re PR other/35094 (RTL dump file letters hosed and partly undocumented)
[gcc.git] / gcc / tree-sra.c
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6 Contributed by Diego Novillo <dnovillo@redhat.com>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30
31 /* These RTL headers are needed for basic-block.h. */
32 #include "rtl.h"
33 #include "tm_p.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "diagnostic.h"
37 #include "langhooks.h"
38 #include "tree-inline.h"
39 #include "tree-flow.h"
40 #include "tree-gimple.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "timevar.h"
44 #include "flags.h"
45 #include "bitmap.h"
46 #include "obstack.h"
47 #include "target.h"
48 /* expr.h is needed for MOVE_RATIO. */
49 #include "expr.h"
50 #include "params.h"
51
52
53 /* This object of this pass is to replace a non-addressable aggregate with a
54 set of independent variables. Most of the time, all of these variables
55 will be scalars. But a secondary objective is to break up larger
56 aggregates into smaller aggregates. In the process we may find that some
57 bits of the larger aggregate can be deleted as unreferenced.
58
59 This substitution is done globally. More localized substitutions would
60 be the purvey of a load-store motion pass.
61
62 The optimization proceeds in phases:
63
64 (1) Identify variables that have types that are candidates for
65 decomposition.
66
67 (2) Scan the function looking for the ways these variables are used.
68 In particular we're interested in the number of times a variable
69 (or member) is needed as a complete unit, and the number of times
70 a variable (or member) is copied.
71
72 (3) Based on the usage profile, instantiate substitution variables.
73
74 (4) Scan the function making replacements.
75 */
76
77
78 /* True if this is the "early" pass, before inlining. */
79 static bool early_sra;
80
81 /* The set of todo flags to return from tree_sra. */
82 static unsigned int todoflags;
83
84 /* The set of aggregate variables that are candidates for scalarization. */
85 static bitmap sra_candidates;
86
87 /* Set of scalarizable PARM_DECLs that need copy-in operations at the
88 beginning of the function. */
89 static bitmap needs_copy_in;
90
91 /* Sets of bit pairs that cache type decomposition and instantiation. */
92 static bitmap sra_type_decomp_cache;
93 static bitmap sra_type_inst_cache;
94
95 /* One of these structures is created for each candidate aggregate and
96 each (accessed) member or group of members of such an aggregate. */
97 struct sra_elt
98 {
99 /* A tree of the elements. Used when we want to traverse everything. */
100 struct sra_elt *parent;
101 struct sra_elt *groups;
102 struct sra_elt *children;
103 struct sra_elt *sibling;
104
105 /* If this element is a root, then this is the VAR_DECL. If this is
106 a sub-element, this is some token used to identify the reference.
107 In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
108 of an ARRAY_REF, this is the (constant) index. In the case of an
109 ARRAY_RANGE_REF, this is the (constant) RANGE_EXPR. In the case
110 of a complex number, this is a zero or one. */
111 tree element;
112
113 /* The type of the element. */
114 tree type;
115
116 /* A VAR_DECL, for any sub-element we've decided to replace. */
117 tree replacement;
118
119 /* The number of times the element is referenced as a whole. I.e.
120 given "a.b.c", this would be incremented for C, but not for A or B. */
121 unsigned int n_uses;
122
123 /* The number of times the element is copied to or from another
124 scalarizable element. */
125 unsigned int n_copies;
126
127 /* True if TYPE is scalar. */
128 bool is_scalar;
129
130 /* True if this element is a group of members of its parent. */
131 bool is_group;
132
133 /* True if we saw something about this element that prevents scalarization,
134 such as non-constant indexing. */
135 bool cannot_scalarize;
136
137 /* True if we've decided that structure-to-structure assignment
138 should happen via memcpy and not per-element. */
139 bool use_block_copy;
140
141 /* True if everything under this element has been marked TREE_NO_WARNING. */
142 bool all_no_warning;
143
144 /* A flag for use with/after random access traversals. */
145 bool visited;
146
147 /* True if there is BIT_FIELD_REF on the lhs with a vector. */
148 bool is_vector_lhs;
149
150 /* 1 if the element is a field that is part of a block, 2 if the field
151 is the block itself, 0 if it's neither. */
152 char in_bitfld_block;
153 };
154
155 #define IS_ELEMENT_FOR_GROUP(ELEMENT) (TREE_CODE (ELEMENT) == RANGE_EXPR)
156
157 #define FOR_EACH_ACTUAL_CHILD(CHILD, ELT) \
158 for ((CHILD) = (ELT)->is_group \
159 ? next_child_for_group (NULL, (ELT)) \
160 : (ELT)->children; \
161 (CHILD); \
162 (CHILD) = (ELT)->is_group \
163 ? next_child_for_group ((CHILD), (ELT)) \
164 : (CHILD)->sibling)
165
166 /* Helper function for above macro. Return next child in group. */
167 static struct sra_elt *
168 next_child_for_group (struct sra_elt *child, struct sra_elt *group)
169 {
170 gcc_assert (group->is_group);
171
172 /* Find the next child in the parent. */
173 if (child)
174 child = child->sibling;
175 else
176 child = group->parent->children;
177
178 /* Skip siblings that do not belong to the group. */
179 while (child)
180 {
181 tree g_elt = group->element;
182 if (TREE_CODE (g_elt) == RANGE_EXPR)
183 {
184 if (!tree_int_cst_lt (child->element, TREE_OPERAND (g_elt, 0))
185 && !tree_int_cst_lt (TREE_OPERAND (g_elt, 1), child->element))
186 break;
187 }
188 else
189 gcc_unreachable ();
190
191 child = child->sibling;
192 }
193
194 return child;
195 }
196
197 /* Random access to the child of a parent is performed by hashing.
198 This prevents quadratic behavior, and allows SRA to function
199 reasonably on larger records. */
200 static htab_t sra_map;
201
202 /* All structures are allocated out of the following obstack. */
203 static struct obstack sra_obstack;
204
205 /* Debugging functions. */
206 static void dump_sra_elt_name (FILE *, struct sra_elt *);
207 extern void debug_sra_elt_name (struct sra_elt *);
208
209 /* Forward declarations. */
210 static tree generate_element_ref (struct sra_elt *);
211 static tree sra_build_assignment (tree dst, tree src);
212 static void mark_all_v_defs (tree list);
213
214 \f
215 /* Return true if DECL is an SRA candidate. */
216
217 static bool
218 is_sra_candidate_decl (tree decl)
219 {
220 return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
221 }
222
223 /* Return true if TYPE is a scalar type. */
224
225 static bool
226 is_sra_scalar_type (tree type)
227 {
228 enum tree_code code = TREE_CODE (type);
229 return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
230 || code == FIXED_POINT_TYPE
231 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
232 || code == POINTER_TYPE || code == OFFSET_TYPE
233 || code == REFERENCE_TYPE);
234 }
235
236 /* Return true if TYPE can be decomposed into a set of independent variables.
237
238 Note that this doesn't imply that all elements of TYPE can be
239 instantiated, just that if we decide to break up the type into
240 separate pieces that it can be done. */
241
242 bool
243 sra_type_can_be_decomposed_p (tree type)
244 {
245 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
246 tree t;
247
248 /* Avoid searching the same type twice. */
249 if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
250 return true;
251 if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
252 return false;
253
254 /* The type must have a definite nonzero size. */
255 if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
256 || integer_zerop (TYPE_SIZE (type)))
257 goto fail;
258
259 /* The type must be a non-union aggregate. */
260 switch (TREE_CODE (type))
261 {
262 case RECORD_TYPE:
263 {
264 bool saw_one_field = false;
265
266 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
267 if (TREE_CODE (t) == FIELD_DECL)
268 {
269 /* Reject incorrectly represented bit fields. */
270 if (DECL_BIT_FIELD (t)
271 && (tree_low_cst (DECL_SIZE (t), 1)
272 != TYPE_PRECISION (TREE_TYPE (t))))
273 goto fail;
274
275 saw_one_field = true;
276 }
277
278 /* Record types must have at least one field. */
279 if (!saw_one_field)
280 goto fail;
281 }
282 break;
283
284 case ARRAY_TYPE:
285 /* Array types must have a fixed lower and upper bound. */
286 t = TYPE_DOMAIN (type);
287 if (t == NULL)
288 goto fail;
289 if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
290 goto fail;
291 if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
292 goto fail;
293 break;
294
295 case COMPLEX_TYPE:
296 break;
297
298 default:
299 goto fail;
300 }
301
302 bitmap_set_bit (sra_type_decomp_cache, cache+0);
303 return true;
304
305 fail:
306 bitmap_set_bit (sra_type_decomp_cache, cache+1);
307 return false;
308 }
309
310 /* Return true if DECL can be decomposed into a set of independent
311 (though not necessarily scalar) variables. */
312
313 static bool
314 decl_can_be_decomposed_p (tree var)
315 {
316 /* Early out for scalars. */
317 if (is_sra_scalar_type (TREE_TYPE (var)))
318 return false;
319
320 /* The variable must not be aliased. */
321 if (!is_gimple_non_addressable (var))
322 {
323 if (dump_file && (dump_flags & TDF_DETAILS))
324 {
325 fprintf (dump_file, "Cannot scalarize variable ");
326 print_generic_expr (dump_file, var, dump_flags);
327 fprintf (dump_file, " because it must live in memory\n");
328 }
329 return false;
330 }
331
332 /* The variable must not be volatile. */
333 if (TREE_THIS_VOLATILE (var))
334 {
335 if (dump_file && (dump_flags & TDF_DETAILS))
336 {
337 fprintf (dump_file, "Cannot scalarize variable ");
338 print_generic_expr (dump_file, var, dump_flags);
339 fprintf (dump_file, " because it is declared volatile\n");
340 }
341 return false;
342 }
343
344 /* We must be able to decompose the variable's type. */
345 if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
346 {
347 if (dump_file && (dump_flags & TDF_DETAILS))
348 {
349 fprintf (dump_file, "Cannot scalarize variable ");
350 print_generic_expr (dump_file, var, dump_flags);
351 fprintf (dump_file, " because its type cannot be decomposed\n");
352 }
353 return false;
354 }
355
356 /* HACK: if we decompose a va_list_type_node before inlining, then we'll
357 confuse tree-stdarg.c, and we won't be able to figure out which and
358 how many arguments are accessed. This really should be improved in
359 tree-stdarg.c, as the decomposition is truely a win. This could also
360 be fixed if the stdarg pass ran early, but this can't be done until
361 we've aliasing information early too. See PR 30791. */
362 if (early_sra
363 && TYPE_MAIN_VARIANT (TREE_TYPE (var))
364 == TYPE_MAIN_VARIANT (va_list_type_node))
365 return false;
366
367 return true;
368 }
369
370 /* Return true if TYPE can be *completely* decomposed into scalars. */
371
372 static bool
373 type_can_instantiate_all_elements (tree type)
374 {
375 if (is_sra_scalar_type (type))
376 return true;
377 if (!sra_type_can_be_decomposed_p (type))
378 return false;
379
380 switch (TREE_CODE (type))
381 {
382 case RECORD_TYPE:
383 {
384 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
385 tree f;
386
387 if (bitmap_bit_p (sra_type_inst_cache, cache+0))
388 return true;
389 if (bitmap_bit_p (sra_type_inst_cache, cache+1))
390 return false;
391
392 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
393 if (TREE_CODE (f) == FIELD_DECL)
394 {
395 if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
396 {
397 bitmap_set_bit (sra_type_inst_cache, cache+1);
398 return false;
399 }
400 }
401
402 bitmap_set_bit (sra_type_inst_cache, cache+0);
403 return true;
404 }
405
406 case ARRAY_TYPE:
407 return type_can_instantiate_all_elements (TREE_TYPE (type));
408
409 case COMPLEX_TYPE:
410 return true;
411
412 default:
413 gcc_unreachable ();
414 }
415 }
416
417 /* Test whether ELT or some sub-element cannot be scalarized. */
418
419 static bool
420 can_completely_scalarize_p (struct sra_elt *elt)
421 {
422 struct sra_elt *c;
423
424 if (elt->cannot_scalarize)
425 return false;
426
427 for (c = elt->children; c; c = c->sibling)
428 if (!can_completely_scalarize_p (c))
429 return false;
430
431 for (c = elt->groups; c; c = c->sibling)
432 if (!can_completely_scalarize_p (c))
433 return false;
434
435 return true;
436 }
437
438 \f
439 /* A simplified tree hashing algorithm that only handles the types of
440 trees we expect to find in sra_elt->element. */
441
442 static hashval_t
443 sra_hash_tree (tree t)
444 {
445 hashval_t h;
446
447 switch (TREE_CODE (t))
448 {
449 case VAR_DECL:
450 case PARM_DECL:
451 case RESULT_DECL:
452 h = DECL_UID (t);
453 break;
454
455 case INTEGER_CST:
456 h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
457 break;
458
459 case RANGE_EXPR:
460 h = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
461 h = iterative_hash_expr (TREE_OPERAND (t, 1), h);
462 break;
463
464 case FIELD_DECL:
465 /* We can have types that are compatible, but have different member
466 lists, so we can't hash fields by ID. Use offsets instead. */
467 h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
468 h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
469 break;
470
471 case BIT_FIELD_REF:
472 /* Don't take operand 0 into account, that's our parent. */
473 h = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
474 h = iterative_hash_expr (TREE_OPERAND (t, 2), h);
475 break;
476
477 default:
478 gcc_unreachable ();
479 }
480
481 return h;
482 }
483
484 /* Hash function for type SRA_PAIR. */
485
486 static hashval_t
487 sra_elt_hash (const void *x)
488 {
489 const struct sra_elt *e = x;
490 const struct sra_elt *p;
491 hashval_t h;
492
493 h = sra_hash_tree (e->element);
494
495 /* Take into account everything except bitfield blocks back up the
496 chain. Given that chain lengths are rarely very long, this
497 should be acceptable. If we truly identify this as a performance
498 problem, it should work to hash the pointer value
499 "e->parent". */
500 for (p = e->parent; p ; p = p->parent)
501 if (!p->in_bitfld_block)
502 h = (h * 65521) ^ sra_hash_tree (p->element);
503
504 return h;
505 }
506
507 /* Equality function for type SRA_PAIR. */
508
509 static int
510 sra_elt_eq (const void *x, const void *y)
511 {
512 const struct sra_elt *a = x;
513 const struct sra_elt *b = y;
514 tree ae, be;
515 const struct sra_elt *ap = a->parent;
516 const struct sra_elt *bp = b->parent;
517
518 if (ap)
519 while (ap->in_bitfld_block)
520 ap = ap->parent;
521 if (bp)
522 while (bp->in_bitfld_block)
523 bp = bp->parent;
524
525 if (ap != bp)
526 return false;
527
528 ae = a->element;
529 be = b->element;
530
531 if (ae == be)
532 return true;
533 if (TREE_CODE (ae) != TREE_CODE (be))
534 return false;
535
536 switch (TREE_CODE (ae))
537 {
538 case VAR_DECL:
539 case PARM_DECL:
540 case RESULT_DECL:
541 /* These are all pointer unique. */
542 return false;
543
544 case INTEGER_CST:
545 /* Integers are not pointer unique, so compare their values. */
546 return tree_int_cst_equal (ae, be);
547
548 case RANGE_EXPR:
549 return
550 tree_int_cst_equal (TREE_OPERAND (ae, 0), TREE_OPERAND (be, 0))
551 && tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1));
552
553 case FIELD_DECL:
554 /* Fields are unique within a record, but not between
555 compatible records. */
556 if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
557 return false;
558 return fields_compatible_p (ae, be);
559
560 case BIT_FIELD_REF:
561 return
562 tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1))
563 && tree_int_cst_equal (TREE_OPERAND (ae, 2), TREE_OPERAND (be, 2));
564
565 default:
566 gcc_unreachable ();
567 }
568 }
569
570 /* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
571 may be null, in which case CHILD must be a DECL. */
572
573 static struct sra_elt *
574 lookup_element (struct sra_elt *parent, tree child, tree type,
575 enum insert_option insert)
576 {
577 struct sra_elt dummy;
578 struct sra_elt **slot;
579 struct sra_elt *elt;
580
581 if (parent)
582 dummy.parent = parent->is_group ? parent->parent : parent;
583 else
584 dummy.parent = NULL;
585 dummy.element = child;
586
587 slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
588 if (!slot && insert == NO_INSERT)
589 return NULL;
590
591 elt = *slot;
592 if (!elt && insert == INSERT)
593 {
594 *slot = elt = obstack_alloc (&sra_obstack, sizeof (*elt));
595 memset (elt, 0, sizeof (*elt));
596
597 elt->parent = parent;
598 elt->element = child;
599 elt->type = type;
600 elt->is_scalar = is_sra_scalar_type (type);
601
602 if (parent)
603 {
604 if (IS_ELEMENT_FOR_GROUP (elt->element))
605 {
606 elt->is_group = true;
607 elt->sibling = parent->groups;
608 parent->groups = elt;
609 }
610 else
611 {
612 elt->sibling = parent->children;
613 parent->children = elt;
614 }
615 }
616
617 /* If this is a parameter, then if we want to scalarize, we have
618 one copy from the true function parameter. Count it now. */
619 if (TREE_CODE (child) == PARM_DECL)
620 {
621 elt->n_copies = 1;
622 bitmap_set_bit (needs_copy_in, DECL_UID (child));
623 }
624 }
625
626 return elt;
627 }
628
629 /* Create or return the SRA_ELT structure for EXPR if the expression
630 refers to a scalarizable variable. */
631
632 static struct sra_elt *
633 maybe_lookup_element_for_expr (tree expr)
634 {
635 struct sra_elt *elt;
636 tree child;
637
638 switch (TREE_CODE (expr))
639 {
640 case VAR_DECL:
641 case PARM_DECL:
642 case RESULT_DECL:
643 if (is_sra_candidate_decl (expr))
644 return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
645 return NULL;
646
647 case ARRAY_REF:
648 /* We can't scalarize variable array indices. */
649 if (in_array_bounds_p (expr))
650 child = TREE_OPERAND (expr, 1);
651 else
652 return NULL;
653 break;
654
655 case ARRAY_RANGE_REF:
656 /* We can't scalarize variable array indices. */
657 if (range_in_array_bounds_p (expr))
658 {
659 tree domain = TYPE_DOMAIN (TREE_TYPE (expr));
660 child = build2 (RANGE_EXPR, integer_type_node,
661 TYPE_MIN_VALUE (domain), TYPE_MAX_VALUE (domain));
662 }
663 else
664 return NULL;
665 break;
666
667 case COMPONENT_REF:
668 {
669 tree type = TREE_TYPE (TREE_OPERAND (expr, 0));
670 /* Don't look through unions. */
671 if (TREE_CODE (type) != RECORD_TYPE)
672 return NULL;
673 /* Neither through variable-sized records. */
674 if (TYPE_SIZE (type) == NULL_TREE
675 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
676 return NULL;
677 child = TREE_OPERAND (expr, 1);
678 }
679 break;
680
681 case REALPART_EXPR:
682 child = integer_zero_node;
683 break;
684 case IMAGPART_EXPR:
685 child = integer_one_node;
686 break;
687
688 default:
689 return NULL;
690 }
691
692 elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
693 if (elt)
694 return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
695 return NULL;
696 }
697
698 \f
699 /* Functions to walk just enough of the tree to see all scalarizable
700 references, and categorize them. */
701
702 /* A set of callbacks for phases 2 and 4. They'll be invoked for the
703 various kinds of references seen. In all cases, *BSI is an iterator
704 pointing to the statement being processed. */
705 struct sra_walk_fns
706 {
707 /* Invoked when ELT is required as a unit. Note that ELT might refer to
708 a leaf node, in which case this is a simple scalar reference. *EXPR_P
709 points to the location of the expression. IS_OUTPUT is true if this
710 is a left-hand-side reference. USE_ALL is true if we saw something we
711 couldn't quite identify and had to force the use of the entire object. */
712 void (*use) (struct sra_elt *elt, tree *expr_p,
713 block_stmt_iterator *bsi, bool is_output, bool use_all);
714
715 /* Invoked when we have a copy between two scalarizable references. */
716 void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
717 block_stmt_iterator *bsi);
718
719 /* Invoked when ELT is initialized from a constant. VALUE may be NULL,
720 in which case it should be treated as an empty CONSTRUCTOR. */
721 void (*init) (struct sra_elt *elt, tree value, block_stmt_iterator *bsi);
722
723 /* Invoked when we have a copy between one scalarizable reference ELT
724 and one non-scalarizable reference OTHER without side-effects.
725 IS_OUTPUT is true if ELT is on the left-hand side. */
726 void (*ldst) (struct sra_elt *elt, tree other,
727 block_stmt_iterator *bsi, bool is_output);
728
729 /* True during phase 2, false during phase 4. */
730 /* ??? This is a hack. */
731 bool initial_scan;
732 };
733
734 #ifdef ENABLE_CHECKING
735 /* Invoked via walk_tree, if *TP contains a candidate decl, return it. */
736
737 static tree
738 sra_find_candidate_decl (tree *tp, int *walk_subtrees,
739 void *data ATTRIBUTE_UNUSED)
740 {
741 tree t = *tp;
742 enum tree_code code = TREE_CODE (t);
743
744 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
745 {
746 *walk_subtrees = 0;
747 if (is_sra_candidate_decl (t))
748 return t;
749 }
750 else if (TYPE_P (t))
751 *walk_subtrees = 0;
752
753 return NULL;
754 }
755 #endif
756
757 /* Walk most expressions looking for a scalarizable aggregate.
758 If we find one, invoke FNS->USE. */
759
760 static void
761 sra_walk_expr (tree *expr_p, block_stmt_iterator *bsi, bool is_output,
762 const struct sra_walk_fns *fns)
763 {
764 tree expr = *expr_p;
765 tree inner = expr;
766 bool disable_scalarization = false;
767 bool use_all_p = false;
768
769 /* We're looking to collect a reference expression between EXPR and INNER,
770 such that INNER is a scalarizable decl and all other nodes through EXPR
771 are references that we can scalarize. If we come across something that
772 we can't scalarize, we reset EXPR. This has the effect of making it
773 appear that we're referring to the larger expression as a whole. */
774
775 while (1)
776 switch (TREE_CODE (inner))
777 {
778 case VAR_DECL:
779 case PARM_DECL:
780 case RESULT_DECL:
781 /* If there is a scalarizable decl at the bottom, then process it. */
782 if (is_sra_candidate_decl (inner))
783 {
784 struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
785 if (disable_scalarization)
786 elt->cannot_scalarize = true;
787 else
788 fns->use (elt, expr_p, bsi, is_output, use_all_p);
789 }
790 return;
791
792 case ARRAY_REF:
793 /* Non-constant index means any member may be accessed. Prevent the
794 expression from being scalarized. If we were to treat this as a
795 reference to the whole array, we can wind up with a single dynamic
796 index reference inside a loop being overridden by several constant
797 index references during loop setup. It's possible that this could
798 be avoided by using dynamic usage counts based on BB trip counts
799 (based on loop analysis or profiling), but that hardly seems worth
800 the effort. */
801 /* ??? Hack. Figure out how to push this into the scan routines
802 without duplicating too much code. */
803 if (!in_array_bounds_p (inner))
804 {
805 disable_scalarization = true;
806 goto use_all;
807 }
808 /* ??? Are we assured that non-constant bounds and stride will have
809 the same value everywhere? I don't think Fortran will... */
810 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
811 goto use_all;
812 inner = TREE_OPERAND (inner, 0);
813 break;
814
815 case ARRAY_RANGE_REF:
816 if (!range_in_array_bounds_p (inner))
817 {
818 disable_scalarization = true;
819 goto use_all;
820 }
821 /* ??? See above non-constant bounds and stride . */
822 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
823 goto use_all;
824 inner = TREE_OPERAND (inner, 0);
825 break;
826
827 case COMPONENT_REF:
828 {
829 tree type = TREE_TYPE (TREE_OPERAND (inner, 0));
830 /* Don't look through unions. */
831 if (TREE_CODE (type) != RECORD_TYPE)
832 goto use_all;
833 /* Neither through variable-sized records. */
834 if (TYPE_SIZE (type) == NULL_TREE
835 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
836 goto use_all;
837 inner = TREE_OPERAND (inner, 0);
838 }
839 break;
840
841 case REALPART_EXPR:
842 case IMAGPART_EXPR:
843 inner = TREE_OPERAND (inner, 0);
844 break;
845
846 case BIT_FIELD_REF:
847 /* A bit field reference to a specific vector is scalarized but for
848 ones for inputs need to be marked as used on the left hand size so
849 when we scalarize it, we can mark that variable as non renamable. */
850 if (is_output
851 && TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) == VECTOR_TYPE)
852 {
853 struct sra_elt *elt
854 = maybe_lookup_element_for_expr (TREE_OPERAND (inner, 0));
855 if (elt)
856 elt->is_vector_lhs = true;
857 }
858 /* A bit field reference (access to *multiple* fields simultaneously)
859 is not currently scalarized. Consider this an access to the
860 complete outer element, to which walk_tree will bring us next. */
861
862 goto use_all;
863
864 case VIEW_CONVERT_EXPR:
865 case NOP_EXPR:
866 /* Similarly, a view/nop explicitly wants to look at an object in a
867 type other than the one we've scalarized. */
868 goto use_all;
869
870 case WITH_SIZE_EXPR:
871 /* This is a transparent wrapper. The entire inner expression really
872 is being used. */
873 goto use_all;
874
875 use_all:
876 expr_p = &TREE_OPERAND (inner, 0);
877 inner = expr = *expr_p;
878 use_all_p = true;
879 break;
880
881 default:
882 #ifdef ENABLE_CHECKING
883 /* Validate that we're not missing any references. */
884 gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
885 #endif
886 return;
887 }
888 }
889
890 /* Walk a TREE_LIST of values looking for scalarizable aggregates.
891 If we find one, invoke FNS->USE. */
892
893 static void
894 sra_walk_tree_list (tree list, block_stmt_iterator *bsi, bool is_output,
895 const struct sra_walk_fns *fns)
896 {
897 tree op;
898 for (op = list; op ; op = TREE_CHAIN (op))
899 sra_walk_expr (&TREE_VALUE (op), bsi, is_output, fns);
900 }
901
902 /* Walk the arguments of a CALL_EXPR looking for scalarizable aggregates.
903 If we find one, invoke FNS->USE. */
904
905 static void
906 sra_walk_call_expr (tree expr, block_stmt_iterator *bsi,
907 const struct sra_walk_fns *fns)
908 {
909 int i;
910 int nargs = call_expr_nargs (expr);
911 for (i = 0; i < nargs; i++)
912 sra_walk_expr (&CALL_EXPR_ARG (expr, i), bsi, false, fns);
913 }
914
915 /* Walk the inputs and outputs of an ASM_EXPR looking for scalarizable
916 aggregates. If we find one, invoke FNS->USE. */
917
918 static void
919 sra_walk_asm_expr (tree expr, block_stmt_iterator *bsi,
920 const struct sra_walk_fns *fns)
921 {
922 sra_walk_tree_list (ASM_INPUTS (expr), bsi, false, fns);
923 sra_walk_tree_list (ASM_OUTPUTS (expr), bsi, true, fns);
924 }
925
926 /* Walk a GIMPLE_MODIFY_STMT and categorize the assignment appropriately. */
927
928 static void
929 sra_walk_gimple_modify_stmt (tree expr, block_stmt_iterator *bsi,
930 const struct sra_walk_fns *fns)
931 {
932 struct sra_elt *lhs_elt, *rhs_elt;
933 tree lhs, rhs;
934
935 lhs = GIMPLE_STMT_OPERAND (expr, 0);
936 rhs = GIMPLE_STMT_OPERAND (expr, 1);
937 lhs_elt = maybe_lookup_element_for_expr (lhs);
938 rhs_elt = maybe_lookup_element_for_expr (rhs);
939
940 /* If both sides are scalarizable, this is a COPY operation. */
941 if (lhs_elt && rhs_elt)
942 {
943 fns->copy (lhs_elt, rhs_elt, bsi);
944 return;
945 }
946
947 /* If the RHS is scalarizable, handle it. There are only two cases. */
948 if (rhs_elt)
949 {
950 if (!rhs_elt->is_scalar && !TREE_SIDE_EFFECTS (lhs))
951 fns->ldst (rhs_elt, lhs, bsi, false);
952 else
953 fns->use (rhs_elt, &GIMPLE_STMT_OPERAND (expr, 1), bsi, false, false);
954 }
955
956 /* If it isn't scalarizable, there may be scalarizable variables within, so
957 check for a call or else walk the RHS to see if we need to do any
958 copy-in operations. We need to do it before the LHS is scalarized so
959 that the statements get inserted in the proper place, before any
960 copy-out operations. */
961 else
962 {
963 tree call = get_call_expr_in (rhs);
964 if (call)
965 sra_walk_call_expr (call, bsi, fns);
966 else
967 sra_walk_expr (&GIMPLE_STMT_OPERAND (expr, 1), bsi, false, fns);
968 }
969
970 /* Likewise, handle the LHS being scalarizable. We have cases similar
971 to those above, but also want to handle RHS being constant. */
972 if (lhs_elt)
973 {
974 /* If this is an assignment from a constant, or constructor, then
975 we have access to all of the elements individually. Invoke INIT. */
976 if (TREE_CODE (rhs) == COMPLEX_EXPR
977 || TREE_CODE (rhs) == COMPLEX_CST
978 || TREE_CODE (rhs) == CONSTRUCTOR)
979 fns->init (lhs_elt, rhs, bsi);
980
981 /* If this is an assignment from read-only memory, treat this as if
982 we'd been passed the constructor directly. Invoke INIT. */
983 else if (TREE_CODE (rhs) == VAR_DECL
984 && TREE_STATIC (rhs)
985 && TREE_READONLY (rhs)
986 && targetm.binds_local_p (rhs))
987 fns->init (lhs_elt, DECL_INITIAL (rhs), bsi);
988
989 /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
990 The lvalue requirement prevents us from trying to directly scalarize
991 the result of a function call. Which would result in trying to call
992 the function multiple times, and other evil things. */
993 else if (!lhs_elt->is_scalar
994 && !TREE_SIDE_EFFECTS (rhs) && is_gimple_addressable (rhs))
995 fns->ldst (lhs_elt, rhs, bsi, true);
996
997 /* Otherwise we're being used in some context that requires the
998 aggregate to be seen as a whole. Invoke USE. */
999 else
1000 fns->use (lhs_elt, &GIMPLE_STMT_OPERAND (expr, 0), bsi, true, false);
1001 }
1002
1003 /* Similarly to above, LHS_ELT being null only means that the LHS as a
1004 whole is not a scalarizable reference. There may be occurrences of
1005 scalarizable variables within, which implies a USE. */
1006 else
1007 sra_walk_expr (&GIMPLE_STMT_OPERAND (expr, 0), bsi, true, fns);
1008 }
1009
1010 /* Entry point to the walk functions. Search the entire function,
1011 invoking the callbacks in FNS on each of the references to
1012 scalarizable variables. */
1013
1014 static void
1015 sra_walk_function (const struct sra_walk_fns *fns)
1016 {
1017 basic_block bb;
1018 block_stmt_iterator si, ni;
1019
1020 /* ??? Phase 4 could derive some benefit to walking the function in
1021 dominator tree order. */
1022
1023 FOR_EACH_BB (bb)
1024 for (si = bsi_start (bb); !bsi_end_p (si); si = ni)
1025 {
1026 tree stmt, t;
1027 stmt_ann_t ann;
1028
1029 stmt = bsi_stmt (si);
1030 ann = stmt_ann (stmt);
1031
1032 ni = si;
1033 bsi_next (&ni);
1034
1035 /* If the statement has no virtual operands, then it doesn't
1036 make any structure references that we care about. */
1037 if (gimple_aliases_computed_p (cfun)
1038 && ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
1039 continue;
1040
1041 switch (TREE_CODE (stmt))
1042 {
1043 case RETURN_EXPR:
1044 /* If we have "return <retval>" then the return value is
1045 already exposed for our pleasure. Walk it as a USE to
1046 force all the components back in place for the return.
1047
1048 If we have an embedded assignment, then <retval> is of
1049 a type that gets returned in registers in this ABI, and
1050 we do not wish to extend their lifetimes. Treat this
1051 as a USE of the variable on the RHS of this assignment. */
1052
1053 t = TREE_OPERAND (stmt, 0);
1054 if (t == NULL_TREE)
1055 ;
1056 else if (TREE_CODE (t) == GIMPLE_MODIFY_STMT)
1057 sra_walk_expr (&GIMPLE_STMT_OPERAND (t, 1), &si, false, fns);
1058 else
1059 sra_walk_expr (&TREE_OPERAND (stmt, 0), &si, false, fns);
1060 break;
1061
1062 case GIMPLE_MODIFY_STMT:
1063 sra_walk_gimple_modify_stmt (stmt, &si, fns);
1064 break;
1065 case CALL_EXPR:
1066 sra_walk_call_expr (stmt, &si, fns);
1067 break;
1068 case ASM_EXPR:
1069 sra_walk_asm_expr (stmt, &si, fns);
1070 break;
1071
1072 default:
1073 break;
1074 }
1075 }
1076 }
1077 \f
1078 /* Phase One: Scan all referenced variables in the program looking for
1079 structures that could be decomposed. */
1080
1081 static bool
1082 find_candidates_for_sra (void)
1083 {
1084 bool any_set = false;
1085 tree var;
1086 referenced_var_iterator rvi;
1087
1088 FOR_EACH_REFERENCED_VAR (var, rvi)
1089 {
1090 if (decl_can_be_decomposed_p (var))
1091 {
1092 bitmap_set_bit (sra_candidates, DECL_UID (var));
1093 any_set = true;
1094 }
1095 }
1096
1097 return any_set;
1098 }
1099
1100 \f
1101 /* Phase Two: Scan all references to scalarizable variables. Count the
1102 number of times they are used or copied respectively. */
1103
1104 /* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
1105 considered a copy, because we can decompose the reference such that
1106 the sub-elements needn't be contiguous. */
1107
1108 static void
1109 scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
1110 block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
1111 bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
1112 {
1113 elt->n_uses += 1;
1114 }
1115
1116 static void
1117 scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1118 block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
1119 {
1120 lhs_elt->n_copies += 1;
1121 rhs_elt->n_copies += 1;
1122 }
1123
1124 static void
1125 scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
1126 block_stmt_iterator *bsi ATTRIBUTE_UNUSED)
1127 {
1128 lhs_elt->n_copies += 1;
1129 }
1130
1131 static void
1132 scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
1133 block_stmt_iterator *bsi ATTRIBUTE_UNUSED,
1134 bool is_output ATTRIBUTE_UNUSED)
1135 {
1136 elt->n_copies += 1;
1137 }
1138
1139 /* Dump the values we collected during the scanning phase. */
1140
1141 static void
1142 scan_dump (struct sra_elt *elt)
1143 {
1144 struct sra_elt *c;
1145
1146 dump_sra_elt_name (dump_file, elt);
1147 fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1148
1149 for (c = elt->children; c ; c = c->sibling)
1150 scan_dump (c);
1151
1152 for (c = elt->groups; c ; c = c->sibling)
1153 scan_dump (c);
1154 }
1155
1156 /* Entry point to phase 2. Scan the entire function, building up
1157 scalarization data structures, recording copies and uses. */
1158
1159 static void
1160 scan_function (void)
1161 {
1162 static const struct sra_walk_fns fns = {
1163 scan_use, scan_copy, scan_init, scan_ldst, true
1164 };
1165 bitmap_iterator bi;
1166
1167 sra_walk_function (&fns);
1168
1169 if (dump_file && (dump_flags & TDF_DETAILS))
1170 {
1171 unsigned i;
1172
1173 fputs ("\nScan results:\n", dump_file);
1174 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1175 {
1176 tree var = referenced_var (i);
1177 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1178 if (elt)
1179 scan_dump (elt);
1180 }
1181 fputc ('\n', dump_file);
1182 }
1183 }
1184 \f
1185 /* Phase Three: Make decisions about which variables to scalarize, if any.
1186 All elements to be scalarized have replacement variables made for them. */
1187
1188 /* A subroutine of build_element_name. Recursively build the element
1189 name on the obstack. */
1190
1191 static void
1192 build_element_name_1 (struct sra_elt *elt)
1193 {
1194 tree t;
1195 char buffer[32];
1196
1197 if (elt->parent)
1198 {
1199 build_element_name_1 (elt->parent);
1200 obstack_1grow (&sra_obstack, '$');
1201
1202 if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1203 {
1204 if (elt->element == integer_zero_node)
1205 obstack_grow (&sra_obstack, "real", 4);
1206 else
1207 obstack_grow (&sra_obstack, "imag", 4);
1208 return;
1209 }
1210 }
1211
1212 t = elt->element;
1213 if (TREE_CODE (t) == INTEGER_CST)
1214 {
1215 /* ??? Eh. Don't bother doing double-wide printing. */
1216 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1217 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1218 }
1219 else if (TREE_CODE (t) == BIT_FIELD_REF)
1220 {
1221 sprintf (buffer, "B" HOST_WIDE_INT_PRINT_DEC,
1222 tree_low_cst (TREE_OPERAND (t, 2), 1));
1223 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1224 sprintf (buffer, "F" HOST_WIDE_INT_PRINT_DEC,
1225 tree_low_cst (TREE_OPERAND (t, 1), 1));
1226 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1227 }
1228 else
1229 {
1230 tree name = DECL_NAME (t);
1231 if (name)
1232 obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1233 IDENTIFIER_LENGTH (name));
1234 else
1235 {
1236 sprintf (buffer, "D%u", DECL_UID (t));
1237 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1238 }
1239 }
1240 }
1241
1242 /* Construct a pretty variable name for an element's replacement variable.
1243 The name is built on the obstack. */
1244
1245 static char *
1246 build_element_name (struct sra_elt *elt)
1247 {
1248 build_element_name_1 (elt);
1249 obstack_1grow (&sra_obstack, '\0');
1250 return XOBFINISH (&sra_obstack, char *);
1251 }
1252
1253 /* Instantiate an element as an independent variable. */
1254
1255 static void
1256 instantiate_element (struct sra_elt *elt)
1257 {
1258 struct sra_elt *base_elt;
1259 tree var, base;
1260 bool nowarn = TREE_NO_WARNING (elt->element);
1261
1262 for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1263 if (!nowarn)
1264 nowarn = TREE_NO_WARNING (base_elt->parent->element);
1265 base = base_elt->element;
1266
1267 elt->replacement = var = make_rename_temp (elt->type, "SR");
1268
1269 if (DECL_P (elt->element)
1270 && !tree_int_cst_equal (DECL_SIZE (var), DECL_SIZE (elt->element)))
1271 {
1272 DECL_SIZE (var) = DECL_SIZE (elt->element);
1273 DECL_SIZE_UNIT (var) = DECL_SIZE_UNIT (elt->element);
1274
1275 elt->in_bitfld_block = 1;
1276 elt->replacement = build3 (BIT_FIELD_REF, elt->type, var,
1277 DECL_SIZE (var),
1278 BYTES_BIG_ENDIAN
1279 ? size_binop (MINUS_EXPR,
1280 TYPE_SIZE (elt->type),
1281 DECL_SIZE (var))
1282 : bitsize_int (0));
1283 }
1284
1285 /* For vectors, if used on the left hand side with BIT_FIELD_REF,
1286 they are not a gimple register. */
1287 if (TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE && elt->is_vector_lhs)
1288 DECL_GIMPLE_REG_P (var) = 0;
1289
1290 DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1291 DECL_ARTIFICIAL (var) = 1;
1292
1293 if (TREE_THIS_VOLATILE (elt->type))
1294 {
1295 TREE_THIS_VOLATILE (var) = 1;
1296 TREE_SIDE_EFFECTS (var) = 1;
1297 }
1298
1299 if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1300 {
1301 char *pretty_name = build_element_name (elt);
1302 DECL_NAME (var) = get_identifier (pretty_name);
1303 obstack_free (&sra_obstack, pretty_name);
1304
1305 SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
1306 DECL_DEBUG_EXPR_IS_FROM (var) = 1;
1307
1308 DECL_IGNORED_P (var) = 0;
1309 TREE_NO_WARNING (var) = nowarn;
1310 }
1311 else
1312 {
1313 DECL_IGNORED_P (var) = 1;
1314 /* ??? We can't generate any warning that would be meaningful. */
1315 TREE_NO_WARNING (var) = 1;
1316 }
1317
1318 /* Zero-initialize bit-field scalarization variables, to avoid
1319 triggering undefined behavior. */
1320 if (TREE_CODE (elt->element) == BIT_FIELD_REF
1321 || (var != elt->replacement
1322 && TREE_CODE (elt->replacement) == BIT_FIELD_REF))
1323 {
1324 tree init = sra_build_assignment (var, fold_convert (TREE_TYPE (var),
1325 integer_zero_node));
1326 insert_edge_copies (init, ENTRY_BLOCK_PTR);
1327 mark_all_v_defs (init);
1328 }
1329
1330 if (dump_file)
1331 {
1332 fputs (" ", dump_file);
1333 dump_sra_elt_name (dump_file, elt);
1334 fputs (" -> ", dump_file);
1335 print_generic_expr (dump_file, var, dump_flags);
1336 fputc ('\n', dump_file);
1337 }
1338 }
1339
1340 /* Make one pass across an element tree deciding whether or not it's
1341 profitable to instantiate individual leaf scalars.
1342
1343 PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1344 fields all the way up the tree. */
1345
1346 static void
1347 decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1348 unsigned int parent_copies)
1349 {
1350 if (dump_file && !elt->parent)
1351 {
1352 fputs ("Initial instantiation for ", dump_file);
1353 dump_sra_elt_name (dump_file, elt);
1354 fputc ('\n', dump_file);
1355 }
1356
1357 if (elt->cannot_scalarize)
1358 return;
1359
1360 if (elt->is_scalar)
1361 {
1362 /* The decision is simple: instantiate if we're used more frequently
1363 than the parent needs to be seen as a complete unit. */
1364 if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1365 instantiate_element (elt);
1366 }
1367 else
1368 {
1369 struct sra_elt *c, *group;
1370 unsigned int this_uses = elt->n_uses + parent_uses;
1371 unsigned int this_copies = elt->n_copies + parent_copies;
1372
1373 /* Consider groups of sub-elements as weighing in favour of
1374 instantiation whatever their size. */
1375 for (group = elt->groups; group ; group = group->sibling)
1376 FOR_EACH_ACTUAL_CHILD (c, group)
1377 {
1378 c->n_uses += group->n_uses;
1379 c->n_copies += group->n_copies;
1380 }
1381
1382 for (c = elt->children; c ; c = c->sibling)
1383 decide_instantiation_1 (c, this_uses, this_copies);
1384 }
1385 }
1386
1387 /* Compute the size and number of all instantiated elements below ELT.
1388 We will only care about this if the size of the complete structure
1389 fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
1390
1391 static unsigned int
1392 sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1393 {
1394 if (elt->replacement)
1395 {
1396 *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1397 return 1;
1398 }
1399 else
1400 {
1401 struct sra_elt *c;
1402 unsigned int count = 0;
1403
1404 for (c = elt->children; c ; c = c->sibling)
1405 count += sum_instantiated_sizes (c, sizep);
1406
1407 return count;
1408 }
1409 }
1410
1411 /* Instantiate fields in ELT->TYPE that are not currently present as
1412 children of ELT. */
1413
1414 static void instantiate_missing_elements (struct sra_elt *elt);
1415
1416 static struct sra_elt *
1417 instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1418 {
1419 struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1420 if (sub->is_scalar)
1421 {
1422 if (sub->replacement == NULL)
1423 instantiate_element (sub);
1424 }
1425 else
1426 instantiate_missing_elements (sub);
1427 return sub;
1428 }
1429
1430 /* Obtain the canonical type for field F of ELEMENT. */
1431
1432 static tree
1433 canon_type_for_field (tree f, tree element)
1434 {
1435 tree field_type = TREE_TYPE (f);
1436
1437 /* canonicalize_component_ref() unwidens some bit-field types (not
1438 marked as DECL_BIT_FIELD in C++), so we must do the same, lest we
1439 may introduce type mismatches. */
1440 if (INTEGRAL_TYPE_P (field_type)
1441 && DECL_MODE (f) != TYPE_MODE (field_type))
1442 field_type = TREE_TYPE (get_unwidened (build3 (COMPONENT_REF,
1443 field_type,
1444 element,
1445 f, NULL_TREE),
1446 NULL_TREE));
1447
1448 return field_type;
1449 }
1450
1451 /* Look for adjacent fields of ELT starting at F that we'd like to
1452 scalarize as a single variable. Return the last field of the
1453 group. */
1454
1455 static tree
1456 try_instantiate_multiple_fields (struct sra_elt *elt, tree f)
1457 {
1458 int count;
1459 unsigned HOST_WIDE_INT align, bit, size, alchk;
1460 enum machine_mode mode;
1461 tree first = f, prev;
1462 tree type, var;
1463 struct sra_elt *block;
1464
1465 if (!is_sra_scalar_type (TREE_TYPE (f))
1466 || !host_integerp (DECL_FIELD_OFFSET (f), 1)
1467 || !host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1468 || !host_integerp (DECL_SIZE (f), 1)
1469 || lookup_element (elt, f, NULL, NO_INSERT))
1470 return f;
1471
1472 block = elt;
1473
1474 /* For complex and array objects, there are going to be integer
1475 literals as child elements. In this case, we can't just take the
1476 alignment and mode of the decl, so we instead rely on the element
1477 type.
1478
1479 ??? We could try to infer additional alignment from the full
1480 object declaration and the location of the sub-elements we're
1481 accessing. */
1482 for (count = 0; !DECL_P (block->element); count++)
1483 block = block->parent;
1484
1485 align = DECL_ALIGN (block->element);
1486 alchk = GET_MODE_BITSIZE (DECL_MODE (block->element));
1487
1488 if (count)
1489 {
1490 type = TREE_TYPE (block->element);
1491 while (count--)
1492 type = TREE_TYPE (type);
1493
1494 align = TYPE_ALIGN (type);
1495 alchk = GET_MODE_BITSIZE (TYPE_MODE (type));
1496 }
1497
1498 if (align < alchk)
1499 align = alchk;
1500
1501 /* Coalescing wider fields is probably pointless and
1502 inefficient. */
1503 if (align > BITS_PER_WORD)
1504 align = BITS_PER_WORD;
1505
1506 bit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1507 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1508 size = tree_low_cst (DECL_SIZE (f), 1);
1509
1510 alchk = align - 1;
1511 alchk = ~alchk;
1512
1513 if ((bit & alchk) != ((bit + size - 1) & alchk))
1514 return f;
1515
1516 /* Find adjacent fields in the same alignment word. */
1517
1518 for (prev = f, f = TREE_CHAIN (f);
1519 f && TREE_CODE (f) == FIELD_DECL
1520 && is_sra_scalar_type (TREE_TYPE (f))
1521 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1522 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1523 && host_integerp (DECL_SIZE (f), 1)
1524 && !lookup_element (elt, f, NULL, NO_INSERT);
1525 prev = f, f = TREE_CHAIN (f))
1526 {
1527 unsigned HOST_WIDE_INT nbit, nsize;
1528
1529 nbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1530 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1531 nsize = tree_low_cst (DECL_SIZE (f), 1);
1532
1533 if (bit + size == nbit)
1534 {
1535 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1536 {
1537 /* If we're at an alignment boundary, don't bother
1538 growing alignment such that we can include this next
1539 field. */
1540 if ((nbit & alchk)
1541 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1542 break;
1543
1544 align = GET_MODE_BITSIZE (DECL_MODE (f));
1545 alchk = align - 1;
1546 alchk = ~alchk;
1547
1548 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1549 break;
1550 }
1551 size += nsize;
1552 }
1553 else if (nbit + nsize == bit)
1554 {
1555 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1556 {
1557 if ((bit & alchk)
1558 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1559 break;
1560
1561 align = GET_MODE_BITSIZE (DECL_MODE (f));
1562 alchk = align - 1;
1563 alchk = ~alchk;
1564
1565 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1566 break;
1567 }
1568 bit = nbit;
1569 size += nsize;
1570 }
1571 else
1572 break;
1573 }
1574
1575 f = prev;
1576
1577 if (f == first)
1578 return f;
1579
1580 gcc_assert ((bit & alchk) == ((bit + size - 1) & alchk));
1581
1582 /* Try to widen the bit range so as to cover padding bits as well. */
1583
1584 if ((bit & ~alchk) || size != align)
1585 {
1586 unsigned HOST_WIDE_INT mbit = bit & alchk;
1587 unsigned HOST_WIDE_INT msize = align;
1588
1589 for (f = TYPE_FIELDS (elt->type);
1590 f; f = TREE_CHAIN (f))
1591 {
1592 unsigned HOST_WIDE_INT fbit, fsize;
1593
1594 /* Skip the fields from first to prev. */
1595 if (f == first)
1596 {
1597 f = prev;
1598 continue;
1599 }
1600
1601 if (!(TREE_CODE (f) == FIELD_DECL
1602 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1603 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)))
1604 continue;
1605
1606 fbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1607 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1608
1609 /* If we're past the selected word, we're fine. */
1610 if ((bit & alchk) < (fbit & alchk))
1611 continue;
1612
1613 if (host_integerp (DECL_SIZE (f), 1))
1614 fsize = tree_low_cst (DECL_SIZE (f), 1);
1615 else
1616 /* Assume a variable-sized field takes up all space till
1617 the end of the word. ??? Endianness issues? */
1618 fsize = align - (fbit & alchk);
1619
1620 if ((fbit & alchk) < (bit & alchk))
1621 {
1622 /* A large field might start at a previous word and
1623 extend into the selected word. Exclude those
1624 bits. ??? Endianness issues? */
1625 HOST_WIDE_INT diff = fbit + fsize - mbit;
1626
1627 if (diff <= 0)
1628 continue;
1629
1630 mbit += diff;
1631 msize -= diff;
1632 }
1633 else
1634 {
1635 /* Non-overlapping, great. */
1636 if (fbit + fsize <= mbit
1637 || mbit + msize <= fbit)
1638 continue;
1639
1640 if (fbit <= mbit)
1641 {
1642 unsigned HOST_WIDE_INT diff = fbit + fsize - mbit;
1643 mbit += diff;
1644 msize -= diff;
1645 }
1646 else if (fbit > mbit)
1647 msize -= (mbit + msize - fbit);
1648 else
1649 gcc_unreachable ();
1650 }
1651 }
1652
1653 bit = mbit;
1654 size = msize;
1655 }
1656
1657 /* Now we know the bit range we're interested in. Find the smallest
1658 machine mode we can use to access it. */
1659
1660 for (mode = smallest_mode_for_size (size, MODE_INT);
1661 ;
1662 mode = GET_MODE_WIDER_MODE (mode))
1663 {
1664 gcc_assert (mode != VOIDmode);
1665
1666 alchk = GET_MODE_PRECISION (mode) - 1;
1667 alchk = ~alchk;
1668
1669 if ((bit & alchk) == ((bit + size - 1) & alchk))
1670 break;
1671 }
1672
1673 gcc_assert (~alchk < align);
1674
1675 /* Create the field group as a single variable. */
1676
1677 /* We used to create a type for the mode above, but size turns
1678 to be out not of mode-size. As we need a matching type
1679 to build a BIT_FIELD_REF, use a nonstandard integer type as
1680 fallback. */
1681 type = lang_hooks.types.type_for_size (size, 1);
1682 if (!type || TYPE_PRECISION (type) != size)
1683 type = build_nonstandard_integer_type (size, 1);
1684 gcc_assert (type);
1685 var = build3 (BIT_FIELD_REF, type, NULL_TREE,
1686 bitsize_int (size),
1687 bitsize_int (bit));
1688
1689 block = instantiate_missing_elements_1 (elt, var, type);
1690 gcc_assert (block && block->is_scalar);
1691
1692 var = block->replacement;
1693
1694 if ((bit & ~alchk)
1695 || (HOST_WIDE_INT)size != tree_low_cst (DECL_SIZE (var), 1))
1696 {
1697 block->replacement = build3 (BIT_FIELD_REF,
1698 TREE_TYPE (block->element), var,
1699 bitsize_int (size),
1700 bitsize_int (bit & ~alchk));
1701 }
1702
1703 block->in_bitfld_block = 2;
1704
1705 /* Add the member fields to the group, such that they access
1706 portions of the group variable. */
1707
1708 for (f = first; f != TREE_CHAIN (prev); f = TREE_CHAIN (f))
1709 {
1710 tree field_type = canon_type_for_field (f, elt->element);
1711 struct sra_elt *fld = lookup_element (block, f, field_type, INSERT);
1712
1713 gcc_assert (fld && fld->is_scalar && !fld->replacement);
1714
1715 fld->replacement = build3 (BIT_FIELD_REF, field_type, var,
1716 DECL_SIZE (f),
1717 bitsize_int
1718 ((TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f))
1719 * BITS_PER_UNIT
1720 + (TREE_INT_CST_LOW
1721 (DECL_FIELD_BIT_OFFSET (f))))
1722 & ~alchk));
1723 fld->in_bitfld_block = 1;
1724 }
1725
1726 return prev;
1727 }
1728
1729 static void
1730 instantiate_missing_elements (struct sra_elt *elt)
1731 {
1732 tree type = elt->type;
1733
1734 switch (TREE_CODE (type))
1735 {
1736 case RECORD_TYPE:
1737 {
1738 tree f;
1739 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1740 if (TREE_CODE (f) == FIELD_DECL)
1741 {
1742 tree last = try_instantiate_multiple_fields (elt, f);
1743
1744 if (last != f)
1745 {
1746 f = last;
1747 continue;
1748 }
1749
1750 instantiate_missing_elements_1 (elt, f,
1751 canon_type_for_field
1752 (f, elt->element));
1753 }
1754 break;
1755 }
1756
1757 case ARRAY_TYPE:
1758 {
1759 tree i, max, subtype;
1760
1761 i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1762 max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1763 subtype = TREE_TYPE (type);
1764
1765 while (1)
1766 {
1767 instantiate_missing_elements_1 (elt, i, subtype);
1768 if (tree_int_cst_equal (i, max))
1769 break;
1770 i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1771 }
1772
1773 break;
1774 }
1775
1776 case COMPLEX_TYPE:
1777 type = TREE_TYPE (type);
1778 instantiate_missing_elements_1 (elt, integer_zero_node, type);
1779 instantiate_missing_elements_1 (elt, integer_one_node, type);
1780 break;
1781
1782 default:
1783 gcc_unreachable ();
1784 }
1785 }
1786
1787 /* Return true if there is only one non aggregate field in the record, TYPE.
1788 Return false otherwise. */
1789
1790 static bool
1791 single_scalar_field_in_record_p (tree type)
1792 {
1793 int num_fields = 0;
1794 tree field;
1795 if (TREE_CODE (type) != RECORD_TYPE)
1796 return false;
1797
1798 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1799 if (TREE_CODE (field) == FIELD_DECL)
1800 {
1801 num_fields++;
1802
1803 if (num_fields == 2)
1804 return false;
1805
1806 if (AGGREGATE_TYPE_P (TREE_TYPE (field)))
1807 return false;
1808 }
1809
1810 return true;
1811 }
1812
1813 /* Make one pass across an element tree deciding whether to perform block
1814 or element copies. If we decide on element copies, instantiate all
1815 elements. Return true if there are any instantiated sub-elements. */
1816
1817 static bool
1818 decide_block_copy (struct sra_elt *elt)
1819 {
1820 struct sra_elt *c;
1821 bool any_inst;
1822
1823 /* We shouldn't be invoked on groups of sub-elements as they must
1824 behave like their parent as far as block copy is concerned. */
1825 gcc_assert (!elt->is_group);
1826
1827 /* If scalarization is disabled, respect it. */
1828 if (elt->cannot_scalarize)
1829 {
1830 elt->use_block_copy = 1;
1831
1832 if (dump_file)
1833 {
1834 fputs ("Scalarization disabled for ", dump_file);
1835 dump_sra_elt_name (dump_file, elt);
1836 fputc ('\n', dump_file);
1837 }
1838
1839 /* Disable scalarization of sub-elements */
1840 for (c = elt->children; c; c = c->sibling)
1841 {
1842 c->cannot_scalarize = 1;
1843 decide_block_copy (c);
1844 }
1845
1846 /* Groups behave like their parent. */
1847 for (c = elt->groups; c; c = c->sibling)
1848 {
1849 c->cannot_scalarize = 1;
1850 c->use_block_copy = 1;
1851 }
1852
1853 return false;
1854 }
1855
1856 /* Don't decide if we've no uses and no groups. */
1857 if (elt->n_uses == 0 && elt->n_copies == 0 && elt->groups == NULL)
1858 ;
1859
1860 else if (!elt->is_scalar)
1861 {
1862 tree size_tree = TYPE_SIZE_UNIT (elt->type);
1863 bool use_block_copy = true;
1864
1865 /* Tradeoffs for COMPLEX types pretty much always make it better
1866 to go ahead and split the components. */
1867 if (TREE_CODE (elt->type) == COMPLEX_TYPE)
1868 use_block_copy = false;
1869
1870 /* Don't bother trying to figure out the rest if the structure is
1871 so large we can't do easy arithmetic. This also forces block
1872 copies for variable sized structures. */
1873 else if (host_integerp (size_tree, 1))
1874 {
1875 unsigned HOST_WIDE_INT full_size, inst_size = 0;
1876 unsigned int max_size, max_count, inst_count, full_count;
1877
1878 /* If the sra-max-structure-size parameter is 0, then the
1879 user has not overridden the parameter and we can choose a
1880 sensible default. */
1881 max_size = SRA_MAX_STRUCTURE_SIZE
1882 ? SRA_MAX_STRUCTURE_SIZE
1883 : MOVE_RATIO * UNITS_PER_WORD;
1884 max_count = SRA_MAX_STRUCTURE_COUNT
1885 ? SRA_MAX_STRUCTURE_COUNT
1886 : MOVE_RATIO;
1887
1888 full_size = tree_low_cst (size_tree, 1);
1889 full_count = count_type_elements (elt->type, false);
1890 inst_count = sum_instantiated_sizes (elt, &inst_size);
1891
1892 /* If there is only one scalar field in the record, don't block copy. */
1893 if (single_scalar_field_in_record_p (elt->type))
1894 use_block_copy = false;
1895
1896 /* ??? What to do here. If there are two fields, and we've only
1897 instantiated one, then instantiating the other is clearly a win.
1898 If there are a large number of fields then the size of the copy
1899 is much more of a factor. */
1900
1901 /* If the structure is small, and we've made copies, go ahead
1902 and instantiate, hoping that the copies will go away. */
1903 if (full_size <= max_size
1904 && (full_count - inst_count) <= max_count
1905 && elt->n_copies > elt->n_uses)
1906 use_block_copy = false;
1907 else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
1908 && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
1909 use_block_copy = false;
1910
1911 /* In order to avoid block copy, we have to be able to instantiate
1912 all elements of the type. See if this is possible. */
1913 if (!use_block_copy
1914 && (!can_completely_scalarize_p (elt)
1915 || !type_can_instantiate_all_elements (elt->type)))
1916 use_block_copy = true;
1917 }
1918
1919 elt->use_block_copy = use_block_copy;
1920
1921 /* Groups behave like their parent. */
1922 for (c = elt->groups; c; c = c->sibling)
1923 c->use_block_copy = use_block_copy;
1924
1925 if (dump_file)
1926 {
1927 fprintf (dump_file, "Using %s for ",
1928 use_block_copy ? "block-copy" : "element-copy");
1929 dump_sra_elt_name (dump_file, elt);
1930 fputc ('\n', dump_file);
1931 }
1932
1933 if (!use_block_copy)
1934 {
1935 instantiate_missing_elements (elt);
1936 return true;
1937 }
1938 }
1939
1940 any_inst = elt->replacement != NULL;
1941
1942 for (c = elt->children; c ; c = c->sibling)
1943 any_inst |= decide_block_copy (c);
1944
1945 return any_inst;
1946 }
1947
1948 /* Entry point to phase 3. Instantiate scalar replacement variables. */
1949
1950 static void
1951 decide_instantiations (void)
1952 {
1953 unsigned int i;
1954 bool cleared_any;
1955 bitmap_head done_head;
1956 bitmap_iterator bi;
1957
1958 /* We cannot clear bits from a bitmap we're iterating over,
1959 so save up all the bits to clear until the end. */
1960 bitmap_initialize (&done_head, &bitmap_default_obstack);
1961 cleared_any = false;
1962
1963 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1964 {
1965 tree var = referenced_var (i);
1966 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1967 if (elt)
1968 {
1969 decide_instantiation_1 (elt, 0, 0);
1970 if (!decide_block_copy (elt))
1971 elt = NULL;
1972 }
1973 if (!elt)
1974 {
1975 bitmap_set_bit (&done_head, i);
1976 cleared_any = true;
1977 }
1978 }
1979
1980 if (cleared_any)
1981 {
1982 bitmap_and_compl_into (sra_candidates, &done_head);
1983 bitmap_and_compl_into (needs_copy_in, &done_head);
1984 }
1985 bitmap_clear (&done_head);
1986
1987 mark_set_for_renaming (sra_candidates);
1988
1989 if (dump_file)
1990 fputc ('\n', dump_file);
1991 }
1992
1993 \f
1994 /* Phase Four: Update the function to match the replacements created. */
1995
1996 /* Mark all the variables in VDEF/VUSE operators for STMT for
1997 renaming. This becomes necessary when we modify all of a
1998 non-scalar. */
1999
2000 static void
2001 mark_all_v_defs_1 (tree stmt)
2002 {
2003 tree sym;
2004 ssa_op_iter iter;
2005
2006 update_stmt_if_modified (stmt);
2007
2008 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
2009 {
2010 if (TREE_CODE (sym) == SSA_NAME)
2011 sym = SSA_NAME_VAR (sym);
2012 mark_sym_for_renaming (sym);
2013 }
2014 }
2015
2016
2017 /* Mark all the variables in virtual operands in all the statements in
2018 LIST for renaming. */
2019
2020 static void
2021 mark_all_v_defs (tree list)
2022 {
2023 if (TREE_CODE (list) != STATEMENT_LIST)
2024 mark_all_v_defs_1 (list);
2025 else
2026 {
2027 tree_stmt_iterator i;
2028 for (i = tsi_start (list); !tsi_end_p (i); tsi_next (&i))
2029 mark_all_v_defs_1 (tsi_stmt (i));
2030 }
2031 }
2032
2033
2034 /* Mark every replacement under ELT with TREE_NO_WARNING. */
2035
2036 static void
2037 mark_no_warning (struct sra_elt *elt)
2038 {
2039 if (!elt->all_no_warning)
2040 {
2041 if (elt->replacement)
2042 TREE_NO_WARNING (elt->replacement) = 1;
2043 else
2044 {
2045 struct sra_elt *c;
2046 FOR_EACH_ACTUAL_CHILD (c, elt)
2047 mark_no_warning (c);
2048 }
2049 elt->all_no_warning = true;
2050 }
2051 }
2052
2053 /* Build a single level component reference to ELT rooted at BASE. */
2054
2055 static tree
2056 generate_one_element_ref (struct sra_elt *elt, tree base)
2057 {
2058 switch (TREE_CODE (TREE_TYPE (base)))
2059 {
2060 case RECORD_TYPE:
2061 {
2062 tree field = elt->element;
2063
2064 /* We can't test elt->in_bitfld_blk here because, when this is
2065 called from instantiate_element, we haven't set this field
2066 yet. */
2067 if (TREE_CODE (field) == BIT_FIELD_REF)
2068 {
2069 tree ret = unshare_expr (field);
2070 TREE_OPERAND (ret, 0) = base;
2071 return ret;
2072 }
2073
2074 /* Watch out for compatible records with differing field lists. */
2075 if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
2076 field = find_compatible_field (TREE_TYPE (base), field);
2077
2078 return build3 (COMPONENT_REF, elt->type, base, field, NULL);
2079 }
2080
2081 case ARRAY_TYPE:
2082 if (TREE_CODE (elt->element) == RANGE_EXPR)
2083 return build4 (ARRAY_RANGE_REF, elt->type, base,
2084 TREE_OPERAND (elt->element, 0), NULL, NULL);
2085 else
2086 return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
2087
2088 case COMPLEX_TYPE:
2089 if (elt->element == integer_zero_node)
2090 return build1 (REALPART_EXPR, elt->type, base);
2091 else
2092 return build1 (IMAGPART_EXPR, elt->type, base);
2093
2094 default:
2095 gcc_unreachable ();
2096 }
2097 }
2098
2099 /* Build a full component reference to ELT rooted at its native variable. */
2100
2101 static tree
2102 generate_element_ref (struct sra_elt *elt)
2103 {
2104 if (elt->parent)
2105 return generate_one_element_ref (elt, generate_element_ref (elt->parent));
2106 else
2107 return elt->element;
2108 }
2109
2110 /* Return true if BF is a bit-field that we can handle like a scalar. */
2111
2112 static bool
2113 scalar_bitfield_p (tree bf)
2114 {
2115 return (TREE_CODE (bf) == BIT_FIELD_REF
2116 && (is_gimple_reg (TREE_OPERAND (bf, 0))
2117 || (TYPE_MODE (TREE_TYPE (TREE_OPERAND (bf, 0))) != BLKmode
2118 && (!TREE_SIDE_EFFECTS (TREE_OPERAND (bf, 0))
2119 || (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE
2120 (TREE_OPERAND (bf, 0))))
2121 <= BITS_PER_WORD)))));
2122 }
2123
2124 /* Create an assignment statement from SRC to DST. */
2125
2126 static tree
2127 sra_build_assignment (tree dst, tree src)
2128 {
2129 /* Turning BIT_FIELD_REFs into bit operations enables other passes
2130 to do a much better job at optimizing the code.
2131 From dst = BIT_FIELD_REF <var, sz, off> we produce
2132
2133 SR.1 = (scalar type) var;
2134 SR.2 = SR.1 >> off;
2135 SR.3 = SR.2 & ((1 << sz) - 1);
2136 ... possible sign extension of SR.3 ...
2137 dst = (destination type) SR.3;
2138 */
2139 if (scalar_bitfield_p (src))
2140 {
2141 tree var, shift, width;
2142 tree utype, stype, stmp, utmp, dtmp;
2143 tree list, stmt;
2144 bool unsignedp = (INTEGRAL_TYPE_P (TREE_TYPE (src))
2145 ? TYPE_UNSIGNED (TREE_TYPE (src)) : true);
2146
2147 var = TREE_OPERAND (src, 0);
2148 width = TREE_OPERAND (src, 1);
2149 /* The offset needs to be adjusted to a right shift quantity
2150 depending on the endianess. */
2151 if (BYTES_BIG_ENDIAN)
2152 {
2153 tree tmp = size_binop (PLUS_EXPR, width, TREE_OPERAND (src, 2));
2154 shift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), tmp);
2155 }
2156 else
2157 shift = TREE_OPERAND (src, 2);
2158
2159 /* In weird cases we have non-integral types for the source or
2160 destination object.
2161 ??? For unknown reasons we also want an unsigned scalar type. */
2162 stype = TREE_TYPE (var);
2163 if (!INTEGRAL_TYPE_P (stype))
2164 stype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2165 (TYPE_SIZE (stype)), 1);
2166 else if (!TYPE_UNSIGNED (stype))
2167 stype = unsigned_type_for (stype);
2168
2169 utype = TREE_TYPE (dst);
2170 if (!INTEGRAL_TYPE_P (utype))
2171 utype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2172 (TYPE_SIZE (utype)), 1);
2173 else if (!TYPE_UNSIGNED (utype))
2174 utype = unsigned_type_for (utype);
2175
2176 list = NULL;
2177 stmp = make_rename_temp (stype, "SR");
2178
2179 /* Convert the base var of the BIT_FIELD_REF to the scalar type
2180 we use for computation if we cannot use it directly. */
2181 if (!useless_type_conversion_p (stype, TREE_TYPE (var)))
2182 {
2183 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2184 stmt = build_gimple_modify_stmt (stmp,
2185 fold_convert (stype, var));
2186 else
2187 stmt = build_gimple_modify_stmt (stmp,
2188 fold_build1 (VIEW_CONVERT_EXPR,
2189 stype, var));
2190 append_to_statement_list (stmt, &list);
2191 var = stmp;
2192 }
2193
2194 if (!integer_zerop (shift))
2195 {
2196 stmt = build_gimple_modify_stmt (stmp,
2197 fold_build2 (RSHIFT_EXPR, stype,
2198 var, shift));
2199 append_to_statement_list (stmt, &list);
2200 var = stmp;
2201 }
2202
2203 /* If we need a masking operation, produce one. */
2204 if (TREE_INT_CST_LOW (width) == TYPE_PRECISION (stype))
2205 unsignedp = true;
2206 else
2207 {
2208 tree one = build_int_cst_wide (stype, 1, 0);
2209 tree mask = int_const_binop (LSHIFT_EXPR, one, width, 0);
2210 mask = int_const_binop (MINUS_EXPR, mask, one, 0);
2211
2212 stmt = build_gimple_modify_stmt (stmp,
2213 fold_build2 (BIT_AND_EXPR, stype,
2214 var, mask));
2215 append_to_statement_list (stmt, &list);
2216 var = stmp;
2217 }
2218
2219 /* After shifting and masking, convert to the target type. */
2220 utmp = stmp;
2221 if (!useless_type_conversion_p (utype, stype))
2222 {
2223 utmp = make_rename_temp (utype, "SR");
2224
2225 stmt = build_gimple_modify_stmt (utmp, fold_convert (utype, var));
2226 append_to_statement_list (stmt, &list);
2227
2228 var = utmp;
2229 }
2230
2231 /* Perform sign extension, if required.
2232 ??? This should never be necessary. */
2233 if (!unsignedp)
2234 {
2235 tree signbit = int_const_binop (LSHIFT_EXPR,
2236 build_int_cst_wide (utype, 1, 0),
2237 size_binop (MINUS_EXPR, width,
2238 bitsize_int (1)), 0);
2239
2240 stmt = build_gimple_modify_stmt (utmp,
2241 fold_build2 (BIT_XOR_EXPR, utype,
2242 var, signbit));
2243 append_to_statement_list (stmt, &list);
2244
2245 stmt = build_gimple_modify_stmt (utmp,
2246 fold_build2 (MINUS_EXPR, utype,
2247 utmp, signbit));
2248 append_to_statement_list (stmt, &list);
2249
2250 var = utmp;
2251 }
2252
2253 /* Finally, move and convert to the destination. */
2254 if (!useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (var)))
2255 {
2256 if (INTEGRAL_TYPE_P (TREE_TYPE (dst)))
2257 var = fold_convert (TREE_TYPE (dst), var);
2258 else
2259 var = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (dst), var);
2260
2261 /* If the destination is not a register the conversion needs
2262 to be a separate statement. */
2263 if (!is_gimple_reg (dst))
2264 {
2265 dtmp = make_rename_temp (TREE_TYPE (dst), "SR");
2266 stmt = build_gimple_modify_stmt (dtmp, var);
2267 append_to_statement_list (stmt, &list);
2268 var = dtmp;
2269 }
2270 }
2271 stmt = build_gimple_modify_stmt (dst, var);
2272 append_to_statement_list (stmt, &list);
2273
2274 return list;
2275 }
2276
2277 /* It was hoped that we could perform some type sanity checking
2278 here, but since front-ends can emit accesses of fields in types
2279 different from their nominal types and copy structures containing
2280 them as a whole, we'd have to handle such differences here.
2281 Since such accesses under different types require compatibility
2282 anyway, there's little point in making tests and/or adding
2283 conversions to ensure the types of src and dst are the same.
2284 So we just assume type differences at this point are ok.
2285 The only exception we make here are pointer types, which can be different
2286 in e.g. structurally equal, but non-identical RECORD_TYPEs. */
2287 if (POINTER_TYPE_P (TREE_TYPE (dst))
2288 && !useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (src)))
2289 src = fold_convert (TREE_TYPE (dst), src);
2290
2291 return build_gimple_modify_stmt (dst, src);
2292 }
2293
2294 /* BIT_FIELD_REFs must not be shared. sra_build_elt_assignment()
2295 takes care of assignments, but we must create copies for uses. */
2296 #define REPLDUP(t) (TREE_CODE (t) != BIT_FIELD_REF ? (t) : unshare_expr (t))
2297
2298 /* Emit an assignment from SRC to DST, but if DST is a scalarizable
2299 BIT_FIELD_REF, turn it into bit operations. */
2300
2301 static tree
2302 sra_build_bf_assignment (tree dst, tree src)
2303 {
2304 tree var, type, utype, tmp, tmp2, tmp3;
2305 tree list, stmt;
2306 tree cst, cst2, mask;
2307 tree minshift, maxshift;
2308
2309 if (TREE_CODE (dst) != BIT_FIELD_REF)
2310 return sra_build_assignment (dst, src);
2311
2312 var = TREE_OPERAND (dst, 0);
2313
2314 if (!scalar_bitfield_p (dst))
2315 return sra_build_assignment (REPLDUP (dst), src);
2316
2317 list = NULL;
2318
2319 cst = fold_convert (bitsizetype, TREE_OPERAND (dst, 2));
2320 cst2 = size_binop (PLUS_EXPR,
2321 fold_convert (bitsizetype, TREE_OPERAND (dst, 1)),
2322 cst);
2323
2324 if (BYTES_BIG_ENDIAN)
2325 {
2326 maxshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst);
2327 minshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst2);
2328 }
2329 else
2330 {
2331 maxshift = cst2;
2332 minshift = cst;
2333 }
2334
2335 type = TREE_TYPE (var);
2336 if (!INTEGRAL_TYPE_P (type))
2337 type = lang_hooks.types.type_for_size
2338 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (var))), 1);
2339 if (TYPE_UNSIGNED (type))
2340 utype = type;
2341 else
2342 utype = unsigned_type_for (type);
2343
2344 mask = build_int_cst_wide (utype, 1, 0);
2345 if (TREE_INT_CST_LOW (maxshift) == TYPE_PRECISION (utype))
2346 cst = build_int_cst_wide (utype, 0, 0);
2347 else
2348 cst = int_const_binop (LSHIFT_EXPR, mask, maxshift, true);
2349 if (integer_zerop (minshift))
2350 cst2 = mask;
2351 else
2352 cst2 = int_const_binop (LSHIFT_EXPR, mask, minshift, true);
2353 mask = int_const_binop (MINUS_EXPR, cst, cst2, true);
2354 mask = fold_build1 (BIT_NOT_EXPR, utype, mask);
2355
2356 if (TYPE_MAIN_VARIANT (utype) != TYPE_MAIN_VARIANT (TREE_TYPE (var))
2357 && !integer_zerop (mask))
2358 {
2359 tmp = var;
2360 if (!is_gimple_variable (tmp))
2361 tmp = unshare_expr (var);
2362
2363 tmp2 = make_rename_temp (utype, "SR");
2364
2365 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2366 stmt = build_gimple_modify_stmt (tmp2, fold_convert (utype, tmp));
2367 else
2368 stmt = build_gimple_modify_stmt (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
2369 utype, tmp));
2370 append_to_statement_list (stmt, &list);
2371 }
2372 else
2373 tmp2 = var;
2374
2375 if (!integer_zerop (mask))
2376 {
2377 tmp = make_rename_temp (utype, "SR");
2378 stmt = build_gimple_modify_stmt (tmp,
2379 fold_build2 (BIT_AND_EXPR, utype,
2380 tmp2, mask));
2381 append_to_statement_list (stmt, &list);
2382 }
2383 else
2384 tmp = mask;
2385
2386 if (is_gimple_reg (src) && INTEGRAL_TYPE_P (TREE_TYPE (src)))
2387 tmp2 = src;
2388 else if (INTEGRAL_TYPE_P (TREE_TYPE (src)))
2389 {
2390 tmp2 = make_rename_temp (TREE_TYPE (src), "SR");
2391 stmt = sra_build_assignment (tmp2, src);
2392 append_to_statement_list (stmt, &list);
2393 }
2394 else
2395 {
2396 tmp2 = make_rename_temp
2397 (lang_hooks.types.type_for_size
2398 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (src))),
2399 1), "SR");
2400 stmt = sra_build_assignment (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
2401 TREE_TYPE (tmp2), src));
2402 append_to_statement_list (stmt, &list);
2403 }
2404
2405 if (!TYPE_UNSIGNED (TREE_TYPE (tmp2)))
2406 {
2407 tree ut = unsigned_type_for (TREE_TYPE (tmp2));
2408 tmp3 = make_rename_temp (ut, "SR");
2409 tmp2 = fold_convert (ut, tmp2);
2410 stmt = sra_build_assignment (tmp3, tmp2);
2411 append_to_statement_list (stmt, &list);
2412
2413 tmp2 = fold_build1 (BIT_NOT_EXPR, utype, mask);
2414 tmp2 = int_const_binop (RSHIFT_EXPR, tmp2, minshift, true);
2415 tmp2 = fold_convert (ut, tmp2);
2416 tmp2 = fold_build2 (BIT_AND_EXPR, ut, tmp3, tmp2);
2417
2418 if (tmp3 != tmp2)
2419 {
2420 tmp3 = make_rename_temp (ut, "SR");
2421 stmt = sra_build_assignment (tmp3, tmp2);
2422 append_to_statement_list (stmt, &list);
2423 }
2424
2425 tmp2 = tmp3;
2426 }
2427
2428 if (TYPE_MAIN_VARIANT (TREE_TYPE (tmp2)) != TYPE_MAIN_VARIANT (utype))
2429 {
2430 tmp3 = make_rename_temp (utype, "SR");
2431 tmp2 = fold_convert (utype, tmp2);
2432 stmt = sra_build_assignment (tmp3, tmp2);
2433 append_to_statement_list (stmt, &list);
2434 tmp2 = tmp3;
2435 }
2436
2437 if (!integer_zerop (minshift))
2438 {
2439 tmp3 = make_rename_temp (utype, "SR");
2440 stmt = build_gimple_modify_stmt (tmp3,
2441 fold_build2 (LSHIFT_EXPR, utype,
2442 tmp2, minshift));
2443 append_to_statement_list (stmt, &list);
2444 tmp2 = tmp3;
2445 }
2446
2447 if (utype != TREE_TYPE (var))
2448 tmp3 = make_rename_temp (utype, "SR");
2449 else
2450 tmp3 = var;
2451 stmt = build_gimple_modify_stmt (tmp3,
2452 fold_build2 (BIT_IOR_EXPR, utype,
2453 tmp, tmp2));
2454 append_to_statement_list (stmt, &list);
2455
2456 if (tmp3 != var)
2457 {
2458 if (TREE_TYPE (var) == type)
2459 stmt = build_gimple_modify_stmt (var,
2460 fold_convert (type, tmp3));
2461 else
2462 stmt = build_gimple_modify_stmt (var,
2463 fold_build1 (VIEW_CONVERT_EXPR,
2464 TREE_TYPE (var), tmp3));
2465 append_to_statement_list (stmt, &list);
2466 }
2467
2468 return list;
2469 }
2470
2471 /* Expand an assignment of SRC to the scalarized representation of
2472 ELT. If it is a field group, try to widen the assignment to cover
2473 the full variable. */
2474
2475 static tree
2476 sra_build_elt_assignment (struct sra_elt *elt, tree src)
2477 {
2478 tree dst = elt->replacement;
2479 tree var, tmp, cst, cst2, list, stmt;
2480
2481 if (TREE_CODE (dst) != BIT_FIELD_REF
2482 || !elt->in_bitfld_block)
2483 return sra_build_assignment (REPLDUP (dst), src);
2484
2485 var = TREE_OPERAND (dst, 0);
2486
2487 /* Try to widen the assignment to the entire variable.
2488 We need the source to be a BIT_FIELD_REF as well, such that, for
2489 BIT_FIELD_REF<d,sz,dp> = BIT_FIELD_REF<s,sz,sp>,
2490 by design, conditions are met such that we can turn it into
2491 d = BIT_FIELD_REF<s,dw,sp-dp>. */
2492 if (elt->in_bitfld_block == 2
2493 && TREE_CODE (src) == BIT_FIELD_REF)
2494 {
2495 tmp = src;
2496 cst = TYPE_SIZE (TREE_TYPE (var));
2497 cst2 = size_binop (MINUS_EXPR, TREE_OPERAND (src, 2),
2498 TREE_OPERAND (dst, 2));
2499
2500 src = TREE_OPERAND (src, 0);
2501
2502 /* Avoid full-width bit-fields. */
2503 if (integer_zerop (cst2)
2504 && tree_int_cst_equal (cst, TYPE_SIZE (TREE_TYPE (src))))
2505 {
2506 if (INTEGRAL_TYPE_P (TREE_TYPE (src))
2507 && !TYPE_UNSIGNED (TREE_TYPE (src)))
2508 src = fold_convert (unsigned_type_for (TREE_TYPE (src)), src);
2509
2510 /* If a single conversion won't do, we'll need a statement
2511 list. */
2512 if (TYPE_MAIN_VARIANT (TREE_TYPE (var))
2513 != TYPE_MAIN_VARIANT (TREE_TYPE (src)))
2514 {
2515 list = NULL;
2516
2517 if (!INTEGRAL_TYPE_P (TREE_TYPE (src)))
2518 src = fold_build1 (VIEW_CONVERT_EXPR,
2519 lang_hooks.types.type_for_size
2520 (TREE_INT_CST_LOW
2521 (TYPE_SIZE (TREE_TYPE (src))),
2522 1), src);
2523 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (src)));
2524
2525 tmp = make_rename_temp (TREE_TYPE (src), "SR");
2526 stmt = build_gimple_modify_stmt (tmp, src);
2527 append_to_statement_list (stmt, &list);
2528
2529 stmt = sra_build_assignment (var,
2530 fold_convert (TREE_TYPE (var),
2531 tmp));
2532 append_to_statement_list (stmt, &list);
2533
2534 return list;
2535 }
2536
2537 src = fold_convert (TREE_TYPE (var), src);
2538 }
2539 else
2540 {
2541 src = fold_convert (TREE_TYPE (var), tmp);
2542 }
2543
2544 return sra_build_assignment (var, src);
2545 }
2546
2547 return sra_build_bf_assignment (dst, src);
2548 }
2549
2550 /* Generate a set of assignment statements in *LIST_P to copy all
2551 instantiated elements under ELT to or from the equivalent structure
2552 rooted at EXPR. COPY_OUT controls the direction of the copy, with
2553 true meaning to copy out of EXPR into ELT. */
2554
2555 static void
2556 generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
2557 tree *list_p)
2558 {
2559 struct sra_elt *c;
2560 tree t;
2561
2562 if (!copy_out && TREE_CODE (expr) == SSA_NAME
2563 && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
2564 {
2565 tree r, i;
2566
2567 c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
2568 r = c->replacement;
2569 c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
2570 i = c->replacement;
2571
2572 t = build2 (COMPLEX_EXPR, elt->type, r, i);
2573 t = sra_build_bf_assignment (expr, t);
2574 SSA_NAME_DEF_STMT (expr) = t;
2575 append_to_statement_list (t, list_p);
2576 }
2577 else if (elt->replacement)
2578 {
2579 if (copy_out)
2580 t = sra_build_elt_assignment (elt, expr);
2581 else
2582 t = sra_build_bf_assignment (expr, REPLDUP (elt->replacement));
2583 append_to_statement_list (t, list_p);
2584 }
2585 else
2586 {
2587 FOR_EACH_ACTUAL_CHILD (c, elt)
2588 {
2589 t = generate_one_element_ref (c, unshare_expr (expr));
2590 generate_copy_inout (c, copy_out, t, list_p);
2591 }
2592 }
2593 }
2594
2595 /* Generate a set of assignment statements in *LIST_P to copy all instantiated
2596 elements under SRC to their counterparts under DST. There must be a 1-1
2597 correspondence of instantiated elements. */
2598
2599 static void
2600 generate_element_copy (struct sra_elt *dst, struct sra_elt *src, tree *list_p)
2601 {
2602 struct sra_elt *dc, *sc;
2603
2604 FOR_EACH_ACTUAL_CHILD (dc, dst)
2605 {
2606 sc = lookup_element (src, dc->element, NULL, NO_INSERT);
2607 if (!sc && dc->in_bitfld_block == 2)
2608 {
2609 struct sra_elt *dcs;
2610
2611 FOR_EACH_ACTUAL_CHILD (dcs, dc)
2612 {
2613 sc = lookup_element (src, dcs->element, NULL, NO_INSERT);
2614 gcc_assert (sc);
2615 generate_element_copy (dcs, sc, list_p);
2616 }
2617
2618 continue;
2619 }
2620
2621 /* If DST and SRC are structs with the same elements, but do not have
2622 the same TYPE_MAIN_VARIANT, then lookup of DST FIELD_DECL in SRC
2623 will fail. Try harder by finding the corresponding FIELD_DECL
2624 in SRC. */
2625 if (!sc)
2626 {
2627 tree f;
2628
2629 gcc_assert (useless_type_conversion_p (dst->type, src->type));
2630 gcc_assert (TREE_CODE (dc->element) == FIELD_DECL);
2631 for (f = TYPE_FIELDS (src->type); f ; f = TREE_CHAIN (f))
2632 if (simple_cst_equal (DECL_FIELD_OFFSET (f),
2633 DECL_FIELD_OFFSET (dc->element)) > 0
2634 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (f),
2635 DECL_FIELD_BIT_OFFSET (dc->element)) > 0
2636 && simple_cst_equal (DECL_SIZE (f),
2637 DECL_SIZE (dc->element)) > 0
2638 && (useless_type_conversion_p (TREE_TYPE (dc->element),
2639 TREE_TYPE (f))
2640 || (POINTER_TYPE_P (TREE_TYPE (dc->element))
2641 && POINTER_TYPE_P (TREE_TYPE (f)))))
2642 break;
2643 gcc_assert (f != NULL_TREE);
2644 sc = lookup_element (src, f, NULL, NO_INSERT);
2645 }
2646
2647 generate_element_copy (dc, sc, list_p);
2648 }
2649
2650 if (dst->replacement)
2651 {
2652 tree t;
2653
2654 gcc_assert (src->replacement);
2655
2656 t = sra_build_elt_assignment (dst, REPLDUP (src->replacement));
2657 append_to_statement_list (t, list_p);
2658 }
2659 }
2660
2661 /* Generate a set of assignment statements in *LIST_P to zero all instantiated
2662 elements under ELT. In addition, do not assign to elements that have been
2663 marked VISITED but do reset the visited flag; this allows easy coordination
2664 with generate_element_init. */
2665
2666 static void
2667 generate_element_zero (struct sra_elt *elt, tree *list_p)
2668 {
2669 struct sra_elt *c;
2670
2671 if (elt->visited)
2672 {
2673 elt->visited = false;
2674 return;
2675 }
2676
2677 if (!elt->in_bitfld_block)
2678 FOR_EACH_ACTUAL_CHILD (c, elt)
2679 generate_element_zero (c, list_p);
2680
2681 if (elt->replacement)
2682 {
2683 tree t;
2684
2685 gcc_assert (elt->is_scalar);
2686 t = fold_convert (elt->type, integer_zero_node);
2687
2688 t = sra_build_elt_assignment (elt, t);
2689 append_to_statement_list (t, list_p);
2690 }
2691 }
2692
2693 /* Generate an assignment VAR = INIT, where INIT may need gimplification.
2694 Add the result to *LIST_P. */
2695
2696 static void
2697 generate_one_element_init (struct sra_elt *elt, tree init, tree *list_p)
2698 {
2699 /* The replacement can be almost arbitrarily complex. Gimplify. */
2700 tree stmt = sra_build_elt_assignment (elt, init);
2701 gimplify_and_add (stmt, list_p);
2702 }
2703
2704 /* Generate a set of assignment statements in *LIST_P to set all instantiated
2705 elements under ELT with the contents of the initializer INIT. In addition,
2706 mark all assigned elements VISITED; this allows easy coordination with
2707 generate_element_zero. Return false if we found a case we couldn't
2708 handle. */
2709
2710 static bool
2711 generate_element_init_1 (struct sra_elt *elt, tree init, tree *list_p)
2712 {
2713 bool result = true;
2714 enum tree_code init_code;
2715 struct sra_elt *sub;
2716 tree t;
2717 unsigned HOST_WIDE_INT idx;
2718 tree value, purpose;
2719
2720 /* We can be passed DECL_INITIAL of a static variable. It might have a
2721 conversion, which we strip off here. */
2722 STRIP_USELESS_TYPE_CONVERSION (init);
2723 init_code = TREE_CODE (init);
2724
2725 if (elt->is_scalar)
2726 {
2727 if (elt->replacement)
2728 {
2729 generate_one_element_init (elt, init, list_p);
2730 elt->visited = true;
2731 }
2732 return result;
2733 }
2734
2735 switch (init_code)
2736 {
2737 case COMPLEX_CST:
2738 case COMPLEX_EXPR:
2739 FOR_EACH_ACTUAL_CHILD (sub, elt)
2740 {
2741 if (sub->element == integer_zero_node)
2742 t = (init_code == COMPLEX_EXPR
2743 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
2744 else
2745 t = (init_code == COMPLEX_EXPR
2746 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
2747 result &= generate_element_init_1 (sub, t, list_p);
2748 }
2749 break;
2750
2751 case CONSTRUCTOR:
2752 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
2753 {
2754 if (TREE_CODE (purpose) == RANGE_EXPR)
2755 {
2756 tree lower = TREE_OPERAND (purpose, 0);
2757 tree upper = TREE_OPERAND (purpose, 1);
2758
2759 while (1)
2760 {
2761 sub = lookup_element (elt, lower, NULL, NO_INSERT);
2762 if (sub != NULL)
2763 result &= generate_element_init_1 (sub, value, list_p);
2764 if (tree_int_cst_equal (lower, upper))
2765 break;
2766 lower = int_const_binop (PLUS_EXPR, lower,
2767 integer_one_node, true);
2768 }
2769 }
2770 else
2771 {
2772 sub = lookup_element (elt, purpose, NULL, NO_INSERT);
2773 if (sub != NULL)
2774 result &= generate_element_init_1 (sub, value, list_p);
2775 }
2776 }
2777 break;
2778
2779 default:
2780 elt->visited = true;
2781 result = false;
2782 }
2783
2784 return result;
2785 }
2786
2787 /* A wrapper function for generate_element_init_1 that handles cleanup after
2788 gimplification. */
2789
2790 static bool
2791 generate_element_init (struct sra_elt *elt, tree init, tree *list_p)
2792 {
2793 bool ret;
2794
2795 push_gimplify_context ();
2796 ret = generate_element_init_1 (elt, init, list_p);
2797 pop_gimplify_context (NULL);
2798
2799 /* The replacement can expose previously unreferenced variables. */
2800 if (ret && *list_p)
2801 {
2802 tree_stmt_iterator i;
2803
2804 for (i = tsi_start (*list_p); !tsi_end_p (i); tsi_next (&i))
2805 find_new_referenced_vars (tsi_stmt_ptr (i));
2806 }
2807
2808 return ret;
2809 }
2810
2811 /* Insert STMT on all the outgoing edges out of BB. Note that if BB
2812 has more than one edge, STMT will be replicated for each edge. Also,
2813 abnormal edges will be ignored. */
2814
2815 void
2816 insert_edge_copies (tree stmt, basic_block bb)
2817 {
2818 edge e;
2819 edge_iterator ei;
2820 bool first_copy;
2821
2822 first_copy = true;
2823 FOR_EACH_EDGE (e, ei, bb->succs)
2824 {
2825 /* We don't need to insert copies on abnormal edges. The
2826 value of the scalar replacement is not guaranteed to
2827 be valid through an abnormal edge. */
2828 if (!(e->flags & EDGE_ABNORMAL))
2829 {
2830 if (first_copy)
2831 {
2832 bsi_insert_on_edge (e, stmt);
2833 first_copy = false;
2834 }
2835 else
2836 bsi_insert_on_edge (e, unsave_expr_now (stmt));
2837 }
2838 }
2839 }
2840
2841 /* Helper function to insert LIST before BSI, and set up line number info. */
2842
2843 void
2844 sra_insert_before (block_stmt_iterator *bsi, tree list)
2845 {
2846 tree stmt = bsi_stmt (*bsi);
2847
2848 if (EXPR_HAS_LOCATION (stmt))
2849 annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
2850 bsi_insert_before (bsi, list, BSI_SAME_STMT);
2851 }
2852
2853 /* Similarly, but insert after BSI. Handles insertion onto edges as well. */
2854
2855 void
2856 sra_insert_after (block_stmt_iterator *bsi, tree list)
2857 {
2858 tree stmt = bsi_stmt (*bsi);
2859
2860 if (EXPR_HAS_LOCATION (stmt))
2861 annotate_all_with_locus (&list, EXPR_LOCATION (stmt));
2862
2863 if (stmt_ends_bb_p (stmt))
2864 insert_edge_copies (list, bsi->bb);
2865 else
2866 bsi_insert_after (bsi, list, BSI_SAME_STMT);
2867 }
2868
2869 /* Similarly, but replace the statement at BSI. */
2870
2871 static void
2872 sra_replace (block_stmt_iterator *bsi, tree list)
2873 {
2874 sra_insert_before (bsi, list);
2875 bsi_remove (bsi, false);
2876 if (bsi_end_p (*bsi))
2877 *bsi = bsi_last (bsi->bb);
2878 else
2879 bsi_prev (bsi);
2880 }
2881
2882 /* Data structure that bitfield_overlaps_p fills in with information
2883 about the element passed in and how much of it overlaps with the
2884 bit-range passed it to. */
2885
2886 struct bitfield_overlap_info
2887 {
2888 /* The bit-length of an element. */
2889 tree field_len;
2890
2891 /* The bit-position of the element in its parent. */
2892 tree field_pos;
2893
2894 /* The number of bits of the element that overlap with the incoming
2895 bit range. */
2896 tree overlap_len;
2897
2898 /* The first bit of the element that overlaps with the incoming bit
2899 range. */
2900 tree overlap_pos;
2901 };
2902
2903 /* Return true if a BIT_FIELD_REF<(FLD->parent), BLEN, BPOS>
2904 expression (referenced as BF below) accesses any of the bits in FLD,
2905 false if it doesn't. If DATA is non-null, its field_len and
2906 field_pos are filled in such that BIT_FIELD_REF<(FLD->parent),
2907 field_len, field_pos> (referenced as BFLD below) represents the
2908 entire field FLD->element, and BIT_FIELD_REF<BFLD, overlap_len,
2909 overlap_pos> represents the portion of the entire field that
2910 overlaps with BF. */
2911
2912 static bool
2913 bitfield_overlaps_p (tree blen, tree bpos, struct sra_elt *fld,
2914 struct bitfield_overlap_info *data)
2915 {
2916 tree flen, fpos;
2917 bool ret;
2918
2919 if (TREE_CODE (fld->element) == FIELD_DECL)
2920 {
2921 flen = fold_convert (bitsizetype, DECL_SIZE (fld->element));
2922 fpos = fold_convert (bitsizetype, DECL_FIELD_OFFSET (fld->element));
2923 fpos = size_binop (MULT_EXPR, fpos, bitsize_int (BITS_PER_UNIT));
2924 fpos = size_binop (PLUS_EXPR, fpos, DECL_FIELD_BIT_OFFSET (fld->element));
2925 }
2926 else if (TREE_CODE (fld->element) == BIT_FIELD_REF)
2927 {
2928 flen = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 1));
2929 fpos = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 2));
2930 }
2931 else if (TREE_CODE (fld->element) == INTEGER_CST)
2932 {
2933 flen = fold_convert (bitsizetype, TYPE_SIZE (fld->type));
2934 fpos = fold_convert (bitsizetype, fld->element);
2935 fpos = size_binop (MULT_EXPR, flen, fpos);
2936 }
2937 else
2938 gcc_unreachable ();
2939
2940 gcc_assert (host_integerp (blen, 1)
2941 && host_integerp (bpos, 1)
2942 && host_integerp (flen, 1)
2943 && host_integerp (fpos, 1));
2944
2945 ret = ((!tree_int_cst_lt (fpos, bpos)
2946 && tree_int_cst_lt (size_binop (MINUS_EXPR, fpos, bpos),
2947 blen))
2948 || (!tree_int_cst_lt (bpos, fpos)
2949 && tree_int_cst_lt (size_binop (MINUS_EXPR, bpos, fpos),
2950 flen)));
2951
2952 if (!ret)
2953 return ret;
2954
2955 if (data)
2956 {
2957 tree bend, fend;
2958
2959 data->field_len = flen;
2960 data->field_pos = fpos;
2961
2962 fend = size_binop (PLUS_EXPR, fpos, flen);
2963 bend = size_binop (PLUS_EXPR, bpos, blen);
2964
2965 if (tree_int_cst_lt (bend, fend))
2966 data->overlap_len = size_binop (MINUS_EXPR, bend, fpos);
2967 else
2968 data->overlap_len = NULL;
2969
2970 if (tree_int_cst_lt (fpos, bpos))
2971 {
2972 data->overlap_pos = size_binop (MINUS_EXPR, bpos, fpos);
2973 data->overlap_len = size_binop (MINUS_EXPR,
2974 data->overlap_len
2975 ? data->overlap_len
2976 : data->field_len,
2977 data->overlap_pos);
2978 }
2979 else
2980 data->overlap_pos = NULL;
2981 }
2982
2983 return ret;
2984 }
2985
2986 /* Add to LISTP a sequence of statements that copies BLEN bits between
2987 VAR and the scalarized elements of ELT, starting a bit VPOS of VAR
2988 and at bit BPOS of ELT. The direction of the copy is given by
2989 TO_VAR. */
2990
2991 static void
2992 sra_explode_bitfield_assignment (tree var, tree vpos, bool to_var,
2993 tree *listp, tree blen, tree bpos,
2994 struct sra_elt *elt)
2995 {
2996 struct sra_elt *fld;
2997 struct bitfield_overlap_info flp;
2998
2999 FOR_EACH_ACTUAL_CHILD (fld, elt)
3000 {
3001 tree flen, fpos;
3002
3003 if (!bitfield_overlaps_p (blen, bpos, fld, &flp))
3004 continue;
3005
3006 flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3007 fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3008
3009 if (fld->replacement)
3010 {
3011 tree infld, invar, st, type;
3012
3013 infld = fld->replacement;
3014
3015 type = TREE_TYPE (infld);
3016 if (TYPE_PRECISION (type) != TREE_INT_CST_LOW (flen))
3017 type = lang_hooks.types.type_for_size (TREE_INT_CST_LOW (flen), 1);
3018 else
3019 type = unsigned_type_for (type);
3020
3021 if (TREE_CODE (infld) == BIT_FIELD_REF)
3022 {
3023 fpos = size_binop (PLUS_EXPR, fpos, TREE_OPERAND (infld, 2));
3024 infld = TREE_OPERAND (infld, 0);
3025 }
3026 else if (BYTES_BIG_ENDIAN && DECL_P (fld->element)
3027 && !tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (infld)),
3028 DECL_SIZE (fld->element)))
3029 {
3030 fpos = size_binop (PLUS_EXPR, fpos,
3031 TYPE_SIZE (TREE_TYPE (infld)));
3032 fpos = size_binop (MINUS_EXPR, fpos,
3033 DECL_SIZE (fld->element));
3034 }
3035
3036 infld = fold_build3 (BIT_FIELD_REF, type, infld, flen, fpos);
3037
3038 invar = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3039 if (flp.overlap_pos)
3040 invar = size_binop (PLUS_EXPR, invar, flp.overlap_pos);
3041 invar = size_binop (PLUS_EXPR, invar, vpos);
3042
3043 invar = fold_build3 (BIT_FIELD_REF, type, var, flen, invar);
3044
3045 if (to_var)
3046 st = sra_build_bf_assignment (invar, infld);
3047 else
3048 st = sra_build_bf_assignment (infld, invar);
3049
3050 append_to_statement_list (st, listp);
3051 }
3052 else
3053 {
3054 tree sub = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3055 sub = size_binop (PLUS_EXPR, vpos, sub);
3056 if (flp.overlap_pos)
3057 sub = size_binop (PLUS_EXPR, sub, flp.overlap_pos);
3058
3059 sra_explode_bitfield_assignment (var, sub, to_var, listp,
3060 flen, fpos, fld);
3061 }
3062 }
3063 }
3064
3065 /* Add to LISTBEFOREP statements that copy scalarized members of ELT
3066 that overlap with BIT_FIELD_REF<(ELT->element), BLEN, BPOS> back
3067 into the full variable, and to LISTAFTERP, if non-NULL, statements
3068 that copy the (presumably modified) overlapping portions of the
3069 full variable back to the scalarized variables. */
3070
3071 static void
3072 sra_sync_for_bitfield_assignment (tree *listbeforep, tree *listafterp,
3073 tree blen, tree bpos,
3074 struct sra_elt *elt)
3075 {
3076 struct sra_elt *fld;
3077 struct bitfield_overlap_info flp;
3078
3079 FOR_EACH_ACTUAL_CHILD (fld, elt)
3080 if (bitfield_overlaps_p (blen, bpos, fld, &flp))
3081 {
3082 if (fld->replacement || (!flp.overlap_len && !flp.overlap_pos))
3083 {
3084 generate_copy_inout (fld, false, generate_element_ref (fld),
3085 listbeforep);
3086 mark_no_warning (fld);
3087 if (listafterp)
3088 generate_copy_inout (fld, true, generate_element_ref (fld),
3089 listafterp);
3090 }
3091 else
3092 {
3093 tree flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3094 tree fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3095
3096 sra_sync_for_bitfield_assignment (listbeforep, listafterp,
3097 flen, fpos, fld);
3098 }
3099 }
3100 }
3101
3102 /* Scalarize a USE. To recap, this is either a simple reference to ELT,
3103 if elt is scalar, or some occurrence of ELT that requires a complete
3104 aggregate. IS_OUTPUT is true if ELT is being modified. */
3105
3106 static void
3107 scalarize_use (struct sra_elt *elt, tree *expr_p, block_stmt_iterator *bsi,
3108 bool is_output, bool use_all)
3109 {
3110 tree stmt = bsi_stmt (*bsi);
3111 tree bfexpr;
3112
3113 if (elt->replacement)
3114 {
3115 tree replacement = elt->replacement;
3116
3117 /* If we have a replacement, then updating the reference is as
3118 simple as modifying the existing statement in place. */
3119 if (is_output
3120 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3121 && is_gimple_reg (TREE_OPERAND (elt->replacement, 0))
3122 && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3123 && &GIMPLE_STMT_OPERAND (stmt, 0) == expr_p)
3124 {
3125 tree newstmt = sra_build_elt_assignment
3126 (elt, GIMPLE_STMT_OPERAND (stmt, 1));
3127 if (TREE_CODE (newstmt) != STATEMENT_LIST)
3128 {
3129 tree list = NULL;
3130 append_to_statement_list (newstmt, &list);
3131 newstmt = list;
3132 }
3133 sra_replace (bsi, newstmt);
3134 return;
3135 }
3136 else if (!is_output
3137 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3138 && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3139 && &GIMPLE_STMT_OPERAND (stmt, 1) == expr_p)
3140 {
3141 tree tmp = make_rename_temp
3142 (TREE_TYPE (GIMPLE_STMT_OPERAND (stmt, 0)), "SR");
3143 tree newstmt = sra_build_assignment (tmp, REPLDUP (elt->replacement));
3144
3145 if (TREE_CODE (newstmt) != STATEMENT_LIST)
3146 {
3147 tree list = NULL;
3148 append_to_statement_list (newstmt, &list);
3149 newstmt = list;
3150 }
3151 sra_insert_before (bsi, newstmt);
3152 replacement = tmp;
3153 }
3154 if (is_output)
3155 mark_all_v_defs (stmt);
3156 *expr_p = REPLDUP (replacement);
3157 update_stmt (stmt);
3158 }
3159 else if (use_all && is_output
3160 && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3161 && TREE_CODE (bfexpr
3162 = GIMPLE_STMT_OPERAND (stmt, 0)) == BIT_FIELD_REF
3163 && &TREE_OPERAND (bfexpr, 0) == expr_p
3164 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3165 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3166 {
3167 tree listbefore = NULL, listafter = NULL;
3168 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3169 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3170 bool update = false;
3171
3172 if (!elt->use_block_copy)
3173 {
3174 tree type = TREE_TYPE (bfexpr);
3175 tree var = make_rename_temp (type, "SR"), tmp, st, vpos;
3176
3177 GIMPLE_STMT_OPERAND (stmt, 0) = var;
3178 update = true;
3179
3180 if (!TYPE_UNSIGNED (type))
3181 {
3182 type = unsigned_type_for (type);
3183 tmp = make_rename_temp (type, "SR");
3184 st = build_gimple_modify_stmt (tmp,
3185 fold_convert (type, var));
3186 append_to_statement_list (st, &listafter);
3187 var = tmp;
3188 }
3189
3190 /* If VAR is wider than BLEN bits, it is padded at the
3191 most-significant end. We want to set VPOS such that
3192 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3193 least-significant BLEN bits of VAR. */
3194 if (BYTES_BIG_ENDIAN)
3195 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3196 else
3197 vpos = bitsize_int (0);
3198 sra_explode_bitfield_assignment
3199 (var, vpos, false, &listafter, blen, bpos, elt);
3200 }
3201 else
3202 sra_sync_for_bitfield_assignment
3203 (&listbefore, &listafter, blen, bpos, elt);
3204
3205 if (listbefore)
3206 {
3207 mark_all_v_defs (listbefore);
3208 sra_insert_before (bsi, listbefore);
3209 }
3210 if (listafter)
3211 {
3212 mark_all_v_defs (listafter);
3213 sra_insert_after (bsi, listafter);
3214 }
3215
3216 if (update)
3217 update_stmt (stmt);
3218 }
3219 else if (use_all && !is_output
3220 && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3221 && TREE_CODE (bfexpr
3222 = GIMPLE_STMT_OPERAND (stmt, 1)) == BIT_FIELD_REF
3223 && &TREE_OPERAND (GIMPLE_STMT_OPERAND (stmt, 1), 0) == expr_p
3224 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3225 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3226 {
3227 tree list = NULL;
3228 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3229 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3230 bool update = false;
3231
3232 if (!elt->use_block_copy)
3233 {
3234 tree type = TREE_TYPE (bfexpr);
3235 tree var, vpos;
3236
3237 if (!TYPE_UNSIGNED (type))
3238 type = unsigned_type_for (type);
3239
3240 var = make_rename_temp (type, "SR");
3241
3242 append_to_statement_list (build_gimple_modify_stmt
3243 (var, build_int_cst_wide (type, 0, 0)),
3244 &list);
3245
3246 /* If VAR is wider than BLEN bits, it is padded at the
3247 most-significant end. We want to set VPOS such that
3248 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3249 least-significant BLEN bits of VAR. */
3250 if (BYTES_BIG_ENDIAN)
3251 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3252 else
3253 vpos = bitsize_int (0);
3254 sra_explode_bitfield_assignment
3255 (var, vpos, true, &list, blen, bpos, elt);
3256
3257 GIMPLE_STMT_OPERAND (stmt, 1) = var;
3258 update = true;
3259 }
3260 else
3261 sra_sync_for_bitfield_assignment
3262 (&list, NULL, blen, bpos, elt);
3263
3264 if (list)
3265 {
3266 mark_all_v_defs (list);
3267 sra_insert_before (bsi, list);
3268 }
3269
3270 if (update)
3271 update_stmt (stmt);
3272 }
3273 else
3274 {
3275 tree list = NULL;
3276
3277 /* Otherwise we need some copies. If ELT is being read, then we
3278 want to store all (modified) sub-elements back into the
3279 structure before the reference takes place. If ELT is being
3280 written, then we want to load the changed values back into
3281 our shadow variables. */
3282 /* ??? We don't check modified for reads, we just always write all of
3283 the values. We should be able to record the SSA number of the VOP
3284 for which the values were last read. If that number matches the
3285 SSA number of the VOP in the current statement, then we needn't
3286 emit an assignment. This would also eliminate double writes when
3287 a structure is passed as more than one argument to a function call.
3288 This optimization would be most effective if sra_walk_function
3289 processed the blocks in dominator order. */
3290
3291 generate_copy_inout (elt, is_output, generate_element_ref (elt), &list);
3292 if (list == NULL)
3293 return;
3294 mark_all_v_defs (list);
3295 if (is_output)
3296 sra_insert_after (bsi, list);
3297 else
3298 {
3299 sra_insert_before (bsi, list);
3300 if (use_all)
3301 mark_no_warning (elt);
3302 }
3303 }
3304 }
3305
3306 /* Scalarize a COPY. To recap, this is an assignment statement between
3307 two scalarizable references, LHS_ELT and RHS_ELT. */
3308
3309 static void
3310 scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
3311 block_stmt_iterator *bsi)
3312 {
3313 tree list, stmt;
3314
3315 if (lhs_elt->replacement && rhs_elt->replacement)
3316 {
3317 /* If we have two scalar operands, modify the existing statement. */
3318 stmt = bsi_stmt (*bsi);
3319
3320 /* See the commentary in sra_walk_function concerning
3321 RETURN_EXPR, and why we should never see one here. */
3322 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
3323
3324 GIMPLE_STMT_OPERAND (stmt, 0) = lhs_elt->replacement;
3325 GIMPLE_STMT_OPERAND (stmt, 1) = REPLDUP (rhs_elt->replacement);
3326 update_stmt (stmt);
3327 }
3328 else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
3329 {
3330 /* If either side requires a block copy, then sync the RHS back
3331 to the original structure, leave the original assignment
3332 statement (which will perform the block copy), then load the
3333 LHS values out of its now-updated original structure. */
3334 /* ??? Could perform a modified pair-wise element copy. That
3335 would at least allow those elements that are instantiated in
3336 both structures to be optimized well. */
3337
3338 list = NULL;
3339 generate_copy_inout (rhs_elt, false,
3340 generate_element_ref (rhs_elt), &list);
3341 if (list)
3342 {
3343 mark_all_v_defs (list);
3344 sra_insert_before (bsi, list);
3345 }
3346
3347 list = NULL;
3348 generate_copy_inout (lhs_elt, true,
3349 generate_element_ref (lhs_elt), &list);
3350 if (list)
3351 {
3352 mark_all_v_defs (list);
3353 sra_insert_after (bsi, list);
3354 }
3355 }
3356 else
3357 {
3358 /* Otherwise both sides must be fully instantiated. In which
3359 case perform pair-wise element assignments and replace the
3360 original block copy statement. */
3361
3362 stmt = bsi_stmt (*bsi);
3363 mark_all_v_defs (stmt);
3364
3365 list = NULL;
3366 generate_element_copy (lhs_elt, rhs_elt, &list);
3367 gcc_assert (list);
3368 mark_all_v_defs (list);
3369 sra_replace (bsi, list);
3370 }
3371 }
3372
3373 /* Scalarize an INIT. To recap, this is an assignment to a scalarizable
3374 reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
3375 COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
3376 CONSTRUCTOR. */
3377
3378 static void
3379 scalarize_init (struct sra_elt *lhs_elt, tree rhs, block_stmt_iterator *bsi)
3380 {
3381 bool result = true;
3382 tree list = NULL, init_list = NULL;
3383
3384 /* Generate initialization statements for all members extant in the RHS. */
3385 if (rhs)
3386 {
3387 /* Unshare the expression just in case this is from a decl's initial. */
3388 rhs = unshare_expr (rhs);
3389 result = generate_element_init (lhs_elt, rhs, &init_list);
3390 }
3391
3392 /* CONSTRUCTOR is defined such that any member not mentioned is assigned
3393 a zero value. Initialize the rest of the instantiated elements. */
3394 generate_element_zero (lhs_elt, &list);
3395 append_to_statement_list (init_list, &list);
3396
3397 if (!result)
3398 {
3399 /* If we failed to convert the entire initializer, then we must
3400 leave the structure assignment in place and must load values
3401 from the structure into the slots for which we did not find
3402 constants. The easiest way to do this is to generate a complete
3403 copy-out, and then follow that with the constant assignments
3404 that we were able to build. DCE will clean things up. */
3405 tree list0 = NULL;
3406 generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
3407 &list0);
3408 append_to_statement_list (list, &list0);
3409 list = list0;
3410 }
3411
3412 if (lhs_elt->use_block_copy || !result)
3413 {
3414 /* Since LHS is not fully instantiated, we must leave the structure
3415 assignment in place. Treating this case differently from a USE
3416 exposes constants to later optimizations. */
3417 if (list)
3418 {
3419 mark_all_v_defs (list);
3420 sra_insert_after (bsi, list);
3421 }
3422 }
3423 else
3424 {
3425 /* The LHS is fully instantiated. The list of initializations
3426 replaces the original structure assignment. */
3427 gcc_assert (list);
3428 mark_all_v_defs (bsi_stmt (*bsi));
3429 mark_all_v_defs (list);
3430 sra_replace (bsi, list);
3431 }
3432 }
3433
3434 /* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
3435 on all INDIRECT_REFs. */
3436
3437 static tree
3438 mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3439 {
3440 tree t = *tp;
3441
3442 if (TREE_CODE (t) == INDIRECT_REF)
3443 {
3444 TREE_THIS_NOTRAP (t) = 1;
3445 *walk_subtrees = 0;
3446 }
3447 else if (IS_TYPE_OR_DECL_P (t))
3448 *walk_subtrees = 0;
3449
3450 return NULL;
3451 }
3452
3453 /* Scalarize a LDST. To recap, this is an assignment between one scalarizable
3454 reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
3455 if ELT is on the left-hand side. */
3456
3457 static void
3458 scalarize_ldst (struct sra_elt *elt, tree other,
3459 block_stmt_iterator *bsi, bool is_output)
3460 {
3461 /* Shouldn't have gotten called for a scalar. */
3462 gcc_assert (!elt->replacement);
3463
3464 if (elt->use_block_copy)
3465 {
3466 /* Since ELT is not fully instantiated, we have to leave the
3467 block copy in place. Treat this as a USE. */
3468 scalarize_use (elt, NULL, bsi, is_output, false);
3469 }
3470 else
3471 {
3472 /* The interesting case is when ELT is fully instantiated. In this
3473 case we can have each element stored/loaded directly to/from the
3474 corresponding slot in OTHER. This avoids a block copy. */
3475
3476 tree list = NULL, stmt = bsi_stmt (*bsi);
3477
3478 mark_all_v_defs (stmt);
3479 generate_copy_inout (elt, is_output, other, &list);
3480 gcc_assert (list);
3481 mark_all_v_defs (list);
3482
3483 /* Preserve EH semantics. */
3484 if (stmt_ends_bb_p (stmt))
3485 {
3486 tree_stmt_iterator tsi;
3487 tree first, blist = NULL;
3488 bool thr = tree_could_throw_p (stmt);
3489
3490 /* If the last statement of this BB created an EH edge
3491 before scalarization, we have to locate the first
3492 statement that can throw in the new statement list and
3493 use that as the last statement of this BB, such that EH
3494 semantics is preserved. All statements up to this one
3495 are added to the same BB. All other statements in the
3496 list will be added to normal outgoing edges of the same
3497 BB. If they access any memory, it's the same memory, so
3498 we can assume they won't throw. */
3499 tsi = tsi_start (list);
3500 for (first = tsi_stmt (tsi);
3501 thr && !tsi_end_p (tsi) && !tree_could_throw_p (first);
3502 first = tsi_stmt (tsi))
3503 {
3504 tsi_delink (&tsi);
3505 append_to_statement_list (first, &blist);
3506 }
3507
3508 /* Extract the first remaining statement from LIST, this is
3509 the EH statement if there is one. */
3510 tsi_delink (&tsi);
3511
3512 if (blist)
3513 sra_insert_before (bsi, blist);
3514
3515 /* Replace the old statement with this new representative. */
3516 bsi_replace (bsi, first, true);
3517
3518 if (!tsi_end_p (tsi))
3519 {
3520 /* If any reference would trap, then they all would. And more
3521 to the point, the first would. Therefore none of the rest
3522 will trap since the first didn't. Indicate this by
3523 iterating over the remaining statements and set
3524 TREE_THIS_NOTRAP in all INDIRECT_REFs. */
3525 do
3526 {
3527 walk_tree (tsi_stmt_ptr (tsi), mark_notrap, NULL, NULL);
3528 tsi_next (&tsi);
3529 }
3530 while (!tsi_end_p (tsi));
3531
3532 insert_edge_copies (list, bsi->bb);
3533 }
3534 }
3535 else
3536 sra_replace (bsi, list);
3537 }
3538 }
3539
3540 /* Generate initializations for all scalarizable parameters. */
3541
3542 static void
3543 scalarize_parms (void)
3544 {
3545 tree list = NULL;
3546 unsigned i;
3547 bitmap_iterator bi;
3548
3549 EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
3550 {
3551 tree var = referenced_var (i);
3552 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
3553 generate_copy_inout (elt, true, var, &list);
3554 }
3555
3556 if (list)
3557 {
3558 insert_edge_copies (list, ENTRY_BLOCK_PTR);
3559 mark_all_v_defs (list);
3560 }
3561 }
3562
3563 /* Entry point to phase 4. Update the function to match replacements. */
3564
3565 static void
3566 scalarize_function (void)
3567 {
3568 static const struct sra_walk_fns fns = {
3569 scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
3570 };
3571
3572 sra_walk_function (&fns);
3573 scalarize_parms ();
3574 bsi_commit_edge_inserts ();
3575 }
3576
3577 \f
3578 /* Debug helper function. Print ELT in a nice human-readable format. */
3579
3580 static void
3581 dump_sra_elt_name (FILE *f, struct sra_elt *elt)
3582 {
3583 if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
3584 {
3585 fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
3586 dump_sra_elt_name (f, elt->parent);
3587 }
3588 else
3589 {
3590 if (elt->parent)
3591 dump_sra_elt_name (f, elt->parent);
3592 if (DECL_P (elt->element))
3593 {
3594 if (TREE_CODE (elt->element) == FIELD_DECL)
3595 fputc ('.', f);
3596 print_generic_expr (f, elt->element, dump_flags);
3597 }
3598 else if (TREE_CODE (elt->element) == BIT_FIELD_REF)
3599 fprintf (f, "$B" HOST_WIDE_INT_PRINT_DEC "F" HOST_WIDE_INT_PRINT_DEC,
3600 tree_low_cst (TREE_OPERAND (elt->element, 2), 1),
3601 tree_low_cst (TREE_OPERAND (elt->element, 1), 1));
3602 else if (TREE_CODE (elt->element) == RANGE_EXPR)
3603 fprintf (f, "["HOST_WIDE_INT_PRINT_DEC".."HOST_WIDE_INT_PRINT_DEC"]",
3604 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 0)),
3605 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 1)));
3606 else
3607 fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
3608 TREE_INT_CST_LOW (elt->element));
3609 }
3610 }
3611
3612 /* Likewise, but callable from the debugger. */
3613
3614 void
3615 debug_sra_elt_name (struct sra_elt *elt)
3616 {
3617 dump_sra_elt_name (stderr, elt);
3618 fputc ('\n', stderr);
3619 }
3620
3621 void
3622 sra_init_cache (void)
3623 {
3624 if (sra_type_decomp_cache)
3625 return;
3626
3627 sra_type_decomp_cache = BITMAP_ALLOC (NULL);
3628 sra_type_inst_cache = BITMAP_ALLOC (NULL);
3629 }
3630
3631 /* Main entry point. */
3632
3633 static unsigned int
3634 tree_sra (void)
3635 {
3636 /* Initialize local variables. */
3637 todoflags = 0;
3638 gcc_obstack_init (&sra_obstack);
3639 sra_candidates = BITMAP_ALLOC (NULL);
3640 needs_copy_in = BITMAP_ALLOC (NULL);
3641 sra_init_cache ();
3642 sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
3643
3644 /* Scan. If we find anything, instantiate and scalarize. */
3645 if (find_candidates_for_sra ())
3646 {
3647 scan_function ();
3648 decide_instantiations ();
3649 scalarize_function ();
3650 if (!bitmap_empty_p (sra_candidates))
3651 todoflags |= TODO_rebuild_alias;
3652 }
3653
3654 /* Free allocated memory. */
3655 htab_delete (sra_map);
3656 sra_map = NULL;
3657 BITMAP_FREE (sra_candidates);
3658 BITMAP_FREE (needs_copy_in);
3659 BITMAP_FREE (sra_type_decomp_cache);
3660 BITMAP_FREE (sra_type_inst_cache);
3661 obstack_free (&sra_obstack, NULL);
3662 return todoflags;
3663 }
3664
3665 static unsigned int
3666 tree_sra_early (void)
3667 {
3668 unsigned int ret;
3669
3670 early_sra = true;
3671 ret = tree_sra ();
3672 early_sra = false;
3673
3674 return ret & ~TODO_rebuild_alias;
3675 }
3676
3677 static bool
3678 gate_sra (void)
3679 {
3680 return flag_tree_sra != 0;
3681 }
3682
3683 struct gimple_opt_pass pass_sra_early =
3684 {
3685 {
3686 GIMPLE_PASS,
3687 "esra", /* name */
3688 gate_sra, /* gate */
3689 tree_sra_early, /* execute */
3690 NULL, /* sub */
3691 NULL, /* next */
3692 0, /* static_pass_number */
3693 TV_TREE_SRA, /* tv_id */
3694 PROP_cfg | PROP_ssa, /* properties_required */
3695 0, /* properties_provided */
3696 0, /* properties_destroyed */
3697 0, /* todo_flags_start */
3698 TODO_dump_func
3699 | TODO_update_ssa
3700 | TODO_ggc_collect
3701 | TODO_verify_ssa /* todo_flags_finish */
3702 }
3703 };
3704
3705 struct gimple_opt_pass pass_sra =
3706 {
3707 {
3708 GIMPLE_PASS,
3709 "sra", /* name */
3710 gate_sra, /* gate */
3711 tree_sra, /* execute */
3712 NULL, /* sub */
3713 NULL, /* next */
3714 0, /* static_pass_number */
3715 TV_TREE_SRA, /* tv_id */
3716 PROP_cfg | PROP_ssa, /* properties_required */
3717 0, /* properties_provided */
3718 0, /* properties_destroyed */
3719 0, /* todo_flags_start */
3720 TODO_dump_func
3721 | TODO_update_ssa
3722 | TODO_ggc_collect
3723 | TODO_verify_ssa /* todo_flags_finish */
3724 }
3725 };