputed_callers);
4625
4626 return true;
4627 }
4628
4629 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4630
4631 static void
4632 convert_callers (struct cgraph_node *node, tree old_decl,
4633 ipa_parm_adjustment_vec adjustments)
4634 {
4635 tree old_cur_fndecl = current_function_decl;
4636 basic_block this_block;
4637
4638 cgraph_for_node_and_aliases (node, convert_callers_for_node,
4639 adjustments, false);
4640
4641 current_function_decl = old_cur_fndecl;
4642
4643 if (!encountered_recursive_call)
4644 return;
4645
4646 FOR_EACH_BB (this_block)
4647 {
4648 gimple_stmt_iterator gsi;
4649
4650 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4651 {
4652 gimple stmt = gsi_stmt (gsi);
4653 tree call_fndecl;
4654 if (gimple_code (stmt) != GIMPLE_CALL)
4655 continue;
4656 call_fndecl = gimple_call_fndecl (stmt);
4657 if (call_fndecl == old_decl)
4658 {
4659 if (dump_file)
4660 fprintf (dump_file, "Adjusting recursive call");
4661 gimple_call_set_fndecl (stmt, node->decl);
4662 ipa_modify_call_arguments (NULL, stmt, adjustments);
4663 }
4664 }
4665 }
4666
4667 return;
4668 }
4669
4670 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4671 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4672
4673 static bool
4674 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4675 {
4676 struct cgraph_node *new_node;
4677 bool cfg_changed;
4678 VEC (cgraph_edge_p, heap) * redirect_callers = collect_callers_of_node (node);
4679
4680 rebuild_cgraph_edges ();
4681 free_dominance_info (CDI_DOMINATORS);
4682 pop_cfun ();
4683 current_function_decl = NULL_TREE;
4684
4685 new_node = cgraph_function_versioning (node, redirect_callers, NULL, NULL,
4686 NULL, NULL, "isra");
4687 current_function_decl = new_node->decl;
4688 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4689
4690 ipa_modify_formal_parameters (current_function_decl, adjustments, "ISRA");
4691 cfg_changed = ipa_sra_modify_function_body (adjustments);
4692 sra_ipa_reset_debug_stmts (adjustments);
4693 convert_callers (new_node, node->decl, adjustments);
4694 cgraph_make_node_local (new_node);
4695 return cfg_changed;
4696 }
4697
4698 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4699 attributes, return true otherwise. NODE is the cgraph node of the current
4700 function. */
4701
4702 static bool
4703 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4704 {
4705 if (!cgraph_node_can_be_local_p (node))
4706 {
4707 if (dump_file)
4708 fprintf (dump_file, "Function not local to this compilation unit.\n");
4709 return false;
4710 }
4711
4712 if (!node->local.can_change_signature)
4713 {
4714 if (dump_file)
4715 fprintf (dump_file, "Function can not change signature.\n");
4716 return false;
4717 }
4718
4719 if (!tree_versionable_function_p (node->decl))
4720 {
4721 if (dump_file)
4722 fprintf (dump_file, "Function is not versionable.\n");
4723 return false;
4724 }
4725
4726 if (DECL_VIRTUAL_P (current_function_decl))
4727 {
4728 if (dump_file)
4729 fprintf (dump_file, "Function is a virtual method.\n");
4730 return false;
4731 }
4732
4733 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
4734 && inline_summary(node)->size >= MAX_INLINE_INSNS_AUTO)
4735 {
4736 if (dump_file)
4737 fprintf (dump_file, "Function too big to be made truly local.\n");
4738 return false;
4739 }
4740
4741 if (!node->callers)
4742 {
4743 if (dump_file)
4744 fprintf (dump_file,
4745 "Function has no callers in this compilation unit.\n");
4746 return false;
4747 }
4748
4749 if (cfun->stdarg)
4750 {
4751 if (dump_file)
4752 fprintf (dump_file, "Function uses stdarg. \n");
4753 return false;
4754 }
4755
4756 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
4757 return false;
4758
4759 return true;
4760 }
4761
4762 /* Perform early interprocedural SRA. */
4763
4764 static unsigned int
4765 ipa_early_sra (void)
4766 {
4767 struct cgraph_node *node = cgraph_get_node (current_function_decl);
4768 ipa_parm_adjustment_vec adjustments;
4769 int ret = 0;
4770
4771 if (!ipa_sra_preliminary_function_checks (node))
4772 return 0;
4773
4774 sra_initialize ();
4775 sra_mode = SRA_MODE_EARLY_IPA;
4776
4777 if (!find_param_candidates ())
4778 {
4779 if (dump_file)
4780 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
4781 goto simple_out;
4782 }
4783
4784 if (cgraph_for_node_and_aliases (node, not_all_callers_have_enough_arguments_p,
4785 NULL, true))
4786 {
4787 if (dump_file)
4788 fprintf (dump_file, "There are callers with insufficient number of "
4789 "arguments.\n");
4790 goto simple_out;
4791 }
4792
4793 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
4794 func_param_count
4795 * last_basic_block_for_function (cfun));
4796 final_bbs = BITMAP_ALLOC (NULL);
4797
4798 scan_function ();
4799 if (encountered_apply_args)
4800 {
4801 if (dump_file)
4802 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
4803 goto out;
4804 }
4805
4806 if (encountered_unchangable_recursive_call)
4807 {
4808 if (dump_file)
4809 fprintf (dump_file, "Function calls itself with insufficient "
4810 "number of arguments.\n");
4811 goto out;
4812 }
4813
4814 adjustments = analyze_all_param_acesses ();
4815 if (!adjustments)
4816 goto out;
4817 if (dump_file)
4818 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
4819
4820 if (modify_function (node, adjustments))
4821 ret = TODO_update_ssa | TODO_cleanup_cfg;
4822 else
4823 ret = TODO_update_ssa;
4824 VEC_free (ipa_parm_adjustment_t, heap, adjustments);
4825
4826 statistics_counter_event (cfun, "Unused parameters deleted",
4827 sra_stats.deleted_unused_parameters);
4828 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
4829 sra_stats.scalar_by_ref_to_by_val);
4830 statistics_counter_event (cfun, "Aggregate parameters broken up",
4831 sra_stats.aggregate_params_reduced);
4832 statistics_counter_event (cfun, "Aggregate parameter components created",
4833 sra_stats.param_reductions_created);
4834
4835 out:
4836 BITMAP_FREE (final_bbs);
4837 free (bb_dereferences);
4838 simple_out:
4839 sra_deinitialize ();
4840 return ret;
4841 }
4842
4843 /* Return if early ipa sra shall be performed. */
4844 static bool
4845 ipa_early_sra_gate (void)
4846 {
4847 return flag_ipa_sra && dbg_cnt (eipa_sra);
4848 }
4849
4850 struct gimple_opt_pass pass_early_ipa_sra =
4851 {
4852 {
4853 GIMPLE_PASS,
4854 "eipa_sra", /* name */
4855 ipa_early_sra_gate, /* gate */
4856 ipa_early_sra, /* execute */
4857 NULL, /* sub */
4858 NULL, /* next */
4859 0, /* static_pass_number */
4860 TV_IPA_SRA, /* tv_id */
4861 0, /* properties_required */
4862 0, /* properties_provided */
4863 0, /* properties_destroyed */
4864 0, /* todo_flags_start */
4865 TODO_dump_cgraph /* todo_flags_finish */
4866 }
4867 };